WO2001004154A1 - Procede de purification de facteur de stimulation de colonies de granulocytes - Google Patents

Procede de purification de facteur de stimulation de colonies de granulocytes Download PDF

Info

Publication number
WO2001004154A1
WO2001004154A1 PCT/FR2000/001937 FR0001937W WO0104154A1 WO 2001004154 A1 WO2001004154 A1 WO 2001004154A1 FR 0001937 W FR0001937 W FR 0001937W WO 0104154 A1 WO0104154 A1 WO 0104154A1
Authority
WO
WIPO (PCT)
Prior art keywords
csf
buffer
chromatography
hydroxyapatite
biological sample
Prior art date
Application number
PCT/FR2000/001937
Other languages
English (en)
Inventor
Jacques Dumas
Lucien Rey
Edoardo Sarubbi
Original Assignee
Aventis Pharma S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Pharma S.A. filed Critical Aventis Pharma S.A.
Priority to JP2001509763A priority Critical patent/JP2003504378A/ja
Priority to AU62940/00A priority patent/AU6294000A/en
Priority to CA002378566A priority patent/CA2378566A1/fr
Priority to EP00949647A priority patent/EP1200471A1/fr
Publication of WO2001004154A1 publication Critical patent/WO2001004154A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF

Definitions

  • the present invention relates to a method for purifying a factor for stimulating granulocyte colonies (denoted G-CSF for "Granulocyte Colony Stimulating Factor") by chromatography using a hydroxyapatite chromatography stage.
  • European patent application EP 243153 describes a process for the purification of human G-CSF from bladder carcinoma cell lines HBT5637;
  • European patent application EP215126 describes the purification of recombinant human G-CSF produced in E. coli.
  • the methods described above correspond to multiple stages of purification in which the initial concentration of the starting biological preparations is generally obtained by the conventional methods of ultrafiltration or of precipitation by salt, followed by liquid chromatography in reverse phase (noted RP -HPLC) successive which have the known drawback of leading to significant yield losses, for example because the protein is denatured by organic solvents.
  • RP -HPLC liquid chromatography in reverse phase
  • 5,055,555 describes a selective and simplified method for purifying recombinant human G-CSF produced in yeast on a larger scale, by precipitation with NaCl preceded by concentration by chromatography on a column of heat exchanger. cations (S Sepharose® or Mono S®), but whose yield and purity obtained are not mentioned.
  • Phenyl Sepharose® CL-6B (Pharmacia) has been described by N A. Nicola et al., Journal of Biological Chemistry, Vol. 258, p. 9017-9023, 1983 for the purification of G-CSF produced naturally by murine leukemia cells. After preliminary concentration of the medium on hollow fiber and "salting out” chromatography, the G-CSF was directly fixed on the Phenyl Sepharose® column, then eluted using a decreasing salt gradient, then a linear gradient of ethylene glycol.
  • One of the objects of the present invention is to provide a process which allows isolate and purify G-CSFs, on a large scale and with high yields, by a stage of chromatography on hydroxyapatite from biological samples previously concentrated and enriched using hydrophobic interaction chromatography.
  • the method of the invention can be used for example as the first stage of purification of a G-CSF in a multistep process for preparing a G-CSF having a purity allowing clinical use.
  • the subject of the invention is a method for purifying G-CSF from a biological sample comprising the stages of a) reducing the volume of the biological sample containing G-CSF by hydrophobic interaction chromatography to obtain a concentrated fraction , desalted and enriched, b) pass the concentrated fraction over hydroxyapatite in conditions where the G-CSF is weakly bound to obtain a concentrated, desalted and enriched fraction containing the G-CSF and c) collecting the G-CSF.
  • the above process makes it possible to purify G-CSF under non-denaturing conditions and to isolate the biologically active G-CSF.
  • the G-CSF purified according to the process of the invention can be any known G-CSF having a biological and pharmaceutical interest.
  • G-CSF is included a G-CSF produced constitutively by cells, for example by cell lines established from tumor cells as described by Watson et al., J. Immunol. , Flight. 137, p.
  • a G-CSF produced by activation of the G-CSF gene (noted GA-GCSF for "Gene Activation-GCSF) in human cells as described in international patent application WO 95/31560 or a G-CSF produced by recombinant DNA technology by host cells
  • the host cells can be eukaryotic cells such as mammalian cells, for example monkey COS cells, hamster CHO cells or C127 cells of mice or such as yeasts, for example S. cerevisiae or prokaryotic cells, for example E. coll.
  • G-CSF examples include recombinant G-CSF.
  • EP217404 which describes a G-CSF produced in C127 cells or in CHO cells
  • US Patent 5,055,555 which describes a G-CSF produced by S. cerevisiae
  • WO 87/01132 which describes a G-CSF produced in COS cells as well as 'a G-CSF produced in E.
  • the process makes it possible to purify both glycosylated or non-glycosylated G-CSFs.
  • the biological sample from which the method of the invention makes it possible to purify a G-CSF comprises the biological fluids of cell cultures such as cell lysates, inclusion bodies or culture supernatants when the G-CSF is excreted.
  • the biological sample used for the purification of G-CSF was preferably previously separated from the cells or debris cells by methods known to those skilled in the art, for example by filtration, centrifugation or ultrafiltration.
  • Hydrophobic interaction chromatography means chromatography on a substance separation support on the basis of their differences in interaction with hydrophobic groups attached to a matrix without ionic groups.
  • the hydrophobic group may be an aliphatic ligand, for example a butyl or octyl group or an aromatic ligand, for example a phenyl group or a phenylbutylamine group and the matrix is generally a gel, for example agarose such as Sepharose® .
  • the supports used are marketed products. In all the methods of using hydrophobic interaction chromatography, the proteins are fixed to the hydrophobic gel in the presence of high salt concentrations.
  • the process of the invention comprises a hydrophobic interaction chromatography characterized by a binding of the protein with low conductivity or with low salt content, for example ammonium sulphate or NaCl, and reduces the volume of the initial biological sample while eliminating salts as well as a high percentage of contaminating proteins.
  • the process of the invention therefore makes it possible to obtain a concentrated fraction, desalted and enriched in
  • the invention particularly relates to the above process in which the collected G-CSF has a purity of at least 90%.
  • Another subject of the invention is also the above method in which the biological sample is a cell culture supernatant as well as the method in which the G-CSF is a human G-CSF (denoted hG-CSF).
  • a further subject of the invention is also the above method, in which the volume reduction stage comprises bringing the biological sample into contact on a chromatography support by hydrophobic interaction of the phenyl type under conditions allowing the fixation of the G -CSF, then its elution.
  • the invention more particularly relates to the above process in which the phenyl-type support is a Phenyl Sepharose®.
  • the subject of the invention is especially the above process in which the fixation on Phenyl Sepharose® is carried out in a buffer having an ionic strength of between 0 and 60 mSi and the elution is carried out by reduction of the ionic strength or of the salt concentration in the fixing buffer.
  • the invention also especially relates to the above process in which the fixation on Phenyl Sepharose® is carried out in a buffer containing NaCl at a concentration of between 0.1 and 1 M.
  • a more specific subject of the invention is the above process in which the fixation on Phenyl Sepharose® is carried out in a buffer containing NaCl at a concentration of between 0.1 and 0.5 M and the elution is carried out by 'water.
  • a further subject of the invention is also the process of the above invention in which the step of passage over hydroxyapatite is carried out in a buffer with an ionic strength of between 2 and 30 mSi and at a pH between 5.5 and 7 5.
  • the subject of the invention is more particularly the above method in which the buffer comprises phosphate at a concentration between 1 and 10 iru.
  • the invention also more particularly relates to the above process in which the buffer is a 1 mM phosphate buffer and the pH is between 6.0 and 7.5.
  • the invention also relates to a method for purifying G-CSF which can be included in a multistage process for purifying G-CSF from a biological sample comprising the steps of a) reducing the volume of the biological sample containing G -CSF by hydrophobic interaction chromatography to obtain a concentrated, desalted and enriched fraction, b) passing the concentrated fraction over hydroxyapatite under conditions where the G-CSF is weakly bound to obtain a concentrated, desalinated and enriched fraction containing the G-CSF and c) collect the G-CSF.
  • the invention particularly relates to the above method in which the multistep method further comprises one or more stages of chromatography chosen from the group consisting of ion exchange chromatography, gel filtration, reverse phase or affinity.
  • the invention also relates to a method for removing contaminating proteins from a solution containing G-CSF and contaminating proteins comprising: a) passing the solution over hydroxyapatite by which the contaminating proteins are attached to the hydroxyapatite and G-CSF is weakly bound and b) elution of G-CSF.
  • the invention particularly relates to the above method in which the elution of G-CSF is carried out by simple washing with the fixing buffer.
  • the contaminating proteins present in the solutions containing G-CSF were for example added in the cell culture media.
  • the added proteins can be, for example, serum, such as beef serum or fetal calf serum, for example partially purified serum proteins, such as albumin or transferrin or mixtures thereof.
