WO2001004985A1 - High-frequency device and method of manufacture thereof - Google Patents

High-frequency device and method of manufacture thereof Download PDF

Info

Publication number
WO2001004985A1
WO2001004985A1 PCT/JP2000/004241 JP0004241W WO0104985A1 WO 2001004985 A1 WO2001004985 A1 WO 2001004985A1 JP 0004241 W JP0004241 W JP 0004241W WO 0104985 A1 WO0104985 A1 WO 0104985A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
frequency
substrate
waveguide
forming
Prior art date
Application number
PCT/JP2000/004241
Other languages
French (fr)
Japanese (ja)
Inventor
Tsunehisa Marumoto
Ryuichi Iwata
Youichi Ara
Hideki Kusamitsu
Kenichiro Suzuki
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2001004985A1 publication Critical patent/WO2001004985A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations

Definitions

  • the present invention relates to a high-frequency device for transmitting high-frequency signals, such as a phased array antenna used for transmitting and receiving high-frequency signals such as microphone mouth waves, and a method for manufacturing the same.
  • a high-frequency device for transmitting high-frequency signals such as a phased array antenna used for transmitting and receiving high-frequency signals such as microphone mouth waves, and a method for manufacturing the same.
  • a phased array antenna that is used in a satellite tracking on-board antenna and a satellite-mounted antenna and in which many radiating elements are arranged has been proposed (for example, IEICE Technical Report AP 90-75 And Japanese Unexamined Patent Application Publication No. 129301/1992).
  • phased array antenna has a function of arbitrarily changing the direction of a beam by changing the phase fed to each radiating element.
  • a digital phase shifter composed of a plurality of phase shift circuits, each having a different fixed phase shift amount, is generally used (hereinafter referred to as a digital phase shifter). Is simply called a phase shifter).
  • each of the phase shift circuits is turned on and off by a 1-bit digital control signal, and the phase shift amounts of the respective phase shift circuits are combined. To obtain a power supply phase of 0 to 360;
  • each phase shift circuit As a switching element in each phase shift circuit, a semiconductor element such as a PIN diode and a GaAs FET, and a large number of drive circuit components for driving these elements are used.
  • the phase shift circuit generates a predetermined amount of phase shift by applying a DC current or a DC voltage to these switching elements to turn them on and off, and to change a transmission path length, a susceptance, a reflection coefficient, and the like. It has a configuration.
  • communication at a high data rate has been required due to the expansion of Internet use and the spread of multimedia communication. Is needed.
  • transmission bandwidth must be increased in order to achieve communication at high data rates.
  • Ka-band (20 GHz or higher) The realization of an antenna that can be applied in is urgent.
  • an antenna for a low earth orbit satellite tracking terminal for example, frequency: 3 OGHz,
  • Beam scanning range Beam tilt angle 50 ° from the front
  • an aperture area of about 0.13 m 2 (36 OmmX 36 Omm) is first required. Furthermore, in order to suppress side lobes, it is necessary to arrange radiating elements at intervals of about 1Z2 wavelength (about 5mm at 30GHz) to avoid the generation of grating lobes.
  • phase shift circuit used for each phase shifter has 4 bits (minimum bit shift). Phaser 22.5 °)
  • one driver circuit 913 formed on the drive circuit board 910 forms each phase shifter 9 1 Since each of the phase shift circuits in 2 is controlled, it is necessary to individually connect this driver circuit 9 13 and all the phase shift circuits. Therefore, the wiring for the connection is required by the number of radiating elements x the number of phase shift circuit bits, and if the above-mentioned numerical values are applied, in a 72 x 72 radiating element 9 2 1 array arrangement
  • the radiating elements 921 need to be arranged at around 5 mm, but in the conventional technology, as described above, The width of the wiring bundle is 28.8 mm, which is too large to be physically placed.
  • the layer on which the radiating element 9 21 is formed (radiating element substrate 9 20) and the layer on which the parasitic element 9 31 is formed (parasitic element substrate 9 30) but also the distributing / combining device 9
  • 11 1 and the phase shifter 9 12 are formed in different layers, only the phase shifter 9 12 can be freely arranged in the layer forming the phase shifter 9 12.
  • the problem of the disposition can be solved.
  • a multi-layer structure can realize a phased array antenna applicable to a higher frequency band.
  • the thickness of each layer is as small as several meters, so that it is too thick. This is especially advantageous for spaceborne applications, as they can be smaller and take up less area:
  • the switch used for the phase shifter 9 12 As a switch element, a micromachine switch cannot be used for the inner layer, so that there is a problem in that the mounting is restricted.
  • the present invention is intended to solve such a problem, and uses a high-frequency movable component having a movable portion such as a micromachine switch for an inner layer in a high-frequency device applied to a high-frequency band with high gain, such as a phased array antenna.
  • the purpose is to improve mounting efficiency. Disclosure of the invention
  • a high-frequency device includes: a multilayer substrate having a multilayer structure; a waveguide formed on an inner substrate constituting the multilayer substrate and transmitting a high-frequency signal; A high-frequency movable part having a structure, and a space formed above the formation region of the high-frequency movable part and having a height higher than the upper limit of the movable range of the high-frequency movable part.
  • the space may be formed of an opening region formed in an upper layer of the inner layer substrate.
  • a part of the waveguide may be formed higher than the upper limit of the movable range of the high-frequency movable part, and the space may be formed between the inner substrate and the upper layer of the inner substrate supported on the upper surface of the waveguide.
  • the high-frequency movable component is a switch that switches the connection state of the waveguide.
  • This switch is a fixed electrode disposed on an inner layer substrate, a column disposed apart from the fixed electrode, and one end fixed to the column and the other end positioned above the fixed electrode.
  • This is a micromachine switch including a movable electrode that extends.
  • the multi-layer substrate includes a first layer formed of the inner layer substrate, a waveguide formed on the inner layer substrate, and a high-frequency movable element. At least a second layer having a component and a third layer having a high-frequency component to which a high-frequency signal propagating through the waveguide is coupled may be provided.
  • the multilayer substrate may further include a coupling layer made of a conductive material and disposed between the second layer and the third layer and provided with coupling means for coupling a high-frequency signal propagating through the waveguide to the high-frequency component. You may. Also, a multi-layer substrate is provided between the second layer and the tie layer.
  • the semiconductor device may further include a first separation layer formed of a dielectric material and a second separation layer formed of a dielectric material disposed between the coupling layer and the third layer.
  • the inner substrate may be made of a dielectric material.
  • a phase shifter that changes the phase of the high-frequency signal may be configured by the waveguide and the switch.
  • the high frequency component may be constituted by a radiating element.
  • a distribution layer for supplying a high-frequency signal to the waveguide formed on the inner substrate may be provided.
  • the method of manufacturing a high-frequency device includes a step of forming a waveguide for transmitting a high-frequency signal on a substrate made of a dielectric, and a step of forming a high-frequency movable component having a movable structure that comes into contact with and separates from the waveguide And forming a first separation layer on the substrate so that a space higher than the upper limit of the movable range of the high-frequency movable component is formed above the formation region of the high-frequency movable component.
  • a phase shifter that changes the phase of a high-frequency signal may be configured by the waveguide and the high-frequency movable component. Further, the high frequency component may be constituted by a radiation element. Forming a distribution layer for supplying a high-frequency signal to the waveguide formed on the substrate.
  • FIG. 1A is a cross-sectional view showing a partial configuration of a phased array antenna according to a first embodiment of the high-frequency device of the present invention.
  • FIG. 1B is a micromachine formed on the phase control layer shown in FIG. 1A.
  • FIG. 1C is a cross-sectional view showing the configuration of the switch, and FIG. 1C is a plan view showing one cell portion constituting the phased array antenna.
  • FIG. 2 is an exploded view for describing the entire configuration of the phased array antenna according to the first embodiment.
  • FIGS. 3A to 3M are process diagrams showing the manufacturing process of the phased array antenna according to the first embodiment.
  • FIG. 4A is a cross-sectional view showing a partial configuration of a phased array antenna according to a second embodiment of the high-frequency device of the present invention.
  • FIG. 4B is a sectional view of one cell constituting the phased array antenna.
  • 5A to 5M are process diagrams showing the steps of manufacturing the phased array antenna according to the second embodiment.
  • FIG. 6 is an exploded view showing a simple configuration of a conventional phased array antenna.
  • Embodiment 1 of the present invention will be described.
  • a 30 GHz band phased array antenna is taken as an example of the high-frequency device, and the description will be given with reference to FIG.
  • a phased array antenna is configured by a multilayer substrate 100 having a multilayer structure.
  • phase control layer (second layer) 102 composed of a plurality of phase shift units is formed on an inner layer substrate (first layer) 101 composed of a dielectric such as glass. ing.
  • These phase shift unit uses a microstrip line (waveguide) 1 0 2 a and micromachine switch (high-frequency moving parts) 1 0 2 b, and controls the phase of the RF signal.
  • the micromachine switch 102 b is composed of a fixed electrode 121 and a pillar 122 formed on the substrate 101 at a distance from each other, and the pillar 122. And a movable electrode 123 supported by In the micromachine switch 102b, the operation of the movable electrode 123 is controlled by control means (the drive circuit 102b shown in FIG. 4C), and the movable electrode 123 is connected to the microstrip line 102a. By connecting and disconnecting, the connection state of the microstrip line 102a is switched.
  • the micromachine switch is a microswitch suitable for being integrated by a semiconductor device manufacturing process.
  • a separating layer (first separating layer) 113 which is a feature of the present invention, and a connecting layer 10 having a connecting slot (connecting means) 103a are provided.
  • a radiating element layer (third layer) 105 on which a plurality of radiating elements (high-frequency components) are formed is arranged via 3 and a separating layer (second separating layer) 104.
  • a parasitic element layer 107 on which a plurality of parasitic elements are formed is disposed on the radiating element layer 105 via a separating layer (third separating layer) 106. I have. This parasitic element is provided for widening the band, and may be added as needed.
  • a microstrip line or the like is formed on the back surface of the substrate 101 via a coupling layer 108 having a coupling slot 108a and a separation layer (fourth separation layer) 109.
  • the formed distribution / combination layer 110 is arranged.
  • the distribution / synthesis layer 110 includes a distributor for distributing a high-frequency signal from a power supply unit (not shown) to each of the upper phase shift units.
  • a ground layer 111 made of a conductive material is provided below a composite distribution layer 110 through a dielectric isolation layer 111 (fifth isolation layer). Two are provided.
  • the separation layer 111 and the ground layer 112 are provided to suppress unnecessary radiation from the combined distribution layer 110, and may be added as necessary.
  • the phase control layer 102 is configured so that the electrical length of the microstrip line 102a can be switched by the operation of the plurality of micromachine switches 102b. I have.
  • FIG. 1C shows one cell part constituting a phased array antenna which is a high-frequency device.
  • a trigger signal line Trg from a control device (not shown) and a drive power supply line VdrV for the switch are arranged.
  • the operation of the micromachine switch 102b is controlled by a drive circuit (control means) 102d connected to these signal lines.
  • each phase shift circuit (phase shifter) 102c of 22.5 °, 45 :, 90 °, and 180 ° is configured. Have been.
  • the amount of phase shift of each phase shift circuit 102c is switched by the operation of the micromachine switch 102b, and changes the phase of the high-frequency signal flowing through the microstrip line 102a to a desired value.
  • a separation layer (first separation layer) 113 made of a dielectric material is formed between the phase control layer 102 and the coupling layer 103.
  • the opening region (movable space) 113a was provided on the region of the phase control layer 102 where the micromachine switch 102b was formed.
  • the thickness of the separation layer 113 is set to about 0.2 mm, it is possible to secure the movable space of the micromachine switch 102 b. In both cases, a high-frequency signal can be propagated through the microstrip line 102a without any problem.
  • the phase shift unit composed of the phase shift circuit 102c and the radiating element are formed in different layers, but the phase shift unit and the radiating element are formed in the same layer.
  • the phase shift unit and the distributor are formed in different layers, the phase shift unit and the distributor may be formed in the same layer.
  • a radiating element layer 105 and a parasitic element layer 107 are arranged on a phase control layer 102, as shown in FIG. Further, below the phase control layer 102, the distribution / combination layer 110 is arranged.
  • the radiating element layer 105 is provided with a separation layer 104 below, and a coupling layer 103 made of, for example, a thin Cu layer on the lower surface thereof.
  • a coupling slot 103a composed of a hole is formed in 03 corresponding to the array.
  • the back surface of the phase control layer 102 is provided with a coupling layer 108 made of, for example, a thin Cu layer, and the coupling layer 108 has a coupling slot 108 a corresponding to the array. Have been.
  • the phase control layer 102 is provided with wirings X1 to Xm and Y1 to Yn for individually controlling each phase shift unit and these phase shift units.
  • the high-frequency signal from the power supply unit propagates through the strip line of the distribution / combination layer 110 and is supplied to each phase shift unit of the phase control layer 102, where a predetermined power supply phase shift amount is given.
  • the light propagates through the coupling slot 103a of the coupling layer 103 to each radiating element of the radiating element layer 105 and is radiated from each radiating element in a predetermined beam direction.
  • a separation layer 113 is formed on a substrate 101 together with a phase control layer 102.
  • the formation of the separation layer 113 will be described, particularly taking the micromachine switch 102b as an example.
  • a fixed electrode forming the micromachine switch 102 b shown in FIG. 1 together with the microstrip line 102 a on the substrate 101.
  • a pillar 122 is formed on the end of the microstrip line 102a that is to be paired with the fixed electrode 121.
  • a dielectric film (first dielectric layer) 310 made of, for example, polyimide is used so that the upper surface of the pillar 122 is exposed and other regions are covered.
  • one end is in contact with the entire upper surface of the pillar 122, and the other end is extended at a predetermined position of the dielectric film 301 so that it extends above the fixed electrode 122.
  • the movable electrodes 1 2 3 are formed.
  • a dielectric film (second dielectric layer) 302 made of, for example, polyimide is formed on the dielectric film 301 including the movable electrode 123. I do.
  • an inorganic insulating film 303 made of, for example, silicon oxide is formed on the dielectric film 302.
  • a resist pattern 304 having an opening 304 a in a region where the above-mentioned movable electrode 123 is formed is formed on the inorganic insulating film 303.
  • the inorganic insulating film 3 33 is selectively etched, and then, the resist pattern 304 is removed, as shown in FIG. 3H.
  • An opening 3 03 a is formed in 03.
  • the lower dielectric film 302 and the lower dielectric film 301 are selectively etched using the inorganic insulating film 303 in which the opening 303 a is formed as a mask. As shown in FIG. 5, openings 302a and 301a are formed in the dielectric film 302 so that the micromachine switch 102b forming region is exposed. At this time, since the dielectric film 301 under the opening 303 a is removed at the same time, a space is formed below the movable electrode 123, and the fixed electrode 121, the column 122, and the movable A micromachine switch 102 b composed of the electrodes 123 is completed.
  • the opening region consisting of the dielectric films 301 and 302 shown in FIG. 3I and the openings 310a and 302a is formed.
  • FIG. 3J a state in which the separation layer 1 13 having 1 13 a is formed on the substrate 101 is shown in FIG. 3J. can get.
  • connection layer 109 having the connection slot 108 a on the separation layer 109 is formed.
  • a conductive material film such as gold is formed on the separation layer 111 made of a dielectric material, and this film is patterned to form a distribution synthesis layer 110 on the separation layer 111.
  • a ground layer 112 is formed on the back surface of the separation layer 111. Then, as shown in FIG. 3K, the back surface of the separation layer 109 is brought into contact with and bonded to the surface of the separation layer 111 on which the distribution / combination layer 110 is formed to form an integral structure.
  • the surface of the bonding layer 108 of the integrated structure and the back surface of the substrate 101 are brought into contact with each other via an adhesive film 401, and heated under a predetermined pressure, and FIG. As shown in the figure, the surface of the bonding layer 108 is adhered to the back surface of the substrate 101.
  • a conductive film made of, for example, Cu is formed on the back surface of the separation layer 104 made of a dielectric, and this film is patterned to form a coupling slot 103 a on the back surface of the separation layer 104.
  • the provided bonding layer 103 is formed.
  • a radiating element layer 105 is formed on the surface of the separation layer 104.
  • a parasitic element layer 107 is formed on the separation layer 106.
  • the separation layer 104 and the separation layer 106 are bonded to form an integrated structure. Further, as shown in FIG. 3M, the integrated structure including the separation layers 104 and 106 is fixedly arranged on the separation layer 113 so that the radiating element layer 1102 is formed on the phase control layer 102.
  • a multilayer structure in which the passive element layer 107 and the passive element layer 107 are arranged is completed.
  • a phased array antenna is constituted by a multilayer substrate 500 having a multilayer structure.
  • a microstrip line (waveguide) 502 a and a micromachine switch (high-frequency movable part) 502 b are placed on an inner layer substrate (first layer) 501 made of a dielectric material such as glass.
  • a phase control layer (second layer) 502 composed of a plurality of phase shift units having the following structure is formed.
  • This micromachine switch 502b is the same as in the first embodiment.
  • a coupling layer 5 having a coupling slot 503a is provided on the phase control layer 502.
  • a radiating element layer (third layer) 505 on which a plurality of radiating elements (high-frequency components) are formed is arranged via a third layer and a separating layer 504.
  • a parasitic element layer 507 on which a plurality of parasitic elements are formed is arranged on the radiating element layer 505 via a separation layer 506. This parasitic element is provided for widening the band as in the first embodiment described above, and may be added if necessary.
  • a separation layer 513 made of a dielectric material having a thickness of about 0.1 mm is provided between the phase control layer 502 and the coupling layer 503.
  • a distributing / combining layer 51 composed of a microstrip line or the like is provided via a coupling layer 508 having a coupling slot 508a and a separation layer 509. 0 is arranged.
  • the distribution / combination layer 5100 includes a distributor that distributes a high-frequency signal from a power supply unit (not shown) to each of the upper phase shift units.
  • a ground layer 512 made of a conductive material is provided below the combined distribution layer 510 via a separation layer 511 made of a dielectric.
  • the separation layer 511 and the ground layer 5112 are provided to suppress unnecessary radiation from the combined distribution layer 5110, and may be added as needed.
  • the phase control layer 502 is formed by a phase shift circuit (phase shifter) 502 c including a plurality of micromachine switches 502 b, thereby forming a microstrip line 502. It is configured such that the electrical length of a can be switched.
  • phase shift circuit phase shifter
  • FIG. 4B shows one cell portion constituting a phased array antenna which is a high-frequency device.
  • a trigger signal line Trg from a control device (not shown) and a drive power supply line VdrV for the switch are arranged.
  • the operation of the micromachine switch 502 b is controlled by a drive circuit (control means) 502 d connected to these signal lines.
  • the microstrip line 502a is configured to connect from the upper position of the coupling slot 508a to the lower position of the coupling slot 503a. I have. In the middle of the microstrip line 502a, for example, phase shift circuits 502c of 22.5 °, 45 °, 90 ′, and 180 ° are formed. Have been. The amount of phase shift of each phase shift circuit 502c is switched by the operation of the micromachine switch 502b, and changes the phase of the high-frequency signal flowing through the microstrip line 102a to a desired value.
  • the microcontroller switch 5 is formed by forming the microstrip line 502 a (the black portion in FIG. 4B) serving as a transmission path of a high-frequency signal in the phase control layer 502 thickly.
  • a space 513a was provided below the separation layer 513 on the region where the 02b was formed.
  • the height force of the space 513a formed by the microstrip line 502a is set to about 0.1 mm.
  • a high-frequency signal from the power supply unit propagates to the strip line of the distribution / combination layer 501 and is supplied to each phase shift unit of the phase control layer 502, where a predetermined power supply is provided.
  • the phase shift amount is given, propagates to each radiating element of the radiating element layer 505 via the coupling slot 503a of the coupling layer 503, and is radiated from each radiating element in a predetermined beam direction.
  • phased array antenna high-frequency device
  • phase control layer 502 is formed on a substrate 501.
  • the description will be made by taking the micro machine switch 502 b in particular as an example.
  • a fixed electrode 521 constituting a micromachine switch 502 b shown in FIG. 4 is formed on a substrate 501 together with a microstrip line 502 a.
  • a pillar 522 is formed on the end of the microstrip line 502 a that is connected to the fixed electrode 52 1.
  • a dielectric film (fourth layer) 601 made of, for example, polyimide is formed so that the upper surface of the pillars 522 is exposed and covers other regions. .
  • one end is in contact with the entire area of the upper surface of the pillar 52 2, and the other end is extended at a predetermined position of the dielectric film 61 so that it extends above the fixed electrode 52 1.
  • the movable electrode 5 2 3 is formed.
  • a dielectric film (fifth layer) 602 made of polyimide is formed.
  • an inorganic insulating film 603 made of, for example, silicon oxide is formed on the dielectric film 602.
  • a resist pattern 600 is formed on the inorganic insulating film 603 except on the microstrip line 502 a shown in FIG. 4B (the black portion in FIG. 4B). Form 4.
  • the inorganic insulating film 603 is selectively etched, and then the resist pattern 604 is removed, as shown in FIG. 0 2 Hard mask with open area on 6a 6
  • the lower dielectric film 602 and the dielectric film 601 are selectively etched using the hard mask 603a as a mask, thereby obtaining the dielectric film 602 as shown in FIG. 5I.
  • Open areas 601a and 602a are formed in the areas on the microstrip line 502a at 1,602.
  • a metal layer 502 aa made of a metal such as copper is formed only on the exposed microstrip line 502 a by, for example, a plating method, and the microstrip is formed. Make the transmission line 502 a thicker.
  • a micromachine switch 502b composed of movable electrodes 523 is completed.
  • a thick microstrip line 502a is formed so that a movable space for the movable electrode 523 is formed above the micromachine switch 502b. The obtained state is obtained.
  • a copper film is formed on the dielectric separating layer 509, and the copper film is patterned to form a bonding layer 5 having a bonding slot 508a on the separating layer 509. 0 8 is formed.
  • a conductive material film such as gold is formed on the separation layer 511 made of a dielectric material, and this film is patterned to form the distribution composite layer 510 on the separation layer 511. .
  • a ground layer 512 is formed on the back surface of the separation layer 511. Then, as shown in FIG. 5L, the back surface of the separation layer 509 and the distribution / combination layer 5110 formation surface of the separation layer 511 Are brought into contact with each other to form an integral structure.
  • the surface of the bonding layer 508 of the integrated structure and the back surface of the substrate 501 are brought into contact with each other via an adhesive film 801, and heated under a state of applying a predetermined pressure. As shown in the figure, the surface of the bonding layer 508 is adhered to the back surface of the substrate 501.
  • a conductive film made of, for example, Cu is formed on the back surface of the separation layer 504 made of a dielectric, and this is patterned to provide a coupling slot 503a on the back surface of the separation layer 504.
  • a bonding layer 503 is formed.
  • a radiating element layer 505 is formed.
  • a parasitic element layer 507 is formed over the separation layer 506. Then, the separation layer 504 and the separation layer 506 are bonded to form an integral structure.
  • the separation layer 5 13 is fixedly arranged on the microstrip line 502 a of the substrate 501, and further, the integrated structure including the separation layers 504 and 506 on the separation layer 5 13
  • the body By fixedly disposing the body, a multilayer structure in which the radiating element layer 505 and the parasitic element layer 507 are arranged on the phase control layer 502 as shown in FIG. 4A is formed.
  • a phased array antenna having a multilayer structure is exemplified as a high-frequency device, and the structure and manufacturing method of a case where a switch having a movable portion in an inner layer is mounted has been described. .
  • the high-frequency device of the present invention is not limited to a phased array antenna.
  • the present invention can also be applied to a high-frequency receiving circuit that mounts high-frequency small relays as a number of high-frequency movable components on the inner layer of a multilayer substrate and selectively switches and receives a large number of high-frequency receiving signals, such as diversity reception.
  • the present invention can be applied to a high-frequency transmission circuit that switches on or off the output of a high-frequency amplifier by switching a high-frequency small relay mounted as a high-frequency movable component on the inner layer of a multilayer substrate.
  • the high-frequency movable part to be processed is provided between the inner layer substrate and the layer above it to separate the layers, and has a thickness higher than that of the high-frequency movable part and the entire area where the high-frequency movable part is formed.
  • a separation layer having an opening having an opening.
  • a high-frequency movable component such as a switch can be used in a high-frequency device applied to a high-gain high-frequency band, such as a phased array antenna, can be obtained.
  • a high-frequency movable part that processes high-frequency signals by connecting to the substrate.
  • the height of the waveguide is made higher than the height of the high-frequency movable part, so that the high-frequency movable part is mounted between the inner substrate and the layer above it. I made it.
  • a space is formed above the substrate by the waveguide formed high, and a high-frequency movable component such as a switch operates in this space.
  • a high-frequency movable part such as a switch can be used in a high-frequency device applied to a high-frequency band with a high gain, such as a phased array antenna, can be obtained.
  • the plurality of waveguides formed on the main surface of the inner substrate constituting the multilayer substrate and transmitting a high-frequency signal, and the movable portion formed on the main surface of the inner substrate and switching the connection state of the waveguide are provided. And a structure disposed between the main surface of the inner layer substrate and the substrate disposed thereon and having a space above the switch forming region.
  • the switch performs connection / disconnection operations in the space of the structure.
  • an excellent effect that a switch can be used in a high-frequency device applied to a high-gain high-frequency band, such as a phased array antenna, can be obtained.

