WO2001003175A1 - Elektrisch-mechanische verbindung zwischen elektronischen schaltungssystemen und substraten, sowie verfahren zu deren herstellung - Google Patents

Elektrisch-mechanische verbindung zwischen elektronischen schaltungssystemen und substraten, sowie verfahren zu deren herstellung Download PDF

Info

Publication number
WO2001003175A1
WO2001003175A1 PCT/DE2000/002012 DE0002012W WO0103175A1 WO 2001003175 A1 WO2001003175 A1 WO 2001003175A1 DE 0002012 W DE0002012 W DE 0002012W WO 0103175 A1 WO0103175 A1 WO 0103175A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
solder
electrical
microcapsules
metal
Prior art date
Application number
PCT/DE2000/002012
Other languages
English (en)
French (fr)
Inventor
Holger HÜBNER
Vaidyanathan Kripesh
Original Assignee
Siemens Dematic Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Dematic Ag filed Critical Siemens Dematic Ag
Priority to JP2001508490A priority Critical patent/JP2003504847A/ja
Priority to KR1020017016924A priority patent/KR20020022079A/ko
Priority to EP00954285A priority patent/EP1192654A1/de
Publication of WO2001003175A1 publication Critical patent/WO2001003175A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/29486Coating material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3473Plating of solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electric-mechanical ⁇ specific connection between electronic circuit substrates and systems according to the preamble of claim 1 as a so-process for their preparation according to claim 31st
  • electronic circuit systems are understood to be solid-state circuit systems, in particular integrated semiconductor circuits.
  • system specifically designates the semiconductor material body containing the electronic circuit functional elements such as transistors, diodes, capacitances, etc., and the metallic conductor tracks and connection elements located thereon connecting the circuit functional elements.
  • connection elements can be flat metal coatings, so-called pads, or spherical metallic elements, so-called bumps.
  • substrates are understood to mean circuit boards such as printed circuits or circuit boards. Such substrates also have connection elements of the aforementioned type, generally in the form of pads.
  • FIG. 1 shows a schematic representation of an electronic circuit system 10, for example an integrated semiconductor circuit, which is electrically and mechanically connected to a substrate 20, for example a circuit board. Connection elements m in the form of pads are provided on the circuit system 10 and connection elements 21 in the form of pads are also provided on the substrate 20.
  • the circuit system 10 and the substrate 20 are connected to one another using so-called Fl p-chip technology in such a way that the pads 11 and 21 come to face each other with the insertion of an electrically conductive grain 22 and 23 containing dash-dotted adhesive 24.
  • the adhesive 24 can be a polymer, for example, while the conductive grains can be made of silver.
  • electrically conductive grains designated 22 denote the lateral spaces between the pads 11 and 21, and conductive grains designated 23 denote the vertical spaces between pads 11 and 21 facing each other.
  • the electrically conductive grains 23 between the mutually facing pads 11 and 21 come into contact with these m electrically conductive contacts and thus an electrical connection is created between the circuit system 10 and the substrate 20.
  • the electrically conductive grains 22 m are the lateral spaces between pads 11 and 21 with these non-electrically conductive connections, so that in this respect there is no short-circuit connection between pads.
  • An electrical connection of the type described is anisotropically conductive insofar as by means of electrically conductive grains 22 between facing pads 11 and 21 m in the vertical direction, but not by electrically conductive grains 22 m of lateral spaces between pads 11 and 21 m Lateral direction creates an electrically conductive connection.
  • the electrically conductive grains can be formed between mutually facing pads 11 and 21 ⁇ sen in Caribbeanpres 23, they are schematically oval Darge ⁇ , while the grains 22 m the lateral spaces between pads 11 and 21 remain undeformed, and therefore schematically ⁇ table are shown circular.
  • the adhesive 24 must be used when setting and operating
  • Circuit system 10 and substrate 20 develop sufficiently high shrinkage forces to ensure permanent compression and thus a reliable mechanical connection of circuit system 10 and substrate 11.
  • adhesives generally do not have good adhesion and moisture resistance properties, so that such a connection is not sufficiently reliable.
  • high shear forces may occur in the adhesive joint in the event of thermal alternating loading, as a result of which the adhesive breaks up and the electrical connection through the electrically conductive grains 23 can thereby be interrupted.
  • moisture penetrating the joint when it is heated can blast off entire areas of the circuit system 10 from the substrate 20.
  • the degree of fullness of the electrically conductive grains 22, 23 in the adhesive 24 must on the one hand be so large that it is ensured that at least one electrically conductive grain 23 is present to ensure an electrically conductive connection between facing pads 11, 21.
  • the degree of fullness must not be so high that the risk of electrical short circuits due to electrically conductive grains 22 m lateral spaces between pads 11, 21.
  • microcapsules embedded in an adhesive which consist of electrically conductive grains and a dielectric surrounding them , for example in the form of an insulating plastic.
  • an adhesive which consist of electrically conductive grains and a dielectric surrounding them , for example in the form of an insulating plastic.
  • Such a microcapsule consisting of an electrically conductive grain 22-1 (or 23-1) and a dielectric 22-2 (or 23-2) surrounding it is shown enlarged in FIG. 2.
  • the circuit system 10 and the substrate 20 according to FIG. 1 are also pressed together in the case of an electrical-mechanical connection using conductive grains encased with a dielectric.
  • the microcapsules 23-1, 23-2 are squeezed between mutually facing pads 11, 21, as a result of which the dielectric 23-2 is broken up and thus electrically via the electrically conductive grains 23-1 conductive connection.
  • FIG. 3 This situation is shown schematically in FIG. 3 in the form of a deformed microcapsule 23-1, 23-2 between two pads 11, 21.
  • the present invention has for its object to provide stationary type, an electrically-mechanical connection of the m speech, the fine even when electrically conductive struc ⁇ ren on electronic circuit systems and substrates so ⁇ well mechanically and electrically stable and electrically short-circuit proof.
  • a method for producing an electrical-mechanical connection according to the invention is characterized by the measures of claim 31.
  • FIG. 4 shows a schematic illustration of an electrical-mechanical connection corresponding to FIG. 1 to explain embodiments according to the invention.
  • the essence of the invention is to be seen in the fact that in addition to a press connection for realizing the electrical connection of an electronic circuit system with a sub- strat a metallic solder at least on the Stel ⁇ len of the electrical connections is made.
  • FIG. 4 on the basis of which embodiments of the invention are explained, the same elements as in FIGS. 1 to 3 are provided with the same reference symbols.
  • the arrangement according to FIG. 4 is also an electrical-mechanical connection of an electronic circuit system 10, for example an integrated semiconductor circuit system, with a substrate 20, for example an electrical circuit board.
  • Electronic circuit system 10 and substrate 20 in turn have the connection elements in the form of pads 11 and 21.
  • the purely mechanical connection is made by means of the dash-dotted adhesive 24, for example a polymer, which, however, does not have purely metallic, electrically conductive particles 22, 23 as in the known embodiment according to FIG. 1, but rather microcapsules 22-1, 22-2 suitable for a soldering process , 23-1, 23-2 are embedded. Embodiments of these microcapsules are explained in more detail below.
  • the microcapsules consist of electrically conductive ⁇ covered with a dielectric 22-2, 23-2 the Kornern 22-1, 23-1, which in turn from a metal from the group copper, nickel, silver, gold, a solderable metals ⁇ alloy or with an electrically conductive metal, for example silver-coated insulator, for example zinc oxide.
  • a metal from the group copper, nickel, silver, gold, a solderable metals ⁇ alloy or with an electrically conductive metal, for example silver-coated insulator, for example zinc oxide.
  • An insulating varnish can be used as the dielectric 22-2, 23-2, which can also take on the function of a solder flux.
  • solder layers 25, 27 are provided for the realization of the electrically conductive connection of the electronic circuit system 10 and substrate 20 on the pads 11, 21, for which a metal from the group tin, indium, gallium or a low-melting metal alloy can be used.
  • the solder layers 25, 27 are preferably produced by selective currentless deposition on the pad surfaces, as a result of which sufficiently flat surfaces can be produced.
  • the adhesive 24 or a polymer film (not specifically shown in FIG. 4) embedded microcapsules 22-1, 22-2, 23-1, 23-2 are inserted between the electronic circuit system 10 and the substrate 20, and so on strongly compressed that the dielectric 23-2 is broken up by microcapsules 23-1, 23-2 located between mutually facing pads 11, 21.
  • the arrangement is heated to a temperature above the melting temperature of the solder material of the solder layers 25, 27.
  • the molten solder comes with the material of the electrically conductive grains 23-1 of the krokapseln 23-1, 23-2 in contact and there is an elec tric ⁇ highly conductive metallic compound.
  • Microcapsules 22-1, 22-2 in lateral spaces between pads 11, 21 remain unaffected by the pressing process and therefore their dielectric 22-2 is intact, thereby preventing lateral short circuits.
  • the electrical mechanical connection according to the invention is therefore anisotropically conductive in the sense explained above.
  • soldering it is particularly advantageous if a diffusion soldering process is used for the soldering.