  • the method of the invention makes it possible to remove these contaminating proteins by passing the solution containing G-CSF over hydroxyapatite during which the undesirable proteins are strongly fixed on the support and retained during the elution of G-CSF.
  • the invention also relates particularly to the above method in which the solution containing G-CSF is prepared by hydrophobic interaction chromatography of a biological sample containing G-CSF.
  • the hydrophobic interaction chromatography is carried out on a phenyl-type support, for example on Phenyl Sepharose® as is illustrated below in the experimental part.
  • the method of the invention advantageously makes it possible to remove these contaminating proteins during the first stage of purification of G-CSF from a biological sample.
  • Analytical methods 1. Determination of G-CSF by HPLC
  • G-CSF is eluted at a concentration of approximately 65% acetonitrile.
  • the G-CSF concentration is measured against a G-CSF standard.
  • An assessment of purity is measured by the ratio of the area of the G-CSF peak to the area of all the peaks other than the injection peak.
  • the G-CSF concentration is measured using the ELISA kit from R&D System Inc and the protocol recommended by the supplier.
  • the samples are analyzed on ready-to-use polyacrylamide gels (Novex) containing a gradient of 10 to 20% of polyacrylamide and silver staining using the Silver staining kit from Biorad for a deposit of 50 ng to l ⁇ g from G-CSF.
  • FIG. 1 is a chromatogram showing the fractionation on phenyl Sepharose of a supernatant of cells expressing GA-GCSF and containing 0.1 M NaCl. The arbitrary units represent respectively the conductivity and the optical density (OD) of the effluent from the column expressed as a percentage.
  • FIG. 2 is a chromatogram showing the fractionation on phenyl Sepharose of a supernatant of cells expressing GA-GCSF and containing 0.5 M NaCl. The arbitrary units have the same meaning as in FIG. 1.
  • FIG. 3 is a chromatogram showing the fractionation of GA-GCSF on MacroPrep® ceramic Type I hydroxyapatite after phenyl Sepharose. Arbitrary units have the same meaning as in Figure 1.
  • FIG. 4 is a chromatogram of RP-HPLC analytical of GA-GCSF after phenyl Sepharose and hydroxyapatite Type I.
  • FIG. 5 is a chromatogram showing the fractionation of GA-GCSF on hydroxyapatite MacroPrep® ceramic Type II after phenyl Sepharose.
  • Arbitrary units have the same meaning as in Figure 1.
  • FIG. 6 is an analytical RP-HPLC chromatogram of GA-GCSF after phenyl Sepharose and hydroxyapatite Type II.
  • FIG. 7 represents the SDS-PAGE analysis of the purification of GA-GCSF successively in a filtered culture supernatant (well 3), an eluate of phenyl Sepharose (well 4), a hydroxyapatite eluate (well 5), an SP Sepharose eluate (well 6), a UF concentrate (well 7), a filtration gel eluate in PBS buffer (well 9), a filtration gel eluate in acetate buffer pH 5.5 (well 11) with standard molecular weight markers (well 1).
  • the band corresponding to the apparent PM of the GA-GCSF is indicated by an arrow.
  • Example 1 Concentration of a biological sample of G-CSF by chromatography on phenyl Sepharose.
  • the starting material is the centrifugal supernatant of a culture broth of human cell lines expressing a human GA-GCSF obtained according to international patent application WO95 / 31560 in an Endotronics® hollow fiber bioreactor in DMEM / F12 (Hyclone) containing 0.9% fetal calf serum. After centrifugation, the supernatant was stored at -20 ° C before use.
  • the thawed supernatant was chromatographed on phenyl Sepharose after addition of NaCl q.s.p. 0.1 M and filtration on a 0.22 ⁇ m Millipore membrane, at a temperature of around 15 to 20 ° C.
  • the column is then washed at a flow rate of 4 ml / min with 220 ml of 0.05 M NaCl solution, collecting the column effluent in 40 ml fractions.
  • the column is then eluted at the same flow rate with 150 ml of Milli-Q demineralized water, collecting the column effluent in fractions of 2 ml.
  • the column is finally regenerated by washing at the same rate with an 8 M urea solution.
  • the total proteins in the column effluent are detected by absorption at 280 nm and the salt concentration is monitored using a conductivity meter.
  • the presence in the column effluent of a first peak of protein eluted by water, then of a second peak of protein eluted by washing with urea is shown in FIG. 1.
  • the fractions collected during the elution with water were analyzed for their G-CSF content by analytical RP-HPLC chromatography and by ELISA using the conditions described above.
  • the fractions containing the combined G-CSF (40 ml) contain 29.3 mg of GA-GCSF titrated by HPLC corresponding to a yield of 56% and a purity of 58%.
  • the GA-GCSF phenyl Sepharose solution thus obtained has a conductivity of 0.161 mS. cm -1 .
  • Example 2 Chromatography on phenyl Sepharose, then on hydroxyapatite as the first stage of purification of G-CSF.
  • the starting material is the supernatant of a culture broth of human cell lines expressing a human GA-GCSF obtained as in Example 1 but using a 5-liter bioreactor instead of an Endotronics® bioreactor.
  • the thawed supernatant was chromatographed on phenyl Sepharose after addition of 0.5 M NaCl qsp and filtration through a 0.45 ⁇ m Millipore membrane.
  • a Pharmacia XK16 column packed with 50 ml of Phenyl Sepharose® Fast Flow High Substitution (Pharmacia) stored under 25% ethanol then washed with Milli-Q demineralized water before use, the concentration by chromatography on phenyl Sepharose was performed as follows:
  • 1640 ml of salted and filtered supernatant obtained above (conductivity 56.3 mS.cm "1 ) are applied to the column at the flow rate of 4 ml / min and the column effluent is collected in 400 ml fractions.
  • column is then eluted at the same flow rate of 4 ml / min with 240 ml of 0.5M NaCl, collecting the column effluent in 40 ml fractions
  • the column is then eluted at the same flow rate with 150 ml of Milli demineralized water -Q by collecting the column effluent in fractions of 2 ml.
  • the column is finally regenerated by washing at the same rate with an 8M urea solution.
  • Example 2 The total proteins in the column effluent and the salt concentration are detected as in Example 1. The presence in the column effluent of a first peak of protein eluted by washing with water, then a second peak of protein eluted by washing with urea is shown in FIG. 2.
  • the fractions collected during elution with water were analyzed for their G-CSF content by analytical RP-HPLC chromatography and by ELISA.
  • the fractions containing the combined G-CSF (50 ml) contain 45.1 mg of GA-GCSF titrated by HPLC corresponding to a yield of 90% with a purity of 61%.
  • the GA-GCSF phenyl Sepharose solution thus obtained has a conductivity of 4.22 mS.cm-1 which allows it to be used as it is in the next stage of chromatography on hydroxyapatite.
  • Example 3 Chromatography on phenyl Sepharose, then on hydroxyapatite as the first stage of purification of G-CSF.
  • 24 ml of the GA-GCSF solution of phenyl Sepharose obtained in Example 2 were chromatographed on a hydroxyapatite column according to the conditions described in Example 2, but using the hydroxyapatite Macro-Prep® Ceramic Type II (Biorad) instead of Type I.
  • the starting material is a supernatant of a culture broth of human cell lines expressing a GA-GCSF obtained according to Example 2 but using a 100-liter bioreactor and the medium without calf serum.
  • SDS-PAGE analysis of the filtered culture supernatant thus obtained is shown in Figure 7 (well 3).
  • the fractions corresponding to the peak of protein eluted by water were analyzed for their G-CSF content by analytical RP-HPLC chromatography and by ELISA.
  • the combined G-CSF fractions (400 ml) contain 357 mg of GA-CSF titrated by HPLC corresponding to a yield of 67.9% with a purity of 20.6%.
  • the GA-GCSF phenyl Sepharose solution thus obtained has a conductivity of 2 S. cm "1 at 20 ° C.
  • the phenyl Sepharose solution was also analyzed by SDS-PAGE (FIG. 7, well 4). After stabilization by adding Pefabloc (0.2 mg / ml) and benzamidine (ImM), the solution was immediately used for the next stage of chromatography on hydroxyapatite.
  • the fractions collected were analyzed by analytical RP-HPLC and by ELISA.
  • the combined fractions (400 ml) contain 331 mg of GA-GCSF titrated by HPLC corresponding to a chromatography yield of 92.5% with a purity greater than 90% estimated by HPLC.
  • the example illustrates the stages of subsequent purification of G-CSF which can be used after passing over hydroxyapatite in a multistep purification process.
  • a chromatography stage on a cation exchanger then a gel filtration chromatography stage were carried out as follows: 1 ) chromatography on cation exchanger.
  • 390 ml of GA-GCSF hydroxyapatite solution obtained in Example 4 are applied to the column of SP Sepharose at a flow rate of 13.2 ml / min.
  • the column is then washed at the same rate with 414 ml of 20 mM buffer, pH 5.3, then with 1 liter of elution buffer corresponding to an NaCl gradient, varying from 0 to 250 mM in 5 column volumes (850 ml) of 20 mM buffer, pH 5.3 over 52 minutes, collecting the column effluent in fractions of 13.2 ml.
  • the elution of a protein peak is observed.
  • the fractions collected were analyzed for their G-CSF content by analytical RP-HPLC chromatography and by ELISA.
  • the combined fractions (237 ml) contain 255 mg of GA-GCSF titrated by HPLC corresponding to a yield of 78.8% and a purity of 98.7%.
  • the SP Sepharose solution thus obtained was also analyzed by SDS-PAGE ( Figure 7, well 6). 2) gel filtration chromatography.
  • the UF concentrate was then subjected to a gel filtration chromatography stage as follows:
  • FIG. 7 shows the analysis by SDS-PAGE of the filtration gel solution obtained respectively in the PBS buffer (well 9) and in the acetate buffer, pH 5.5 (well 11).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention a pour objet un procédé de purification de G-CSF à partir d'un échantillon biologique comprenant les stades de: a) réduire le volume de l'échantillon biologique contenant le G-CSF par chromatographie par interaction hydrophobe pour obtenir une fraction concentrée, dessalée et enrichie; b) passer la fraction concentrée sur hydroxyapatite dans les conditions où le G-CSF est faiblement lié pour obtenir une fraction concentrée, dessalée et enrichie contenant le G-CSF c) et; recueillir le G-CSF.