Abstract

A high-frequency device comprises a multilayer substrate (100); a waveguide (102a) formed on an inner layer (101) of the multilayer substrate (100) to propagate high-frequency signals; a high-frequency moving part (102b) formed on the inner layer and capable of touching the waveguide; a space (113a) formed in an upper part of the high-frequency moving part and located higher than the range of movement of the high-frequency moving part. Thus, the high-frequency moving part can operate in the space, that is, the inner layer can include a high-frequency rotating part.

Description

明 細 書 高周波装置およびその製造方法 技術分野  Description High-frequency device and its manufacturing method
この発明は、 マイク口波などの高周波信号の送受信に用いられるフェーズドア レイアンテナなど、 高周波信号を伝送する高周波装置およびその製造方法に関す る。 背景技術  The present invention relates to a high-frequency device for transmitting high-frequency signals, such as a phased array antenna used for transmitting and receiving high-frequency signals such as microphone mouth waves, and a method for manufacturing the same. Background art
高周波装置として、 例えば、 衛星追尾車載アンテナおよび衛星搭載用アンテナ に用いられ、 多数の放射素子が配置されたフェーズドアレイアンテナが提案され ている (例えば、 電子情報通信学会技術報告 A P 9 0 - 7 5および特開平 1 2 9 0 3 0 1号公報など参照) 。  As a high-frequency device, for example, a phased array antenna that is used in a satellite tracking on-board antenna and a satellite-mounted antenna and in which many radiating elements are arranged has been proposed (for example, IEICE Technical Report AP 90-75 And Japanese Unexamined Patent Application Publication No. 129301/1992).
この種のフェーズドアレイアンテナは、 各放射素子に給電する位相を変えるこ とによって、 ビームの方向を任意に変更する機能を有している。 その給電する位 相を変化させる手段として、 それぞれが固定的な異なる移相量を有する複数の移 相回路から構成されたディジタル移相器が一般的に使用されている (以下、 ディ ジタル移相器を単に移相器という) 。 そして、 フェーズドアレイアンテナにおい ては、 それら各移相回路を各々 1 ビットのディジタルの制御信号によりオン Zォ フ制御してそれぞれの移相回路が有する移相量を組み合わせることにより、 移相 器全体で 0〜3 6 0; の給電位相を得られるようにしている。  This type of phased array antenna has a function of arbitrarily changing the direction of a beam by changing the phase fed to each radiating element. As a means for changing the phase to which the power is fed, a digital phase shifter composed of a plurality of phase shift circuits, each having a different fixed phase shift amount, is generally used (hereinafter referred to as a digital phase shifter). Is simply called a phase shifter). In the phased array antenna, each of the phase shift circuits is turned on and off by a 1-bit digital control signal, and the phase shift amounts of the respective phase shift circuits are combined. To obtain a power supply phase of 0 to 360;
特に、 従来のフェーズドアレイアンテナでは、 各移相回路におけるスィッチン グ素子として、 P I Nダイオード、 G a A s F E Tなどの半導体素子や、 これら を駆動するための駆動回路部品が多数使用されている。 そして、 その移相回路は、 これらスィツチング素子に直流電流または直流電圧を印加してオン/オフし、 伝 送路長、 サセブタンス、 反射係数などを変化させることにより、 所定の移相量を 発生させる構成となっている。 一方、 近年では、 低軌道衛星通信の分野などにおいて、 インタ一ネッ トの利用 拡大さらにはマルチメディァ通信の普及などにより、 高データレートでの通信が 要求されており、 このためにアンテナの高利得化が必要となっている。 また、 高 データレートでの通信を実現するためには伝送帯域幅の拡大が必要となり、 さら には低周波数帯における周波数資源の欠乏などから、 Ka帯 (20GH z〜) 以 上の高周波数帯で適用できるアンテナの実現が急がれている。 In particular, in the conventional phased array antenna, as a switching element in each phase shift circuit, a semiconductor element such as a PIN diode and a GaAs FET, and a large number of drive circuit components for driving these elements are used. The phase shift circuit generates a predetermined amount of phase shift by applying a DC current or a DC voltage to these switching elements to turn them on and off, and to change a transmission path length, a susceptance, a reflection coefficient, and the like. It has a configuration. On the other hand, in recent years, in the field of low-Earth-orbit satellite communication, communication at a high data rate has been required due to the expansion of Internet use and the spread of multimedia communication. Is needed. In addition, transmission bandwidth must be increased in order to achieve communication at high data rates. In addition, due to the lack of frequency resources in low frequency bands, Ka-band (20 GHz or higher) The realization of an antenna that can be applied in is urgent.
具体的には、 低軌道衛星追尾端末 (地上局) のアンテナとして、 例えば、 周波数: 3 OGH z、  Specifically, as an antenna for a low earth orbit satellite tracking terminal (ground station), for example, frequency: 3 OGHz,
アンテナ利得: 36 d B i、  Antenna gain: 36 dBi,
ビーム走査範囲:正面方向より ビームチルト角 50°  Beam scanning range: Beam tilt angle 50 ° from the front
という技術性能が要求されている。 Technical performance is required.
これをフェーズドアレイアンテナで実現するためには、 まず、 開口面積:約 0. 1 3 m2 ( 36 OmmX 36 Omm) が必要となる。 さらに、 サイ ドローブを抑 制するためには、 放射素子を約 1Z2波長 (30GH zで5mm前後) 間隔で配 置してグレーティングローブの発生を回避する必要がある。 To achieve this with a phased array antenna, an aperture area of about 0.13 m 2 (36 OmmX 36 Omm) is first required. Furthermore, in order to suppress side lobes, it is necessary to arrange radiating elements at intervals of about 1Z2 wavelength (about 5mm at 30GHz) to avoid the generation of grating lobes.
また、 ビーム走査ステップを細かく し、 かつディジタル移相器量子化誤差にと もなうサイ ドローブ劣化を低く抑えるためには、 各移相器に使用される移相回路 が 4ビット (最小ビット移相器 22. 5° ) 以上であることが望ましい。  In order to make the beam scanning step finer and to suppress the side lobe degradation due to the quantization error of the digital phase shifter, the phase shift circuit used for each phase shifter has 4 bits (minimum bit shift). Phaser 22.5 °)
上記の条件を満たすフェーズドアレイアンテナに用いられる合計の放射素子数 および移相回路ビッ ト数は、  The total number of radiating elements and the number of phase shift circuit bits used for the phased array antenna satisfying the above conditions are
移相回路素子数: 72 X 72 =約 5000個、  Number of phase shift circuit elements: 72 X 72 = about 5000
移相回路ビッ ト数: 72 X 72 X 4 =約 2◦ 000ビッ ト  Number of phase shift circuit bits: 72 x 72 x 4 = approx. 2 000 000 bits
となる。  Becomes
ここで、 そのような高利得で高周波数帯に適用可能なフェーズドアレイアンテ ナを、 前述した従来技術、 例えば図 6に示す特開平 1一 29030 1号公報記載 のフェーズドアレイアンテナで実現しようとした場合、 次のような問題点があつ た。  Here, an attempt was made to realize such a high-gain, phased-array antenna applicable to a high-frequency band using the above-described conventional technology, for example, the phased-array antenna described in Japanese Patent Application Laid-Open No. 11-290301 shown in FIG. In this case, there were the following problems.
すなわち、 このような従来のフェーズドアレイアンテナでは、 図 6に示すよう に駆動回路基板 9 1 0に形成された 1つのドライバ回路 9 1 3で、 各移相器 9 1 2内の個々の移相回路を制御する構成となっているため、 このドライバ回路 9 1 3とすべての移相回路とを個々に接続する必要がある。 したがって、 その接続の ための配線は、 放射素子数 X移相回路ビッ ト数の本数だけ必要となり、 前述した 数値を適用すれば、 7 2個 X 7 2個の放射素子 9 2 1アレイ配置において、 1列 分 (放射素子 9 2 1 : 7 2個分) の各移相回路 (4ビット) への配線数は、 7 2 X 4 = 2 8 8本となる。 That is, in such a conventional phased array antenna, as shown in FIG. 6, one driver circuit 913 formed on the drive circuit board 910 forms each phase shifter 9 1 Since each of the phase shift circuits in 2 is controlled, it is necessary to individually connect this driver circuit 9 13 and all the phase shift circuits. Therefore, the wiring for the connection is required by the number of radiating elements x the number of phase shift circuit bits, and if the above-mentioned numerical values are applied, in a 72 x 72 radiating element 9 2 1 array arrangement The number of wirings to each phase shift circuit (4 bits) for one row (for radiating elements 921: 72) is 72 x 4 = 288.
このような配線を同一平面上に形成した場合、 配線幅/配線間隔 (L 7 S ) 5 0 Ζ 5 0 μ πιとしても、 1列分 (放射素子 9 2 1 : 7 2個分) の配線束の幅は 0 . 1 mm X 2 8 8 = 2 8 . 8 mmとなる。  When such wiring is formed on the same plane, even if the wiring width / interval (L 7 S) 50 Ζ 50 μππ, wiring for one row (for radiating elements 92 1: 72) The width of the bundle is 0.1 mm X 288 = 28.8 mm.
これに対して、 前述したように、 周波数 3 O G H zに適用できるフェーズドア レイアンテナでは、 放射素子 9 2 1の間隔を 5 mm前後で配置する必要があるが、 従来技術では、 上述したように配線束の幅が 2 8 . 8 mmにもなり太すぎて物理 的に配置できなくなる。  On the other hand, as described above, in the phased array antenna applicable to the frequency 3 OGHz, the radiating elements 921 need to be arranged at around 5 mm, but in the conventional technology, as described above, The width of the wiring bundle is 28.8 mm, which is too large to be physically placed.
ここで、 放射素子 9 2 1が形成される層 (放射素子基板 9 2 0 ) および無給電 素子 9 3 1が形成される層 (無給電素子基板 9 3 0 ) だけでなく、 分配合成器 9 1 1 と移相器 9 1 2とを異なる層に形成すれば、 移相器 9 1 2を形成する層にお いては移相器 9 1 2だけを自由に配置できるようになるので、 上述した配置の問 題を解消することができる。 このように、 多層構造とすることで、 より高周波数 帯に適用可能なフェーズドアレイアンテナを実現することができる また、 多層 構造とした場合、 各層の厚さは数 m程度と小さいので、 あまり厚くなることはな く、 より小さい面積にすることができるので、 衛星に搭載する場合などに特に有 利である:  Here, not only the layer on which the radiating element 9 21 is formed (radiating element substrate 9 20) and the layer on which the parasitic element 9 31 is formed (parasitic element substrate 9 30) but also the distributing / combining device 9 If 11 1 and the phase shifter 9 12 are formed in different layers, only the phase shifter 9 12 can be freely arranged in the layer forming the phase shifter 9 12. The problem of the disposition can be solved. In this way, a multi-layer structure can realize a phased array antenna applicable to a higher frequency band.In the case of a multi-layer structure, the thickness of each layer is as small as several meters, so that it is too thick. This is especially advantageous for spaceborne applications, as they can be smaller and take up less area:
ところで、 上述したような高周波装置において、 移相器 9 1 2の移相量を切り 換えるときに用いるスィッチ素子として、 微小な機械スィッチ素子 (マイクロマ シンスィッチ) を用いることが検討されている。 しかしながら、 上述したように 多層構造にする場合、 従来では各層間が誘電体で充填された構成となっていたた め、 中間に配置される層に形成される移相器には、 可動部を有するマイクロマシ ンスィッチを用いることができなかった。 すなわち、 従来では、 フェーズドアレ  By the way, in the high-frequency device as described above, use of a minute mechanical switch element (micro machine switch) as a switch element used when switching the phase shift amount of the phase shifter 912 is being studied. However, in the case of a multilayer structure as described above, since each layer is conventionally filled with a dielectric, a movable portion is provided in a phase shifter formed in an intermediate layer. Could not be used. That is, conventionally, phased array
'ナなどの高周波装置を多層構造とする場合、 移相器 9 1 2に用いるスィ ツチ素子として、 マイクロマシンスィツチを内層に用いることができないため実 装上の制限を受けるという問題があつた。 When a high-frequency device such as a filter has a multilayer structure, the switch used for the phase shifter 9 12 As a switch element, a micromachine switch cannot be used for the inner layer, so that there is a problem in that the mounting is restricted.
本発明はこのような課題を解決するためのものであり、 フェーズドアレイアン テナなど、 高利得で高周波数帯に適用する高周波装置でマイクロマシンスィツチ などの可動部を有する高周波可動部品を内層に用いて実装効率を向上できるよう にすることを目的とする。 発明の開示  The present invention is intended to solve such a problem, and uses a high-frequency movable component having a movable portion such as a micromachine switch for an inner layer in a high-frequency device applied to a high-frequency band with high gain, such as a phased array antenna. The purpose is to improve mounting efficiency. Disclosure of the invention
この発明の高周波装置は、 多層構造を有する多層基板と、 この多層基板を構成 する内層基板上に形成され高周波信号を伝搬する導波路と、 内層基板上に形成さ れ導波路と接離する可動構造を有する高周波可動部品と、 この高周波可動部品の 形成領域上部に形成され高周波可動部品の可動範囲上限よりも高さが高い空間と を備えることを特徴とする。  A high-frequency device according to the present invention includes: a multilayer substrate having a multilayer structure; a waveguide formed on an inner substrate constituting the multilayer substrate and transmitting a high-frequency signal; A high-frequency movable part having a structure, and a space formed above the formation region of the high-frequency movable part and having a height higher than the upper limit of the movable range of the high-frequency movable part.