  • a low-temperature solder is used to produce a high-temperature-resistant metallic connection in that the solder metal forms a high-temperature-resistant and mechanically very stable intermetallic phase with the high-melting metals to be connected.
  • the low-melting solder metal is completely converted, i.e. it is completely m in the intermetallic phase.
  • Such a soldering process is known per se, for example, from US Pat. No. 5,053,195.
  • the solder layers 25, 27 have a thickness of the order of 10 ⁇ m, preferably less than 10 ⁇ m.
  • they consist of tin.
  • Layers of grains in the form of metallized insulators and possibly the pads 11, 21 consist, for example, of copper or nickel.
  • the tin is completely converted into intermediate metallic phases, which are designated 26, 28 in FIG. 4.
  • the resulting connection has a much higher melting point than the solder metal and better mechanical properties such as high tensile strength and freedom from creep.
  • the E position is particularly easy to achieve if - as already stated - the microcapsules 22-1, 22-2, 23-1, 23-2 are previously embedded in a polymer film.
  • "IEEE" pages 473 to 480 and 487 to 491, is known per se, for example, of how such films with microcapsules embedded therein are constructed and manufactured in detail.
  • Such a film guarantees the lateral isolation of the microcapsules 22-1, 22-2, 23-1, 23-2 and can function as a
  • Molded parts can be produced to match the surfaces to be connected.
  • the adhesive 24 can then possibly be omitted.
  • microcapsules 22-1, 22-2, 23-1, 23-2 can be used which at least partially consist of a solder metal.
  • the electrically conductive grains 22-1, 23-1 consist entirely of solder metal, a metal from the group consisting of tin, indium, gallium or a soft solder alloy being usable as the solder metal.
  • solder metal As Material for the pads 11, 21 stem from the electronic Wennungssy ⁇ 10 and substrate 20 is then em lotbares metal USAGE ⁇ det, which may be e metal from the group copper, nickel, silver, gold.
  • the solder layers 25, 27 on the pads 11, 21 can be omitted.
  • the electrically conductive grains 22-1, 23-1 of the microcapsules 22-1, 22-2, 23-1, 23-2 are also surrounded in this embodiment by a dielectric 22-2, 23-2 m in the form of an insulating lacquer layer , In addition to its insulation effect in the lateral direction explained above, this insulating lacquer layer additionally prevents the lateral gaps between pads 11, 21 of electronic circuit system 10 and substrate 20 and thus short circuits when heated during the soldering process, in particular when electrically conductive grains 22-1 m flow together m lateral direction.
  • solder material of the electrically conductive grains 23-1, 23-2 of the microcapsules 22-1, 22-2, 23-1, 23-2 becomes liquid during the soldering process and therefore the insulating lacquer layer breaks more easily, it is necessary to break it up between them facing pads 11, 21 not as high a pressure as in the above-described first embodiment of microcapsules required.
  • solder material comes into contact with the material of the pads 11, 21, the solder connection is created and thus electrical and mechanical contact.
  • microcapsules 22-1, 22-2 m are not squeezed in the lateral spaces between pads, their insulating lacquer layers 22-2 remain intact. These microcapsules are held together by an adhesive 24 when used or by embedding a polymer film in the sense explained above and cannot flow out.
  • the diffusion soldering process explained above is therefore also particularly advantageous in this embodiment.
  • the electrically conductive grains 22-1, 23-1 of the microcapsules 22-1, 22-2, 23-1, 23-2 consist, for example, of tin and the pads 11, 21 of electronic circuit system 10 and substrate 20 consist of copper or nickel. If the electrically conductive grains of the microcapsules have a diameter of less than 10 ⁇ m, the tin is completely converted into the intermetallic phase 26, 28 when the solder metal and the pad metal come into contact. In turn, creates an electrical mechanical connection to the solder metal compared to the much higher melting point and, therefore, excellent mechanical properties such as high tensile strength and creep ⁇ freedom.
  • Electrically conductive grains with a small diameter on the order of 10 ⁇ m and preferably smaller than 10 ⁇ m are advantageous for several reasons.
  • the process of chemical conversion in diffusion soldering takes the longer the thicker the electrically conductive grains are. For example, with a diameter of 40 ⁇ m, the reaction takes over half an hour. With diameters of less than 10 ⁇ m, the reaction time m is of the order of minutes.
  • the pads 11, 21 must be thick enough to be able to supply sufficient metal for the conversion reaction.
  • electrically conductive grains with the preferred diameters comparatively little solder metal is available, so that correspondingly little pad metal also needs to be available for complete conversion.
  • small diameters of the electrically conductive grains are in the interest of remotely structured contacts, which is particularly advantageous for integrated semiconductor circuits with a high degree of integration.
  • the diameter of the electrically conductive grains determines the thickness of the solder joint.
  • Thin solder joints have res fracture behavior. At a thickness of less than 5 microns ver ⁇ the joint in bending elastic stop, while it is at thicknesses greater than 10 microns brittle, so that it can easily lead to stress cracks.
  • the electrically conductive grains 22-1, 22-2 of the microcapsules 22-1, 22-2, 23-1, 23-2 may not consist entirely of solder metal but of a metal core coated with solder metal. It may be, for example, a coated ei ⁇ ner Zinnlottik copper core. If the Z nlot Anlagen m a tin-exchange bath electroless putsschie ⁇ , so de topmost layer of the copper core is replaced by a correspondingly thin Zmntik. A typical thickness of the tin layer is in the order of magnitude of 200 nm.
  • electrically conductive grains of this type also for use in the mechanical and electrical connection of objects is known per se, for example, from 1996 "Electronic Components and Technology Conference", pages 565-570.
  • An electrically conductive adhesive material is described there, which consists of a conductive fuller powder coated with a metal with a low melting point (solder metal), a thermoplastic polymer plastic and other minor organic additives. Fullers are coated with the metal with a low melting point, which is melted on the objects to be connected when a connection is made between objects in order to achieve a metallurgical connection between adjacent fullers and between fullers and metal connecting elements. Such a connection corresponds to the arrangement according to FIG. 1.
  • An advantage of electrically conductive grains 22-1, 23-1 m in the form of metal cores coated with solder metal can be seen in the fact that the soldering process, again preferably in the form of the diffusion soldering process, takes place very quickly and exactly because of the very thin solder layer.
  • Another advantage is that even when microcapsules 22-1, 22-2 do not come into contact with pads 11, 21 m, the solder reacts with the core metal in the lateral spaces between pads 11, 21 and an intermetallic phase is converted , Such microcapsules are therefore temperature-resistant beyond the melting temperature of the solder because they can no longer become liquid.
  • the thickness of the pads 11, 21 can be reduced because of the small thickness of the solder layers of the electrically conductive grains and the relatively small amount of solder metal, because a correspondingly small amount of pad material is required for a complete conversion of the amount of solder.
  • Another reason for solder layers of small thickness is that pads no longer have to be raised, because the solder of the electrically conductive grains can no longer "leak" even when the insulating lacquer layer breaks open, since the solder has good wetting due to the small layer thickness the metal core surface adheres to it.
  • a further advantage in particular in the embodiments with electrically conductive grains 22-1, 23-1 made of metal other than solder metal and solder layers 25, 27 on the pads 11, 21 and electrically conductive grains made of metal cores covered with a solder layer, can be seen therein that particularly thin and easily controllable solder layers can be produced in the form of intermetallic phases 26, 28 in the diffusion soldering process.
  • the microcapsules 22-1, 22-2, 23-1, 23-2, apart from the variant with an embedding can be a polymer film with an insulating liquid, which is the aforementioned adhesive 24 or a flux can be processed into a paste.
  • the adhesive the advantages of an adhesive connection and a solder connection can be combined. This adhesive bond ensures additional mechanical stability and the solder connection ensures a secure electrical connection.
  • a creep-resistant connection can be achieved according to the invention because, in the preferred diffusion soldering, the solder material as a thin layer on the microcapsules or the connection elements on the electronic circuit system and the substrate completely m the intermetallic phase, so no solder material remains ,
  • the thin solder material layers also ensure a comparatively fast soldering process. Furthermore, because of the possible high degree of filling of the microcapsules, even with small connection element structures, a secure electrical connection with good heat conduction and, because of the mechanical soldered connection via the soldered microcapsules, a significantly safer mechanical connection is guaranteed compared to a pure adhesive connection.
  • connection process as a whole can be designed in such a way that no residues, such as insulations made of metal oxides, glass or ceramic or binders, remain in the connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

Bei einer elektrisch-mechanischen Verbindung zwischen elektronischen Schaltungssystemen (10) und Substraten (20) sind diese mechanisch fest miteinander verbunden, stehen deren elektrische Anschlußelemente (11, 21) über Mikrokapseln (23-1, 23-2), die aus mit einem Dielektrikum (23-2) beschichteten, mindestens teilweise elektrisch leitenden Körnern (23-1) bestehen, in elektrisch leitender Verbindung und besteht eine elektrisch leitende Lötverbindung (25 bis 28) zwischen Mikrokapseln (23-1, 23-2) mit aufgebrochenem Dielektrikum (23-2) und den elektrischen Anschlußelementen (11, 21).