Description

Procédé de purification de facteur de stimulation de colonies de granulocytes . La présente invention concerne un procédé de purification d'un facteur de stimulation de colonies de granulocytes (noté G-CSF pour "Granulocyte Colony Stimulating Factor") par chromatographie utilisant un stade de chromatographie sur hydroxyapatite .
Parmi les facteurs de stimulation de colonies qui régulent la différentiation et la prolifération des cellules hématopoïétiques de mammifères, les facteurs de stimulation des colonies de granulocytes ont été décrits par exemple dans la demande de brevet internationale WO 87/01132 ou la demande de brevet européenne EP169566.
La préparation de G-CSFs de différentes origines et leur purification ont été décrites dans de nombreuses publications scientifiques ou demandes de brevet. Par exemple, la demande de brevet européenne EP 243153 a décrit un procédé de purification de G-CSF humain à partir de lignées de cellules de carcinome de vessie HBT5637 ; la demande de brevet européenne EP215126 a décrit la purification de G-CSF humain recombinant produit dans E. coli . Les procédés décrits ci- dessus correspondent à de multiples stades de purification dans lesquels la concentration initiale des préparations biologiques de départ est généralement obtenue par les méthodes classiques d' ultrafiltration ou de précipitation par un sel, suivies de chromatographies liquides en phase inverse (noté RP-HPLC) successives qui ont l'inconvénient connu de conduire à des pertes de rendement importantes, par exemple parce que la protéine est dénaturée par les solvants organiques. Par ailleurs, le brevet américain US 5,055,555 a décrit un procédé sélectif et simplifié de purification de G- CSF recombinant humain produit dans une levure à plus grande échelle, par précipitation par NaCl précédée d'une concentration par chromatographie sur une colonne d' échangeur de cations (S Sepharose® ou Mono S®) , mais dont le rendement et la pureté obtenus ne sont pas mentionnés.
De plus, quelques utilisations de stades de chromatographie, autre que la RP-HPLC, ont été aussi décrites pour la purification de G-CSFs :
L'utilisation de Phenyl Sepharose® CL-6B (Pharmacia) a été décrite par N A. Nicola et al., Journal of Biological Chemistry, Vol. 258, p. 9017-9023, 1983 pour la purification de G-CSF produit naturellement par des cellules leucémiques murines. Après concentration préliminaire du milieu sur fibre creuse et chromatographie "salting out", le G-CSF a été directement fixé sur la colonne de Phenyl Sepharose®, puis élue en utilisant un gradient décroissant de sel, puis un gradient linéaire d' éthylène glycol.
L'utilisation d' hydroxyapatite a été décrite par T. Arakawa et al., Archives of Biochemistry and Biophysics, Vol. 316, p. 285-289, 1995 comme dernier stade de purification de G-CSF produit à partir de cellules CHO transformées. L'utilisation de SP Sepharose® Fast Flow (Pharmacia) a été décrite par S-H Kang et al., Biotechnology Letters, Vol. 17, p. 687-692, 1995 pour la purification de G-CSF produit à partir de cellules d' E. coli transformées. Après solubilisa- tion des corps d'inclusion et renaturation, le G-CSF a été élue en utilisant un gradient de NaCl variant de 0 à 0,5 M. L'un des objets de la présente invention est de fournir un procédé qui permet d'isoler et de purifier des G-CSFs, à une grande échelle et avec des rendements élevés, par un stade de chromatographie sur hydroxyapatite à partir d'échantillons biologiques préalablement concentrés et enrichis en utilisant une chromatographie par interaction hydrophobe .
Le procédé de l'invention peut être utilisé par exemple comme premier stade de purification d' un G-CSF dans un procédé multistade de préparation d'un G-CSF ayant une pureté permettant une utilisation clinique.
L'invention a pour objet un procédé de purification de G-CSF à partir d'un échantillon biologique comprenant les stades de a) réduire le volume de l'échantillon biologique contenant le G-CSF par chromatographie par interaction hydrophobe pour obtenir une fraction concentrée, dessalée et enrichie, b) passer la fraction concentrée sur hydroxyapatite dans des conditions où le G-CSF est faiblement lié pour obtenir une fraction concentrée, dessalée et enrichie contenant le G-CSF et c) recueillir le G-CSF. Le procédé ci-dessus permet de purifier le G-CSF dans des conditions non dénaturantes et d' isoler le G-CSF biologiquement actif.
Le G-CSF purifié selon le procédé de l'invention peut être tout G-CSF connu ayant un intérêt biologique et pharmaceutique. Par G-CSF, on inclut un G-CSF produit constitutivement par des cellules, par exemple par des lignées cellulaires établies à partir de cellules tumorales tel que décrit par Watson et al., J. Immunol . , Vol. 137, p. 854-857, 1986, un G-CSF produit par activation du gène du G-CSF (noté GA-GCSF pour "Gène Activation-GCSF) dans des cellules humaines tel que décrit dans la demande de brevet internationale WO 95/31560 ou un G-CSF produit par la technologie de l'ADN recombinant par des cellules hôtes. Les cellules hôtes peuvent être des cellules eucaryotes telles que des cellules de mammifères, par exemple des cellules COS de singe, des cellules CHO de hamster ou des cellules C127 de souris ou telles que des levures, par exemple S . cerevisiae ou des cellules procaryotes, par exemple E. coll . Des exemples de G-CSF recombinants ont été décrits, par exemple dans la demande de brevet européenne EP217404 qui décrit un G-CSF produit dans des cellules C127 ou dans des cellules CHO, dans le brevet US 5,055,555 qui décrit un G-CSF produit par S . cerevisiae ou dans la demande de brevet internationale WO 87/01132 qui décrit un G-CSF produit dans les cellules COS ainsi qu'un G-CSF produit dans E. coli. Le procédé permet de purifier aussi bien des G-CSFs glycosylés ou non glycosylés. L'échantillon biologique à partir duquel le procédé de l'invention permet de purifier un G-CSF comprend les fluides biologiques de cultures cellulaires tels que des lysats de cellules, des corps d'inclusion ou des surnageants de cultures lorsque le G-CSF est excrété. L'échantillon biologique utilisé pour la purification du G-CSF a été de préférence préalablement séparé des cellules ou des débris cellulaires par les méthodes connues de l'homme du métier, par exemple par filtration, par centrifugation ou par ultrafiltration.
Par chromatographie par interaction hydrophobe, on entend une chromatographie sur un support de séparation de substances sur la base de leurs différences d' interaction avec des groupes hydrophobes attachés sur une matrice sans groupes ioniques. Le groupe hydrophobe peut-être un ligand aliphatique, par exemple un groupe butyle ou octyle ou un ligand aromatique, par exemple un groupe phényle ou un groupe phénylbutylamine et la matrice est en général un gel, par exemple de l'agarose tel que Sepharose®. Les supports utilisés sont des produits commercialisés. Dans tous les procédés d'utilisation de la chromatographie par interaction hydrophobe, la fixation des protéines au gel hydrophobe est réalisée en présence de hautes concentrations en sels. De façon tout à fait inattendue et avantageuse, le procédé de l'invention comprend une chromatographie par interaction hydrophobe caractérisée par une fixation de la protéine à faible conductivité ou à faible teneur en sel, par exemple le sulfate d'ammonium ou du NaCl, et permet de réduire le volume de l'échantillon biologique initial tout en éliminant les sels ainsi qu'un pourcentage élevé des protéines contaminantes. Le procédé de l'invention permet donc d'obtenir une fraction concentrée, dessalée et enrichie en
G-CSF non dénaturé qui est ensuite passée sur hydroxyapatite. Contrairement à l'utilisation de l' hydroxyapatite comme stade final de purification décrite par T. Arakawa et al., 1995 ci-dessus, dans lequel le G-CSF est recueilli dans la fraction non fixée sur de l' hydroxyapatite équilibrée dans un tampon phosphate 10 mM contenant NaCl 0,1 M à pH 7,0, le procédé de l'invention utilise des conditions où le G-CSF est faiblement lié à l' hydroxyapatite et permet ainsi de recueillir une solution concentrée et dessalée de G-CSF purifié.
L'invention a particulièrement pour objet le procédé ci- dessus dans lequel le G-CSF recueilli a une pureté d' au moins 90 %. L'invention a aussi particulièrement pour objet le procédé ci-dessus dans lequel l'échantillon biologique est un surnageant de culture cellulaire ainsi que le procédé dans lequel le G-CSF est un G-CSF humain (noté hG-CSF) . L'invention a aussi particulièrement pour objet le procédé ci-dessus dans lequel le stade de réduction de volume comprend la mise en contact de l'échantillon biologique sur un support de chromatographie par interaction hydrophobe de type phényle dans des conditions permettant la fixation du G-CSF, puis son élution.
L'invention a plus particulièrement pour objet le procédé ci-dessus dans lequel le support de type phenyl est un Phenyl Sepharose®.
L'invention a spécialement pour objet le procédé ci- dessus dans lequel la fixation sur Phenyl Sepharose® est effectuée dans un tampon ayant une force ionique comprise entre 0 et 60 mSi et 1 ' élution est effectuée par diminution de la force ionique ou de la concentration en sel dans le tampon de fixation. L'invention a aussi spécialement pour objet le procédé ci-dessus dans lequel la fixation sur Phenyl Sepharose® est effectuée dans un tampon contenant du NaCl à une concentration comprise entre 0,1 et 1 M.
L'invention a plus spécialement pour objet le procédé ci dessus dans lequel la fixation sur Phenyl Sepharose® est effectuée dans un tampon contenant du NaCl à une concentration comprise entre 0,1 et 0,5 M et l' élution est effectuée par de l'eau.
Des exemples d'utilisation de la chromatographie par interaction hydrophobe sur Phenyl Sepharose® illustrant le procédé de l'invention sont décrits plus loin dans la partie expérimentale .
L'invention a aussi particulièrement pour objet le procédé de l'invention ci-dessus dans lequel le stade de passage sur hydroxyapatite est effectué dans un tampon de force ionique comprise entre 2 et 30 mSi et à un pH compris entre 5,5 et 7,5.
L'invention a plus particulièrement pour objet le procédé ci-dessus dans lequel le tampon comprend du phosphate à une concentration comprise entre 1 et 10 iru .
L'invention a aussi plus particulièrement pour objet le procédé ci-dessus dans lequel le tampon est un tampon phosphate 1 mM et le pH est compris entre 6,0 et 7,5.
Des exemples d'utilisation d' hydroxyapatite à la suite d'une chromatographie sur Phenyl Sepharose® illustrant le procédé de l'invention sont décrits plus loin dans la partie expérimentale . L' invention concerne aussi un procédé de purification de G-CSF pouvant être inclus dans un procédé multistade de purification du G-CSF à partir d'un échantillon biologique comprenant les stades de a) réduire le volume de l'échantillon biologique contenant le G-CSF par chromatographie par interaction hydrophobe pour obtenir une fraction concentrée, dessalée et enrichie, b) passer la fraction concentrée sur hydroxyapatite dans des conditions où le G-CSF est faiblement lié pour obtenir une fraction concentrée, dessalée et enrichie contenant le G-CSF et c) recueillir le G-CSF.
L' invention concerne particulièrement le procédé ci- dessus dans lequel le procédé multistade comprend en outre un ou plusieurs stades de chromatographie choisis parmi le groupe constitué de chromatographie d'échange d'ions, de gel filtration, de phase inverse ou d'affinité.
Des exemples de stades de chromatographie d'échange d'ions et de gel filtration illustrant l'utilisation du procédé de l'invention dans un procédé multistade de purification de G-CSF sont décrits plus loin dans la partie expérimentale .
L' invention concerne aussi un procédé pour éliminer des protéines contaminantes à partir d'une solution contenant du G-CSF et des protéines contaminantes comprenant : a) le passage de la solution sur hydroxyapatite par lequel les protéines contaminantes sont fixées à 1 ' hydroxyapatite et le G-CSF est faiblement lié et b) l' élution du G-CSF. L' invention concerne particulièrement le procédé ci- dessus dans lequel l' élution du G-CSF est effectuée par simple lavage avec le tampon de fixation.
Les protéines contaminantes présentes dans les solutions contenant du G-CSF ont été par exemple ajoutées dans les milieux de culture cellulaire. Les protéines ajoutées peuvent être par exemple du sérum, tel que du sérum de boeuf ou du sérum foetal de veau, par exemple des protéines de sérum partiellement purifiées, telles que de l'albumine ou de la transferrine ou des mélanges de celles-ci.
Le procédé de l'invention permet d'éliminer ces protéines contaminantes par un passage de la solution contenant du G-CSF sur hydroxyapatite au cours duquel les protéines indésirables sont fortement fixées sur le support et retenues pendant l' élution du G-CSF.
L' invention concerne aussi particulièrement le procédé ci-dessus dans lequel la solution contenant le G-CSF est préparée par chromatographie par interaction hydrophobe d'un échantillon biologique contenant du G-CSF. De préférence, la chromatographie par interaction hydrophobe est réalisée sur un support de type phényle, par exemple sur Phenyl Sepharose® comme cela est illustré plus loin dans la partie expérimentale. Le procédé de l'invention permet de façon avantageuse d'éliminer ces protéines contaminantes au cours du premier stade de purification de G- CSF à partir d'un échantillon biologique. Méthodes analytiques 1. Dosage de G-CSF par HPLC
Les fractions recueillies après chromatographie ont été analysées par RP-HPLC analytique sur une colonne Vydac C4
(0,46 x 15), 300À, 5 microns, équilibrée dans H20/TFA 0,1 %, au débit de 2 ml/mn avec un gradient linéaire d'acétonitrile/TFA 0,1 % variant de 40 à 80 % sur 10 minutes, et une détection spectrophotométrique à 214 nm. Le G-CSF est élue à une concentration d'environ 65 % d ' acétonitrile . La concentration en G-CSF est mesurée par rapport à un standard de G-CSF. Une évaluation de la pureté est mesurée par le rapport de la surface du pic de G-CSF à la surface de l'ensemble des pics autres que le pic d'injection.
2. Dosage de G-CSF par ELISA
La concentration en G-CSF est mesurée en utilisant la trousse ELISA de R&D System Inc et le protocole recommandé par le fournisseur.
3. SDS-PAGE
Les échantillons sont analysés sur des gels de polyacrylamide prêts à l'emploi (Novex) contenant un gradient de 10 à 20 % de polyacrylamide et une coloration à l'argent en utilisant la trousse Silver staining de Biorad pour un dépôt de 50 ng à lμg de G-CSF.
Les figures ci-annexées illustrent certains aspects de 1' invention .
La figure 1 est un chromatogramme montrant le fractionnement sur phenyl Sepharose d'un surnageant de cellules exprimant GA-GCSF et contenant NaCl 0,1 M. Les unités arbitraires représentent respectivement la conductivité et la densité optique (DO) de l'effluent de la colonne exprimées en pourcentage. La figure 2 est un chromatogramme montrant le fractionnement sur phenyl Sepharose d'un surnageant de cellules exprimant GA-GCSF et contenant NaCl 0,5 M. Les unités arbitraires ont la même signification qu'à la figure 1. La figure 3 est un chromatogramme montrant le fractionnement de GA-GCSF sur hydroxyapatite MacroPrep® ceramic Type I après phenyl Sepharose. Les unités arbitraires ont la même signification qu'à la figure 1.
La figure 4 est un chromatogramme de RP-HPLC analytique de GA-GCSF après phenyl Sepharose et hydroxyapatite Type I. La figure 5 est un chromatogramme montrant le fractionnement de GA-GCSF sur hydroxyapatite MacroPrep® ceramic Type II après phenyl Sepharose. Les unités arbitraires ont la même signification qu'à la figure 1.
La figure 6 est un chromatogramme de RP-HPLC analytique de GA-GCSF après phenyl Sepharose et hydroxyapatite Type II. La figure 7 représente l'analyse par SDS-PAGE de la purification de GA-GCSF successivement dans un surnageant de culture filtré (puits 3), un éluat de phenyl Sepharose (puits 4), un éluat d' hydroxyapatite (puits 5), un éluat de SP Sepharose (puits 6), un concentrât UF (puits 7), un éluat de gel filtration en tampon PBS (puits 9) , un éluat de gel filtration en tampon acétate pH 5,5 (puits 11) avec des marqueurs standards de poids moléculaires (puits 1) . La bande correspondant au PM apparent du GA-GCSF est indiquée par une flèche .
Exemple 1 : Concentration d'un échantillon biologique de G- CSF par chromatographie sur phenyl Sepharose. Le matériel de départ est le surnageant de centrifu- gation d'un bouillon de culture de lignées cellulaires humaines exprimant un GA-GCSF humain obtenu selon la demande de brevet internationale WO95/31560 dans un bioréacteur à fibres creuses Endotronics® dans le milieu DMEM/F12 (Hyclone) contenant 0,9 % de sérum foetal de veau. Après centrifugation, le surnageant a été conservé à -20°C avant utilisation.
Le surnageant décongelé a été chromatographie sur phenyl Sepharose après addition de NaCl q.s.p. 0,1 M et filtration sur une membrane Millipore de 0,22 μm, à une température d'environ 15 à 20°C.
En utilisant une colonne Pharmacia XK16 (1,6 cm x 40 cm) garnie de 50 ml de Phenyl Sepharose® Fast Flow High Substitution (Pharmacia ), conservée sous éthanol à 25 %, puis lavée à l'eau déminéralisée Milli-Q avant utilisation, puis équilibrée par une solution de NaCl 0,1M, la concentration par chromatographie sur phenyl Sepharose a été effectuée de la façon suivante : 2295 ml de surnageant salé et filtré obtenu ci-dessus (conductivité 17,7 mS.crrf1) sont appliqués sur la colonne au débit de 13 ml/mn en recueillant l'effluent de la colonne en fractions de 500 ml. La colonne est ensuite lavée au débit de 4 ml/mn avec 220 ml de solution NaCl 0,05 M en recueillant l'effluent de la colonne en fractions de 40 ml. La colonne est ensuite éluée au même débit avec 150 ml d'eau déminéralisée Milli-Q en recueillant l'effluent de colonne en fractions de 2 ml. La colonne est enfin régénérée par un lavage au même débit avec une solution d'urée 8 M. Les protéines totales dans l'effluent de la colonne sont détectées par absorption à 280 nm et la concentration en sel est suivie à l'aide d'un conductimètre . La présence dans l'effluent de colonne d'un premier pic de protéine éluée par l'eau, puis d'un deuxième pic de protéine éluée par le lavage à l'urée est montrée à la figure 1.
Les fractions recueillies pendant 1 ' élution à l'eau ont été analysées pour leur teneur en G-CSF par chromatographie RP-HPLC analytique et par ELISA en utilisant les conditions décrites précédemment. Les fractions contenant le G-CSF réunies (40 ml) contiennent 29,3 mg de GA-GCSF titrés par HPLC correspondant à un rendement de 56 % et une pureté de 58 %.
La solution de phenyl Sepharose de GA-GCSF ainsi obtenue a une conductivité de 0,161 mS . cm-1.
Exemple 2 : Chromatographie sur phenyl Sepharose, puis sur hydroxyapatite comme premier stade de purification de G-CSF.
Le matériel de départ est le surnageant d'un bouillon de culture de lignées cellulaires humaines exprimant un GA-GCSF humain obtenu comme à l'exemple 1 mais en utilisant un bioréacteur de 5 litres au lieu d'un bioréacteur Endotronics®. Le surnageant décongelé a été chromatographie sur phenyl Sepharose après addition de NaCl qsp 0,5 M et filtration sur une membrane Millipore 0,45 μm. En utilisant une colonne Pharmacia XK16 garnie de 50 ml de Phenyl Sepharose® Fast Flow High Substitution (Pharmacia) conservée sous éthanol à 25 %, puis lavée à l'eau déminéralisée Milli-Q avant utilisation, la concentration par chromatographie sur phenyl Sepharose a été effectuée de la façon suivante :
1640 ml de surnageant salé et filtré obtenu ci-dessus (conductivité 56,3 mS.cm"1) sont appliqués sur la colonne au débit de 4 ml/mn et l'effluent de la colonne est recueilli en fractions de 400 ml. La colonne est ensuite éluée au même débit de 4 ml/mn avec 240 ml de NaCl 0,5M en recueillant l'effluent de la colonne en fractions de 40 ml. La colonne est ensuite éluée au même débit avec 150 ml d'eau déminéralisée Milli-Q en recueillant l'effluent de la colonne en fractions de 2 ml. La colonne est enfin régénérée par un lavage au même débit avec une solution d'urée 8M.
Les protéines totales dans l'effluent de colonne et la concentration en sel sont détectées comme à l'exemple 1. La présence dans l'effluent de colonne d'un premier pic de protéine éluée par le lavage à l'eau, puis d'un deuxième pic de protéine éluée par le lavage à l'urée est montrée à la figure 2.
Les fractions recueillies pendant l' élution à l'eau ont été analysées pour leur teneur en G-CSF par chromatographie RP-HPLC analytique et par ELISA. Les fractions contenant le G-CSF réunies (50 ml) contiennent 45,1 mg de GA-GCSF titrés par HPLC correspondant à un rendement de 90 % avec une pureté de 61 %. La solution de phenyl Sepharose de GA-GCSF ainsi obtenue a une conductivité de 4,22 mS.cm-1 qui permet de l'utiliser telle quelle dans le stade suivant de chromatographie sur hydroxyapatite .
En utilisant une colonne Pharmacia XK16 garnie de 29 g d' hydroxyapatite Macro-Prep® Ceramic, Type I (Bio-rad ), préalablement mise en suspension dans le tampon phosphate de sodium 250 mM à pH 7,3 (tampon 250 mM, pH 7,3), puis équilibrée par percolation au débit de 5 ml/mn de 500 ml du tampon 250 mM dilué au 1/250 (tampon 1 mM, pH 7,3), la chromatographie sur hydroxyapatite a été effectuée de la façon suivante :
24 ml de la solution de phenyl Sepharose de GA-GCSF obtenue ci-dessus, puis conservée une nuit à +2°C, sont appliqués sur la colonne d' hydroxyapatite au même débit. La colonne est ensuite éluée avec 150 ml du tampon 1 mM, pH 7,3, puis régénérée par un lavage avec le tampon 250 mM, pH 7,3 au même débit en recueillant l'effluent de colonne en fractions de 5ml. Les protéines totales dans l'effluent de la colonne et la concentration en sel sont détectées comme à l'exemple 2. La présence dans l'effluent de colonne d'un pic de protéine éluée par le tampon 1 mM, pH 7,3, puis d'un deuxième pic de protéine éluée par le tampon 250 mM, pH 7,3 est montrée à la figure 3. Les fractions recueillies pendant 1 ' élution par le tampon 1 mM, pH 7,3 ont été analysées par RP-HPLC analytique et par ELISA. Les fractions 25 à 49 réunies (25 ml) contiennent 21,3 mg de GA-GCSF titrés par HPLC correspondant à un rendement de 98,4 % avec une pureté de 97,8 % et donne un pic homogène en HPLC (figure 4) .
Exemple 3 : Chromatographie sur phenyl Sepharose, puis sur hydroxyapatite comme premier stade de purification de G-CSF. 24 ml de la solution de GA-GCSF de phenyl Sepharose obtenue à l'exemple 2 ont été chromatographiés sur une colonne d' hydroxyapatite selon les conditions décrites à l'exemple 2, mais en utilisant l' hydroxyapatite Macro-Prep® Ceramic de Type II (Biorad ) au lieu de Type I.
La présence dans l'effluent de colonne d'un premier pic de protéine éluée par le tampon 1 mM, pH 7,3, puis d'un deuxième pic de protéine éluée par le tampon 250 mM, pH 7,3 est montrée à la figure 5. Les fractions recueillies pendant 1' élution par le tampon 1 mM, pH 7,3 ont été analysées par RP-HPLC analytique et par ELISA. Les fractions réunies (25 ml) contiennent 21,7 mg de GA-GCSF titrés par HPLC correspondant à un rendement de 100,2 % avec une pureté de 94,5 % et donne un pic homogène en HPLC (figure 6) . Exemple 4 : Chromatographie sur phenyl Sepharose, puis sur hydroxyapatite comme premier stade de purification de G-CSF à grande échelle.
Le matériel de départ est un surnageant d'un bouillon de culture de lignées cellulaires humaines exprimant un GA-GCSF obtenu selon l'exemple 2 mais en utilisant un bioréacteur de 100 litres et le milieu sans sérum de veau. 10,5 litres de surnageant, préalablement concentré par ultra- filtration puis conservé à -20°C avant utilisation et correspondant à 84 litres de bouillon de départ, ont été chromatographiés sur phenyl Sepharose après addition de 0,307 kg de NaCl (qsp 0,5 M), puis filtration sur papier Durieux N°127. L'analyse par SDS-PAGE du surnageant de culture filtré ainsi obtenu est montrée à la figure 7 (puits 3) .
En utilisant une colonne Pharmacia XK 50/30 garnie de 500 ml de Phenyl Sepharose® Fast Flo High Substitution (Pharmacia) conservé sous éthanol à 25 %, puis équilibrée avec une solution de NaCl 0,5 M avant utilisation, la concentration par chromatographie sur phenyl Sepharose a été effectuée de la façon suivante : Le surnageant concentré salé obtenu ci-dessus
(conductivité 40 mS.cπf1) est appliqué sur la colonne au débit de 40 ml/mn. La colonne est ensuite éluée au même débit successivement avec 1,5 litres de NaCl 0,5M, puis avec 1,5 litres d'eau Milli-Q en recueillant l'effluent de la colonne en fractions de 20 ml. Les protéines totales et la concentration en sels sont détectées comme à l'exemple 1.
Les fractions correspondant au pic de protéine éluée par l'eau ont été analysées pour leur teneur en G-CSF par chromatographie RP-HPLC analytique et par ELISA. Les fractions contenant le G-CSF réunies (400 ml) contiennent 357 mg de GA- CSF titrés par HPLC correspondant à un rendement de 67,9 % avec une pureté de 20,6 %. La solution de phenyl Sepharose de GA-GCSF ainsi obtenue a une conductivité de 2 S . cm"1 à 20 °C. La solution de phenyl Sepharose a été aussi analysée par SDS-PAGE (figure 7, puits 4) . Après stabilisation par addition de Pefabloc (0,2 mg/ml) et de benzamidine (ImM), la solution a été immédiatement utilisée pour le stade suivant de chromatographie sur hydroxyapatite.
En utilisant une colonne Pharmacia XK 50/30 garnie de 290 g d' hydroxyapatite Macro-Prep® Ceramic, Type II (Bio-Rad) préalablement mise en suspension dans 5 litres de tampon phosphate de sodium 1 mM à pH 6 (tampon 1 mM, pH 6) , puis équilibrée par percolation de 1 litre de tampon phosphate de sodium 250 mM à pH 6 (tampon 250 mM, pH 6) au débit de 50 ml/mn, puis par percolation de 5 litres du tampon 1 mM, pH 6 (générant ainsi une colonne de 500 ml d' hydroxyapatite) , la chromatographie sur hydroxyapatite a été effectuée de la façon suivante : 400 ml de la solution de GA-GCSF de phenyl Sepharose stabilisée obtenue ci-dessus sont appliqués sur la colonne d' hydroxyapatite au débit de 50 ml/mn. La colonne est ensuite éluée avec 1,50 litres du tampon 1 mM, pH 6 en recueillant l'effluent de colonne en fractions de 50 ml. Les protéines totales ainsi que la conductivité de l'effluent de colonne sont détectées comme indiqué à l'exemple 1.
Les fractions recueillies ont été analysées par RP-HPLC analytique et par ELISA. Les fractions réunies (400 ml) contiennent 331 mg de GA-GCSF titrés par HPLC correspondant à un rendement de chromatographie de 92,5 % avec une pureté supérieure à 90 % estimée par HPLC.
La solution d' hydroxyapatite ainsi obtenue a été aussi analysée par SDS-PAGE (figure 7, puits 5). Exemple 5 : Purification ultérieure de G-CSF après chromatographie sur hydroxyapatite.
L'exemple illustre les stades de purification ultérieure de G-CSF pouvant être utilisés après passage sur hydroxyapatite dans un procédé multistade de purification. A partir d'une solution d' hydroxyapatite de GA-GCSF humain obtenue selon le procédé de l'invention, un stade de chromatographie sur un echangeur de cations, puis un stade de chromatographie de gel filtration ont été réalisés de la façon suivante : 1) chromatographie sur echangeur de cations.
Une colonne Pharmacia XK 26/40 garnie de 170 ml de SP Sepharose® Fast Flow (Pharmacia) a été équilibrée par lavage au débit de 13,2 ml/mn avec 1,380 litres d'eau Milli-Q, puis avec 1,380 litres de tampon acétate de sodium 20 mM à pH 5,3 (tampon 20 mM, pH 5,3).
390 ml de solution d' hydroxyapatite de GA-GCSF obtenue à l'exemple 4 sont appliqués sur la colonne de SP Sepharose au débit de 13,2 ml/mn. La colonne est ensuite lavée au même débit avec 414 ml de tampon 20 mM, pH 5,3, puis avec 1 litre de tampon d' élution correspondant à un gradient de NaCl, variant de 0 à 250 mM dans 5 volumes de colonne (850 ml) du tampon 20 mM, pH 5,3 sur 52 minutes, en recueillant l'effluent de colonne en fractions de 13,2 ml. Par détection des protéines totales dans l'effluent de la colonne par absorption à 280 nm, l' élution d'un pic de protéine est observée. Les fractions recueillies ont été analysées pour leur teneur en G-CSF par chromatographie RP-HPLC analytique et par ELISA. Les fractions réunies (237 ml) contiennent 255 mg de GA-GCSF titré par HPLC correspondant à un rendement de 78,8 % et une pureté de 98,7 %.
La solution de SP Sepharose ainsi obtenue a été aussi analysée par SDS-PAGE (figure 7, puits 6) . 2) chromatographie par gel filtration.
220 ml de la solution de SP Sepharose de GA-GCSF obtenue ci- dessus ont été préalablement concentrés environ 10 fois par ultrafiltration dans une cellule Amicon de 300 ml équipée d'une membrane PLGC (Millipore), à + 4°C et sous une pression d'azote de 2 bars. Le concentrât UF ainsi obtenu (21 ml) contient 253 mg de GA-GCSF titré par HPLC correspondant à un rendement de 107,1 %. Le concentrât UF a été aussi analysé par SDS-PAGE (figure 7, puits 7) .
Le concentrât UF a été ensuite soumis à un stade de chromatographie par gel filtration de la façon suivante :
Deux colonnes Pharmacia XK 26/40, chacune garnie de 150 ml de Superdex™ 200 prep grade (Pharmacia) et équilibrée par lavage avec 1,35 litres d'eau Milli-Q au débit de 3,3 ml/mn, ont été montées en série, puis équilibrées avec 2,650 litres de tampon PBS (IX) au même débit. On obtient ainsi 265 ml de Superdex™ 200 prep grade en train de deux colonnes. 10 ml de solution concentrée de SP Sepharose de GA-GCSF obtenue ci-dessus sont appliqués sur le train de colonnes au débit de 3,3 ml/mn. Les colonnes sont ensuite lavées au même débit avec 300 ml de tampon PBS (IX) . Par détection des protéines totales dans l'effluent de la colonne par absorption à 280 nm, l' élution d'un pic de protéine est observée. Les fractions recueillies ont été analysées pour leur teneur en G-CSF par chromatographie RP-HPLC analytique. Les fractions réunies (42,9 ml) contiennent 85,3 mg de GA- GCSF titré par HPLC correspondant à un rendement de 70,7 % et une pureté supérieure à 99 %.
De la même façon, 10 ml de la solution concentrée de SP Sepharose de GA-GCSF obtenue ci-dessus sont chromatographiés par gel filtration dans les conditions indiquées ci-dessus, mais en utilisant un tampon acétate de sodium 20 mM, pH 5,5, Tween® 20 (0,005 %) au lieu du tampon PBS (IX). Les fractions réunies (42,9 ml) contiennent 95,4 mg de GA-GCSF titré par HPLC correspondant à un rendement de 79,1 % et une pureté supérieure à 99 %.
La figure 7 montre l'analyse par SDS-PAGE de la solution de gel filtration obtenue respectivement dans le tampon PBS (puits 9) et dans le tampon acétate, pH 5,5 (puits 11).

Claims

REVENDICATIONS
1) Procédé de purification de G-CSF à partir d'un échantillon biologique comprenant les stades de a) réduire le volume de l'échantillon biologique contenant le G-CSF par chromatographie par interaction hydrophobe pour obtenir une fraction concentrée, dessalée et enrichie, b) passer la fraction concentrée sur hydroxyapatite dans des conditions où le G-CSF est faiblement lié pour obtenir une fraction concentrée, dessalée et enrichie contenant le G-CSF et c) recueillir le G-CSF.
2) Procédé selon la revendication 1 dans lequel le G-CSF recueilli a une pureté d'au moins 90 %.
3) Procédé selon la revendication 1 dans lequel 1 ' échan- tillon biologique est un surnageant de culture cellulaire.
4) Procédé selon la revendication 1 dans lequel le G-CSF est un G-CSF humain (h G-CSF) .
5) Procédé selon la revendication 1 dans lequel le stade de réduction de volume comprend la mise en contact de l'échantillon biologique sur un support de chromatographie par interaction hydrophobe de type phényle dans des conditions permettant la fixation du G-CSF, puis son élution.
6) Procédé selon la revendication 5 dans lequel le support de type phényle est un Phenyl Sepharose®. 7) Procédé selon la revendication 6 dans lequel la fixation sur Phenyl Sepharose® est effectuée dans un tampon ayant une force ionique comprise entre 0 et 60 mSi et l' élution est effectuée par diminution de la force ionique ou de la concentration en sel dans le tampon de fixation. 8) Procédé selon la revendication 6 dans lequel la fixation sur Phenyl Sepharose® est effectuée dans un tampon contenant du NaCl à une concentration comprise entre 0,1 et 1 M.
9) Procédé selon la revendication 8 dans lequel la fixation sur Phenyl Sepharose® est effectuée dans un tampon contenant du NaCl à une concentration comprise entre 0,1 et 0,5 M et 1' élution est effectuée par de l'eau.
10) Procédé selon la revendication 1 dans lequel le stade de passage sur hydroxyapatite est effectué dans un tampon de force ionique comprise entre 2 et 30 mSi et à un pH compris entre 5,5 et 7,5.
11) Procédé selon la revendication 10 dans lequel le tampon comprend du phosphate à une concentration comprise entre 1 et 10 mM.
12) Procédé selon la revendication 10 dans lequel le tampon est un tampon phosphate 1 mM et le pH est compris entre 6,0 et 7,5.
13) Procédé de purification de G-CSF pouvant être inclus dans un procédé multistade de purification du G-CSF à partir d'un échantillon biologique comprenant les stades de a) réduire le volume de l'échantillon biologique contenant le G-CSF par chromatographie par interaction hydrophobe pour obtenir une fraction concentrée, dessalée et enrichie, b) passer la fraction concentrée sur hydroxyapatite dans des conditions où le G-CSF est faiblement lié pour obtenir une fraction concentrée, dessalée et enrichie contenant le G-CSF et c) recueillir le G-CSF. 14) Procédé selon la revendication 13 dans lequel le procédé multistade comprend en outre un ou plusieurs stades de chromatographie choisis parmi le groupe constitué de chromatographie d'échange d'ions, de gel filtration, de phase inverse ou d'affinité. 15) Procédé pour éliminer des protéines contaminantes à partir d'une solution contenant du G-CSF et des protéines contaminantes comprenant a) le passage de la solution sur hydroxyapatite par lequel les protéines contaminantes sont fixées à 1 ' hydroxyapatite et le G-CSF est faiblement lié et b) l' élution du G-CSF.
16) Procédé selon la revendication 15 dans lequel l' élution du G-CSF est effectuée par simple lavage avec le tampon de fixation. 17) Procédé selon la revendication 15 dans lequel la solution contenant le G-CSF est préparée par chromatographie par interaction hydrophobe d'un échantillon biologique contenant du G-CSF.
PCT/FR2000/001937 1999-07-08 2000-07-06 Procede de purification de facteur de stimulation de colonies de granulocytes WO2001004154A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001509763A JP2003504378A (ja) 1999-07-08 2000-07-06 顆粒球コロニー刺激因子の精製方法
AU62940/00A AU6294000A (en) 1999-07-08 2000-07-06 Method for purifying granulocyte colony stimulating factor
CA002378566A CA2378566A1 (fr) 1999-07-08 2000-07-06 Procede de purification de facteur de stimulation de colonies de granulocytes
EP00949647A EP1200471A1 (fr) 1999-07-08 2000-07-06 Procede de purification de facteur de stimulation de colonies de granulocytes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/08831 1999-07-08
FR9908831A FR2796071B1 (fr) 1999-07-08 1999-07-08 Procede de purification de facteur de stimulation de colonies de granulocytes

Publications (1)

Publication Number Publication Date
WO2001004154A1 true WO2001004154A1 (fr) 2001-01-18

Family

ID=9547854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001937 WO2001004154A1 (fr) 1999-07-08 2000-07-06 Procede de purification de facteur de stimulation de colonies de granulocytes

Country Status (6)

Country Link
EP (1) EP1200471A1 (fr)
JP (1) JP2003504378A (fr)
AU (1) AU6294000A (fr)
CA (1) CA2378566A1 (fr)
FR (1) FR2796071B1 (fr)
WO (1) WO2001004154A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1458757A1 (fr) 2001-12-19 2004-09-22 LEK Pharmaceuticals D.D. Procede de purification et/ou d'isolation de facteur biologiquement actif de stimulation des colonies de granulocytes
DE102005033250A1 (de) * 2005-07-15 2007-01-18 Bioceuticals Arzneimittel Ag Verfahren zur Reinigung von G-CSF
DE202007018618U1 (de) 2006-03-01 2008-12-11 Bioceuticals Arzneimittel Ag G-CSF-Flüssigformulierung
DE202008017456U1 (de) 2007-08-27 2009-08-27 Biogenerix Ag Flüssig-Formulierung von G-CSF-Konjugaten
WO2013068602A2 (fr) 2012-03-19 2013-05-16 Richter Gedeon Nyrt. Procédé de production de polypeptides
WO2016009451A2 (fr) 2014-07-14 2016-01-21 Gennova Biopharmaceuticals Limited Nouveau processus de purification de rhu-gcsf
US9458207B2 (en) 2012-03-19 2016-10-04 Richter Gedeon Nyrt. Methods for refolding G-CSF from inclusion bodies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0104353D0 (sv) * 2001-12-19 2001-12-19 Amersham Biosciences Ab Separation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008003A1 (fr) * 1987-04-16 1988-10-20 Cetus Corporation Production de csf-1 humain recombinant produit par des cellules bacteriennes, biologiquement actif, purifie
US5861150A (en) * 1987-04-16 1999-01-19 Chiron Corporation Recombinant human CSF-1 dimer and compositions thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008003A1 (fr) * 1987-04-16 1988-10-20 Cetus Corporation Production de csf-1 humain recombinant produit par des cellules bacteriennes, biologiquement actif, purifie
US5861150A (en) * 1987-04-16 1999-01-19 Chiron Corporation Recombinant human CSF-1 dimer and compositions thereof

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS 1995, vol. 316, no. 1, 1995, pages 285 - 289, ISSN: 0003-9861 *
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1983, NICOLA N A ET AL: "PURIFICATION OF A FACTOR INDUCING DIFFERENTIATION IN MURINE MYELO MONOCYTIC LEUKEMIA CELLS IDENTIFICATION AS GRANULOCYTE COLONY STIMULATING FACTOR", XP002133879, Database accession no. PREV198478000619 *
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1986, ISHIZAKA Y ET AL: "MODE OF ACTION OF HUMAN URINARY COLONY-STIMULATING FACTOR", XP002133881, Database accession no. PREV198681069383 *
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1995, ARAKAWA TSUTOMU ET AL: "Structure and activity of granulocyte colony-stimulating factor derived from CHO cells containing cDNA coding for alternatively spliced sequences.", XP002133880, Database accession no. PREV199598171086 *
EXPERIMENTAL HEMATOLOGY (NEW YORK) 1986, vol. 14, no. 1, 1986, pages 1 - 8, ISSN: 0301-472X *
FARRAR J J ET AL: "BIOCHEMICAL RELATIONSHIP OF THYMOCYTE MITOGENIC FACTOR AND FACTORS ENHANCING HUMORAL AND CELL MEDIATED IMMUNE RESPONSES", JOURNAL OF IMMUNOLOGY 1978. * EN *, vol. 121, no. 4, 1978, pages 1353 - 1360, XP002133878, ISSN: 0022-1767 *
GRAHAME D A ET AL: "CARBON MONOXIDE DEHYDROGENASE FROM METHANOSARCINA-BARKERI DISAGGREGATION PURIFICATION AND PHYSICOCHEMICAL PROPERTIES OF THE ENZYME", JOURNAL OF BIOLOGICAL CHEMISTRY 1987, vol. 262, no. 8, 1987, pages 3706 - 3712, XP002133877, ISSN: 0021-9258 *
JOURNAL OF BIOLOGICAL CHEMISTRY 1983, vol. 258, no. 14, 1983, pages 9017 - 9023, ISSN: 0021-9258 *
NOMURA H ET AL: "PURIFICATION AND CHARACTERIZATION OF HUMAN GRANULOCYTE COLONY-STIMULATING FACTOR (G-CSF)", EMBO JOURNAL,GB,IRL PRESS, EYNSHAM, vol. 5, no. 5, 1 May 1986 (1986-05-01), pages 871 - 876, XP000650289, ISSN: 0261-4189 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2053061A1 (fr) 2001-12-19 2009-04-29 Lek Pharmaceuticals D.D. Procede de purification et/ou d'isolation de facteur biologiquement actif de stimulation des colonies de granulocytes
EP1458757A1 (fr) 2001-12-19 2004-09-22 LEK Pharmaceuticals D.D. Procede de purification et/ou d'isolation de facteur biologiquement actif de stimulation des colonies de granulocytes
US9815879B2 (en) 2005-07-15 2017-11-14 Sandoz Ag Method for the purification of G-CSF
DE102005033250A1 (de) * 2005-07-15 2007-01-18 Bioceuticals Arzneimittel Ag Verfahren zur Reinigung von G-CSF
WO2007009950A1 (fr) * 2005-07-15 2007-01-25 Bioceuticals Arzneimittel Ag Procede de purification du facteur g-csf
EP2058326A1 (fr) 2005-07-15 2009-05-13 Bioceuticals Arzneimittel AG Procédé de purification du facteur G-CSF
US10844103B2 (en) 2005-07-15 2020-11-24 Mylan Pharmaceuticals Inc. Method for the purification of G-CSF
DE202007018618U1 (de) 2006-03-01 2008-12-11 Bioceuticals Arzneimittel Ag G-CSF-Flüssigformulierung
EP2098243A1 (fr) 2006-03-01 2009-09-09 Bioceuticals Arzneimittel AG Formulation liquide de G-CSF
EP2578235A2 (fr) 2007-08-27 2013-04-10 BioGeneriX AG Formulation liquide de conjugué de G-CSF
DE202008017456U1 (de) 2007-08-27 2009-08-27 Biogenerix Ag Flüssig-Formulierung von G-CSF-Konjugaten
US9416164B2 (en) 2012-03-19 2016-08-16 Richter Gedeon Nyrt. Method for the production of polypeptides
US9458207B2 (en) 2012-03-19 2016-10-04 Richter Gedeon Nyrt. Methods for refolding G-CSF from inclusion bodies
WO2013068602A2 (fr) 2012-03-19 2013-05-16 Richter Gedeon Nyrt. Procédé de production de polypeptides
EP3517621A1 (fr) 2012-03-19 2019-07-31 Richter Gedeon Nyrt. Procédé de production de polypeptides
WO2016009451A2 (fr) 2014-07-14 2016-01-21 Gennova Biopharmaceuticals Limited Nouveau processus de purification de rhu-gcsf

Also Published As

Publication number Publication date
CA2378566A1 (fr) 2001-01-18
JP2003504378A (ja) 2003-02-04
EP1200471A1 (fr) 2002-05-02
FR2796071B1 (fr) 2001-09-07
FR2796071A1 (fr) 2001-01-12
AU6294000A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
DE60029091T2 (de) Verfahren zur herstellung von diphtheria toxin
US5359035A (en) Bifunctional proteins including interleukin-2 (IL-2) and granuloctyte macrophage colony stimulating factor (GM-CSF)
FI82712B (fi) Foerfarande foer framstaellning av ett humant moget leukocytinterferon.
IE900863L (en) Human-derived glycoprotein.
DE69432231T2 (de) Peptide mit antithrombotischer aktivität und verfahren zu ihrer herstellung
CA2343937A1 (fr) Endofucanases et procede les mettant en oeuvre pour la preparation des fuco-oligosaccharides a partir des fucanes, bacterie productrice des endofucanases et applications des fuco-oligosaccharides a la protection de plantes
IE881146L (en) Bifunctional proteins
RU2358980C2 (ru) Способ очистки и/или выделения биологически активного гранулоцитарного колониестимулирующего фактора
CN102076705A (zh) 经修饰的细胞因子的纯化
WO2001004154A1 (fr) Procede de purification de facteur de stimulation de colonies de granulocytes
JPH0229317B2 (fr)
EP1037923B2 (fr) Procede de preparation par filtration d'une solution de facteur viii securisee viralement
FR2623400A1 (fr) Facteur d'activation des neutrophiles
LU86676A1 (fr) Adn de superoxyde dismutase de manganese humaine,son expression dans les bacteries et procede de recuperation de superoxyde dismutase de manganese humaine
JPS6361960B2 (fr)
EP0499541A1 (fr) Procédé de purification d'une protéine fortement glycosylée
FR2635527A1 (fr) Il2 humaine recombinante non glycosylee sous forme reduite, son procede d'obtention et son application comme medicament
Else et al. Molecular Activity of Na^+, K^+-ATPase Relates to the Packing of Membrane Lipids
EP0366532B1 (fr) Médicaments contenant une interleukine-2 glycosylée
RU2278870C2 (ru) Способ получения, выделения, очистки и стабилизации рекомбинантного гранулоцитарного колониестимулирующего фактора человека, пригодного для медицинского применения, и иммунобиологическое средство на его основе
CN86108955A (zh) 新的细胞生长调节因子
KR100531670B1 (ko) 인체 인터페론 알파의 제조방법
RU2337966C2 (ru) Препарат рекомбинантного человеческого сывороточного альбумина и способ его получения
EP0609242B1 (fr) Nouvelle proteine inhibitrice de la thrombine provenant de tiques
JPH04300898A (ja) 新規糖タンパク複合体およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 62940/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2378566

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2000949647

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000949647

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000949647

Country of ref document: EP