ここで、 上記空間を、 内層基板の上層に形成された開口領域からなるようにし てもよい。 また、 導波路の一部を高周波可動部品の可動範囲上限より高く形成し て、 上記空間を内層基板と, 導波路の上面に支持された内層基板の上層との間に 形成するようにしてもよレ、。  Here, the space may be formed of an opening region formed in an upper layer of the inner layer substrate. Also, a part of the waveguide may be formed higher than the upper limit of the movable range of the high-frequency movable part, and the space may be formed between the inner substrate and the upper layer of the inner substrate supported on the upper surface of the waveguide. Yeah.
また、 高周波可動部品の一構成例は、 導波路の接続状態を切り換えるスィッチ である。 このスィッチの一構成例は、 内層基板上に配置された固定電極と、 この 固定電極と離間して配置された柱体と、 この柱体に一端が固定されて他端が固定 電極の上方に延在する可動電極とからなるマイクロマシンスィツチである。 この 場合、 内層基板上に形成されスィツチの動作を制御する制御手段を備えるように また、 多層基板が、 内層基板からなる第 1の層と、 この内層基板上に形成され た導波路および高周波可動部品を備えた第 2の層と、 導波路を伝搬する高周波信 号が結合する高周波部品を備えた第 3の層とを少なくとも有するようにしてもよ い。 また、 多層基板が、 第 2の層と第 3の層との間に配置され導波路を伝搬する 高周波信号を高周波部品に結合させる結合手段を備えた導電材料からなる結合層 を更に有するようにしてもよい。 また、 多層基板が、 第 2の層と結合層との間に 配置され誘電体材料からなる第 1の分離層と、 結合層と第 3の層との間に配置さ れ誘電体材料からなる第 2の分離層とを更に有するようにしてもよい。 One configuration example of the high-frequency movable component is a switch that switches the connection state of the waveguide. One configuration example of this switch is a fixed electrode disposed on an inner layer substrate, a column disposed apart from the fixed electrode, and one end fixed to the column and the other end positioned above the fixed electrode. This is a micromachine switch including a movable electrode that extends. In this case, the multi-layer substrate includes a first layer formed of the inner layer substrate, a waveguide formed on the inner layer substrate, and a high-frequency movable element. At least a second layer having a component and a third layer having a high-frequency component to which a high-frequency signal propagating through the waveguide is coupled may be provided. Further, the multilayer substrate may further include a coupling layer made of a conductive material and disposed between the second layer and the third layer and provided with coupling means for coupling a high-frequency signal propagating through the waveguide to the high-frequency component. You may. Also, a multi-layer substrate is provided between the second layer and the tie layer. The semiconductor device may further include a first separation layer formed of a dielectric material and a second separation layer formed of a dielectric material disposed between the coupling layer and the third layer.
また、 内層基板を誘電体で構成してもよい。 また、 導波路とスィッチとにより . 高周波信号の位相を変化させる移相器が構成されるようにしてもよい。 また、 高 周波部品を放射素子から構成してもよい。 また、 内層基板上に形成された導波路 に高周波信号を供給する分配層を有するようにしてもよい。  Further, the inner substrate may be made of a dielectric material. Further, a phase shifter that changes the phase of the high-frequency signal may be configured by the waveguide and the switch. Further, the high frequency component may be constituted by a radiating element. Further, a distribution layer for supplying a high-frequency signal to the waveguide formed on the inner substrate may be provided.
この発明の高周波装置の製造方法は、 誘電体からなる基板上に高周波信号を伝 搬する導波路を形成する工程と、 導波路と接離する可動構造を備えた高周波可動 部品を基板上に形成する工程と、 高周波可動部品の形成領域上部に高周波可動部 品の可動範囲上限よりも高さが高い空間が形成されるように基板上に第 1の分離 層を形成する工程とを備えることを特徴とする。  The method of manufacturing a high-frequency device according to the present invention includes a step of forming a waveguide for transmitting a high-frequency signal on a substrate made of a dielectric, and a step of forming a high-frequency movable component having a movable structure that comes into contact with and separates from the waveguide And forming a first separation layer on the substrate so that a space higher than the upper limit of the movable range of the high-frequency movable component is formed above the formation region of the high-frequency movable component. Features.
また、 基板上に固定電極と柱体とを離間して形成する工程と、 基板上に柱体上 部が露出した状態で固定電極を覆うように誘電体材料からなる第 1の誘電体層を 形成する工程と、 柱体上部に一端が固定されて他端が固定電極上に延在する可動 電極を第 1の誘電体層上に形成する工程と、 第 1の誘電体層上に可動電極を覆う ように誘電体材料からなる第 2の誘電体層を形成する工程と、 第 2および第 1の 誘電体層における可動電極形成領域に開口部を形成し、 第 1の誘電体層と第 2の 誘電体層とからなる第 1の分離層を形成するとともに、 固定電極と柱体と可動電 極とからなる高周波可動部品を第 1の分離層の開口部底部の基板上に形成するェ 程とを備えるようにしてもよい。  A step of forming the fixed electrode and the column on the substrate at a distance; and a step of forming a first dielectric layer made of a dielectric material on the substrate so as to cover the fixed electrode with the upper part of the column exposed. Forming, on the first dielectric layer, a movable electrode having one end fixed to the upper part of the column and the other end extending above the fixed electrode; and a movable electrode on the first dielectric layer. Forming a second dielectric layer made of a dielectric material so as to cover the first dielectric layer, forming an opening in the movable electrode formation region in the second and first dielectric layers, Forming a first separation layer composed of a second dielectric layer and a high-frequency movable component composed of a fixed electrode, a column, and a movable electrode on the substrate at the bottom of the opening of the first separation layer. May be provided.
また、 基板上に固定電極と柱体とを離間して形成する工程と、 基板上に柱体上 部が露出した状態で固定電極を覆うように第 4の層を形成する工程と、 柱体上部 に一端が固定されて他端が固定電極上に延在する可動電極を第 4の層上に形成す る工程と、 第 4の層上に可動電極を覆うように第 5の層を形成する工程と、 第 5 および第 4の層における導波路の所定領域上に開口領域を形成する工程と、 開口 領域内における導波路上に金属層を形成して開口領域内における導波路を可動電 極の可動範囲上限より高く形成する工程と、 第 5および第 4の層を除去する工程 と、 導波路の上面上に誘電体材料からなる第 1の分離層を配置して、 固定電極と 柱体と可動電極とからなる高周波可動部品を第 1の分離層下の空間に形成するェ 程とを備えるようにしてもよレ、。 A step of forming the fixed electrode and the column on the substrate at a distance; a step of forming a fourth layer on the substrate so as to cover the fixed electrode with the upper part of the column being exposed; Forming, on the fourth layer, a movable electrode having one end fixed to the upper end and the other end extending above the fixed electrode; and forming a fifth layer on the fourth layer so as to cover the movable electrode. Forming an opening region on a predetermined region of the waveguide in the fifth and fourth layers; and forming a metal layer on the waveguide in the opening region to move the waveguide in the opening region. Forming a higher electrode than the upper limit of the movable range of the pole, removing the fifth and fourth layers, disposing a first separation layer made of a dielectric material on the upper surface of the waveguide, and fixing the fixed electrode and the column. Forming a high-frequency movable part composed of a body and a movable electrode in a space below the first separation layer. You may have a process.
また、 結合手段を備えた導電材料からなる結合層を結合手段が導波路の所定の 領域上に配置されるように第 1の分離層上に形成する工程と、 誘電体材料からな る第 2の分離層を結合層上に形成する工程と、 導波路を伝搬する高周波信号が結 合手段を介して結合する高周波部品を第 2の分離層上に形成する工程とを備える ようにしてもよレ、。  Forming a coupling layer made of a conductive material having coupling means on the first separation layer such that the coupling means is arranged on a predetermined region of the waveguide; and forming a second layer made of a dielectric material on the first separation layer. Forming a separation layer on the second separation layer, and forming a high-frequency component on the second separation layer, where the high-frequency signal propagating through the waveguide is coupled through coupling means. Les ,.
また、 上述した高周波装置の製造方法において、 導波路と高周波可動部品とに より、 高周波信号の位相を変化させる移相器を構成してもよい。 また、 高周波部 品を放射素子から構成するようにしてもよい。 また、 基板上に形成された導波路 に高周波信号を供給する分配層を形成する工程とを備えるようにしてもよい。 図面の簡単な説明  In the method for manufacturing a high-frequency device described above, a phase shifter that changes the phase of a high-frequency signal may be configured by the waveguide and the high-frequency movable component. Further, the high frequency component may be constituted by a radiation element. Forming a distribution layer for supplying a high-frequency signal to the waveguide formed on the substrate. BRIEF DESCRIPTION OF THE FIGURES
図 1 Aは、 この発明の高周波装置の実施の形態 1であるフェーズドアレイアン テナの一部構成を示す断面図であり、 図 1 Bは、 図 1 Aに示す位相制御層に形成 されるマイクロマシンスィッチの構成を示す断面図であり、 図 1 Cは、 フェーズ ドアレイアンテナを構成している 1つのセル部分を示す平面図である。  FIG. 1A is a cross-sectional view showing a partial configuration of a phased array antenna according to a first embodiment of the high-frequency device of the present invention. FIG. 1B is a micromachine formed on the phase control layer shown in FIG. 1A. FIG. 1C is a cross-sectional view showing the configuration of the switch, and FIG. 1C is a plan view showing one cell portion constituting the phased array antenna.
図 2は、 実施の形態 1のフェーズドアレイアンテナの全体構成を説明するため の分解図である。  FIG. 2 is an exploded view for describing the entire configuration of the phased array antenna according to the first embodiment.
図 3 A〜図 3 Mは、 実施の形態 1のフェーズドアレイアンテナの製造過程を示 す工程図である。  FIGS. 3A to 3M are process diagrams showing the manufacturing process of the phased array antenna according to the first embodiment.
図 4 Aは、 この発明の高周波装置の実施の形態 2であるフェーズドアレイアン テナの一部構成を示す断面図であり、 図 4 Bは、 フェーズドアレイアンテナを構 成している 1つのセル部分を示す平面図である。  FIG. 4A is a cross-sectional view showing a partial configuration of a phased array antenna according to a second embodiment of the high-frequency device of the present invention. FIG. 4B is a sectional view of one cell constituting the phased array antenna. FIG.
図 5 A〜図 5 Mは、 実施の形態 2のフェーズドアレイアンテナの製造過程を示 す工程図である。  5A to 5M are process diagrams showing the steps of manufacturing the phased array antenna according to the second embodiment.
図 6は、 従来よりあるフェーズドアレイアンテナの簡単な構成を示す分解図で ある。 発明を実施するための最良の形態 以下、 この発明の実施の形態を、 図面を参照して説明する。 FIG. 6 is an exploded view showing a simple configuration of a conventional phased array antenna. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施の形態 1 Embodiment 1
はじめに、 この発明の実施の形態 1について説明する。 ここでは、 高周波装置 として 3 0 G H z帯のフェーズドアレイアンテナを例にとり、 図 1を用いて説明 する。  First, Embodiment 1 of the present invention will be described. Here, a 30 GHz band phased array antenna is taken as an example of the high-frequency device, and the description will be given with reference to FIG.
この実施の形態 1では、 図 1 Aの断面図に示すように、 多層構造を有する多層 基板 1 0 0によりフェーズドアレイアンテナが構成されている。  In the first embodiment, as shown in the cross-sectional view of FIG. 1A, a phased array antenna is configured by a multilayer substrate 100 having a multilayer structure.
すなわち、 まず、 例えばガラスなどの誘電体からなる内層基板 (第 1の層) 1 0 1上に、 複数の移相ュニッ トからなる位相制御層 (第 2の層) 1 0 2が形成さ れている。 これらの移相ユニットは、 マイクロストリップ線路 (導波路) 1 0 2 aとマイクロマシンスィッチ (高周波可動部品) 1 0 2 bとを用いて、 高周波信 号の位相を制御するものである。 That is, first, a phase control layer (second layer) 102 composed of a plurality of phase shift units is formed on an inner layer substrate (first layer) 101 composed of a dielectric such as glass. ing. These phase shift unit uses a microstrip line (waveguide) 1 0 2 a and micromachine switch (high-frequency moving parts) 1 0 2 b, and controls the phase of the RF signal.
マイクロマシンスィツチ 1 0 2 bは、 図 1 Bに示すように、 基板 1 0 1上に互 いに離間して形成された固定電極 1 2 1および柱体 1 2 2と、 この柱体 1 2 2に 支えられて可動電極 1 2 3とを備えている。 このマイクロマシンスィッチ 1 0 2 bは、 制御手段 (図 4 Cに示す駆動回路 1 0 2 b ) により可動電極 1 2 3の動作 が制御され、 可動電極 1 2 3がマイクロストリップ線路 1 0 2 a と接離すること で、 マイクロストリップ線路 1 0 2 aの接続状態を切り換えるものである。 なお、 ここでいうマイクロマシンスィツチとは、 半導体素子製造ブロセスにより集積さ れるに適した微小スィツチのことである。  As shown in FIG. 1B, the micromachine switch 102 b is composed of a fixed electrode 121 and a pillar 122 formed on the substrate 101 at a distance from each other, and the pillar 122. And a movable electrode 123 supported by In the micromachine switch 102b, the operation of the movable electrode 123 is controlled by control means (the drive circuit 102b shown in FIG. 4C), and the movable electrode 123 is connected to the microstrip line 102a. By connecting and disconnecting, the connection state of the microstrip line 102a is switched. Here, the micromachine switch is a microswitch suitable for being integrated by a semiconductor device manufacturing process.