Description

Beschreibung
ELEKTRISCH-MECHANISCHE VERBINDUNG ZWISCHEN ELEKTRONISCHEN SCHALTUNGSSYSTEMEN UND SUBSTRATEN, SOWIE VERFAHREN ZU DEREN
HERSTELLUNG
Die vorliegende Erfindung betrifft eine elektrisch-mechani¬ sche Verbindung zwischen elektronischen Schaltungssystemen und Substraten nach dem Oberbegriff des Patentanspruchs 1 so- wie ein Verfahren zu deren Herstellung nach Patentanspruch 31.
Unter elektronischen Schaltungssystemen werden im Rahmen vorliegender Erfindung Festkörperschaltungssysteme, insbesondere integrierte Halbleiterschaltkreise, verstanden. Speziell bezeichnet der Begriff System etwa bei einem integrierten Halbleiterschaltkreis den die elektronischen Schaltungsfunktions- elemente wie Transistoren, Dioden, Kapazitäten usw. enthaltenden Halbleitermaterialkörper sowie die darauf befindlichen die Schaltungsfunktionselemente verbindenden metallischen Leiterbahnen und Anschlußelemente.
Die Anschlußelemente können flächige Metallbelegungen, sog. Pads, oder auch kugelige metallische Elemente, sog. Bumps, sein.
Unter Substraten werden im Rahmen vorliegender Erfindung Schaltungsplatten wie gedruckte Schaltungen oder Schaltungs- platinen verstanden. Auch derartige Substrate besitzen An- Schlußelemente der vorgenannten Art, im allgemeinen in Form von Pads .
Es ist bekannt, elektrisch-mechanische Verbindungen der in Rede stehenden Art mittels eines elektrisch leitende Körner enthaltenden Klebers zu realisieren. Eine derartige elektrisch-mechanische Verbindung wird nachfolgend anhand von Fig. 1 erläutert. Fig. 1 zeigt m schematischer Darstellung ein elektronisches Schaltungssystem 10, beispielsweise einen integrierten Halb- leiterschaltkreis, das mit einem Substrat 20, beispielsweise einer Schaltungsplatme, elektrisch und mechanisch verbunden ist. Auf dem Schaltungssystem 10 sind Anschlußelemente m Form von Pads und auf dem Substrat 20 Anschlußelemente 21 ebenfalls m Form von Pads vorgesehen.
Das Schaltungssystem 10 und das Substrat 20 werden m soge- nannter Fl p-Chip-Technik derart miteinander verbunden, daß die Pads 11 und 21 unter Einfügung eines elektrisch leitende Korner 22 und 23 enthaltenden strichpunktiert dargestellten Klebers 24 einander zugekehrt zu liegen kommen. Der Kleber 24 kann beispielsweise ein Polymer sein, wahrend die leitenden Korner aus Silber bestehen können.
Bei einer Verbindung der vorgenannten Art kommen hier mit 22 bezeichnete elektrisch leitende Korner m die lateralen Zwischenräume zwischen den Pads 11 und 21 sowie mit 23 bezeich- nete leitende Korner m die vertikalen Zwischenräume zwischen einander zugekehrten Pads 11 und 21 zu liegen.
Durch Zusammenpressen von Schaltungssystem 10 und Substrat 20 wird gewährleistet, daß die elektrisch leitenden Korner 23 zwischen einander zugekehrten Pads 11 und 21 mit diesen m elektrisch leitenden Kontakt gelangen und damit eine elektrische Verbindung zwischen Schaltungssystem 10 und Substrat 20 entsteht. Dagegen stehen die elektrisch leitenden Korner 22 m den lateralen Zwischenräumen zwischen Pads 11 und 21 mit diesen nicht m elektrisch leitender Verbindung, so daß m dieser Hinsicht keinerlei Kurzschlußverbindung zwischen Pads entsteht. Eine elektrische Verbindung der beschriebenen Art ist insofern anisotrop leitend, als durch elektrisch leitende Korner 22 zwischen einander zugekehrten Pads 11 und 21 m vertikaler Richtung nicht aber durch elektrisch leitende Korner 22 m lateralen Zwischenräumen zwischen Pads 11 und 21 m lateraler Richtung eine elektrisch leitende Verbindung entsteht.
Um anzudeuten, daß die elektrisch leitenden Korner 23 zwischen einander zugekehrten Pads 11 und 21 beim Zusammenpres¬ sen verformt werden können, sind sie schematisch oval darge¬ stellt, wahrend die Korner 22 m den lateralen Zwischenräumen zwischen Pads 11 und 21 unverformt bleiben und daher schema¬ tisch kreisförmig dargestellt sind.
Bei der vorstehend beschriebenen Art einer elektrischmechanischen Verbindung müssen für eine zuverlässige Funktionsweise folgende Bedingungen erfüllt sein.
Erstens muß der Kleber 24 beim Abbinden und im Betrieb von
Schaltungssystem 10 und Substrat 20 ausreichend hohe Schrump- fungskrafte entwickeln, um ein dauerhaftes Zusammenpressen und damit eine zuverlässige mechanische Verbindung von Schaltungssystem 10 und Substrat 11 zu gewährleisten. Kleber haben jedoch im allgemeinen keine guten Eigenschaften hinsichtlich Haftung und Feuchtebestandigkeit, so daß eine solche Verbindung nicht hinreichend zuverlässig ist. Insbesondere kann es bei thermischer echselbelastung zu hohen Scherkräften m der Klebefuge kommen, wodurch der Kleber aufbrechen und dadurch die elektrische Verbindung durch die elektrisch leitenden Korner 23 unterbrochen werden kann. Darüber hinaus kann m die Fuge eindringende Feuchtigkeit bei Erwärmung ganze Bereiche des Schaltungssystems 10 vom Substrat 20 absprengen. Diesen Nachteilen steht der Vorteil gegenüber, daß Kleber nicht strukturiert zu werden brauchen.
Zweitens muß der Fullgrad der elektrisch leitenden Korner 22, 23 im Kleber 24 einerseits so groß sein, daß gewährleistet ist, daß zur Sicherstellung einer elektrisch leitenden Ver- bindung zwischen einander zugekehrten Pads 11, 21 mindestens ein elektrisch leitendes Korn 23 vorhanden ist. Andererseits darf der Fullgrad nicht so hoch sein, daß die Gefahr von elektrischen Kurzschlüssen durch elektrisch leitende Korner 22 m lateralen Zwischenräumen zwischen Pads 11, 21 besteht.
Das letztgenannte Problem wird mit zunehmendem Integrationsgrad und damit kleiner werdenden elektrisch leitenden Strukturen und deren Abstanden auf integrierten Halbleiterschalt- kreisen und daran angepaßten Strukturen auf mit den Schaltkreisen verbundenen Substraten, wie etwa Schaltungsplatmen, immer schwerwiegender.
Um diesem Problem zu begegnen, ist es aus "Flip Chip Technologies" von John H. Lau, McGraw-Hill 1996, Seiten 289-299 bekannt geworden, m einen Kleber eingebettete Mikrokapseln zu verwenden, die aus elektrisch leitenden Kornern und einem sie umgebenden Dielektrikum, beispielsweise m Form eines isolierenden Kunststoffs, bestehen. Eine derartige Mikrokapsel aus einem elektrisch leitenden Korn 22-1 (bzw. 23-1) und einem sie umgebenden Dielektrikum 22-2 (bzw. 23-2) ist vergrößert m Fig. 2 dargestellt.