また、 位相制御層 1 0 2上には、 本発明の特徴となる分離層 (第 1の分離層) 1 1 3と、 結合スロッ ト (結合手段) 1 0 3 aを備えた結合層 1 0 3および分離 層 (第 2の分離層) 1 0 4を介して、 複数の放射素子 (高周波部品) が形成され た放射素子層 (第 3の層) 1 0 5が配置されている。 また、 この放射素子層 1 0 5上には、 分離層 (第 3の分離層) 1 0 6を介して、 複数の無給電素子が形成さ れた無給電素子層 1 0 7が配置されている。 この無給電素子は、 広帯域化のため に設けられるものであり、 必要に応じて付加されればよい。  Further, on the phase control layer 102, a separating layer (first separating layer) 113 which is a feature of the present invention, and a connecting layer 10 having a connecting slot (connecting means) 103a are provided. A radiating element layer (third layer) 105 on which a plurality of radiating elements (high-frequency components) are formed is arranged via 3 and a separating layer (second separating layer) 104. A parasitic element layer 107 on which a plurality of parasitic elements are formed is disposed on the radiating element layer 105 via a separating layer (third separating layer) 106. I have. This parasitic element is provided for widening the band, and may be added as needed.
一方、 基板 1 0 1裏面には、 結合スロット 1 0 8 aを備えた結合層 1 0 8およ び分離層 (第 4の分離層) 1 0 9を介して、 マイクロストリップ線路などから構 成された分配合成層 1 1 0が配置されている。 この分配合成層 1 1 0、 図示して いない給電部からの高周波信号を、 上層の各移相ュニットそれぞれに分配する分 配器を備えるものである。 さらに、 図 1 Aに示した例では、 合成分配層 1 1 0の 下に誘電体からなる分離層 1 1 1 (第 5の分離層) を介して、 導電体材料からな る接地層 1 1 2が設けられている。 これらの分離層 1 1 1および接地層 1 1 2は、 合成分配層 1 1 0からの不要輻射を抑制するために設けられるものであり、 必要 に応じて付加されればよレ、。 On the other hand, a microstrip line or the like is formed on the back surface of the substrate 101 via a coupling layer 108 having a coupling slot 108a and a separation layer (fourth separation layer) 109. The formed distribution / combination layer 110 is arranged. The distribution / synthesis layer 110 includes a distributor for distributing a high-frequency signal from a power supply unit (not shown) to each of the upper phase shift units. Further, in the example shown in FIG. 1A, a ground layer 111 made of a conductive material is provided below a composite distribution layer 110 through a dielectric isolation layer 111 (fifth isolation layer). Two are provided. The separation layer 111 and the ground layer 112 are provided to suppress unnecessary radiation from the combined distribution layer 110, and may be added as necessary.
また、 位相制御層 1 0 2は、 図 1 Cの平面図に示すように、 複数のマイクロマ シンスィツチ 1 0 2 bの動作によりマイクロストリップ線路 1 0 2 aの電気長が 切り換えられるように構成されている。  Further, as shown in the plan view of FIG. 1C, the phase control layer 102 is configured so that the electrical length of the microstrip line 102a can be switched by the operation of the plurality of micromachine switches 102b. I have.
図 1 Cは、 高周波装置であるフェーズドアレイアンテナを構成している 1つの セル部分を示している。 このセルの周部には、 信号線選択部 (図示せず) からの 信号線 X i 1 , X i 2、 走査線選択部 (図示せず) からの走査線 Y j 1, Y j 2、 制御装置 (図示せず) からのトリガ信号線 T r g、 およびスィツチの駆動電源線 V d r Vが配置されている。 そして、 これらの信号線に接続されている駆動回路 (制御手段) 1 0 2 dにより、 マイクロマシンスィッチ 1 0 2 bの動作が制御さ れている。  FIG. 1C shows one cell part constituting a phased array antenna which is a high-frequency device. The signal lines X i 1 and X i 2 from the signal line selection unit (not shown), the scanning lines Y j 1 and Y j 2 from the scanning line selection unit (not shown) A trigger signal line Trg from a control device (not shown) and a drive power supply line VdrV for the switch are arranged. The operation of the micromachine switch 102b is controlled by a drive circuit (control means) 102d connected to these signal lines.
また、 これら信号線の内側では、 上述したマイクロス トリ ツァ線路 1 0 2 a力 結合スロッ ト 1 0 8 aの上部位置から結合スロッ ト 1 0 3 aの下部位置までを接 続するように形成されている。 このマイクロストリッブ線路 1 0 2 aの途中には、 例えば、 2 2. 5° , 4 5: , 9 0° , 1 8 0° の各移相回路 (移相器) 1 0 2 cが構成されている。 各移相回路 1 0 2 cはマイクロマシンスィツチ 1 0 2 bの 動作により移相量が切り換えられ、 マイクロストリッァ線路 1 0 2 aを流れる高 周波信号の位相を所望の値に変化させる。  Also, inside these signal lines, the above-mentioned micro-slitzer line 102a is formed so as to connect from the upper position of the force coupling slot 108a to the lower position of the coupling slot 103a. Have been. In the middle of the microstrip line 102a, for example, each phase shift circuit (phase shifter) 102c of 22.5 °, 45 :, 90 °, and 180 ° is configured. Have been. The amount of phase shift of each phase shift circuit 102c is switched by the operation of the micromachine switch 102b, and changes the phase of the high-frequency signal flowing through the microstrip line 102a to a desired value.
実施の形態 1では、 位相制御層 1 0 2と結合層 1 0 3との間に、 誘電体材料か らなる分離層 (第 1の分離層) 1 1 3を形成し、 この分離層 1 1 3において位相 制御層 1 0 2のマイクロマシンスィツチ 1 0 2 bが形成された領域上に開口領域 (可動空間) 1 1 3 aを設けるようにした。 分離層 1 1 3の厚さを 0. 2 mm程 度とすることにより、 マイクロマシンスィッチ 1 0 2 bの可動空間を確保すると ともに、 高周波信号がマイクロストリップ線路 1 0 2 aを問題なく伝搬しうるよ うにしている。 In the first embodiment, a separation layer (first separation layer) 113 made of a dielectric material is formed between the phase control layer 102 and the coupling layer 103. In 3, the opening region (movable space) 113a was provided on the region of the phase control layer 102 where the micromachine switch 102b was formed. By setting the thickness of the separation layer 113 to about 0.2 mm, it is possible to secure the movable space of the micromachine switch 102 b. In both cases, a high-frequency signal can be propagated through the microstrip line 102a without any problem.
なお、 実施の形態 1では、 移相回路 1 0 2 cからなる移相ュニットと放射素子 とを異なる層に形成するようしたが、 移相ュニットと放射素子とを同じ層に形成 するようにしてもよレ、。 また、 移相ユニットと分配器とを異なる層に形成するよ うしたが、 移相ュニットと分配器とを同じ層に形成するようにしてもよい。  In the first embodiment, the phase shift unit composed of the phase shift circuit 102c and the radiating element are formed in different layers, but the phase shift unit and the radiating element are formed in the same layer. Well ,. Although the phase shift unit and the distributor are formed in different layers, the phase shift unit and the distributor may be formed in the same layer.
次に、 フューズドアレイアンテナの全体的な構成に関して簡単に説明する。 こ のフェーズドアレイアンテナは、 図 2に示すように、 まず、 位相制御層 1 0 2上 には、 放射素子層 1 0 5と無給電素子層 1 0 7が配置されている。 また、 位相制 御層 1 0 2下には、 分配合成層 1 1 0が配置されている。 このような構成の中で、 例えば、 放射素子層 1 0 5は下部に分離層 1 0 4を備え、 その下面に例えば薄い C uの層からなる結合層 1 0 3を備え、 その結合層 1 0 3にはァレイに対応して 孔部からなる結合スロッ ト 1 0 3 aが形成されている。 同様に、 位相制御層 1 0 2裏面には、 例えば薄い C uの層からなる結合層 1 0 8を備え、 その結合層 1 0 8にはアレイに対応して結合スロット 1 0 8 aが形成されている。  Next, the overall configuration of the fused array antenna will be briefly described. In this phased array antenna, first, a radiating element layer 105 and a parasitic element layer 107 are arranged on a phase control layer 102, as shown in FIG. Further, below the phase control layer 102, the distribution / combination layer 110 is arranged. In such a configuration, for example, the radiating element layer 105 is provided with a separation layer 104 below, and a coupling layer 103 made of, for example, a thin Cu layer on the lower surface thereof. A coupling slot 103a composed of a hole is formed in 03 corresponding to the array. Similarly, the back surface of the phase control layer 102 is provided with a coupling layer 108 made of, for example, a thin Cu layer, and the coupling layer 108 has a coupling slot 108 a corresponding to the array. Have been.
このように配置された中で、 位相制御層 1 0 2には、 各移相ユニットおよびこ れら移相ュニットを個別に制御するための配線 X 1〜X m, Y 1〜Y nが設けら れている。 そして、 給電部からの高周波信号は、 分配合成層 1 1 0のストリップ 線路を伝搬して、 位相制御層 1 0 2の各移相ュニッ トに供給され、 そこで所定の 給電移相量が与えられ、 結合層 1 0 3の結合スロッ ト 1 0 3 aを介して、 放射素 子層 1 0 5の各放射素子に伝搬し、 それぞれの放射素子から所定のビーム方向に 放射される- 次に、 この実施の形態 1におけるフェーズドアレイアンテナ (高周波装置) の 製造方法について説明する。  In this arrangement, the phase control layer 102 is provided with wirings X1 to Xm and Y1 to Yn for individually controlling each phase shift unit and these phase shift units. Have been Then, the high-frequency signal from the power supply unit propagates through the strip line of the distribution / combination layer 110 and is supplied to each phase shift unit of the phase control layer 102, where a predetermined power supply phase shift amount is given. The light propagates through the coupling slot 103a of the coupling layer 103 to each radiating element of the radiating element layer 105 and is radiated from each radiating element in a predetermined beam direction. A method for manufacturing the phased array antenna (high-frequency device) according to the first embodiment will be described.
まず、 基板 1 0 1上に位相制御層 1 0 2とともに分離層 1 1 3を形成する。 こ の分離層 1 1 3の形成に関して、 特にマイクロマシンスィッチ 1 0 2 bの箇所を 例にとり説明する。  First, a separation layer 113 is formed on a substrate 101 together with a phase control layer 102. The formation of the separation layer 113 will be described, particularly taking the micromachine switch 102b as an example.
はじめに、 図 3 Aに示すように、 基板 1 0 1上にマイクロストリップ線路 1 0 2 aとともに、 図 1に示したマイクロマシンスィツチ 1 0 2 bを構成する固定電 極 1 2 1を形成する。 First, as shown in FIG. 3A, a fixed electrode forming the micromachine switch 102 b shown in FIG. 1 together with the microstrip line 102 a on the substrate 101. Form poles 1 2 1
次に、 図 3 Bに示すように、 固定電極 1 2 1 と対になるマイクロストリップ線 路 1 0 2 a端部上に、 柱体 1 2 2を形成する。  Next, as shown in FIG. 3B, a pillar 122 is formed on the end of the microstrip line 102a that is to be paired with the fixed electrode 121.
次に、 図 3 Cに示すように、 柱体 1 2 2の上面が露出して他の領域が覆われる ように、 例えばポリィミ ドからなる誘電体膜 (第 1の誘電体層) 3 0 1を形成す る。  Next, as shown in FIG. 3C, a dielectric film (first dielectric layer) 310 made of, for example, polyimide is used so that the upper surface of the pillar 122 is exposed and other regions are covered. To form
次に、 図 3 Dに示すように、 一端が柱体 1 2 2上面全域に接触し、 他端が固定 電極 1 2 1上部に延在するように、 誘電体膜 3 0 1の所定箇所に可動電極 1 2 3 を形成する。  Next, as shown in FIG. 3D, one end is in contact with the entire upper surface of the pillar 122, and the other end is extended at a predetermined position of the dielectric film 301 so that it extends above the fixed electrode 122. The movable electrodes 1 2 3 are formed.
次に、 図 3 Eに示すように、 可動電極 1 2 3を含めた誘電体膜 3 0 1上に、 例 えばポリイミ ドからなる誘電体膜 (第 2の誘電体層) 3 0 2を形成する。  Next, as shown in FIG. 3E, a dielectric film (second dielectric layer) 302 made of, for example, polyimide is formed on the dielectric film 301 including the movable electrode 123. I do.
次に、 図 3 Fに示すように、 誘電体膜 3 0 2上に例えばシリコン酸化物からな る無機絶縁膜 3 0 3を形成する。  Next, as shown in FIG. 3F, an inorganic insulating film 303 made of, for example, silicon oxide is formed on the dielectric film 302.
次に、 図 3 Gに示すように、 無機絶縁膜 3 0 3上に、 上述した可動電極 1 2 3 が形成されている領域に開口部 3 0 4 aを有するレジストパタン 3 0 4を形成す る。  Next, as shown in FIG. 3G, a resist pattern 304 having an opening 304 a in a region where the above-mentioned movable electrode 123 is formed is formed on the inorganic insulating film 303. You.
次に、 そのレジス トパタン 3 0 4をマスクとし、 選択的に無機絶縁膜 3 ◦ 3を エッチングし、 その後レジストパタン 3 0 4を除去することで、 図 3 Hに示すよ うに、 無機絶縁膜 3 0 3に開口部 3 0 3 aを形成する。  Next, using the resist pattern 304 as a mask, the inorganic insulating film 3 33 is selectively etched, and then, the resist pattern 304 is removed, as shown in FIG. 3H. An opening 3 03 a is formed in 03.
次に、 その開口部 3 0 3 aが形成された無機絶縁膜 3 0 3をマスクとして下層 の誘電体膜 3 0 2および誘電体膜 3 0 1を選択的にエッチングすることで、 図 3 Iに示すように、 誘電体膜 3 0 2にマイクロマシンスィツチ 1 0 2 b形成領域が 露出する開口部 3 0 2 a, 3 0 1 aを形成する。 このとき開口部 3 0 3 a下の誘 電体膜 3 0 1が同時の除去されるため、 可動電極 1 2 3下部に空間が形成され、 固定電極 1 2 1, 柱体 1 2 2, 可動電極 1 2 3からなるマイクロマシンスィツチ 1 0 2 bが完成する。  Next, the lower dielectric film 302 and the lower dielectric film 301 are selectively etched using the inorganic insulating film 303 in which the opening 303 a is formed as a mask. As shown in FIG. 5, openings 302a and 301a are formed in the dielectric film 302 so that the micromachine switch 102b forming region is exposed. At this time, since the dielectric film 301 under the opening 303 a is removed at the same time, a space is formed below the movable electrode 123, and the fixed electrode 121, the column 122, and the movable A micromachine switch 102 b composed of the electrodes 123 is completed.
ついで、 無機絶縁膜 3 0 3のみを選択的に除去すれば、 図 3 Iに示した誘電体 膜 3 0 1, 3 0 2からなり開口部 3 0 1 a , 3 0 2 aからなる開口領域 1 1 3 a を備えた分離層 1 1 3が、 図 3 Jに示すように基板 1 0 1上に形成された状態が 得られる。 Next, if only the inorganic insulating film 303 is selectively removed, the opening region consisting of the dielectric films 301 and 302 shown in FIG. 3I and the openings 310a and 302a is formed. As shown in FIG. 3J, a state in which the separation layer 1 13 having 1 13 a is formed on the substrate 101 is shown in FIG. 3J. can get.
一方、 誘電体からなる分離層 1 0 9上に銅膜を形成し、 この銅膜をパターン加 ェすることで、 分離層 1 0 9上に結合スロット 1 0 8 aを備えた結合層 1 0 8を 形成する。 また、 誘電体からなる分離層 1 1 1上に金などの導電性材料膜を形成 し、 この膜をバターン加工することで、 分離層 1 1 1上に分配合成層 1 1 0を形 成する。 また、 分離層 1 1 1裏面には接地層 1 1 2を形成する。 そして、 図 3 K に示すように、 分離層 1 0 9の裏面と分離層 1 1 1の分配合成層 1 1 0形成面と を当接させて貼り合わせ、 一体構造とする。  On the other hand, by forming a copper film on the separation layer 109 made of a dielectric material and patterning this copper film, the connection layer 109 having the connection slot 108 a on the separation layer 109 is formed. Form 8. In addition, a conductive material film such as gold is formed on the separation layer 111 made of a dielectric material, and this film is patterned to form a distribution synthesis layer 110 on the separation layer 111. . Further, a ground layer 112 is formed on the back surface of the separation layer 111. Then, as shown in FIG. 3K, the back surface of the separation layer 109 is brought into contact with and bonded to the surface of the separation layer 111 on which the distribution / combination layer 110 is formed to form an integral structure.
そして、 この一体構造体の結合層 1 0 8表面と、 基板 1 0 1裏面とを、 接着フ イルム 4 0 1を介して当接させ、 所定の圧力を印加した状態で加熱し、 図 3 Lに 示すように、 基板 1 0 1裏面に結合層 1 0 8表面が接着された状態とする。  Then, the surface of the bonding layer 108 of the integrated structure and the back surface of the substrate 101 are brought into contact with each other via an adhesive film 401, and heated under a predetermined pressure, and FIG. As shown in the figure, the surface of the bonding layer 108 is adhered to the back surface of the substrate 101.
次に、 誘電体からなる分離層 1 0 4裏面に、 例えば C uからなる導電膜を形成 し、 この膜をパターン加工することで、 分離層 1 0 4裏面に結合スロッ ト 1 0 3 aを備えた結合層 1 0 3を形成する。 また、 この分離層 1 0 4表面には、 放射素 子層 1 0 5を形成する。 また、 分離層 1 0 6上に無給電素子層 1 0 7を形成する。 そして、 分離層 1 0 4と分離層 1 0 6とを貼り合わせて一体構造とする。 さらに、 図 3 Mに示すように、 分離層 1 0 4, 1 0 6を含む一体構造体を分離層 1 1 3上 に固定配置することで、 位相制御層 1 0 2上に放射素子層 1 0 5および無給電素 子層 1 0 7が配置された多層構造が完成する。  Next, a conductive film made of, for example, Cu is formed on the back surface of the separation layer 104 made of a dielectric, and this film is patterned to form a coupling slot 103 a on the back surface of the separation layer 104. The provided bonding layer 103 is formed. On the surface of the separation layer 104, a radiating element layer 105 is formed. In addition, a parasitic element layer 107 is formed on the separation layer 106. Then, the separation layer 104 and the separation layer 106 are bonded to form an integrated structure. Further, as shown in FIG. 3M, the integrated structure including the separation layers 104 and 106 is fixedly arranged on the separation layer 113 so that the radiating element layer 1102 is formed on the phase control layer 102. Thus, a multilayer structure in which the passive element layer 107 and the passive element layer 107 are arranged is completed.
実施の形態 2 Embodiment 2
次に、 この発明の第 2の実施の形態について説明する。  Next, a second embodiment of the present invention will be described.
この実施の形態 2でも、 図 4 Aの断面図に示すように、 多層構造を有する多層 基板 5 0 0によりフェーズドアレイアンテナが構成されている。  Also in the second embodiment, as shown in the cross-sectional view of FIG. 4A, a phased array antenna is constituted by a multilayer substrate 500 having a multilayer structure.
すなわち、 まず、 例えばガラスなどの誘電体からなる内層基板 (第 1の層) 5 0 1上に、 マイクロストリップ線路 (導波路) 5 0 2 aとマイクロマシンスイツ チ (高周波可動部品) 5 0 2 bとを備えた複数の移相ュニットからなる位相制御 層 (第 2の層) 5 0 2が形成されているようにした。 このマイクロマシンスイツ チ 5 0 2 bは、 前述した実施の形態 1 と同様である。  First, a microstrip line (waveguide) 502 a and a micromachine switch (high-frequency movable part) 502 b are placed on an inner layer substrate (first layer) 501 made of a dielectric material such as glass. A phase control layer (second layer) 502 composed of a plurality of phase shift units having the following structure is formed. This micromachine switch 502b is the same as in the first embodiment.
また、 その位相制御層 5 0 2上には、 結合スロット 5 0 3 aを備えた結合層 5 0 3および分離層 5 0 4を介して、 複数の放射素子 (高周波部品) が形成された 放射素子層 (第 3の層) 5 0 5が配置されている。 また、 この放射素子層 5 0 5 上には、 分離層 5 0 6を介して、 複数の無給電素子が形成された無給電素子層 5 0 7が配置されている。 この無給電素子は、 前述の実施の形態 1 と同様に、 広帯 域化のために設けられるものであり、 必要に応じて付加されればょレ Also, on the phase control layer 502, a coupling layer 5 having a coupling slot 503a is provided. A radiating element layer (third layer) 505 on which a plurality of radiating elements (high-frequency components) are formed is arranged via a third layer and a separating layer 504. A parasitic element layer 507 on which a plurality of parasitic elements are formed is arranged on the radiating element layer 505 via a separation layer 506. This parasitic element is provided for widening the band as in the first embodiment described above, and may be added if necessary.
また、 位相制御層 5 0 2と結合層 5 0 3との間には、 厚さが 0 . 1 mm程度の 誘電体材料からなる分離層 5 1 3を備えるようにしている。  Further, a separation layer 513 made of a dielectric material having a thickness of about 0.1 mm is provided between the phase control layer 502 and the coupling layer 503.
一方、 基板 5 0 1裏面には、 結合スロッ ト 5 0 8 aを備えた結合層 5 0 8およ び分離層 5 0 9を介して、 マイクロストリップ線路などから構成された分配合成 層 5 1 0が配置されている。 この分配合成層 5 1 0、 図示していない給電部から の高周波信号を、 上層の各移相ュニットそれぞれに分配する分配器を備えるもの である。 さらに、 図 4 Aに示した例では、 合成分配層 5 1 0の下に誘電体からな る分離層 5 1 1を介して導電体材料からなる接地層 5 1 2が設けられている。 こ れらの分離層 5 1 1および接地層 5 1 2は、 合成分配層 5 1 0からの不要輻射を 抑制するために設けられるものであり、 必要に応じて付加されればよい。  On the other hand, on the backside of the substrate 501, a distributing / combining layer 51 composed of a microstrip line or the like is provided via a coupling layer 508 having a coupling slot 508a and a separation layer 509. 0 is arranged. The distribution / combination layer 5100 includes a distributor that distributes a high-frequency signal from a power supply unit (not shown) to each of the upper phase shift units. Further, in the example shown in FIG. 4A, a ground layer 512 made of a conductive material is provided below the combined distribution layer 510 via a separation layer 511 made of a dielectric. The separation layer 511 and the ground layer 5112 are provided to suppress unnecessary radiation from the combined distribution layer 5110, and may be added as needed.
また、 位相制御層 5 0 2は、 図 4 Bに示すように、 複数のマイクロマシンスィ ツチ 5 0 2 bを含む移相回路 (移相器) 5 0 2 cにより、 マイクロストリップ線 路 5 0 2 aの電気長が切り換えられるように構成されている。  Further, as shown in FIG. 4B, the phase control layer 502 is formed by a phase shift circuit (phase shifter) 502 c including a plurality of micromachine switches 502 b, thereby forming a microstrip line 502. It is configured such that the electrical length of a can be switched.
図 4 Bは、 高周波装置であるフェーズドアレイアンテナを構成している 1つの セル部分を示している。 このセルの周部には、 信号線選択部 (図示せず) からの 信号線 X i 1, X i 2、 走査線選択部 (図示せず) からの走査線 Y j 1 , Y j 2、 制御装置 (図示せず) からのトリガ信号線 T r g、 およびスィツチの駆動電源線 V d r Vが配置されている。 そして、 これらの信号線に接続されている駆動回路 (制御手段) 5 0 2 dにより、 マイクロマシンスィッチ 5 0 2 bの動作が制御さ れている。  FIG. 4B shows one cell portion constituting a phased array antenna which is a high-frequency device. The signal lines X i 1 and X i 2 from the signal line selection unit (not shown), the scanning lines Y j 1 and Y j 2 from the scanning line selection unit (not shown) A trigger signal line Trg from a control device (not shown) and a drive power supply line VdrV for the switch are arranged. The operation of the micromachine switch 502 b is controlled by a drive circuit (control means) 502 d connected to these signal lines.
また、 これら信号線の内側では、 上述したマイクロストリップ線路 5 0 2 a力 結合スロッ ト 5 0 8 aの上部位置から結合スロッ ト 5 0 3 aの下部位置までを接 続するように構成されている。 このマイクロストリップ線路 5 0 2 aの途中には、 例えば、 2 2 . 5 ° , 4 5 ° , 9 0 ' , 1 8 0 ° の各移相回路 5 0 2 cが構成さ れている。 各移相回路 5 0 2 cはマイクロマシンスィツチ 5 0 2 bの動作により 移相量が切り換えられ、 マイクロス ト リップ線路 1 0 2 aを流れる高周波信号の 位相を所望の値に変化させる。 Inside these signal lines, the microstrip line 502a is configured to connect from the upper position of the coupling slot 508a to the lower position of the coupling slot 503a. I have. In the middle of the microstrip line 502a, for example, phase shift circuits 502c of 22.5 °, 45 °, 90 ′, and 180 ° are formed. Have been. The amount of phase shift of each phase shift circuit 502c is switched by the operation of the micromachine switch 502b, and changes the phase of the high-frequency signal flowing through the microstrip line 102a to a desired value.
実施の形態 2では、 位相制御層 5 0 2において、 高周波信号の伝送路となるマ イクロス トリップ線路 5 0 2 a (図 4 Bの黒く塗りつぶした部分) を、 厚く形成 することで、 マイクロマシンスィツチ 5 0 2 bが形成された領域上の分離層 5 1 3下に空間 5 1 3 aを設けるようにした。 ここでは、 このマイクロストリップ線 路 5 0 2 aにより形成される空間 5 1 3 aの高さ力 0 . 1 mm程度となるよう にしている。  In the second embodiment, the microcontroller switch 5 is formed by forming the microstrip line 502 a (the black portion in FIG. 4B) serving as a transmission path of a high-frequency signal in the phase control layer 502 thickly. A space 513a was provided below the separation layer 513 on the region where the 02b was formed. Here, the height force of the space 513a formed by the microstrip line 502a is set to about 0.1 mm.
このような構成において、 給電部からの高周波信号は、 分配合成層 5 1 0のス トリップ線路に伝搬して、 位相制御層 5 0 2の各移相ュニッ トに供給され、 そこ で所定の給電移相量が与えられ、 結合層 5 0 3の結合スロッ ト 5 0 3 aを介して、 放射素子層 5 0 5の各放射素子に伝搬し、 それぞれの放射素子から所定のビーム 方向に放射される。  In such a configuration, a high-frequency signal from the power supply unit propagates to the strip line of the distribution / combination layer 501 and is supplied to each phase shift unit of the phase control layer 502, where a predetermined power supply is provided. The phase shift amount is given, propagates to each radiating element of the radiating element layer 505 via the coupling slot 503a of the coupling layer 503, and is radiated from each radiating element in a predetermined beam direction. You.
次に、 この実施の形態 2におけるフェーズドアレイアンテナ (高周波装置) の 製造方法について説明する。  Next, a method of manufacturing the phased array antenna (high-frequency device) according to the second embodiment will be described.
まず、 基板 5 0 1上に位相制御層 5 0 2を形成する。 ここでは、 特にマイクロ マシンスィツチ 5 0 2 bの箇所を例にとり説明する。  First, a phase control layer 502 is formed on a substrate 501. Here, the description will be made by taking the micro machine switch 502 b in particular as an example.