Auch bei einer elektrisch-mechanischen Verbindung unter Verwendung von mit einem Dielektrikum umhüllten leitenden Kornern m einem Kleber werden das Schaltungssystem 10 und das Substrat 20 nach Fig. 1 zusammengepreßt. Durch den dabei und das Abbinden des Klebers 24 entstehenden Druck werden die Mikrokapseln 23-1, 23-2 zwischen einander zugekehrten Pads 11, 21 gequetscht, wodurch das Dielektrikum 23-2 aufgebrochen wird und damit über die elektrisch leitenden Korner 23-1 eine elektrisch leitende Verbindung entsteht. Dieser Sachverhalt ist m Fig. 3 schematisch in Form einer verformten Mikrokapsel 23-1, 23-2 zwischen zwei Pads 11, 21 dargestellt.
Bei einer derartigen elektrisch-mechanischen Verbindung über Mikrokapseln der vorstehend beschriebenen Art ist zwar das Problem von lateralen elektrischen Kurzschlüssen über in den lateralen Zwischenräumen zwischen Pads 11, 21 befindlichen Mikrokapseln 22-1, 22-2 praktisch ausgeschaltet. Nach wie vor verbleiben aber die oben in Verbindung mit dem Kleber be¬ schriebenen Probleme.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine elektrisch-mechanische Verbindung der m Rede stehenden Art anzugeben, die auch bei feinen elektrisch leitenden Struktu¬ ren auf elektronischen Schaltungssystemen und Substraten so¬ wohl mechanisch und elektrisch stabil als auch elektrisch kurzschlußsicher ist.
Diese Aufgabe wird bei einer elektrisch-mechanischen Verbin¬ dung der gattungsgemaßen Art erfmdungsgemäß durch die Ma߬ nahmen nach dem kennzeichnenden Teil des Patentanspruchs 1 gelost.
Ein Verfahren zur Herstellung einer erfmdungsgemaßen elektrisch-mechanischen Verbindung ist durch die Maßnahmen des Patentanspruchs 31 gekennzeichnet.
Weiterbildungen der erfmdungsgemaßen elektrisch-mechanischen Verbindung sowie des erfmdungsgemaßen Verfahrens sind Gegenstand entsprechender Unteranspruche .
Die Erfindung wird nachfolgend anhand von Ausfuhrungsbeispie- len m Verbindung mit den Figuren der Zeichnung naher erläutert. Es zeigen:
Figuren 1 bis 3 die oben bereits erläuterten bekannten Ausfuhrungsformen und
Fig. 4 eine der Fig. 1 entsprechende schematische Darstellung einer elektrisch-mechanischen Verbindung zur Erläuterung er- f dungsgemaßer Ausfuhrungsformen.
Der Kern der Erfindung ist darin zu sehen, daß zusätzlich zu einer Preßverbindung zur Realisierung der elektrischen Verbindung eines elektronischen Schaltungssystems mit einem Sub- strat eine metallische Lotverbindung mindestens an den Stel¬ len der elektrischen Verbindungen hergestellt wird.
In Fig. 4, anhand derer Ausfuhrungsformen der Erfindung er- läutert werden, sind gleiche Elemente wie den Figuren 1 bis 3 mit gleichen Bezugszeichen versehen.
Wie bereits anhand von Fig. 1 ausgeführt, handelt es sich bei der Anordnung nach Fig. 4 ebenfalls um eine elektrisch- mechanische Verbindung eines elektronischen Schaltungssystems 10, beispielsweise eines integrierten Halbleiterschaltkreis- systems, mit einem Substrat 20, beispielsweise einer elektrischen Schaltungsplat e. Elektronisches Schaltungssystem 10 und Substrat 20 besitzen wiederum die Anschlußelemente Form von Pads 11 und 21.
Die rein mechanische Verbindung erfolgt über den strichpunktiert dargestellten Kleber 24, beispielsweise ein Polymer, dem jedoch nicht wie bei der bekannten Ausfuhrungsform nach Fig. 1 rein metallische elektrisch-leitende Partikel 22, 23 sondern für einen Lotvorgang geeignete Mikrokapseln 22-1, 22- 2, 23-1, 23-2 eingebettet sind. Ausfuhrungsformen dieser Mikrokapseln werden nachfolgend naher erläutert.
Es ist darauf hinzuweisen, daß die Erfindung nicht auf Ausfuhrungsformen mit einem Kleber 24 zur Realisierung der rein mechanischen Verbindung von elektronischem Schaltungssystem 10 und Substrat 20 beschrankt ist. Es sind auch Ausfuhrungsformen möglich, bei denen eine Verbindung über einen Lotvor- gang ohne Kleber hergestellt wird, der nachfolgend noch genauer erläutert wird. Dies kann ber Pads 11, 21 erfolgen, welche für die bestimmungsgemaße elektronische Funktionsweise von elektrischem Schaltungssystem 10 und Substrat unwirksam sind. Der Begriff "Unwirksamkeit" bedeutet diesem Zusam- menhang, daß solche Pads elektrisch nicht an elektronische
Funktionselemente im elektronischen Schaltungssystem 10 oder auf oder im Substrat 20 angeschlossen sind. Nachfolgend wird nun eine erste Ausfuhrungsform einer Lotver- bmdung im erfmdungsgemaßen Sinne erläutert.
Bei dieser Ausfuhrungsform bestehen die Mikrokapseln aus mit einem Dielektrikum 22-2, 23-2 überzogenen elektrisch leiten¬ den Kornern 22-1, 23-1, die ihrerseits aus einem Metall der Gruppe Kupfer, Nickel, Silber, Gold, einer lotbaren Metalle¬ gierung oder einem mit einem elektrisch leitenden Metall, beispielsweise Silber überzogenen Isolator, beispielsweise Zmnoxid, bestehen können. Wie Mikrokapseln der letztgenann¬ ten Art herstellbar sind, ist beispielsweise aus "JOURNAL OF MATERIALS SCIENCE" 28 (1993), Seiten 5207-5210 bekannt.
Als Dielektrikum 22-2, 23-2 kann ein Isolierlack Verwendung finden, der auch die Funktion eines Lotflußmittels übernehmen kann.
Für den Lotvorgang sind zur Realisierung der elektrisch leitenden Verbindung vom elektronischen Schaltungssystem 10 und Substrat 20 auf den Pads 11, 21 Lotschichten 25, 27 vorgesehen, für die ein Metall aus der Gruppe Zinn, Indium, Gallium oder eine niedrigschmelzende Metallegierung Verwendung finden kann. Die Lotschichten 25, 27 werden vorzugsweise durch selektive stromlose Abscheidung auf den Padflachen hergestellt, wodurch ausreichend plane Oberflachen herstellbar sind.
Gemäß dem erfmdungsgemaßen Verfahren werden m den Kleber 24 oder einen m Fig. 4 nicht eigens dargestellten Polymerf lm eingebettete Mikrokapseln 22-1, 22-2, 23-1, 23-2 zwischen das elektronische Schaltungssystem 10 und das Substrat 20 eingebracht und diese so stark zusammengepreßt, daß das Dielektrikum 23-2 von zwischen einander zugekehrten Pads 11, 21 befindlichen Mikrokapseln 23-1, 23-2 aufgebrochen wird. Die Anordnung wird nach dem Zusammenpressen auf eine Temperatur oberhalb der Schmelztemperatur des Lotmateπals der Lotschichten 25, 27 erwärmt. Dabei kommt das geschmolzene Lot mit dem Material der elektrisch leitenden Korner 23-1 der Mi- krokapseln 23-1, 23-2 in Kontakt und es entsteht eine elek¬ trisch gut leitende metallische Verbindung.
Mikrokapseln 22-1, 22-2 in lateralen Zwischenräumen zwischen Pads 11, 21 bleiben durch den Preßvorgang unbeeinflußt und daher ihr Dielektrikum 22-2 intakt, wodurch laterale Kurzschlüsse verhindert werden. Die erfmdungsgemaße elektrischmechanische Verbindung ist daher im oben erläuterten Sinne anisotrop leitend.