はじめに、 図 5 Aに示すように、 基板 5 0 1上にマイクロストリッブ線路 5 0 2 aとともに、 図 4に示したマイクロマシンスィツチ 5 0 2 bを構成する固定電 極 5 2 1を形成する。  First, as shown in FIG. 5A, a fixed electrode 521 constituting a micromachine switch 502 b shown in FIG. 4 is formed on a substrate 501 together with a microstrip line 502 a.
次に、 図 5 Bに示すように、 固定電極 5 2 1 と对になるマイクロス トリツブ線 路 5 0 2 a端部上に、 柱体 5 2 2を形成する。  Next, as shown in FIG. 5B, a pillar 522 is formed on the end of the microstrip line 502 a that is connected to the fixed electrode 52 1.
次に、 図 5 Cに示すように、 柱体 5 2 2の上面が露出して他の領域を覆うよう に、 例えばポリイミ ドからなる誘電体膜 (第 4の層) 6 0 1を形成する。  Next, as shown in FIG. 5C, a dielectric film (fourth layer) 601 made of, for example, polyimide is formed so that the upper surface of the pillars 522 is exposed and covers other regions. .
次に、 図 5 Dに示すように、 一端が柱体 5 2 2上面全域に接触し、 他端が固定 電極 5 2 1上部に延在するように、 誘電体膜 6 0 1の所定箇所に可動電極 5 2 3 を形成する。  Next, as shown in FIG. 5D, one end is in contact with the entire area of the upper surface of the pillar 52 2, and the other end is extended at a predetermined position of the dielectric film 61 so that it extends above the fixed electrode 52 1. The movable electrode 5 2 3 is formed.
次に、 図 5 Eに示すように、 可動電極 5 2 3を含めた誘電体膜 6 0 1上に、 例 えばポリイミ ドからなる誘電体膜 (第 5の層) 6 0 2を形成する。 Next, as shown in FIG. 5E, an example is formed on the dielectric film 61 including the movable electrode 52 3. For example, a dielectric film (fifth layer) 602 made of polyimide is formed.
次に、 図 5 Fに示すように、 誘電体膜 6 0 2上に例えばシリコン酸化物からな る無機絶縁膜 6 0 3を形成する。  Next, as shown in FIG. 5F, an inorganic insulating film 603 made of, for example, silicon oxide is formed on the dielectric film 602.
次に、 図 5 Gに示すように、 図 4 Bに示したマイクロストリップ線路 5 0 2 a (図 4 Bの黒く塗りつぶした部分) 上を除く無機絶縁膜 6 0 3上に、 レジストパ タン 6 0 4を形成する。  Next, as shown in FIG. 5G, a resist pattern 600 is formed on the inorganic insulating film 603 except on the microstrip line 502 a shown in FIG. 4B (the black portion in FIG. 4B). Form 4.
次に、 そのレジストパタン 6 0 4をマスクとし、 選択的に無機絶縁膜 6 0 3を エッチングし、 その後レジス トパタン 6 0 4を除去することで、 図 5 Hに示すよ うに、 マイクロストリップ線路 5 0 2 a上の領域が開放しているハードマスク 6 Next, using the resist pattern 604 as a mask, the inorganic insulating film 603 is selectively etched, and then the resist pattern 604 is removed, as shown in FIG. 0 2 Hard mask with open area on 6a 6
0 3 aを形成する。 Form 0 3 a.
次に、 そのハードマスク 6 0 3 aをマスクとして下層の誘電体膜 6 0 2および 誘電体膜 6 0 1を選択的にエッチングすることで、 図 5 Iに示すように、 誘電体 膜 6 0 1 , 6 0 2におけるマイクロストリップ線路 5 0 2 a上の領域に開口領域 6 0 1 a , 6 0 2 aを形成する。  Next, the lower dielectric film 602 and the dielectric film 601 are selectively etched using the hard mask 603a as a mask, thereby obtaining the dielectric film 602 as shown in FIG. 5I. Open areas 601a and 602a are formed in the areas on the microstrip line 502a at 1,602.
ついで、 図 5 Jに示すように、 例えばメツキ法により、 露出しているマイクロ ストリップ線路 5 0 2 a上のみに、 銅などの金属からなる金属層 5 0 2 a aを形 成し、 マイクロス トリ ップ線路 5 0 2 aを厚くする。  Next, as shown in FIG. 5J, a metal layer 502 aa made of a metal such as copper is formed only on the exposed microstrip line 502 a by, for example, a plating method, and the microstrip is formed. Make the transmission line 502 a thicker.
ついで、 誘電体膜 6 0 2および誘電体膜 6 0 1をハードマスク 6 0 3 aととも に除去することで、 図 5 Kに示すように、 固定電極 5 2 1, 柱体 5 2 2, 可動電 極 5 2 3からなるマイクロマシンスィッチ 5 0 2 bが完成する。 そして、 このマ イクロマシンスィッチ 5 0 2 aの完成とともに、 マイクロマシンスィッチ 5 0 2 b上部に可動電極 5 2 3の可動空間が構成されるように、 マイクロストリッブ線 路 5 0 2 aが厚く形成された状態が得られる。  Next, by removing the dielectric film 602 and the dielectric film 601 together with the hard mask 603a, as shown in FIG. 5K, the fixed electrode 521, the pillar 522, A micromachine switch 502b composed of movable electrodes 523 is completed. Along with the completion of the micromachine switch 502a, a thick microstrip line 502a is formed so that a movable space for the movable electrode 523 is formed above the micromachine switch 502b. The obtained state is obtained.
一方、 誘電体からなる分離層 5 0 9上に銅膜を形成し、 この銅膜をパターン加 ェすることで、 分離層 5 0 9上に結合スロッ ト 5 0 8 aを備えた結合層 5 0 8を 形成する。 また、 誘電体からなる分離層 5 1 1上に金などの導電性材料膜を形成 し、 この膜をパターン加工することで、 分離層 5 1 1上に分配合成層 5 1 0を形 成する。 また、 分離層 5 1 1裏面には接地層 5 1 2を形成する。 そして、 図 5 L に示すように、 分離層 5 0 9の裏面と分離層 5 1 1の分配合成層 5 1 0形成面と を当接させて貼り合わせ、 一体構造とする。 On the other hand, a copper film is formed on the dielectric separating layer 509, and the copper film is patterned to form a bonding layer 5 having a bonding slot 508a on the separating layer 509. 0 8 is formed. In addition, a conductive material film such as gold is formed on the separation layer 511 made of a dielectric material, and this film is patterned to form the distribution composite layer 510 on the separation layer 511. . In addition, a ground layer 512 is formed on the back surface of the separation layer 511. Then, as shown in FIG. 5L, the back surface of the separation layer 509 and the distribution / combination layer 5110 formation surface of the separation layer 511 Are brought into contact with each other to form an integral structure.
そして、 この一体構造体の結合層 5 0 8表面と、 基板 5 0 1裏面とを、 接着フ イルム 8 0 1を介して当接させ、 所定の圧力を印加した状態で加熱し、 図 5 Mに 示すように、 基板 5 0 1裏面に結合層 5 0 8表面が接着された状態とする。 次に、 誘電体からなる分離層 5 0 4裏面に、 例えば C uからなる導電膜を形成 し、 これをパターン加工することで、 分離層 5 0 4裏面に結合スロッ ト 5 0 3 a を備えた結合層 5 0 3を形成する。 また、 この分離層 5 0 4表面には、 放射素子 層 5 0 5を形成する。 また、 分離層 5 0 6上に無給電素子層 5 0 7を形成する。 そして、 分離層 5 0 4と分離層 5 0 6を貼り合わせて一体構造とする。  Then, the surface of the bonding layer 508 of the integrated structure and the back surface of the substrate 501 are brought into contact with each other via an adhesive film 801, and heated under a state of applying a predetermined pressure. As shown in the figure, the surface of the bonding layer 508 is adhered to the back surface of the substrate 501. Next, a conductive film made of, for example, Cu is formed on the back surface of the separation layer 504 made of a dielectric, and this is patterned to provide a coupling slot 503a on the back surface of the separation layer 504. A bonding layer 503 is formed. On the surface of the separation layer 504, a radiating element layer 505 is formed. Further, a parasitic element layer 507 is formed over the separation layer 506. Then, the separation layer 504 and the separation layer 506 are bonded to form an integral structure.
そして、 基板 5 0 1のマイクロストリップ線路 5 0 2 a上に分離層 5 1 3を固 定配置して、 さらにこの分離層 5 1 3上に分離層 5 0 4, 5 0 6を含む一体構造 体を固定配置することで、 図 4 Aに示したように、 位相制御層 5 0 2上に放射素 子層 5 0 5および無給電素子層 5 0 7が配置された多層構造が形成される。 以上説明した実施の形態 1, 2では、 高周波装置として多層構造を有するフエ ーズドアレイアンテナを例示して、 内層に可動部を有するスィツチを実装する場 合について、 その構造および製造方法を説明した。 しかし、 この発明の高周波装 置は、 フェーズドアレイアンテナに限られるものではない。 例えば、 多層基板内 層に多数の高周波可動部品として高周波小型リ レーを実装し、 ダイバーシティ受 信のように多数の高周波受信信号を選択的に切り替えて受信する高周波受信回路 にも適用できる。 また、 多層基板内層に高周波可動部品として実装された高周波 小型リ レーを切り替えて高周波増幅器の出力オンまたはオフする高周波送信回路 にも適用できる: 以上説明したように、 この発明では、 高周波回路が多層基板に実装された高周 波装置において、 多層基板の内層基板上に形成されて高周波信号を伝搬する導波 路と、 内層基板上に形成されて可動構造により導波路と接続して高周波信号を処 理する高周波可動部品と、 内層基板とその上の層との間に設けられて各層を分離 するとともに, 高周波可動部品よりも高い厚さを有し, 高周波可動部品が形成さ れた領域全体が開口した分離層とを備えるようにした。 このように構成したので、 分離層に形成された開口領域内で例えばスィツチな どの高周波可動部品が、 接続 Z非接続などの動作をする。 この結果、 この発明に よれば、 フェーズドアレイアンテナなど、 高利得で高周波数帯に適用する高周波 装置でスィツチなどの高周波可動部品を用いることができるという優れた効果を 得られる。 Then, the separation layer 5 13 is fixedly arranged on the microstrip line 502 a of the substrate 501, and further, the integrated structure including the separation layers 504 and 506 on the separation layer 5 13 By fixedly disposing the body, a multilayer structure in which the radiating element layer 505 and the parasitic element layer 507 are arranged on the phase control layer 502 as shown in FIG. 4A is formed. . In the first and second embodiments described above, a phased array antenna having a multilayer structure is exemplified as a high-frequency device, and the structure and manufacturing method of a case where a switch having a movable portion in an inner layer is mounted has been described. . However, the high-frequency device of the present invention is not limited to a phased array antenna. For example, the present invention can also be applied to a high-frequency receiving circuit that mounts high-frequency small relays as a number of high-frequency movable components on the inner layer of a multilayer substrate and selectively switches and receives a large number of high-frequency receiving signals, such as diversity reception. In addition, the present invention can be applied to a high-frequency transmission circuit that switches on or off the output of a high-frequency amplifier by switching a high-frequency small relay mounted as a high-frequency movable component on the inner layer of a multilayer substrate. In a high-frequency device mounted on a substrate, a waveguide formed on an inner layer substrate of a multi-layer substrate to propagate a high-frequency signal and a waveguide formed on the inner layer substrate and connected to the waveguide by a movable structure to transmit the high-frequency signal. The high-frequency movable part to be processed is provided between the inner layer substrate and the layer above it to separate the layers, and has a thickness higher than that of the high-frequency movable part and the entire area where the high-frequency movable part is formed. And a separation layer having an opening. With such a configuration, for example, a high-frequency movable component such as a switch performs an operation such as connection Z non-connection in an opening region formed in the separation layer. As a result, according to the present invention, an excellent effect that a high-frequency movable component such as a switch can be used in a high-frequency device applied to a high-gain high-frequency band, such as a phased array antenna, can be obtained.
また、 この発明では、 高周波回路が多層基板に実装された高周波装置において、 多層基板の内層基板上に形成されて高周波信号を伝搬する導波路と、 内層基板上 に形成されて可動構造により導波路と接続して高周波信号を処理する高周波可動 部品とを備え、 導波路の高さは高周波可動部品の高さより高く され、 内層基板と その上の層との間に高周波可動部品が実装されるようにした。  Further, according to the present invention, in a high-frequency device in which a high-frequency circuit is mounted on a multi-layer substrate, a waveguide formed on an inner layer substrate of the multi-layer substrate to propagate a high-frequency signal; and a waveguide formed on the inner layer substrate and having a movable structure. And a high-frequency movable part that processes high-frequency signals by connecting to the substrate.The height of the waveguide is made higher than the height of the high-frequency movable part, so that the high-frequency movable part is mounted between the inner substrate and the layer above it. I made it.
このように構成したので、 高く形成された導波路により基板の上に空間が形成 され、 この空間内でスィッチなどの高周波可動部品が動作する。 この結果、 この 発明によれば、 フェーズドアレイアンテナなど、 高利得で高周波数帯に適用する 高周波装置でスィッチなどの高周波可動部品を用いることができるという優れた 効果を得られる。  With such a configuration, a space is formed above the substrate by the waveguide formed high, and a high-frequency movable component such as a switch operates in this space. As a result, according to the present invention, an excellent effect that a high-frequency movable part such as a switch can be used in a high-frequency device applied to a high-frequency band with a high gain, such as a phased array antenna, can be obtained.
また、 この発明では、 多層基板を構成する内層基板の主面に形成されて高周波 信号を伝搬する複数の導波路と、 内層基板の主面に形成されて導波路の接続状態 を切り換える可動部を備えたスィツチと、 内層基板の主面とこの上に配置された 基板との間に配置されてスィッチ形成領域上部に空間を備えた構造体とを備える よう〖こした。  Further, according to the present invention, the plurality of waveguides formed on the main surface of the inner substrate constituting the multilayer substrate and transmitting a high-frequency signal, and the movable portion formed on the main surface of the inner substrate and switching the connection state of the waveguide are provided. And a structure disposed between the main surface of the inner layer substrate and the substrate disposed thereon and having a space above the switch forming region.
このように構成したので、 スィツチは構造体の空間内で接続/非接続の動作を する。 この結果、 この発明によれば、 フェーズドアレイアンテナなど、 高利得で 高周波数帯に適用する高周波装置でスィツチを用いることができるという優れた 効果を得られる。  With this configuration, the switch performs connection / disconnection operations in the space of the structure. As a result, according to the present invention, an excellent effect that a switch can be used in a high-frequency device applied to a high-gain high-frequency band, such as a phased array antenna, can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 多層構造を有する多層基板と、 1. a multilayer substrate having a multilayer structure;
この多層基板を構成する内層基板上に形成され、 高周波信号を伝搬する導波路 と、  A waveguide formed on an inner layer substrate constituting the multilayer substrate and transmitting a high-frequency signal;
前記内層基板上に形成され、 前記導波路と接離する可動構造を有する高周波可 動部品と、  A high-frequency movable component formed on the inner substrate and having a movable structure that comes into contact with and separates from the waveguide;
この高周波可動部品の形成領域上部に形成され、 前記高周波可動部品の可動範 囲上限よりも高さが高い空間とを備えることを特徴とする高周波装置。  A high-frequency device, comprising: a space formed above the formation region of the high-frequency movable component, the space having a height higher than an upper limit of the movable range of the high-frequency movable component.
2 . 前記空間は、 前記内層基板の上層に形成された開口領域からなることを特徴 とする請求の範囲第 1項記載の高周波装置。 2. The high-frequency device according to claim 1, wherein the space comprises an opening region formed in an upper layer of the inner layer substrate.
3 . 前記導波路の一部は、 前記高周波可動部品の可動範囲上限より高く形成され、 前記空間は、 前記内層基板と、 前記導波路の上面に支持された前記内層基板の 上層との間に形成されることを特徴とする請求の範囲第 1項記載の高周波装置。 3. A part of the waveguide is formed higher than the upper limit of the movable range of the high-frequency movable component, and the space is formed between the inner layer substrate and the upper layer of the inner layer substrate supported on the upper surface of the waveguide. 2. The high-frequency device according to claim 1, wherein the high-frequency device is formed.
4 . 前記高周波可動部品は、 前記導波路の接続状態を切り換えるスィッチである ことを特徴とする請求の範囲第 1項記載の高周波装置。 4. The high-frequency device according to claim 1, wherein the high-frequency movable component is a switch for switching a connection state of the waveguide.
5 . 前記スィッチは、 前記内層基板上に配置された固定電極と、 この固定電極と 離間して配置された柱体と、 この柱体に一端が固定されて他端が前記固定電極の 上方に延在する可動電極とからなるマイクロマシンスィッチであることを特徴と する請求の範囲第 4項記載の高周波装置。 5. The switch comprises: a fixed electrode disposed on the inner layer substrate; a column disposed apart from the fixed electrode; and one end fixed to the column and the other end positioned above the fixed electrode. 5. The high-frequency device according to claim 4, wherein the high-frequency device is a micromachine switch including an extended movable electrode.
6 . 前記内層基板上に形成され、 前記スィッチの動作を制御する制御手段を備え ることを特徴とする請求の範囲第 4項記載の高周波装置。 6. The high-frequency device according to claim 4, further comprising control means formed on said inner substrate and controlling operation of said switch.
7 . 前記多層基板は、 7. The multilayer substrate is
前記内層基板からなる第 1の層と、  A first layer comprising the inner layer substrate,
前記内層基板上に形成された前記導波路および前記高周波可動部品を備えた第 2の層と、  A second layer including the waveguide and the high-frequency movable component formed on the inner layer substrate,
前記導波路を伝搬する前記高周波信号が結合する高周波部品を備えた第 3の層 とを少なくとも有することを特徴とする請求の範囲第 1項記載の高周波装置。  2. The high-frequency device according to claim 1, further comprising a third layer including a high-frequency component to which the high-frequency signal propagating through the waveguide is coupled.
8 . 前記多層基板は、 8. The multilayer substrate is:
前記第 2の層と前記第 3の層との間に配置され、 前記導波路を伝搬する前記高 周波信号を前記高周波部品に結合させる結合手段を備えた導電材料からなる結合 層を更に有することを特徴とする請求の範囲第 7項記載の高周波装置。  It further comprises a coupling layer made of a conductive material and disposed between the second layer and the third layer, the coupling layer including coupling means for coupling the high-frequency signal propagating through the waveguide to the high-frequency component. The high-frequency device according to claim 7, wherein:
9 . 前記多層基板は、 9. The multilayer board
前記第 2の層と前記結合層との間に配置され、 誘電体材料からなる第 1の分離 層と、  A first separation layer disposed between the second layer and the tie layer and made of a dielectric material;
前記結合層と前記第 3の層との間に配置され、 誘電体材料からなる第 2の分離 層とを更に有することを特徴とする請求の範囲第 8項記載の高周波装置。  9. The high-frequency device according to claim 8, further comprising a second separation layer disposed between said coupling layer and said third layer and made of a dielectric material.
1 0 . 前記内層基板は、 誘電体からなることを特徴とする請求の範囲第 1項記載 の高周波装置。 10. The high-frequency device according to claim 1, wherein the inner layer substrate is made of a dielectric.
1 1 . 前記導波路と前記スィッチとにより、 前記高周波信号の位相を変化させる 移相器が構成されることを特徴とする請求の範囲第 4項記載の高周波装置。 11. The high-frequency device according to claim 4, wherein the waveguide and the switch form a phase shifter that changes a phase of the high-frequency signal.
1 2 . 前記高周波部品は、 放射素子から構成されることを特徴とする請求の範囲 第 7項記載の高周波装置。 12. The high-frequency device according to claim 7, wherein the high-frequency component includes a radiating element.
1 3 . 前記内層基板上に形成された前記導波路に前記高周波信号を供給する分配 層を有することを特徴とする請求の範囲第 1項記載の高周波装置。 13. The high-frequency device according to claim 1, further comprising a distribution layer that supplies the high-frequency signal to the waveguide formed on the inner layer substrate.
1 4 . 誘電体からなる基板上に高周波信号を伝搬する導波路を形成する工程と、 前記導波路と接離する可動構造を備えた高周波可動部品を前記基板上に形成す る工程と、 14. a step of forming a waveguide that propagates a high-frequency signal on a substrate made of a dielectric; and a step of forming a high-frequency movable component having a movable structure that comes into contact with and separates from the waveguide on the substrate.
前記高周波可動部品の形成領域上部に前記高周波可動部品の可動範囲上限より も高さが高い空間が形成されるように、 前記基板上に第 1の分離層を形成するェ 程とを備えることを特徴とする高周波装置の製造方法。  Forming a first separation layer on the substrate so that a space higher than the upper limit of the movable range of the high-frequency movable component is formed above the formation region of the high-frequency movable component. A method for manufacturing a high-frequency device.
1 5 . 前記基板上に固定電極と柱体とを離間して形成する工程と、 15. A step of forming a fixed electrode and a column apart on the substrate,
前記基板上に前記柱体上部が露出した状態で前記固定電極を覆うように誘電体 材料からなる第 1の誘電体層を形成する工程と、  Forming a first dielectric layer made of a dielectric material on the substrate so as to cover the fixed electrode in a state where the upper portion of the column is exposed;
前記柱体上部に一端が固定されて他端が前記固定電極上に延在する可動電極を 前記第 1の誘電体層上に形成する工程と、  Forming a movable electrode on the first dielectric layer, one end of which is fixed to the upper part of the pillar and the other end of which extends on the fixed electrode;
前記第 1の誘電体層上に前記可動電極を覆うように誘電体材料からなる第 2の 誘電体層を形成する工程と、  Forming a second dielectric layer made of a dielectric material on the first dielectric layer so as to cover the movable electrode;
前記第 2および前記第 1の誘電体層における前記可動電極形成領域に開口部を 形成し、 前記第 1の誘電体層と前記第 2の誘電体層とからなる前記第 1の分離層 を形成するとともに、 前記固定電極と前記柱体と前記可動電極とからなる前記高 周波可動部品を前記第 1の分離層の開口部底部の前記基板上に形成する工程とを 備えることを特徴とする請求の範囲第 1 4項記載の高周波装置の製造方法。  An opening is formed in the movable electrode formation region in the second and first dielectric layers, and the first separation layer including the first dielectric layer and the second dielectric layer is formed. And forming the high-frequency movable component comprising the fixed electrode, the column, and the movable electrode on the substrate at the bottom of the opening of the first separation layer. 15. The method for manufacturing a high-frequency device according to item 14 above.
1 6 . 前記基板上に固定電極と柱体とを離間して形成する工程と、 16. A step of forming a fixed electrode and a column at a distance on the substrate,
前記基板上に前記柱体上部が露出した状態で前記固定電極を覆うように第 4の 層を形成する工程と、  Forming a fourth layer so as to cover the fixed electrode with the upper portion of the pillar exposed on the substrate;
前記柱体上部に一端が固定されて他端が前記固定電極上に延在する可動電極を 前記第 4の層上に形成する工程と、  Forming, on the fourth layer, a movable electrode having one end fixed to the upper part of the pillar and the other end extending above the fixed electrode;
前記第 4の層上に前記可動電極を覆うように第 5の層を形成する工程と、 前記第 5および第 4の層における前記導波路の所定領域上に開口領域を形成す る工程と、 前記開口領域内における前記導波路上に金属層を形成して前記開口領域内にお ける前記導波路を前記可動電極の可動範囲上限より高く形成する工程と、 Forming a fifth layer on the fourth layer so as to cover the movable electrode, and forming an opening region on a predetermined region of the waveguide in the fifth and fourth layers; Forming a metal layer on the waveguide in the opening region and forming the waveguide in the opening region higher than a movable range upper limit of the movable electrode;
前記第 5および第 4の層を除去する工程と、  Removing the fifth and fourth layers;
前記導波路の上面上に誘電体材料からなる前記第 1の分離層を配置して、 前記 固定電極と前記柱体と前記可動電極とからなる前記高周波可動部品を前記第 1の 分離層下の前記空間に形成する工程とを備えることを特徴とする請求の範囲第 1 4項記載の高周波装置の製造方法。  The first separation layer made of a dielectric material is arranged on the upper surface of the waveguide, and the high-frequency movable component including the fixed electrode, the column, and the movable electrode is placed under the first separation layer. 15. The method for manufacturing a high-frequency device according to claim 14, further comprising a step of forming the high-frequency device in the space.
1 7 . 結合手段を備えた導電材料からなる結合層を、 前記結合手段が前記導波路 の所定の領域上に配置されるように前記第 1の分離層上に形成する工程と、 誘電体材料からなる第 2の分離層を前記結合層上に形成する工程と、 17. A step of forming a coupling layer made of a conductive material provided with coupling means on the first separation layer such that the coupling means is arranged on a predetermined region of the waveguide; Forming a second separation layer consisting of on the tie layer,
前記導波路を伝搬する前記高周波信号が前記結合手段を介して結合する高周波 部品を前記第 2の分離層上に形成する工程とを備えることを特徴する請求の範囲 第 1 4項記載の高周波装置の製造方法。  Forming a high-frequency component on the second separation layer, the high-frequency component being coupled to the high-frequency signal propagating through the waveguide via the coupling means. Manufacturing method.
1 8 . 前記導波路と前記高周波可動部品とにより、 前記高周波信号の位相を変化 させる移相器を構成することを特徴とする請求の範囲第 1 4項記載の高周波装置。 18. The high-frequency device according to claim 14, wherein the waveguide and the high-frequency movable component form a phase shifter that changes a phase of the high-frequency signal.
1 9 . 前記高周波部品を放射素子から構成することを特徴とする請求の範囲第 1 7項記載の高周波装置。 19. The high-frequency device according to claim 17, wherein said high-frequency component is constituted by a radiation element.
2 0 . 前記基板上に形成された前記導波路に前記高周波信号を供給する分配層を 形成する工程とを備えることを特徴とする請求の範囲第 1 4項記載の高周波装置。 20. The high-frequency device according to claim 14, further comprising a step of forming a distribution layer for supplying the high-frequency signal to the waveguide formed on the substrate.
PCT/JP2000/004241 1999-07-09 2000-06-28 High-frequency device and method of manufacture thereof WO2001004985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/195899 1999-07-09
JP19589999A JP3379484B2 (en) 1999-07-09 1999-07-09 High frequency device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2001004985A1 true WO2001004985A1 (en) 2001-01-18