Es ist besonders vorteilhaft, wenn für die Verlotung ein Dif- fusionslotverfahren zur Anwendung kommt. Bei diesem Verfahren wird mit einem niedrigschmelzenden Lot eine hochtemperaturfe- ste metallische Verbindung dadurch hergestellt, daß das Lot- metall mit zu verbindenden hochschmelzenden Metallen eine hochtemperaturfeste und mechanisch sehr stabile intermetallische Phase bildet. Dabei wird das niedrigschmelzende Lotmetall vollständig umgewandelt, d.h., es geht vollständig m der intermetallischen Phase auf. Ein solches Lotverfahren ist beispielsweise aus der US-PS 5 053 195 an sich bekannt.
Für dieses Verfahren besitzen die Lotschichten 25, 27 eine Dicke der Größenordnung von 10 um, vorzugsweise von kleiner als 10 um. Sie bestehen beispielsweise aus Zinn. Die elektrisch leitenden Korner 23-1 bzw. die metallischen
Schichten von Kornern m Form von metallisierten Isolatoren und ggf. die Pads 11, 21 bestehen beispielsweise aus Kupfer oder Nickel. Beim Kontakt zwischen Kornermetall wahrend des Diffusionslotverfahrens wird das Zinn vollständig zu lnterme- tallischen Phasen umgewandelt, die m Fig. 4 mit 26, 28 bezeichnet sind. Wie bereits ausgeführt, hat die dabei entstehende Verbindung einen wesentlich höheren Schmelzpunkt als das Lotmetall und bessere mechanische Eigenschaften wie hohe Zugfestigkeit und Kriechfreiheit.
In Weiterbildung der Erfindung ist es bei einem derartigen Lotverfahren wesentlich, daß sich eine einlagige Mikrokapsel- Schicht zwischen den Pads 11, 21 befindet und die Pad-Ober- flachen ausreichend plan sind. Dann werden alle zwischen einander zugekehrten Pads 11, 21 befindlichen Mikrokapseln 23-1, 23-2 gequetscht, so daß deren elektrisch leitende Korner 23-2 bzw. deren elektrisch leitende Teile mit dem Lotmetall Kontakt kommen.
Die E lagigkeit st besonders gut realisierbar, wenn - wie bereits ausgeführt - die Mikrokapseln 22-1, 22-2, 23-1, 23-2 vorher m einen Polymerfilm eingebettet werden. Wie derartige Filme mit darin eingebetteten Mikrokapseln im einzelnen aufgebaut und herstellbar sind, ist beispielsweise aus 1992 "IEEE", Seiten 473 bis 480 und 487 bis 491 an sich bekannt. Ein solcher Film garantiert die laterale Isolation der Mikro- kapseln 22-1, 22-2, 23-1, 23-2 und kann die Funktion eines
Abstandshalters übernehmen. In Anpassung an die zu verbindenden Flachen können Formteile hergestellt werden. Der Kleber 24 kann dann ggf. entfallen.
Es sei noch einmal erwähnt, daß die vorstehend beschriebene Ausgestaltung Fig. 4 nicht eigens dargestellt ist. Auch sind bei nicht vorhandenem Kleber 24 Lotverbindungen zwischen im oben genannten Sinne unwirksamen Pads 11, 21 und Mikrokapseln 23-1, 23-2 Fig. 4 nicht eigens dargestellt. In Fig. 4 konnten jedoch beispielsweise die beiden m der Zeichenebene rechtsseitigen Pads 11, 21 als "unwirksame" und die beiden linksseitigen Pads 11, 21 als "wirksame" Pads angesehen werden.
Bei einer weiteren Ausfuhrungsform der Erfindung können Mikrokapseln 22-1, 22-2, 23-1, 23-2 Verwendung finden, die mindestens teilweise aus einem Lotmetall bestehen.
Gemäß einer Variante dieser Ausfuhrungsform bestehen die elektrisch leitenden Korner 22-1, 23-1 vollständig aus Lotmetall, wobei als Lotmetall ein Metall aus der Gruppe Zinn, Indium, Gallium oder eine Weichlotlegierung verwendbar ist. Als Material für die Pads 11, 21 vom elektronischen Schaltungssy¬ stem 10 und Substrat 20 wird dann em lotbares Metall verwen¬ det, das e Metall aus der Gruppe Kupfer, Nickel, Silber, Gold sein kann. Dabei können die Lotschichten 25, 27 auf den Pads 11, 21 entfallen.
Die elektrisch leitenden Korner 22-1, 23-1 der Mikrokapseln 22-1, 22-2, 23-1, 23-2 sind auch bei dieser Ausfuhrungsform von einem Dielektrikum 22-2, 23-2 m Form einer Isolierlack- schicht umgeben. Neben ihrer oben erläuterten Isolationswir- kung m lateraler Richtung verhindert diese Isolierlack- schicht zusatzlich bei Erwärmung wahrend des Lotprozesses em Zusammenfließen insbesondere von elektrisch leitenden Kornern 22-1 m den lateralen Zwischenräumen zwischen Pads 11, 21 von elektronischen Schaltungssystem 10 und Substrat 20 und damit Kurzschlüsse m lateraler Richtung.
Da das Lotmaterial der elektrisch leitenden Korner 23-1, 23-2 der Mikrokapseln 22-1, 22-2, 23-1, 23-2 beim Lotprozeß flus- sig wird und daher die Isolierlackschicht leichter bricht, ist f r deren Aufbrechen zwischen einander zugekehrten Pads 11, 21 kein so hoher Druck wie bei der oben erläuterten ersten Ausfuhrungsform von Mikrokapseln erforderlich. Beim Kontakt des Lotmaterials mit dem Material der Pads 11, 21 ent- steht die Lotverbindung und somit em elektrischer und mechanischer Kontakt.
Da die Mikrokapseln 22-1, 22-2 m den lateralen Zwischenräumen zwischen Pads nicht gequetscht werden, bleiben ihre Iso- lierlackschichten 22-2 intakt. Diese Mikrokapseln werden bei Verwendung eines Klebers 24 durch diesen oder bei Einbettung m eine Polymerfolie im oben erläuterten Sinne durch diese zusammengehalten und können nicht ausfließen.
Auch bei dieser Ausfuhrungsform ist daher das oben erläuterte Diffusionslotverfahren besonders vorteilhaft. Dabei können die elektrisch leitenden Korner 22-1, 23-1 der Mikrokapseln 22-1, 22-2, 23-1, 23-2 beispielsweise aus Zinn und die Pads 11, 21 von elektronischem Schaltungssystem 10 und Substrat 20 aus Kupfer oder Nickel bestehen. Besitzen die elektrisch leitenden Korner der Mikrokapseln einen Durchmesser von kiemer als 10 um, so wird beim Kontakt des Lotmetalls und des Pad- Metalls das Zinn vollständig in die intermetallische Phase 26, 28 umgewandelt. Es entsteht wiederum eine elektrischmechanische Verbindung mit gegenüber dem des Lotmetalls wesentlich höherem Schmelzpunkt und daher ausgezeichneten me- chanischen Eigenschaften wie hohe Zugfestigkeit und Kriech¬ freiheit .
Elektrisch leitende Korner mit kleinem Durchmesser der Größenordnung von 10 μm und vorzugsweise kleiner als 10 μm sind aus mehreren Gründen vorteilhaft.
Erstens dauert beim Diffusionsloten der Prozeß der chemischen Umwandlung um so langer, e dicker die elektrisch leitenden Korner sind. Beispielsweise bei einem Durchmesser von 40 μm dauert die Reaktion über eine halbe Stunde. Bei Durchmessern von kleiner als 10 μm liegt die Reaktionszeit m der Größenordnung von Minuten.
Zweitens müssen d e Pads 11, 21 ausreichend dick sein, um ge- nugend Metall für die Umwandlungsreaktion liefern zu können. Bei elektrisch leitenden Kornern mit den bevorzugten Durchmessern steht vergleichsweise wenig Lotmetall zur Verfugung, so daß f r eine vollständige Umwandlung auch entsprechend wenig Pad-Metall verfugbar zu sein braucht.
Drittens sind geringe Durchmesser der elektrisch leitenden Kornern im Interesse fern strukturierter Kontakte, was besonders für integrierte Halbleiterschaltkreise mit großem Integrationsgrad von Vorteil ist.
Viertens bestimmt der Durchmesser der elektrisch leitenden Korner die Dicke der Lotfuge. Dünne Lotfugen haben em besse- res Bruchverhalten. Bei einer Dicke von kleiner als 5 μm ver¬ halt sich die Fuge bei Biegung elastisch, wahrend sie bei Dicken von großer als 10 μm spröde wird, so daß es leicht zu Spannungsrissen kommen kann.
In Abwandlung der vorstehend beschriebenen Ausfuhrungsform können die elektrisch leitenden Korner 22-1, 22-2 der Mikrokapseln 22-1, 22-2, 23-1, 23-2 nicht vollständig aus Lotmetall sondern aus einem mit Lotmetall überzogenen Metallkern bestehen. Es kann sich dabei beispielsweise um einen mit ei¬ ner Zinnlotschicht überzogenen Kupferkern handeln. Wird die Z nlotschicht m einem Zinn-Austauschbad stromlos abgeschie¬ den, so wird d e oberste Schicht des Kupferkerns durch eine entsprechend dünne Zmnschicht ersetzt. Eine typische Dicke der Zmnschicht liegt m der Größenordnung von 200 nm.
Die Verwendung von elektrisch leitenden Kornern dieser Art auch zur Verwendung beim mechanischen und elektrischen Verbinden von Objekten ist beispielsweise aus 1996 "Electronic Components and Technology Conference", Seiten 565-570 an sich bekannt. Es wird dort ein elektrisch leitendes Klebermaterial beschrieben, das aus einem mit einem Metall niedrigen Schmelzpunktes (Lotmetall) überzogenen leitenden Fullerpul- ver, einem termoplastischen Polymer-Kunststoff und weiteren geringfügigen organischen Zusätzen besteht. Dabei sind Ful- lerkorner mit dem Metall niedrigen Schmelzpunktes beschichtet, das bei der Herstellung einer Verbindung zwischen Objekten zur Realisierung einer metallurgischen Verbindung zwischen benachbarten Fullerkornern sowie zwischen Fullerkornern und metallischen Anschlußelementen auf den zu verbindenden Objekten geschmolzen wird. Eine solche Verbindung entspricht der Anordnung nach Fig. 1. Auch dabei ergeben sich die oben erläuterten Probleme sowohl hinsichtlich des durch den Polymer-Kunststoff gebildeten Klebers als auch des Fullgrades der elektrisch leitenden Korner. Ebenso wie bei den beiden oben erläuterten Ausfuhrungsformen werden solche elektrisch leitenden Korner 22-1, 22-2 mit einem Dielektrikum 22-2, 23-2 in Form einer Isolierlack- schicht überzogen. Es sei erwähnt, daß den Figuren 2 bis 4 nicht eigens dargestellt ist, daß die elektrisch leitenden Korner ihrerseits zweiteilig ausgebildet sein können.
Em Vorteil von elektrisch leitenden Kornern 22-1, 23-1 m Form von mit Lotmetall überzogenen Metallkernen ist darin zu sehen, daß der Lotprozeß, wiederum vorzugsweise m Form des Diffusionslotprozesses, wegen der überall sehr dünnen Lotschicht sehr schnell und exakt ablauft. Em weiterer Vorteil besteht darin, daß auch bei nicht mit Pads 11, 21 m Kontakt tretenden Mikrokapseln 22-1, 22-2 in den lateralen Zwischen- räumen zwischen Pads 11, 21 das Lot mit dem Kernmetall reagiert und m eine intermetallische Phase umgewandelt wird. Auch solche Mikrokapseln sind daher über die Schmelztemperatur des Lotes hinaus temperaturfest, weil sie nicht mehr flussig werden können.
Darüber hinaus kann wegen der geringen Dicke der Lotschichten der elektrisch leitenden Korner und der damit relativ geringen Lotmetallmenge die Dicke der Pads 11, 21 reduziert werden, weil für eine vollständige Umwandlung der Lotmenge eine entsprechend geringe Pad-Materialmenge erforderlich ist. Em weiterer Grund für Lotschichten geringer Dicke ist darin zu sehen, daß Pads nicht mehr erhaben sein müssen, weil das Lot der elektrisch leitenden Korner auch bei aufbrechender Iso- lierlackschicht nicht mehr "auslaufen" kann, da das Lot wegen der geringen Schichtdicke bei guter Benetzung der Metallkernoberflache an dieser haften bleibt.
Aus den genannten Gründen kann sich bei allen Mikrokapseln 22-1, 22-2, 23-1, 23-2 sowohl m lateralen Zwischenräumen zwischen Pads 11, 21 als auch zwischen einander zugekehrten Pads bei Betriebstemperaturen der Anordnung kein zu Kurzschlüssen führendes flussiges Lot mehr bilden. E elektrisch-mechanischer Kontakt mit den Pads 11, 21 ergibt sich aufgrund der Reaktion des Lotes der elektrisch leitenden Korner 23-1, 23-2 mit dem Metall der Pads 11, 21.
E weiterer Vorteil insbesondere bei den Ausfuhrungsformen mit elektrisch leitenden Kornern 22-1, 23-1 aus von Lotmetall verschiedenem Metall und Lotschichten 25, 27 auf den Pads 11, 21 sowie elektrisch leitenden Kornern aus mit einer Lot- schicht überzogenen Metallkernen ist darin zu sehen, daß sich besonders dünne und gut kontrollierbare Lotschichten, beim Diffusionslotverfahren m Form von intermetallischen Phasen 26, 28, herstellen lassen.
Bei den vorstehend beschriebenen Ausfuhrungsformen können die Mikrokapseln 22-1, 22-2, 23-1, 23-2 abgesehen von der Variante mit einer Einbettung m eine Polymerfolie mit einer isolierenden Flüssigkeit, bei der es sich um den erwähnten Kleber 24 oder em Flußmittel handeln kann, zu einer Paste ver- arbeitet werden. Im Falle des Klebers lassen sich die Vorteile einer Klebeverbindung und einer Lotverbindung miteinander kombinieren. Diese Klebeverbmdung gewährleistet eine zusätzliche mechanische Stabilität und die Lotverbindung eine sichere elektrische Verbindung.
Zusammenfassend sei noch einmal darauf hingewiesen, daß sich erfmdungsgemaß eine kriechfeste Verbindung erreichen laßt, weil bei dem bevorzugten Diffusionsloten das Lotmaterial als dünne Schicht auf den Mikrokapseln oder den Anschlußelementen auf dem elektronischen Schaltungssystem und dem Substrat vollständig m die intermetallische Phase übergeht, also keine Lotmaterialreste verbleiben. Die dünnen Lotmateπalschich- ten gewährleisten darüber hinaus einen vergleichsweise schnellen Lotprozeßablauf. Weiterhin ist wegen des möglichen hohen Füllgrades der Mikrokapseln auch bei kleinen Anschlußelementstrukturen eine sichere elektrische Verbindung bei guter Wärmeleitung sowie - wegen der mechanischen Lötverbindung über die verlöteten Mikrokapseln - im Vergleich zu einer reinen Klebeverbindung eine wesentlich sicherere mechanische Verbindung gewährleistet.
Schließlich ist auch eine hohe Temperaturfestigkeit der me- chanisch-elektrischen Verbindung gewährleistet, weil der Verbindungsvorgang insgesamt so gestaltet werden kann, daß keine Rückstände, wie etwa Isolationen aus Metalloxiden, Glas oder Keramik oder Bindemittel in der Verbindung verbleiben.

Claims

Patentansprüche
1. Elektrisch-mechanische Verbindung zwischen elektronischen Schaltungssystemen (10) und Substraten (20), bei der em elektronisches Schaltungssystem (10) und em Substrat (20) mechanisch fest miteinander verbunden sind, elektrische Anschlußelemente (11, 21) auf dem elektronischen Schaltungssystem (10) und dem Substrat (20) über Mikrokapseln (23-1, 23- 2) m elektrisch leitender Verbindung stehen und bei der die Mikrokapseln (23-1, 23-2) durch mit einem Dielektrikum (23-2) beschichtete mindestens teilweise elektrisch leitende Korner (23-1) gebildet sind, wobei das Dielektrikum (23-2) der Mikrokapseln (23-1, 23-2) durch mechanischen Druck zur mindestens teilweisen Freilegung der elektrisch leitenden Korner (23-1) aufgebrochen ist, g e k e n n z e i c h n e t d u r c h eine elektrisch leitende Lotverbindung (25 bis 28) zwischen den Mikrokapseln (23-1, 23-2) und den elektrisch leitenden Anschlußelementen (11, 21) von elektronischem Schaltungssystem (10) und Substrat (20) .
2. Elektrisch-mechanische Verbindung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die mechanisch feste Verbindung zwischen elektronischem Schaltungssystem (10) und Substrat (20) mittels eines Klebers (24) vorge- nommen ist.
3. Elektrisch-mechanische Verbindung nach Anspruch 1 und 2, d a d u r c h g e k e n n z e i c h n e t, daß als Kleber (24) em Polymer Verwendung findet.
4. Elektrisch-mechanische Verbindung nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß die Mikrokapseln (23-1, 23-2) m den Kleber (24) eingebettet sind.
5. Elektrisch-mechanische Verbindung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die mechanisch feste Verbindung zwischen elektronischem Schaltungssystem (10) und Substrat (20) durch eine Lotverbindung zwischen für die bestimmungsgemaße elektronische Funktionsweise von elektronischem Schaltungssystem (10) und Substrat (20) unwirksamen Anschlußelementen (11, 21) gebildet ist.
6. Elektrisch-mechanische Verbindung nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß als Mikrokapseln (23-1, 23-2) mit einem Dielektrikum (23-2) überzogene elektrisch leitende Metallkorner (23-1) aus der Metallgruppe Kupfer, Nickel, Silber, Gold, Verwendung finden.
7. Elektrisch-mechanische Verbindung nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß als
Mikrokapseln (23-1, 23-2) mit einem Dielektrikum (23-2) überzogene elektrisch leitende Metallkorner (23-1) aus einer lotbaren Metallegierung Verwendung finden.
8. Elektrisch-mechanische Verbindung nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß als Mikrokapseln (23-1, 23-2) mit einem Dielektrikum (23-2) überzogene metallisierte isolierende Korner (23-1) Verwendung finden.
9. Elektrisch-mechanische Verbindung nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, daß als metallisierte isolierende Korner (23-1) versilberte Zmnoxidkorner Verwendung finden.
10. Elektrisch-mechanische Verbindung nach einem der Ansprüche 6 bis 9, d a d u r c h g e k e n n z e i c h n e t, daß als Dielektrikum (23-2) der Mikrokapseln (23-1, 23-2) e Isolierlack Verwendung findet.
11. Elektrisch-mechanische Verbindung nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß als Isolierlack em Lotflußmittel Verwendung findet.
12. Elektrisch-mechanische Verbindung nach einem der Anspru- ehe 1 bis 11, d a d u r c h g e k e n n z e i c h n e t, daß die elektrisch leitende Lotverbindung (25 bis 28) zwischen Anschlußelementen (11, 21) von elektronischem Schaltungssystem (10) und Substrat (20) durch eine Verlotung von auf den Anschlußelementen (11, 21) vorgesehenen Lotschichten (25, 27) unter Ausbildung von intermetallischen Phasen (26, 28) aus
Material der elektrisch leitenden Korner (23-1) der Mikrokap¬ seln (23-1, 23-2) und den Lotschichten (25, 27) gebildet ist.
13. Elektrisch-mechanische Verbindung nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t, daß als Material für die Lotschichten (25, 27) em Metall aus der Gruppe Zinn, Indium, Gallium Verwendung findet.
14. Elektrisch-mechanische Verbindung nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t, daß als Material für die Lotschichten (25, 27) , eine niedrigschmelzende Metallegierung Verwendung findet.
15. Elektrisch-mechanische Verbindung nach Anspruch 13 oder 14, d a d u r c h g e k e n n z e i c h n e t, daß die Lotschichten (25, 27) selektiv stromlos abgeschiedene Zmschich- ten sind.
16. Elektrisch-mechanische Verbindung nach einem der Anspru- ehe 1 bis 15, d a d u r c h g e k e n n z e i c h n e t, daß als Material für die Anschlußelemente (11, 21) von elektronischem Schaltungssystem (10) und Substrat (20) e dem metallischen Material der leitenden Korner (23-1) der Mikrokapseln (23-1, 23-2) angepaßtes metallisches Material Verwendung fin- det.
17. Elektrisch-mechanische Verbindung nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t, daß als Material für die Anschlußelemente (11, 21) Kupfer oder Nickel Verwen¬ dung findet.
18. Elektrisch-mechanische Verbindung nach einem der Ansprüche 1 bis 17, d a d u r c h g e k e n n z e i c h n e t, daß eine einlagige m einem Polymerfilm eingebettete Schicht aus Mikrokapseln (23-1, 23-2) gleicher Große vorgesehen sind.
19. Elektrisch-mechanische Verbindung nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß als Mikrokapseln (23-1, 23-2) mit einem Isolierlack (23-2) überzogene elektrisch leitende Metallkorner (23-1) Verwendung finden, die mindestens teilweise aus einem Lotmetall beste- hen.
20. Elektrisch-mechanische Verbindung nach Anspruch 19, d a d u r c h g e k e n n z e i c h n e t, daß d e elektrisch leitenden Korner (23-1) der Mikrokapseln (23-1, 23-2) vollständig aus Lotmetall bestehen.
21. Elektrisch-mechanische Verbindung nach Anspruch 19 oder 20, d a d u r c h g e k e n n z e i c h n e t, daß f r die elektrisch leitenden Korner (23-1) em Lotmetall aus der Gruppe Zinn, Indium, Gallium Verwendung findet.
22. Elektrisch-mechanische Verbindung nach Anspruch 19 oder 20, d a d u r c h g e k e n n z e i c h n e t, daß für die elektrisch leitenden Korner (23-1) eine Weichlotlegierung Verwendung findet.
23. Elektrisch-mechanische Verbindung nach einem der Ansprüche 19 bis 22, d a d u r c h g e k e n n z e i c h n e t, daß für die Anschlußelemente (11, 21) von elektronischem Schaltungssystem (10) und Substrat (20) em lotbares Metall Verwendung findet.
24. Elektrisch-mechanische Verbindung nach Anspruch 23, d a d u r c h g e k e n n z e i c h n e t, daß als lotbares Metall für die Anschlußelemente (11, 21) e Metall aus der Gruppe Kupfer, Nickel, Silber, Gold Verwendung findet.
25. Elektrisch-mechanische Verbindung nach Anspruch 19, d a d u r c h g e k e n n z e i c h n e t, daß die elektrisch leitenden Korner (23-1) der Mikrokapseln (23-1, 23-2) aus einem mit einem Lotmaterial überzogenen elektrisch lei- tenden Metallkern gebildet sind.
26. Elektrisch-mechanische Verbindung nach Anspruch 25, d a d u r c h g e k e n n z e i c h n e t, daß als Material für den elektrisch leitenden Metallkern Kupfer Verwendung findet.
27. Elektrisch-mechanische Verbindung nach Anspruch 25 und/oder 26, d a d u r c h g e k e n n z e i c h n e t, daß als Lotmaterial für den Kernuberzug Zinn Verwendung findet.
28. Elektrisch-mechanische Verbindung nach einem der Ansprüche 1 bis 27, d a d u r c h g e k e n n z e i c h n e t, daß die elektrisch leitenden Korner (23-1) der Mikrokapseln (23- 1, 23-2) einen Durchmesser m der Größenordnung von 10 μm, vorzugsweise kleiner als 10 μm, besitzen.
29. Elektrisch-mechanische Verbindung nach Anspruch 27, d a d u r c h g e k e n n z e i c h n e t, daß der Zmn- Kernuberzug eine Dicke m der Größenordnung von 200 nm be- sitzt.
30. Elektrisch-mechanische Verbindung nach einem der Ansprüche 1 bis 18, d a d u r c h g e k e n n z e i c h n e t, daß die auf die Anschlußelemente (11, 21) aufgebrachten Loschich- ten eine Dicke in der Größenordnung von 10 μm, vorzugsweise kleiner als 10 μm, besitzen.
31. Verfahren zur Herstellung einer elektrisch-mechanischen Verbindung nach einem der Ansprüche 1 bis 30, d a d u r c h g e k e n n z e i c h n e t, daß nach dem Einbringen von m einem Kleber (24) oder einem Polymerfilm eingebetteten Mikro- kapseln (23-1, 23-2) zwischen elektronischem Schaltungssystem (10) und Substrat (20) diese so stark zusammengepreßt werden, daß das Dielektrikum (23-2) auf zwischen einander zugekehrten Anschlußelementen (11, 21) befindlichen elektrisch leitenden Kornern (23-1) aufgebrochen wird und die Lotverbindung (25 bis 28) zwischen den Mikrokapseln (23-1, 23-2) durch Diffu- sionsloten hergestellt wird.
32. Verfahren nach Anspruch 31, d a d u r c h g e k e n n z e i c h n e t, daß auf Anschlußelemente (11, 21) Lotmetall- schichten (25, 27) m einer solchen Dicke aufgebracht werden, daß bei einem Diffusionslotprozeß zwischen Metallen der elektrisch leitenden Korner (23-1) bzw. Kornern (23-1) Form von metallisierten Isolatoren und dem Lotmetall das Lotmetall vollständig zu einer intermetallischen Phase (26, 28) umge- wandelt wird.
33. Verfahren nach Anspruch 31, d a d u r c h g e k e n n z e i c h n e t, daß bei Verwendung von Mikrokapseln (23-1, 23-2), deren elektrisch leitende Korner (23-1) vollständig aus Lotmetall bestehen, sowie lotmetallfreien Anschlußelementen (11, 21) auf elektronischem Schaltungssystem (10) und Substrat (20) die Dicke der Anschlußelemente (11, 21) so gewählt ist, daß ausreichend Material für den Umwandlungsprozeß beim Diffusionsloten zur Verfugung steht.
34. Verfahren nach Anspruch 31, d a d u r c h g e k e n n z e i c h n e t, daß bei Verwendung von Mikrokapseln (23-1, 23-2), deren elektrisch leitende Korner (23-1) aus einem mit einem Lotmetall überzogenen elektrisch leitenden Metallkern bestehen, sowie lotmetallfreien Anschlußelementen (11, 21) auf elektronischem Schaltungssystem (10) und Substrat (20) die Dicke der Anschlußelemente (11, 21) und des Lotmetalls so gewählt ist, daß deren Material beim Diffusionslöten für den Umwandlungsprozeß zwischen Anschlußelementmaterial und Kernmetall mit dem Lotmetall ausreicht.
PCT/DE2000/002012 1999-06-30 2000-06-19 Elektrisch-mechanische verbindung zwischen elektronischen schaltungssystemen und substraten, sowie verfahren zu deren herstellung WO2001003175A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001508490A JP2003504847A (ja) 1999-06-30 2000-06-19 電子回路系と支持体との間の電気機械的接続装置およびその製造方法
KR1020017016924A KR20020022079A (ko) 1999-06-30 2000-06-19 전자 회로 시스템과 기판 간의 전기 기계적 접속부 및상기 접속부의 제조 방법
EP00954285A EP1192654A1 (de) 1999-06-30 2000-06-19 Elektrisch-mechanische verbindung zwischen elektronischen schaltungssystemen und substraten, sowie verfahren zu deren herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19930189 1999-06-30
DE19930189.1 1999-06-30

Publications (1)

Publication Number Publication Date
WO2001003175A1 true WO2001003175A1 (de) 2001-01-11

Family

ID=7913204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002012 WO2001003175A1 (de) 1999-06-30 2000-06-19 Elektrisch-mechanische verbindung zwischen elektronischen schaltungssystemen und substraten, sowie verfahren zu deren herstellung

Country Status (4)

Country Link
EP (1) EP1192654A1 (de)
JP (1) JP2003504847A (de)
KR (1) KR20020022079A (de)
WO (1) WO2001003175A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150017763A1 (en) * 2012-11-09 2015-01-15 Invensas Corporation Microelectronic Assembly With Thermally and Electrically Conductive Underfill

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210004324A (ko) 2019-07-04 2021-01-13 삼성전자주식회사 마이크로 led 디스플레이 모듈 및 이를 제조하는 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265077A2 (de) * 1986-09-25 1988-04-27 Sheldahl, Inc. Ein Anisotropisches Klebemittel zum Verbinden elektrischer Bauelemente
JPH02294097A (ja) * 1989-05-08 1990-12-05 Mitsubishi Electric Corp 半導体装置の端子接合用マイクロカプセル
JPH0371570A (ja) * 1989-08-10 1991-03-27 Casio Comput Co Ltd 導電用結合剤および導電接続構造
EP0708582A1 (de) * 1994-10-20 1996-04-24 International Business Machines Corporation Elektrisch leitfähige Pastenmaterialien und Anwendungen
DE19640192A1 (de) * 1996-09-30 1998-04-02 Bosch Gmbh Robert Verfahren zur Flip-Chip-Montage
US5749997A (en) * 1995-12-27 1998-05-12 Industrial Technology Research Institute Composite bump tape automated bonding method and bonded structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265077A2 (de) * 1986-09-25 1988-04-27 Sheldahl, Inc. Ein Anisotropisches Klebemittel zum Verbinden elektrischer Bauelemente
JPH02294097A (ja) * 1989-05-08 1990-12-05 Mitsubishi Electric Corp 半導体装置の端子接合用マイクロカプセル
JPH0371570A (ja) * 1989-08-10 1991-03-27 Casio Comput Co Ltd 導電用結合剤および導電接続構造
EP0708582A1 (de) * 1994-10-20 1996-04-24 International Business Machines Corporation Elektrisch leitfähige Pastenmaterialien und Anwendungen
US5749997A (en) * 1995-12-27 1998-05-12 Industrial Technology Research Institute Composite bump tape automated bonding method and bonded structure
DE19640192A1 (de) * 1996-09-30 1998-04-02 Bosch Gmbh Robert Verfahren zur Flip-Chip-Montage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 074 (E - 1036) 21 February 1991 (1991-02-21) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 236 (E - 1078) 18 June 1991 (1991-06-18) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150017763A1 (en) * 2012-11-09 2015-01-15 Invensas Corporation Microelectronic Assembly With Thermally and Electrically Conductive Underfill

Also Published As

Publication number Publication date
EP1192654A1 (de) 2002-04-03
KR20020022079A (ko) 2002-03-23
JP2003504847A (ja) 2003-02-04

Similar Documents

Publication Publication Date Title
EP1337376B1 (de) Lotmittel zur verwendung bei diffusionslotprozessen
DE10238320B4 (de) Keramische Leiterplatte und Verfahren zu ihrer Herstellung
DE10208635B4 (de) Diffusionslotstelle, Verbund aus zwei über eine Diffusionslotstelle verbundenen Teilen und Verfahren zur Herstellung der Diffusionslotstelle
DE3414065A1 (de) Anordnung bestehend aus mindestens einem auf einem substrat befestigten elektronischen bauelement und verfahren zur herstellung einer derartigen anordnung
EP1350417B1 (de) Verfahren zur herstellung einer elektronischen baugruppe
WO1996016442A1 (de) Kernmetall-lothöcker für die flip-chip-technik
CH652533A5 (de) Halbleiterbaustein.
DE102004021054B4 (de) Halbleiterbauelement und Verfahren zu seiner Herstellung
DE10206818A1 (de) Elektronisches Bauteil mit Klebstoffschicht und Verfahren zur Herstellung derselben
DE3743857A1 (de) Elektrische sicherung und verfahren zu ihrer herstellung
DE3924225A1 (de) Keramik-metall-verbundsubstrat und verfahren zu seiner herstellung
AT512525A4 (de) Leiterplatte, insbesondere für ein Leistungselektronikmodul, umfassend ein elektrisch leitfähiges Substrat
EP2760613A1 (de) Schichtverbund aus einem elektronischen substrat und einer schichtanordnung umfassend ein reaktionslot
DE102017004626A1 (de) Bleifreie Lötfolie zum Diffusionslöten
WO2014154637A1 (de) Verfahren zum verbinden von fügepartnern mittels isothermer erstarrungsreaktion zur bildung einer in-bi-ag-verbindungsschicht und entsprechende anordnung von fügepartnern
DE1956501C3 (de) Integrierte Schaltungsanordnung
DE102010013610B4 (de) Verfahren zum stoffschlüssigen Verbinden von elektronischen Bauelementen oder Kontaktelementen und Substraten
DE102008026710A1 (de) Elektronisches Bauelement aus Keramik
WO2009016039A1 (de) Elektronischer baustein mit zumindest einem bauelement, insbesondere einem halbleiterbauelement, und verfahren zu dessen herstellung
DE10207109A1 (de) Keramische Leiterplatte
DE2004776A1 (de) Halbleiterbauelement
EP2844414B1 (de) Verfahren zur herstellung eines metallisierten aus aluminium bestehenden substrats
DE3740773A1 (de) Verfahren zum herstellen elektrisch leitender verbindungen
WO2001003175A1 (de) Elektrisch-mechanische verbindung zwischen elektronischen schaltungssystemen und substraten, sowie verfahren zu deren herstellung
DE19930190C2 (de) Lötmittel zur Verwendung bei Diffusionslötprozessen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000954285

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2001 508490

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017016924

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000954285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10018382

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2000954285

Country of ref document: EP