Family

ID=16348851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004241 WO2001004985A1 (en) 1999-07-09 2000-06-28 High-frequency device and method of manufacture thereof

Country Status (3)

Country Link
JP (1) JP3379484B2 (en)
TW (1) TW497293B (en)
WO (1) WO2001004985A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895379A (en) * 2019-11-22 2020-03-20 江苏盐西世纪教育产业项目开发有限公司 Multi-camera multi-projector structured light experimental device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574635B2 (en) * 2007-03-13 2010-11-04 日立マクセル株式会社 Antenna and manufacturing method thereof
JP4977902B2 (en) * 2007-10-10 2012-07-18 国立大学法人電気通信大学 Antenna control circuit board structure and antenna device
JP5417622B2 (en) * 2009-08-19 2014-02-19 独立行政法人 宇宙航空研究開発機構 Analog / digital stacked variable phase shifter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125510U (en) * 1990-03-30 1991-12-18
EP0602538A1 (en) * 1992-12-15 1994-06-22 Asulab S.A. Reed switch and manufacturing process for suspended three-dimensional metallic microstructures
EP0887879A1 (en) * 1997-06-23 1998-12-30 Nec Corporation Phased-array antenna apparatus
EP0921591A1 (en) * 1997-12-02 1999-06-09 Nec Corporation Array antenna with switched distributed-constant phase-shifter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125510U (en) * 1990-03-30 1991-12-18
EP0602538A1 (en) * 1992-12-15 1994-06-22 Asulab S.A. Reed switch and manufacturing process for suspended three-dimensional metallic microstructures
EP0887879A1 (en) * 1997-06-23 1998-12-30 Nec Corporation Phased-array antenna apparatus
EP0921591A1 (en) * 1997-12-02 1999-06-09 Nec Corporation Array antenna with switched distributed-constant phase-shifter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895379A (en) * 2019-11-22 2020-03-20 江苏盐西世纪教育产业项目开发有限公司 Multi-camera multi-projector structured light experimental device

Also Published As

Publication number Publication date
JP2001024401A (en) 2001-01-26
TW497293B (en) 2002-08-01
JP3379484B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
WO2000039891A1 (en) Phased array antenna and its manufacturing method
JP3481481B2 (en) Phased array antenna and manufacturing method thereof
US9941592B2 (en) Transmitarray unit cell for a reconfigurable antenna
US5982250A (en) Millimeter-wave LTCC package
EP3959777B1 (en) Low profile antenna apparatus
US5381157A (en) Monolithic microwave integrated circuit receiving device having a space between antenna element and substrate
US6195047B1 (en) Integrated microelectromechanical phase shifting reflect array antenna
US6218989B1 (en) Miniature multi-branch patch antenna
US6556168B1 (en) Phased array antenna and its manufacturing method
JPH11312881A (en) Substrate welding method, and high-frequency circuit, antenna, waveguide, line converter, line branching circuit and communication system
EP0921591A1 (en) Array antenna with switched distributed-constant phase-shifter
KR102562909B1 (en) High impedance RF MES transmission devices and manufacturing method thereof
JP2022545610A (en) Integrated structure with antenna element and IC chip employing edge contact connection
CN114424402A (en) Antenna apparatus with integrated antenna array and low loss multi-layer interposer
WO2000060699A1 (en) High-frequency device using switch having movable parts, and method of manufacture thereof
WO2000045464A1 (en) Phased-array antenna
WO2001004985A1 (en) High-frequency device and method of manufacture thereof
JP2000196331A (en) Phased array antenna and manufacture of the same
US11296423B2 (en) Reconfigurable transmitarray antenna with monolithic integration of elementary cells
JP2006304006A (en) Microstrip antenna and its manufacturing method, and device using the same
KR20230066381A (en) Antenna array architecture with electrically conductive columns between substrates
CN117337518A (en) Antenna apparatus employing coplanar waveguide interconnections between RF components
WO2023180692A1 (en) Radial line slot antenna arrays
Bairavasubramanian et al. Recent Developments on Lightweight, Flexible, Dual Polarization/Frequency Phased Arrays using RF MEMS Switches on LCP Multilayer Substrates for Remote Sensing of Precipitation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase