WO2001001081A1 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
WO2001001081A1
WO2001001081A1 PCT/JP2000/004165 JP0004165W WO0101081A1 WO 2001001081 A1 WO2001001081 A1 WO 2001001081A1 JP 0004165 W JP0004165 W JP 0004165W WO 0101081 A1 WO0101081 A1 WO 0101081A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
flow rate
time
fluctuation
reception
Prior art date
Application number
PCT/JP2000/004165
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Umekage
Yukio Nagaoka
Osamu Eguchi
Shuji Abe
Yuji Nakabayashi
Kenzo Ohji
Fumikazu Shiba
Akihisa Adachi
Masahiko Hashimoto
Toshiharu Sato
Yuji Fujii
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP17795299A external-priority patent/JP4556253B2/en
Priority claimed from JP11182995A external-priority patent/JP2001012981A/en
Priority claimed from JP2000034677A external-priority patent/JP2001228002A/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU55693/00A priority Critical patent/AU5569300A/en
Priority to US10/019,418 priority patent/US6796189B1/en
Priority to EP00940829A priority patent/EP1243901A4/en
Publication of WO2001001081A1 publication Critical patent/WO2001001081A1/en
Priority to US10/711,053 priority patent/US6915704B2/en
Priority to US10/711,055 priority patent/US7082841B2/en
Priority to US10/711,054 priority patent/US6941821B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/245Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves
    • G01P5/247Sing-around-systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/245Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves

Definitions

  • the present invention relates to a flow meter for measuring a flow rate of a liquid or a gas, and to a means for measuring a flow rate value accurately even when there is a pressure fluctuation or a temperature change.
  • a flow meter of this type is known, for example, from Japanese Patent Application Laid-Open No. Hei 9-150006.
  • a predetermined first sampling is performed from an analog flow sensor 1 that measures a gas flow rate.
  • a sampling program 2 for reading the measured value at each time, a gas consumption calculation program 3 for calculating the gas consumption flow rate at a predetermined time, and an analog flow sensor for the second sampling time within the predetermined time during the first sampling time. It consists of an average value calculation program 4 that reads out measured values and calculates the average value, a pressure fluctuation period estimation program 5 that estimates the period of pressure fluctuations from the output of the flow sensor, and a RAM 6 as memory.
  • 7a is a CPU that executes the program
  • 7b is a ROM of a memory that stores the programs.
  • the flow rate detection means 8 for detecting the flow rate As shown in Fig. 65, the flow rate detection means 8 for detecting the flow rate, the cycle detection means 9 for detecting the fluctuation cycle of the flow, and the measurement time change for setting the measurement time for the flow rate detection to almost an integral multiple of the above cycle
  • 11 is a flow rate calculating means
  • 12 is a measurement starting means
  • 13 is a signal processing means
  • 14 is a flow path.
  • the flow rate is measured according to the cycle of the fluctuation waveform, and accurate flow rate measurement is performed in a short time. Is Umono.
  • the flow rate detection means 15 for detecting the flow rate the fluctuation detection means 16 for detecting the fluctuation waveform of the fluid, and the measurement of the flow rate detection means near the zero of the AC component of the fluctuation waveform
  • the configuration is provided with a pulsation measuring means 17 to be started and a flow rate calculating means 18 for processing a signal of the flow rate detecting means.
  • 19 is a signal processing circuit
  • 20 is a timing circuit
  • 21 is a trigger circuit
  • 22 is a transmission circuit
  • 23 is a comparison circuit
  • 24 is an amplification circuit
  • 25 is a switch
  • 26 is measurement.
  • a start signal circuit, 27 is a starting means
  • 28 is a flow path.
  • Fig. 67 it is checked whether or not the flow rate value detected by the flow sensor measurement (29) is present (30). Continue. Then, if there is a flow rate, it is determined whether or not the flow rate Q is equal to or more than a specified value (31). If the flow rate is equal to or more than the specified value, it is determined whether the pressure fluctuation exceeds a predetermined value C f (3 2 ). If the pressure fluctuation does not exceed the predetermined value C f, measurement 34 is performed with a piezoelectric film sensor of a full-id flow meter.
  • the pressure fluctuation exceeds the predetermined value C f, it is determined whether the pressure fluctuation exceeds the second specified value (33). If the pressure fluctuation exceeds the second specified value, the piezoelectric film sensor of the Fluidec flow meter is determined. Perform measurement (3 4) with. If the value is less than the second specified value, measurement (29) is performed using a flow sensor.
  • the ultrasonic transducers 51 and 52 are installed in the flow rate measuring section 50 in the direction of the flow, and the control section 53 simultaneously starts the The transmission signal is output to the drive circuit 55.
  • Ultrasonic waves are transmitted from the ultrasonic transducer 51 receiving the output of the drive circuit 55, and received by the ultrasonic transducer 52.
  • the reception detection circuit 56 receiving the output of the ultrasonic transducer 52 detects the ultrasonic wave and stops the timer 54. Let it. By this operation, the time (t 1) from when the ultrasonic wave is transmitted from the ultrasonic vibrator 51 to when it is detected by the ultrasonic vibrator 52 is measured.
  • the switching circuit 58 is operated by the signal of the control unit 53, the drive circuit 55 is connected to the ultrasonic transducer 52, and the reception detection circuit 56 is connected to the ultrasonic transducer 51.
  • transmission and reception of the ultrasonic wave are performed again, and the time (t 2) from when the ultrasonic wave is transmitted from the ultrasonic vibrator 52 to when the ultrasonic wave is detected by the ultrasonic vibrator 51 is measured.
  • the calculation unit 57 calculates the flow rate from the reciprocal difference of the propagation times.
  • the gas flow rate is measured using the average value, and a long-term measurement is required to obtain a stable average value.
  • the second reference there was a problem that it was not possible to adapt when the period fluctuated.
  • the third and fourth references the method of measuring the flow rate is changed without pressure fluctuation, and there is a problem that it is necessary to provide two means, a pressure measuring means and a flow measuring means.
  • the first to fourth references there was a problem that when an abnormality occurred in the measurement, the measurement could not be performed or the measurement was performed with reduced accuracy.
  • the operating clock of the timer 54 is set to a high frequency, problems such as an increase in current consumption, an increase in high-frequency noise, and an increase in the size of the circuit will occur. There was a problem of improving the measurement accuracy by realizing high resolution in timer measurement that operates at a low frequency.
  • a delay means is inserted between the control unit and the drive circuit, and the influence of the reflected wave is reduced by changing the amount of delay to avoid the reflected wave.
  • the present invention solves the above-mentioned problems, but with ⁇ , without using a new fluctuation detection device, detects the fluctuation period softly and changes the number of repetitions repeatedly, so that it is optimal according to the flow fluctuation
  • the first objective is to be able to set a sufficient number of repetitions, and to accurately measure a stable and measured flow rate in a short time even when there is a change in pressure or a fluctuation cycle.
  • the second purpose is to switch the transmission and reception means to detect fluctuations without using a new fluctuation detection device, and to perform highly accurate flow measurement instantaneously by performing measurement processing synchronized with fluctuations. are doing.
  • the third objective is to perform high-precision flow measurement even when an abnormality occurs in the measurement process by quickly detecting the abnormality by the measurement monitoring means and processing the measurement accurately.
  • the fourth object is to perform stable and accurate flow rate measurement in a short time by using instantaneous flow rate measuring means and digital filter means.
  • the fifth object is to measure the flow rate value accurately even when there is temperature fluctuation. Disclosure of the invention
  • the present invention provides a transmitting / receiving means provided in a flow path for transmitting and receiving using a change in the state of a fluid, a repeating means for repeating the transmission and reception, and a propagation time repeated by the repeating means. It has a configuration including a time measuring means for measuring, a flow detecting means for detecting a flow rate based on the value of the time measuring means, and a number changing means for changing to a predetermined number of repetitions. Then, by changing the number of repetitions suitable for fluctuations, The effect of movement can be suppressed, and stable flow measurement can be realized with high accuracy. Further, a pair of transmission / reception means using the propagation of sound waves as a change in the state of the fluid is provided.
  • sound waves can be propagated even when there is a change in the state of the fluid, and the flow rate can be measured accurately and stably by changing the number of repetitions to a value suitable for the fluctuation. be able to.
  • a transmission / reception means using the propagation of heat as a state change of the fluid is provided.
  • heat can be transmitted even when the state of the fluid changes, and the flow rate can be measured stably with high accuracy by changing the number of repetitions suitable for the fluctuation. It can be carried out.
  • an elapsed time detecting means for detecting information on the way of the propagation time repeatedly measured by the repeating means
  • a cycle detecting means for detecting a cycle of the flow rate variation from the information of the elapsed time detecting means
  • a frequency changing means for setting the measurement time to be substantially an integral multiple of the set period. Since no specific detection means is required and the cycle can be detected from the information on the way of the timing means before the flow rate is detected and can be set to an integral multiple of the cycle, the flow rate measurement must be performed stably and accurately. Can be.
  • a data holding unit that holds at least one or more propagation times of repetition transmission and reception obtained by the elapsed time detection unit, and compares the data held by the data holding unit with the measured propagation time data.
  • a configuration is provided that includes a period detecting means for detecting the period. Then, the period can be detected by holding and comparing the time information of the instantaneous moment by the data holding means.
  • the number-of-times changing means is configured to operate at the time of predetermined processing. By performing the processing only at the time of the predetermined processing, the processing can be reduced to the minimum required, and the power consumption can be significantly reduced.
  • the number-of-times changing means is configured to operate each time a predetermined flow rate is measured. By performing the measurement every time the predetermined flow rate is measured, the flow rate can be measured stably and accurately even in a flow that fluctuates drastically. Also, the frequency change means is configured to be performed before the flow rate measurement processing. Since the number of repetitions is set to a predetermined number before performing the flow rate measurement, the flow rate measurement can be performed stably and accurately.
  • the predetermined processing is configured to perform abnormality determination means for determining an abnormality in the flow rate from the measured flow rate, and flow rate management means for managing the usage state of the flow rate from the measured flow rate. Then, by performing only the processing of the abnormality determination and the flow rate management, the processing of changing the number of times can be suppressed to a minimum, and the power consumption can be reduced.
  • the number of repetitions corresponding to the cycle obtained by the cycle detection means was used in the next flow measurement. Then, by using it for the next measurement, it is not necessary to repeat the measurement for detecting the period, and the power consumption can be reduced.
  • the number-of-times changing means is operated. By performing the processing only when the flow rate is equal to or less than the predetermined flow rate, the processing is not performed at the time of a large flow rate, and the power consumption can be reduced.
  • a transmitting / receiving unit provided in the flow path for transmitting / receiving a change in the state of the fluid; a timing unit for measuring a propagation time transmitted / received by the transmitting / receiving unit; and a flow rate for detecting a flow rate based on the value of the timing unit.
  • Detecting means fluctuation detecting means for measuring fluctuations in the flow path by the transmitting and receiving means, and measurement control means for starting measurement in synchronization with the fluctuation timing of the fluctuation detecting means.
  • a pair of transmission / reception means using the propagation of sound waves as a change in the state of the fluid is provided. Then, the change in the state of the fluid can be detected by the sound wave transmitting / receiving means, and by starting the measurement in synchronization with the timing of the fluctuation, the flow rate can be measured accurately and stably.
  • a transmission / reception means using the propagation of heat as a state change of the fluid is provided.
  • Fluid state changes can be detected by the heat transmission / reception means, and measurement can be started in synchronization with the timing of the fluctuations, enabling accurate and stable flow measurement.
  • a first vibrating means and a second vibrating means provided in the flow path for transmitting and receiving a sound wave; a switching means for switching the transmitting and receiving operations of the first vibrating means and the second vibrating means;
  • a fluctuation detecting means for detecting a pressure fluctuation in the flow path of at least one of the second vibrating means; a time measuring means for measuring a propagation time of a sound wave transmitted and received by the first vibrating means and the second vibrating means;
  • the time measuring means measures a first time T1 which propagates from the first vibrating means on the upstream side of the flow path to the second vibrating means on the downstream side.
  • the time measurement means controls the second time measurement T2 to be transmitted from the second vibration means on the downstream side of the flow path to the first vibration means on the upstream side.
  • Control means, and the first clock time T 1 And a configuration in which a flow rate detection means for calculating the flow rate using a serial second measured time T 2.
  • the measurement of the first clocking time T1 is started when the output of the fluctuation detecting means changes by a predetermined amount
  • the measurement of the second clocking time T2 is started when the output of the fluctuation detecting means changes in a direction opposite to the predetermined change. Measurement control, and at the next measurement, when the output of the fluctuation detecting means changes in reverse to the predetermined change, measurement of the first time T1 is started, and when the output of the fluctuation detecting means changes by a predetermined amount.
  • the measurement control means that performs the measurement control and the second clock time T2 obtained by using the previous first clock time T1 and the second clock time T2 while alternately changing the measurement start
  • the flow rate detecting means is configured to calculate the flow rate by sequentially averaging the first flow rate and the second flow rate obtained using the next first time measurement time T1 and second time measurement time T2.
  • a repetition means for starting transmission / reception measurement when the output of the fluctuation detection means changes by a predetermined amount, and repeatedly performing transmission / reception measurement of the sound wave until the output of the fluctuation detection means changes the same as the predetermined change. Since the start and stop of the measurement can be made to coincide with the cycle of the pressure fluctuation, the measurement can be performed at the fluctuation cycle, and the pressure fluctuation can be averaged and a stable flow rate can be measured.
  • first vibration means and the second vibration means are provided with a selection means for switching between a case where the first vibration means is used for transmitting and receiving a sound wave and a case where the first vibration means is used for detecting a pressure fluctuation. Then, at least one of the first vibrating means and the second vibrating means can be used for pressure detection, and both flow rate measurement and pressure measurement can be achieved.
  • the configuration is provided with a fluctuation detecting means for detecting the vicinity of zero of the AC component of the fluctuation waveform. Then, by detecting the fluctuation near the zero component of the fluctuation, the range of the time for performing the flow measurement can be started from near the fluctuation zero. Measurement can be stabilized.
  • a configuration which includes a cycle detecting means for detecting a cycle of the signal of the fluctuation detecting means, and a measuring control means for starting the measurement only when the cycle detected by the cycle detecting means is a predetermined cycle. By starting the measurement only at the predetermined period, the measurement can be performed at the predetermined fluctuation, and the stable flow rate can be measured.
  • a configuration is provided in which a detection canceling means is automatically started after a predetermined time. Then, even if the fluctuation disappears, the flow rate can be automatically measured after a predetermined time.
  • the transmitting / receiving means, the first vibrating means and the second vibrating means may be a piezoelectric vibrator.
  • the configuration was composed of By using a piezoelectric vibrator, it is possible to detect pressure fluctuations while using ultrasonic waves for transmission and reception.
  • a transmission / reception unit provided in the flow path for transmitting / receiving using a change in the state of the fluid; a repetition unit for repeating the signal propagation of the transmission / reception unit; and measuring a propagation time during the repetition by the repetition unit.
  • Time measuring means flow rate detecting means for detecting a flow rate based on the value of the time measuring means, fluctuation detecting means for detecting fluid fluctuation in the flow path, measurement control means for controlling each of the means, and each of the means Measurement monitoring means for monitoring abnormalities in the data. If there is a fluctuation in the flow in the flow path, the flow rate is measured in accordance with the fluctuation, and the abnormality can be quickly detected by the measurement and monitoring means. The value is stable, the flow rate can be measured with high accuracy, and the reliability can be improved.
  • a pair of transmission / reception means using the propagation of sound waves as a change in the state of the fluid is provided.
  • sound waves By using sound waves, flow rate measurement can be performed even if the fluid fluctuates, and the measurement and monitoring means can take corrective measures when an abnormality occurs, thereby improving reliability.
  • transmission / reception means using heat propagation as a change in the state of the fluid is provided. By using the heat propagation, the flow rate can be measured even if the fluid fluctuates, and the measurement and monitoring means can take corrective action in the event of an abnormality to improve reliability.
  • Time measuring means flow rate detecting means for detecting a flow rate based on the value of the time measuring means, fluctuation detecting means for detecting fluid fluctuation in the flow path, measurement control means for controlling each of the means, and the measurement control
  • a start signal instructing the start of sound wave transmission at the time of the first output signal of the fluctuation detecting means and an end signal instructing the repetition of transmission and reception of sound waves at the time of the second output signal of the fluctuation detecting means.
  • measurement monitoring means for monitoring abnormalities of the start signal and the end signal.
  • measurement is performed in synchronization with the fluctuation cycle, and the measurement and monitoring means are used. Since an abnormality can be detected, the measured value is stable and the flow rate can be measured with high accuracy. In addition, when an abnormality is taken, correct measures can be taken and the reliability of the measured flow rate value can be improved.
  • a measurement monitoring means is provided for instructing the start of sound wave transmission after a predetermined time when a start signal is not generated within a predetermined time after the instruction of the measurement control means. Then, even when there is no fluctuation and there is no start signal within a predetermined time, the flow rate can be measured every predetermined time, and data loss can be prevented.
  • a measurement monitoring means for instructing the start of sound wave transmission after a predetermined time when no start signal is generated within a predetermined time after the instruction of the measurement control means, and performing measurement at a predetermined number of repetitions. Even if there is no fluctuation and there is no start signal within a predetermined time, the flow rate can be measured at a predetermined number of repetitions every predetermined time, and loss of data can be prevented.
  • the measurement monitoring means which does not perform the measurement until the instruction of the next measurement control means is provided. By waiting for the next measurement instruction, useless measurement can be stopped and power consumption can be reduced.
  • a measurement monitoring means is provided for terminating the reception of the sound wave when the end signal is not generated within a predetermined time after the start signal. Then, by forcibly terminating the measurement, the measurement does not stop waiting for the termination, and the process can proceed to the next processing, and a stable measurement operation can be performed.
  • the measurement monitoring means for terminating the reception of the sound wave and outputting the start signal again is provided. Then, by forcibly terminating the measurement, the measurement does not stop waiting for the end, and re-measurement is performed by outputting the start signal again, so that a stable measurement operation can be performed.
  • a measurement monitoring means that stops transmission / reception processing when the number of repetitions becomes abnormal. Then, when the number of repetitions is abnormal, by stopping the measurement, the flow rate can be measured using only accurate data. Also, of the pair of transmission / reception means, the first number of repetitions at the time of measurement transmitted from one transmission / reception means and received by the other transmission / reception means, and transmitted from the other transmission / reception means and received by one transmission / reception means Measurement monitoring means for comparing the second number of repetitions at the time of measurement and outputting a start signal again when the difference between the two repetitions is equal to or more than a predetermined number is provided. When the number of repetitions is significantly different, remeasurement is performed, and measurement is performed in a state where the fluctuation period is stable, so that highly accurate flow rate measurement can be performed.
  • a repetition means was provided to set the second number of repetitions during measurement to be the same. With the same number of repetitions, a predetermined flow rate measurement can be performed even when the fluctuation cycle is unstable.
  • the number of times the start signal is output again is set to a predetermined number of times, and a measurement / monitoring means is provided for monitoring such that the signal is not repeated forever.
  • stable processing can be performed without infinite processing.
  • the flow rate was determined from the reciprocal difference of the propagation time measured by repeating the transmission and reception of the ultrasonic waves multiple times.
  • transmission and reception can be performed without being affected by the fluctuating frequency in the flow path, and by measuring the flow rate from the reciprocal difference of the propagation time measured by repeating transmission and reception, the cycle It is possible to measure even long-term fluctuations in units of one cycle, and the difference in propagation time due to fluctuations can be offset by the reciprocal difference.
  • an instantaneous flow rate detecting means for detecting an instantaneous flow rate
  • a pulsation determining means for determining whether or not the flow rate value is pulsating
  • At least one stable flow rate calculating means is provided. Then, by determining the variation of the measured flow rate and switching the flow rate calculation means, it is possible to calculate a stable flow rate with one flow rate measurement means according to the variation amount.
  • instantaneous flow rate detection means for detecting instantaneous flow rate and digital filter for flow rate value
  • the filter processing means for processing, and the stable flow rate calculating means for calculating the flow rate value by the filter processing means are provided.
  • digital filtering By performing digital filtering, arithmetic calculations equivalent to averaging can be performed without using a lot of data memory, and filter characteristics can be changed by changing one variable called a filter coefficient. can do.
  • a stable flow rate calculating means for calculating a stable value of the flow rate value by the digital filter processing means when the pulsation determining means determines pulsation is provided. Then, at the time of pulsation, it is possible to stabilize a large pulsation by using a steep filter characteristic, and it is possible to perform a filtering process only at the time of pulsation.
  • the pulsation determination means is configured to determine whether the fluctuation width of the flow value is equal to or greater than a predetermined value. Then, by performing the determination based on the fluctuation range of the pulsation, the filter processing can be changed according to the fluctuation range of the pulsation.
  • the filter processing means is configured to change the filter characteristics according to the fluctuation range of the flow value.
  • the filter characteristics are gradual when the fluctuations are small, so that the fluctuations in the flow rate can be quickly changed. Fluctuations in the flow rate can be greatly suppressed.
  • the filter processing is performed only when the flow rate value detected by the instantaneous flow rate detection means is low.
  • the filter processing means is configured to change the filter characteristics according to the flow rate value. By changing the filter characteristics according to the flow rate value, the filter process is performed only at low flow rates to quickly respond to changes in flow rate at high flow rates and greatly reduce the effects of pulsation at low flow rates. it can.
  • the filter processing means is configured to filter according to the flow time interval of the instantaneous flow rate detection means.
  • the filter characteristics are changed.
  • fluctuations can be suppressed by a gentle filter characteristic when the measurement interval is short and by a steep filter characteristic when the measurement interval is wide.
  • a filter processing means is provided to change the cutoff frequency of the filter characteristics to be higher when the flow rate is large, and to change the cutoff frequency to have a lower filter characteristic when the flow rate is low. Then, the response becomes faster at a large flow rate, and the pulsation can be suppressed at a low flow rate.
  • the filter characteristic is changed so that the fluctuation range of the flow rate value calculated by the stable flow rate calculation means is within a predetermined value. Then, by changing the filter characteristic so that the fluctuation value falls within the predetermined value, the flow rate fluctuation can always be suppressed to a predetermined value or less.
  • an ultrasonic flowmeter that detects the flow rate using ultrasonic waves was used as the instantaneous flow rate detection means.
  • the instantaneous flow rate can be measured even when a large flow rate fluctuation occurs, and a stable flow rate can be obtained from the flow rate value by arithmetic.
  • a thermal flow meter was used as the instantaneous flow rate detection means. By using a thermal flow meter, the instantaneous flow rate can be measured even if a large flow rate fluctuation occurs, and a stable flow rate can be obtained from the flow rate value by arithmetic.
  • a flow rate measuring unit through which the fluid to be measured flows; a pair of ultrasonic vibrators provided in the flow measuring unit for transmitting and receiving ultrasonic waves; a driving circuit for driving one ultrasonic vibrator; A reception detection circuit that is connected to the ultrasonic transducer and detects an ultrasonic signal; a timer that measures the propagation time of the ultrasonic signal; a control unit that controls the drive circuit; A calculating unit for determining the driving method, and a periodicity changing unit for sequentially changing a driving method of the drive circuit, wherein the control unit changes the periodicity in the flow rate measurement so that the measuring period does not become constant. Control. For this reason, noise synchronized with the measurement cycle or the ultrasound transmission cycle Sometimes, they are not always in the same phase and are dispersed, so that measurement errors can be reduced.
  • a flow rate measuring unit through which the fluid to be measured flows; a pair of ultrasonic vibrators provided in the flow measuring unit for transmitting and receiving ultrasonic waves; a driving circuit for driving one ultrasonic vibrator; A reception detection circuit that is connected to the ultrasonic transducer and detects an ultrasonic signal; a control unit that receives the output of the reception detection circuit and controls the drive circuit a predetermined number of times so as to drive the ultrasonic transducer again; A controller for measuring the time, calculating a flow rate from the output of the timer by calculation, and a periodicity changing means for sequentially changing the driving method of the drive circuit, wherein the control unit controls the cycle so as not to be constant.
  • the periodicity changing means for each reception detection of the reception detection circuit. Since the measurement can be performed by operating the cycle changing means with multiple settings in one flow measurement, the noise becomes a dispersion-averaged measurement result, and a stable measurement result can be obtained.
  • the periodicity changing means is configured to switch and output output signals of a plurality of frequencies, and the control unit controls so as to change the frequency setting of the periodicity changing means and change the driving frequency of the driving circuit every measurement.
  • the control unit controls so as to change the frequency setting of the periodicity changing means and change the driving frequency of the driving circuit every measurement.
  • the periodicity changing means is configured to output an output signal having a plurality of phases at the same frequency
  • the control unit changes the phase setting of the output signal of the periodicity changing means for each measurement to change the drive phase of the drive circuit. Since control is performed to change the timing, the reception detection timing can be changed over time by converting the phase fluctuation of the drive signal into time by changing the drive phase. For this reason, noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • the frequency changing means may be configured to determine the first frequency, which is the operating frequency of the ultrasonic vibrator, and the first frequency.
  • the control unit outputs the output signal obtained by changing the setting of the second frequency of the periodicity changing unit for each measurement via the drive circuit, with a configuration in which a signal of a second frequency different from the one frequency is superimposed and output. Therefore, the periodicity in the flow measurement can be disturbed. For this reason, noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • the periodicity changing means changes the vibration of the ultrasonic transducer at the time of transmission and changes the reception detection timing by switching the setting with and without the second frequency, so that the periodicity in the flow rate measurement may be disturbed. Since the noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, the measurement error can be reduced.
  • the periodicity changing means changes the phase setting of the second frequency, thereby changing the vibration of the ultrasonic vibrator at the time of transmission and changing the reception detection timing.
  • noise synchronized with the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception, and is dispersed and averaged, so that measurement errors can be reduced.
  • the periodicity changing means changes the frequency setting of the second frequency, changes the vibration of the ultrasonic transducer at the time of transmission, and changes the reception detection timing, so that the periodicity in the flow measurement can be disturbed, and the measurement cycle can be changed.
  • noise synchronized with the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • the periodicity changing means includes a delay unit capable of setting a different delay time, and the control unit changes the delay setting every time ultrasonic transmission or ultrasonic reception is detected. This makes it possible to disperse the reverberation of the transmitted ultrasonic wave and the effect of tailing of the ultrasonic transducer, thereby reducing measurement errors.
  • the width of the cycle changed by the cycle changing means is an integral multiple of the value corresponding to the propagation time variation due to measurement error, the error is minimized when all settings are summed and averaged. be able to.
  • the width of the cycle changed by the cycle changing means is the cycle of the resonance frequency of the ultrasonic transducer
  • the average value of the sum of all settings is the minimum measurement error generated by the reverberation and tailing of the ultrasonic sensor. Therefore, the measurement error can be reduced.
  • the order of the pattern for changing the periodicity is the same for the measurement in the upstream direction and the measurement in the downstream direction, the measurement in the upstream direction and the measurement in the downstream direction are always the same condition, and the measurement when the flow rate fluctuates The result can be stabilized.
  • the predetermined number is an integral multiple of the number of changes of the periodicity changing means, all the set values of the periodicity changing means can be set uniformly in one flow measurement, and the measurement result is stable. Can be done.
  • a flow rate measuring unit through which the fluid to be measured flows; a pair of ultrasonic vibrators provided in the flow measuring unit for transmitting and receiving ultrasonic waves; a driving circuit for driving one ultrasonic vibrator; A reception detection circuit connected to the ultrasonic transducer for detecting an ultrasonic signal; a first timer for measuring a propagation time of the ultrasonic signal; and a first timer for detecting reception of the ultrasonic signal after the reception detection circuit detects the reception time.
  • a second timer for measuring the time until the value changes, a control unit for controlling the drive circuit, and a calculation unit for calculating the flow rate from the outputs of the first timer and the second timer. And a configuration for correcting the second timer with the first timer.
  • the flow rate is calculated based on the value obtained by subtracting the value of the second timer from the value of the first timer, so that the timing resolution becomes equal to that of the second timer. Since the operation time of the second timer is very short, power consumption can be reduced, and a flowmeter with high resolution can be realized with low power consumption. In addition, accurate flow measurement can be performed if the second image stably operates until the flow measurement after the correction, so that accurate measurement can be performed even if the second image has no long-term stability. Can be. A high-precision flowmeter can be easily realized with general parts.
  • a temperature sensor is provided, and when the output of the temperature sensor changes by more than the set value, the second The timer is corrected by the first timer. For this reason, even if the second timer changes its characteristic with respect to the temperature change, it can be corrected and accurate measurement each time a temperature change occurs. At the same time, correction is performed only when necessary, so that power consumption can be reduced.
  • a voltage sensor for detecting a power supply voltage of the circuit is provided, and the second timer is corrected by the first timer when the output of the voltage sensor changes by a set value or more. For this reason, even if the second image has a characteristic that changes with respect to the power supply voltage change, it can be corrected and accurate measurement can be performed each time the power supply voltage change occurs. At the same time, the power consumption can be reduced because it is not necessary to perform the correction periodically.
  • a flow rate measuring unit through which the fluid to be measured flows; a pair of ultrasonic vibrators provided in the flow measuring unit for transmitting and receiving ultrasonic waves; a driving circuit for driving one ultrasonic vibrator; A reception detection circuit that is connected to the ultrasonic transducer and detects an ultrasonic signal; a control unit that receives the output of the reception detection circuit and controls the drive circuit a predetermined number of times so as to drive the ultrasonic transducer again;
  • the control section has a constant measurement cycle, including a timer for measuring time, a calculation section for calculating a flow rate from the output of the timer by calculation, and periodicity stabilizing means for sequentially changing a driving method of the drive circuit.
  • the periodic stabilization means is controlled so that With this configuration, the measurement cycle is always constant even when the propagation time changes, so that the noise synchronized with the measurement cycle or the ultrasonic transmission cycle always has the same phase during reception regardless of the propagation time fluctuation. Therefore, the measurement error can be kept constant, and the flow measurement can be stabilized even with a very long noise period.
  • control unit has periodicity stabilizing means including a delay unit that can set a different delay time, and the control unit changes the output time of the drive circuit by switching the delay time. Since the measurement period is stabilized by changing the delay time, the measurement period can be stabilized without affecting the driving of the ultrasonic transducer. In addition, since the control unit controls the drive circuit to keep the measurement time constant, the measurement cycle can be controlled to be constant by a simple calculation without calculating the propagation time of each ultrasonic wave. . BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a block diagram of a flow meter according to Embodiment 1 of the present invention.
  • FIG. 2 is a timing chart illustrating the operation of the flowmeter.
  • FIG. 3 is a fluctuation waveform diagram illustrating the operation of the flow meter.
  • FIG. 4 is a flowchart showing the operation of the flow meter.
  • FIG. 5 is a flowchart showing the operation of the flow meter.
  • FIG. 6 is a flowchart showing the operation of the flow meter according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram of a flow meter according to Embodiment 3 of the present invention.
  • FIG. 8 is a flowchart showing the operation of the flow meter.
  • FIG. 9 is another flowchart showing the operation of the flow meter.
  • FIG. 10 is a block diagram of a flow meter according to Embodiment 4 of the present invention.
  • FIG. 11 is a flowchart showing the operation of the flow meter.
  • FIG. 12 is a block diagram of a flow meter according to the fifth embodiment of the present invention.
  • FIG. 13 is a block diagram of a flow meter according to Embodiment 6 of the present invention.
  • FIG. 14 is a configuration diagram of the flow meter.
  • Fig. 15 is a timing chart showing the operation of the flowmeter.
  • FIG. 16 is another timing chart showing the operation of the flow meter.
  • FIG. 17 is a flowchart showing the operation of the flow meter.
  • FIG. 18 is another flowchart showing the operation of the flow meter.
  • Figure 19 is another block diagram of the flow meter.
  • FIG. 20 is a timing chart showing the operation of the flow meter according to the seventh embodiment of the present invention.
  • FIG. 21 is a flowchart showing the operation of the flow meter.
  • FIG. 22 is a timing chart showing the operation of the flow meter according to the eighth embodiment of the present invention.
  • FIG. 23 is a flowchart showing the operation of the flow meter.
  • FIG. 24 is a block diagram of a flow meter according to the ninth embodiment of the present invention.
  • FIG. 25 is a timing chart showing the operation of the flowmeter.
  • FIG. 26 is a block diagram of a flow meter according to Embodiment 10 of the present invention.
  • FIG. 27 is a flowchart showing the operation of the flow meter.
  • FIG. 28 is a timing chart showing the operation of the flow meter according to Embodiment 11 of the present invention.
  • FIG. 29 is a timing chart showing the operation of the flow meter according to Embodiment 12 of the present invention.
  • FIG. 30 is a timing chart showing the operation of the flow meter.
  • FIG. 31 is another timing chart showing the operation of the flow meter.
  • FIG. 32 is a timing chart showing the operation of the flow meter according to Embodiment 13 of the present invention.
  • FIG. 33 is a timing chart showing the operation of the flow meter according to Embodiment 14 of the present invention.
  • FIG. 34 is a flowchart showing the operation of the flow meter according to Embodiment 15 of the present invention.
  • FIG. 35 is a flowchart showing the operation of the flow meter according to Embodiment 16 of the present invention.
  • FIG. 36 is a flowchart showing the operation of the flow meter according to Embodiment 17 of the present invention.
  • FIG. 37 is a flowchart showing an operation of the flow meter according to Embodiment 18 of the present invention.
  • FIG. 38 is a flowchart showing the operation of the flow meter according to Embodiment 19 of the present invention.
  • FIG. 39 is a flowchart showing the operation of the flow meter according to Embodiment 20 of the present invention.
  • FIG. 40 is a flowchart showing the operation of the flow meter according to Embodiment 21 of the present invention.
  • FIG. 41 is a block diagram of a flow meter according to Embodiment 22 of the present invention.
  • FIG. 42 is a block diagram of a flow meter according to Embodiment 23 of the present invention.
  • Fig. 43 is a flow chart showing the operation of the flowmeter.
  • FIG. 44 is a flowchart showing digital filter processing of the flow meter.
  • FIG. 45 is a filter characteristic diagram illustrating the operation of the flow meter.
  • FIG. 46 is a flowchart showing the operation of the flow meter according to Embodiment 24 of the present invention.
  • FIG. 47 is a flowchart showing the operation of the flow meter according to Embodiment 25 of the present invention.
  • FIG. 48 is a flowchart showing the operation of the flow meter according to Embodiment 26 of the present invention.
  • FIG. 49 is a flowchart showing the operation of the flow meter according to Embodiment 27 of the present invention.
  • FIG. 50 is a flowchart showing the operation of the flow meter according to Embodiment 28 of the present invention.
  • FIG. 51 is a block diagram of a flow meter according to Embodiment 29 of the present invention.
  • FIG. 52 is a block diagram of a flow meter according to Embodiment 30 of the present invention.
  • FIG. 53 is a block diagram of the periodicity changing means of the flow meter.
  • Fig. 54 is a diagram showing the reception detection timing of the flow meter.
  • FIG. 55 is a block diagram of a flow meter according to Embodiment 31 of the present invention.
  • FIG. 56 is a block diagram of the periodicity changing means of the flow meter.
  • FIG. 57A is a block diagram of a periodicity changing unit of the flow meter according to Embodiment 32 of the present invention.
  • FIG. 57B is a diagram showing the reception detection timing of the flow meter.
  • FIG. 58 is a block diagram of a periodicity changing unit of the flow meter according to Embodiment 33 of the present invention.
  • FIG. 59 is a block diagram of a periodicity changing means of the flow meter according to Embodiment 34 of the present invention.
  • FIG. 60 is a block diagram of the periodicity changing means of the flow meter according to Embodiment 35 of the present invention.
  • FIG. 61 is a block diagram of a flow meter according to Embodiment 36 of the present invention.
  • FIG. 62 illustrates operations of the first timer and the second timer according to Embodiment 36 of the present invention.
  • FIG. 63 is a block diagram of a flow meter according to Embodiment 37 of the present invention.
  • FIG. 64 is a block diagram of a conventional flow meter.
  • FIG. 65 is a block diagram of another conventional flow meter.
  • FIG. 66 is a block diagram of another conventional flow meter.
  • FIG. 67 is a flowchart showing the operation of another conventional flowmeter.
  • FIG. 68 is a block diagram of a conventional flow meter. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram of a flow meter according to Embodiment 1 of the present invention.
  • reference numeral 117 denotes a first transmission / reception means provided in the flow path 116 for transmitting / receiving using a sound wave propagation as a change in state of a fluid
  • 118 denotes a second transmission / reception means as a transmission / reception means Means
  • 1 19 is a repetition means for repeating the signal transmission of the first transmission / reception means 117 and the second transmission / reception means 118
  • 120 is a sound wave during repetition by the repetition means 1 19
  • a time measuring means for measuring the propagation time
  • a flow rate detecting means for detecting a flow rate based on the value of the time measuring means
  • a frequency changing means for sequentially changing the flow rate to a predetermined number of repetitions.
  • data holding means 125 holding one transmission time of each transmission and reception obtained by the elapsed time detecting means 123, and data held by the data holding means 125 and measured propagation The period is detected by the period detecting means 124 by comparing time data.
  • Reference numeral 1 26 denotes switching means for switching the transmission / reception operation of the first vibrator 1 17 and the second vibrator 1 18, 1 2 7 denotes a transmitter for transmitting an ultrasonic signal, and 1 2 8 denotes an ultrasonic wave It is a receiver that receives a signal.
  • measurement is started by a repetition start signal, and the input signal is input to the first vibrator, whereby the first vibrator vibrates and emits a sound wave.
  • the sound wave is received by the second vibrator, and the propagation time during this time is measured while the time counting means is counting with a predetermined clock.
  • the delay time in the figure is a waiting time for waiting for sound wave attenuation, and is fixed.
  • an input signal is again input to the first vibrator, a sound wave is transmitted, and the second vibrator receives and repeats the measurement a predetermined number of times.
  • the count number C i +1 received at the time of the second vibration is compared with the previous C i to detect a cycle in which the flow velocity fluctuation occurs repeatedly.
  • the flow velocity fluctuations V5 and V6 have a negative count value difference C5—C6, but the flow velocity fluctuations V6 and V7 have The difference C 6 — C 7 becomes a positive value and the sign is inverted.
  • the flowchart of FIG. 4 shows the flow of detecting the cycle, and shows that a change in the flow velocity fluctuation is detected by holding one clock counter and comparing it with the next clock counter. Also, as shown in Fig. 5, the processing of 1 and the means for changing the number of times were configured to be performed every time before the flow rate measurement. In this way, by detecting the period and repeatedly measuring the propagation time during that period, even if there is a fluctuation in the flow, it is averaged by measuring in one period of the fluctuation, so the measurement is performed. The flow rate will be measured without being affected by fluctuations. If the measurement is performed not only for one cycle but also for multiple cycles, more stable and accurate flow rate measurement can be performed.
  • the method of detecting the difference by counting the difference between the count values and inverting the sign has been described.However, the point where the difference is the largest may be detected, or the held count value and the most The cycle may be obtained by detecting a point at which a close count value is measured again.
  • a cycle may be obtained by using an autocorrelation or a frequency analysis method using a plurality of held data, or the period may be obtained from a plurality of held data. The period may be detected by calculating the difference as shown in FIG.
  • the configuration can be simplified without the need for the flow fluctuation detection means, and the cycle is detected from the intermediate information of the time measurement means before the flow rate detection, and the time of the repeated measurement is set to an integral multiple of the cycle. Therefore, flow measurement can be performed stably and accurately.
  • the period can be detected each time by storing and comparing the instantaneous timing information by the data holding means.
  • the influence of a change in flow fluctuation can be suppressed, and stable flow measurement can be realized. Since the number of repetitions is set to an integral multiple of the cycle immediately before the flow rate measurement, the flow fluctuation is averaged, and the flow rate measurement can be performed stably and accurately.
  • FIG. 6 is a flowchart showing the operation of the flow meter according to the second embodiment of the present invention. The difference from the first embodiment is that the number of repetitions according to the cycle obtained by the cycle detecting means is a processing configuration used at the next flow rate measurement. The configuration is shown in Fig. 1.
  • the time information Ci of the time means at that time is held in the data holding means. Then, measurement T2 of the propagation time from the second vibrator is performed, and the flow velocity and the flow rate are calculated from T1 and T2. Then, the period of the flow fluctuation is detected from the held timing information Ci by the method described in the first embodiment, and the number of repetitions is changed and reflected in the next measurement.
  • FIG. 7 is a block diagram of a flow meter according to Embodiment 3 of the present invention.
  • the flow rate fluctuation discriminating means 12 9 for judging the magnitude of the fluctuation of the flow rate detected by the flow rate detecting means 122 1 and the flow rate fluctuation discriminated by the flow rate fluctuation determining means 1 29
  • a number change means 122 for changing the number of repetitions so as to reduce the number of repetitions, and the flow rate change determination means 122 is configured to perform the determination using a standard deviation of the flow rate.
  • the flow rate Qi is measured.
  • a predetermined value Qm for example, 100 liters Z time
  • the number of repetitions is kept as it is. If it is less than the predetermined value Qm, the standard deviation Hi is obtained based on the n data before the measured flow rate Qi.
  • a predetermined value Hm for example, 1 liter time
  • the number of repetitions is changed. At this time, repeated times The number is changed so as to increase from the initial value K 0 by a predetermined value d K (for example, twice). If the number of times is equal to or more than the predetermined number Km, the number is returned to the initial value and changed again.
  • the process of changing the number of times only when the measured flow rate is less than the predetermined flow rate it is possible to reduce the power consumption without processing when the flow rate is large.
  • the standard deviation is more than a predetermined value
  • the number of times is changed so that the flow rate fluctuation can be reduced. be able to.
  • the fluctuation can be detected accurately by judging the flow fluctuation using the standard deviation.
  • the number of repetitions can be examined from a small number, so that the required number can be found in a short time.
  • the repetition number changing means by operating the repetition number changing means only when the measured flow rate is equal to or lower than the predetermined flow rate and the standard deviation is equal to or higher than the predetermined value, the number of times of changing the number of times is further restricted, thereby reducing the consumption. It can be electric power.
  • FIG. 10 is a block diagram of a flow meter according to Embodiment 4 of the present invention.
  • the difference from the first embodiment is that an abnormality determining means 130 and a flow rate managing means 131 are provided.
  • the number-of-times changing means is configured to operate when the abnormality determining means 130 as a predetermined process is executed and when the flow rate managing means 131 is executed.
  • the abnormality determination means when executed and when the flow rate management means is executed, the number of times can be changed only when necessary. Thus, power consumption can be reduced. In other words, it is necessary to measure the flow rate in a short time due to its urgency. As a result, the abnormality determination becomes slower when the measured flow rate fluctuates due to the fluctuation of the flow, so that the measurement can be performed in a short time by changing the measurement to the number of repetitions corresponding to the fluctuation cycle.
  • flow control is for managing what kind of load is used on the downstream side, and it is necessary to detect and determine the flow rate in a short time. The measurement can be performed in a short time by changing to the number of repetitions.
  • FIG. 12 is a block diagram of a flow meter according to the fifth embodiment of the present invention.
  • the transmitting and receiving means uses the propagation of heat as a state change of the fluid.
  • 1 32 is a heater for transmitting heat
  • 1 33 is a temperature sensor for receiving heat.
  • the fluctuation period can be detected from the fluctuation of the heat propagation time, so that the configuration can be simplified, and the time of the repeated measurement can be changed.
  • the flow rate can be measured stably and accurately by setting it to an integral multiple of.
  • the number of successive repetitions can be changed in accordance with the change in flow fluctuation, and the effect of the fluctuation can be suppressed immediately, and stable flow measurement can be realized. Since the number of repetitions is set to an integral multiple of the cycle immediately before performing the flow rate measurement, the flow fluctuation is averaged, and the flow rate measurement can be performed stably and accurately.
  • FIG. 13 is a block diagram of a flow meter according to Embodiment 6 of the present invention.
  • reference numeral 2 23 denotes a first piezoelectric vibrator provided as a first vibrating means of a transmitting / receiving means provided in the flow path 2 24 and transmitting and receiving using ultrasonic waves as a state change of a fluid, and 2 25
  • a second piezoelectric vibrator as a second vibrating means of transmitting / receiving means for transmitting and receiving ultrasonic waves
  • a switching switch as a switching means for switching the transmitting and receiving operations of the first piezoelectric vibrator and the second piezoelectric vibrator; 227 is repeated by the first piezoelectric vibrator 222 and the second piezoelectric vibrator 222.
  • 228 is a flow rate detecting means for detecting a flow rate based on the value of the time measuring means
  • 229 is a fluctuation detecting means for measuring the pressure fluctuation in the flow path by the first piezoelectric vibrator 223 and the second piezoelectric vibrator 225
  • the measurement control means 230 starts measurement of the first time measurement time T1 when the output of the fluctuation detection means 229 rises, and starts measurement of the second time measurement T2 when the output of the fluctuation detection means 229 falls.
  • the measurement of the first time T1 is started when the output of the fluctuation detecting means falls, and the measurement of the second time T2 is measured when the output of the fluctuation detecting means rises.
  • Start measurement control is performed, and the flow measurement means 228 alternates the measurement start with the first flow rate obtained using the previous first time measurement time T1 and the second time measurement time T2, and the next first time measurement value.
  • the flow rate was calculated by successively averaging the second flow rate obtained using the clocking time T1 and the second clocking time T2.
  • Reference numeral 231 denotes a selection switch as selection means for selecting whether to transmit / receive ultrasonic waves to the second piezoelectric vibrator or to detect pressure fluctuation
  • 232 denotes an ultrasonic signal transmitter
  • 233 denotes an ultrasonic signal reception.
  • 234 is a repetition means for performing sing-around measurement
  • 235 is operation check means for the first piezoelectric vibrator and the second piezoelectric vibrator.
  • T 1 LZ (C + Vc os ⁇ ) .
  • T2 L / (C ⁇ Vcos ⁇ ).
  • V is the flow velocity in the channel
  • C is the speed of sound
  • is the inclination angle.
  • V (L / 2 c 0 s (1 / T1-1 / T2)
  • ⁇ 1 L / (C + V c os ⁇ + u-s in (2 ⁇ f t))
  • T 2 L / (C-Vco s ⁇ -u ⁇ s i n (2 ⁇ f t + Y))
  • V (L / 2 c os ⁇ ) (l / T 1-1 / T2)
  • the flow velocity V can be measured even during fluctuations, and the flow rate can be calculated in consideration of the cross-sectional area of the flow path.
  • T 1 ⁇ [LZ (C + Vc 0 s 0 + u ⁇ s i n (2 ⁇ f t i))]
  • the subscript i indicates the number of single rounds
  • V (L / 2 c o s O) (1 / T 1-1 / T2)
  • the flow velocity V can be measured even during fluctuations, and the flow rate can be calculated in consideration of the cross-sectional area of the flow path.
  • the output signal of the fluctuation detecting means 229 is realized by comparing and detecting the zero-cross point of the AC component of the pressure fluctuation with a comparator. That is, the T1 measurement is started at the rising edge of the output signal of the fluctuation detecting means, and the integrated time T1 is measured at a predetermined number of single rounds. On the other hand, the start of the ⁇ 2 measurement is performed at the fall of the output signal of the fluctuation detecting means 29, and the integration time ⁇ 2 is measured at the same predetermined number of sing-arounds. As shown in Figure 15, T1 measures the pressure waveform between A, B, and C, and T2 measures the pressure waveform between F, G, and H, which have the opposite amplitudes of A, B, and C. Therefore, the pressure fluctuation is canceled.
  • the start of measurement can be improved. Can be canceled. That is, the start of the T1 measurement is performed at the rising edge of the output signal of the fluctuation detecting unit 229, and the integrated time T1 is measured at a predetermined number of single rounds. On the other hand, the T2 measurement is started at the fall of the output signal of the fluctuation detecting means 229, and the integrated time T2 is measured at the same predetermined number of single rounds.
  • the T1 measurement is started at the falling edge of the output signal of the fluctuation detecting means 29, and the integration time T1 is measured at a predetermined number of sing-arounds.
  • T2 measurement is started at the rise of the output signal of the fluctuation detecting means 229, and the integration time ⁇ 2 is measured at the same predetermined number of single rounds.
  • the first T1 measures between A, B, and C of the pressure waveform
  • D2 measures between 0, E, and F.
  • the difference between C and F remains as an error C1 (-F)
  • T1 is measured with the inverted waveforms H, I, and J.
  • the measurement was explained twice, but if the waveform of the pressure fluctuation is asymmetric and complicated, the start of the measurement is changed and repeated according to the periodicity of the waveform, and the measurement is averaged. Can be minimized.
  • the flow of the measurement will be described with reference to the flowcharts of FIGS. First, it is determined whether or not the signal of the fluctuation detecting means is rising. If not, the determination is repeated until the output signal of the fluctuation detecting means 229 rises.
  • the processing as the detection canceling means stops the rise detection and measures the first time T1 and the second time T2 assuming that there is no pressure fluctuation. Do.
  • the first time T1 is measured. Then, it is determined whether or not the signal of the fluctuation detecting means 229 falls. If a falling edge is detected here, the second time T2 is measured. If the falling is not detected even after standing for a predetermined time, the processing as the detection canceling means stops the falling detection, measures the second time T2 assuming that there is no pressure fluctuation, and Calculate the flow rate Q (j) from the measured time T1 and the second measured time T2.
  • the instantaneous flow rate can be measured stably and accurately.
  • the phase of the pressure fluctuation and the timing of the measurement can be shifted, and the measurement error due to the pressure fluctuation can be canceled.
  • the effect of the pressure fluctuation can be offset.
  • averaging can be performed in one measurement, and stable flow measurement can be performed.
  • at least one of the first vibrating means and the second vibrating means can be used for pressure detection, and both flow rate measurement and pressure measurement can be achieved.
  • the period of the fluctuation can be accurately grasped, and the flow rate can be offset. Then, even if the fluctuation disappears, the flow rate can be automatically measured after a predetermined time.
  • a piezoelectric vibrator as a fluctuation detecting means, it is possible to detect pressure fluctuations while using ultrasonic waves for transmission and reception.Furthermore, there is no need to provide a dedicated pressure detecting means, and leakage can be prevented. There is an effect that a part which becomes a factor can be reduced.
  • the same effect can be obtained functionally by detecting pressure fluctuation described in the present embodiment using a dedicated pressure detecting means. Further, the case where the second piezoelectric vibrator on the downstream side is used has been described, but the same effect can be obtained when the first piezoelectric vibrator on the upstream side is used. Furthermore, as shown in Fig. 19, the upstream and downstream piezoelectric vibrators are alternated. The same effect can be obtained by using the piezoelectric vibrator, but it is also possible to check the operating state of each piezoelectric vibrator by using them alternately. That is, when the signal of the fluctuation detecting means is a signal of the same cycle in signals from either of the piezoelectric vibrators, it can be determined that both are operating normally.
  • the flow meter is described as a general instrument, use of this flow meter as a gas meter will allow it to be used in pulsating flow piping, such as a piping system that uses a gas engine heat pump. Is possible. Furthermore, as explained in the case of pressure fluctuation, it is clear that the same effect can be obtained when there is flow rate fluctuation.
  • FIG. 20 is a timing chart showing the operation of the flow meter according to the seventh embodiment of the present invention.
  • the difference from the sixth embodiment is that repetition means 234 for transmitting and receiving a single round a plurality of times over an integral multiple of the fluctuation period is provided.
  • the configuration is shown in Figure 13.
  • the measurement is started at intervals of a predetermined time (for example, a period of 2 seconds), when the predetermined time comes, the fluctuation period detected by the fluctuation detecting means 229 is measured. Then, the number of sing-arounds substantially matching the cycle is set. For example, one propagation time can be calculated by dividing the distance between ultrasonic transducers by the speed of sound. The required number of sing-arounds can be calculated by dividing the measured period by the propagation time. The flow rate is measured repeatedly by the number of single rounds. (1) in FIG. 21 is to perform the process (2) in FIG.
  • FIG. 20 shows a case where two cycles are measured. If the propagation distance is short, more than a predetermined number of single rounds are required to increase the measurement accuracy.If the number of single rounds determined from the fluctuation period is smaller than the predetermined number, a multiple of the period The number of single rounds may be determined so that
  • FIG. 22 is a timing chart showing the operation of the flow meter according to the eighth embodiment of the present invention.
  • the difference from the sixth embodiment is that the transmission / reception measurement of the sound wave is started when the output of the fluctuation detecting means 229 changes by a predetermined amount (for example, at the time of falling), and the output of the fluctuation detecting means is the same as the predetermined change.
  • the structure is provided with a repetition means 234 that repeats the sing-around until a change (for example, at the time of a fall) is made, and performs transmission / reception measurement of sound waves.
  • the configuration is shown in Figure 13.
  • the rise of the fluctuation detection signal is detected at the start of measurement, and the single round is started. Then, when the signal of the fluctuation detection signal rises again, the single round is stopped and the first clock time T1 is measured. Next, at the start of measurement, the falling of the fluctuation detection signal is detected, and the sing-around is started. Then, when the signal of the fluctuation detection signal falls again, the sing-around is stopped and the second clock time T2 is measured. The flow rate is calculated from T1 and T2.
  • the start and stop of the measurement can be made to coincide with the cycle of the pressure fluctuation, so that the measurement can be performed at the fluctuation cycle, and the pressure fluctuation can be averaged and a stable flow rate can be measured.
  • FIG. 24 is a configuration diagram showing a flow meter according to the ninth embodiment of the present invention.
  • the difference from the sixth embodiment is that the two-bit force counting means 2336 for counting the fluctuation of the output signal of the fluctuation detecting means 229 and the count value of the counting The measurement was performed differently between the time and the second time, and the flow rate detection means 228 was used to measure the flow rate when all the combinations of the two bits were realized the same number of times.
  • Figure 25 shows the timing chart.
  • the T1 measurement starts when the output of the force-measuring means is (1, 0) and the output of the fluctuation detecting means rises, and the T2 measurement is performed. Then, the measurement is started at the fall of the fluctuation detecting means.
  • FIG. 26 is a configuration diagram showing a flow meter according to the fifth embodiment of the present invention.
  • the difference from the sixth embodiment is that a cycle detecting means 237 for detecting the cycle of the signal of the fluctuation detecting means 229 and a measurement control for starting the measurement only when the cycle detected by the cycle detecting means 237 is a predetermined cycle.
  • the configuration provided with the means 230 was adopted.
  • the measurement can be performed at the predetermined fluctuation period even when the period fluctuates.
  • the flow rate can be measured only at a specific pressure fluctuation by detecting the period. Therefore, the pressure fluctuation Even when the period fluctuates, a stable flow rate can be measured in a short time.
  • the detection of the period has a predetermined time width (for example, 2 milliseconds) so that the measurement is performed flexibly and the measurement is continued without interruption.
  • FIG. 28 is a configuration diagram showing a flow meter according to Embodiment 11 of the present invention.
  • the transmission / reception means uses the propagation of heat as a fluid state change.
  • 238 is a heater for transmitting heat
  • 239 is a first temperature sensor for receiving heat
  • 240 is a second temperature sensor for receiving heat.
  • the second temperature sensor 240 generates heat by itself and can detect a change in the state of the fluid by a change in the self-resistance value.
  • the second temperature sensor which is a means for transmitting and receiving heat, as well, it is possible to detect a change in the state of the fluid, that is, a change in flow velocity or pressure. Then, by performing one-cycle measurement in synchronization with the detected fluctuation, the flow measurement can be performed stably and accurately as in the above-described embodiment.
  • FIG. 29 is a block diagram of a flow meter according to Embodiment 12 of the present invention.
  • reference numeral 32 3 denotes a first piezoelectric vibrator provided as a first vibrating means of the transmitting / receiving means provided in the flow path 3 24 for transmitting and receiving using ultrasonic waves as a change in the state of the fluid;
  • 5 is a second piezoelectric vibrator as a second vibrating means of transmitting / receiving means for transmitting and receiving ultrasonic waves
  • 326 is a switching means for switching the transmitting and receiving operations of the first piezoelectric vibrator and the second piezoelectric vibrator.
  • All the switching switches, 327 are time-measuring means for measuring the propagation time of sound waves repeatedly transmitted and received by the first piezoelectric vibrator 323 and the second piezoelectric vibrator 325, and 328 is the time-measuring means.
  • Flow rate detection means that measures the flow rate based on the value
  • 329 is a pressure fluctuation detector as a fluctuation detection means that measures the pressure fluctuation in the flow path 324
  • 330 is the pressure of the pressure detector 329
  • Synchronous pulse output means as fluctuation detecting means for converting a signal into a digital signal; This is a measurement control unit that instructs measurement in synchronization with the timing of pressure fluctuation.
  • 3 3 2 is a transmitter of the transmitting and receiving means of the ultrasonic signal
  • Numeral 333 is a receiver of an ultrasonic signal transmitting / receiving means
  • 334 is a repeating means for repeatedly transmitting and receiving ultrasonic waves
  • 335 is a measurement monitoring means for monitoring an abnormality of the measurement control means.
  • T 2 LZ (C ⁇ Vcos ⁇ ).
  • V is the flow velocity in the channel
  • C is the speed of sound
  • 0 is the inclination angle.
  • V (L / 2 c os ⁇ ) (l / T 1-1 / T2)
  • T l L / (C + Vcos ⁇ + u-sin (2 ⁇ ft))
  • T2 L / (C-V c os ⁇ -uSin (2 ⁇ f t + ⁇ >))
  • Yu is the time difference (phase difference) between the start of ⁇ 1 measurement and the start of ⁇ 2 measurement. And taking the reciprocal difference between ⁇ 1 and ⁇ 2,
  • V (L / 2 c os d) (1ZT 1-1ZT2)
  • the flow velocity V can be measured even during fluctuations, and the flow rate can be calculated in consideration of the cross-sectional area of the flow path.
  • the measurement control means that measures the flow rate while detecting the pressure fluctuation can accurately measure the flow rate without being affected by the pressure fluctuation by setting the measurement flow rate. The above is explained with one transmission / reception measurement However, it is clear that the integration time can be obtained in the same manner when the integration time is obtained by a method of repeatedly measuring the propagation time by the repeating means 34.
  • the measurement control means 331 outputs a measurement start signal at a predetermined measurement time (for example, every two seconds), and sets a zero cross point of the pressure fluctuation as a threshold value. Wait for a change in the output signal of the synchronized pulse output means. Then, when the output signal of the synchronization pulse output means 330 outputs a falling signal of the output signal as the first output signal, measurement of the first clocking time T1 is started, and the synchronization pulse output means 330 The measurement of the propagation time is repeated until the rising signal of the output signal as the second output signal is output.
  • a predetermined measurement time for example, every two seconds
  • the measurement of the second clock time T 2 is started, and the synchronous pulse output means 330 The measurement of the propagation time is repeated until the falling signal of the output signal as the second output signal is output.
  • the flow rate detecting means 328 converts the time from the time T1, T2 of the time measuring means 327 to the flow rate and completes the flow rate measurement.
  • the measurement control means 331 outputs a measurement start signal at a predetermined measurement time, but waits for a predetermined time for a change in the output signal of the synchronous pulse output means 330. Even if the output signal of the synchronous pulse output means does not change, a measurement start signal is automatically output and measurement is performed at a predetermined number of repetitions (for example, 256 times). For example, if the measurement interval is 2 seconds and the frequency of pressure fluctuation occurs in the range of 10 Hz to 20 Hz, the predetermined waiting time can be set between 0.1 seconds and 2 seconds. However, it is desirable to set 1 second as the optimal value. Also, the predetermined number of repetitions can be set from 2 to 5 12 times, and it is desirable to set an optimum value according to the frequency of pressure fluctuation.
  • the measurement can be started after a predetermined time and the flow measurement can be performed whenever the flow measurement needs to be performed. For example, in a gas meter, etc. If no pressure fluctuation is detected at that time, the flow rate measurement can be performed automatically even when the synchronous pulse output signal is not obtained due to the pressure fluctuation, and the I can deal with it.
  • FIG. 32 is a timing chart showing the operation of the flow meter according to Embodiment 13 of the present invention.
  • the difference from the first and second embodiments is that, when the start signal is not generated within a predetermined time after the instruction of the measurement control means 331, measurement is not performed until the next instruction of the measurement control means. 3 to have 5
  • the configuration is shown in Figure 29.
  • the measurement control means 331 outputs a measurement start signal at a predetermined measurement time. If no change in the output signal of the synchronous pulse output means appears even after waiting for a change in the output signal of the synchronous pulse output means 330 for a predetermined time, the measurement and monitoring means 335 ends the standby of the synchronous pulse signal.
  • the measurement control means 331 is instructed to wait for the next measurement timing (for example, two seconds later).
  • the predetermined waiting time can be set between 0.1 seconds and 2 seconds. However, it is desirable to set 1 second as the optimal value.
  • FIG. 32 shows the timing at which the first propagation time T 1 is measured.
  • the second propagation time T 2 is measured, if no synchronization pulse occurs, the measurement time of T 1 and T 2 is measured.
  • the measurement interval is abnormally long because the interval between them becomes abnormally long. It is possible to avoid such measurement in which the measurement accuracy is reduced.
  • unnecessary measurement can be stopped and power consumption can be reduced.
  • FIG. 33 is a timing chart showing the operation of the flow meter according to Embodiment 14 of the present invention.
  • the difference from the first and second embodiments is that when the end signal is not generated within a predetermined time after the start signal, the reception of the sound wave is ended, and the end signal is not generated within the predetermined time,
  • the configuration is provided with the measurement monitoring means 335 which ends the reception of the sound wave and outputs the start signal again.
  • the configuration is shown in Figure 29.
  • the measurement control means 331 outputs a measurement start signal at a predetermined measurement time, and detects the first output signal when the output signal of the synchronous pulse output means falls. Start measurement. If the second output signal, at which the output signal of the synchronization pulse output means falls, does not appear after waiting for a predetermined time, the standby for the synchronization pulse signal is terminated, and a start signal is output again to perform measurement.
  • the predetermined waiting time is set between 0.1 seconds and 2 seconds. Yes, but it is desirable to set 1 second as the optimal value. If it is 1 second, even if re-measurement is performed, the measurement can be completed within 2 seconds after the next measurement time. If the second output signal does not appear even after re-measurement, wait until the next measurement time.
  • the standby is ended after a predetermined time and the flow measurement is not performed, so that an erroneous flow measurement can be avoided.
  • the timing means and the like will incorrectly measure, and the measurement accuracy will be reduced. It is possible to avoid such measurement in which the measurement accuracy is reduced. Then, by forcibly terminating the measurement, the measurement can be stopped without waiting for the termination, and the process can proceed to the next processing, and a stable measurement operation can be performed.
  • FIG. 34 is a flowchart showing the operation of the flow meter according to Embodiment 15 of the present invention.
  • the difference from the first and second embodiments is that when no end signal is generated within a predetermined time T after the start signal, the measurement monitoring means 3 3 5 terminates the reception of the sound wave and discards the measurement data.
  • the configuration is shown in Figure 29.
  • a predetermined time T for example, 0.
  • the predetermined time T it is possible to manage that the periodic measurement cycle (for example, 2 seconds) has been exceeded, and to perform measurements so that the measurement timings do not overlap. it can. Then, even when the propagation time of the ultrasonic wave changes due to a change in temperature, it can be managed with the same predetermined time T.
  • FIG. 35 is a flowchart showing the operation of the flow meter according to Embodiment 16 of the present invention.
  • the difference from the first and second embodiments is that, when the number of repetitions becomes equal to or more than a predetermined number N1, the configuration is provided with measurement monitoring means 335 for terminating the reception of the sound wave and discarding the measurement data.
  • the configuration is shown in Figure 29.
  • the second output signal indicating the end of one cycle is not generated even when the number of times exceeds a predetermined number N 1 (for example, 5 1 2 times). It was decided to end the repetition of transmission and reception and discard the measurement data up to that point. Then, after waiting for a predetermined time, the measurement was restarted.
  • N 1 for example, 5 1 2 times
  • FIG. 36 is a flowchart showing the operation of the flow meter according to Embodiment 17 of the present invention.
  • a measurement monitoring means 335 is provided for discarding measurement data when the number of repetitions is equal to or less than a predetermined number N2, and the measurement data is discarded when the number of repetitions is equal to or less than a predetermined number.
  • a configuration was provided in which the measurement monitoring means 335 for outputting the start signal again was provided. The configuration is shown in Figure 12.
  • the measurement data up to that point is discarded. . Then, after waiting for a predetermined time, the measurement was restarted.
  • N2 the predetermined number
  • the measurement was restarted.
  • FIG. 37 is a flowchart showing the operation of the flow meter according to Embodiment 18 of the present invention.
  • the difference from the first and second embodiments is that when the number of repetitions is equal to or less than a predetermined number N2, the measurement data is discarded, the start signal is output again, and the synchronization pulse output means 330 as a fluctuation detection means is
  • the configuration is provided with the measurement monitoring means 35 that outputs the second output signal when the second cycle is reached and continues the measurement until the end signal in the second cycle.
  • the configuration is shown in Figure 29.
  • the measurement data up to that point is discarded.
  • the signal of the synchronous pulse output means 330 is output.
  • the second output signal is output when the signal reaches the second cycle, and the measurement that continues the measurement until the end signal of the second cycle is restarted.
  • FIG. 38 is a flowchart showing the operation of the flow meter according to Embodiment 19 of the present invention.
  • the difference from the first and second embodiments is that, of the pair of transmitting and receiving means, the first number of repetitions N3 at the time of measurement when transmission is performed from one of the transmitting and receiving means and received by the other transmitting and receiving means, and the transmission is performed from the other transmitting and receiving means
  • the second monitoring number N 4 is compared with the second number of times N 4 at the time of measurement received by one of the transmission / reception means. If the difference between the two number of times is equal to or more than a predetermined number, a start signal is output again.
  • the configuration is shown in Figure 29.
  • FIG. 39 is a flowchart showing the operation of the flow meter according to Embodiment 20 of the present invention.
  • the first embodiment differs from the first and second embodiments in that, out of a pair of transmitting and receiving means, the first number of repetitions N 3 at the time of measurement performed by transmitting from one of the transmitting and receiving means and receiving by the other transmitting and receiving means,
  • the second repetition number N 4 at the time of measurement which is transmitted from the transmission / reception means and received by one of the transmission / reception means, is configured to include the repetition means 3 3 4 for setting the same number.
  • the configuration is shown in Figure 29.
  • the flow rate can be measured even when the periodic fluctuation of the pressure fluctuation is severe.
  • the flow rate can be measured even when the periodic fluctuation of the pressure fluctuation is severe.
  • the periodic fluctuation of the pressure fluctuation is severe, it is possible to judge whether the flow rate is near the predetermined flow rate by performing such measurement. Can be done.
  • FIG. 40 is a flowchart showing the operation of the flow meter according to Embodiment 21 of the present invention.
  • the difference from the first and second embodiments is that the number of times the start signal is output again is up to a predetermined number of times, and a configuration is provided in which a measurement monitoring means 335 for monitoring such that the signal is not repeated forever is provided.
  • the configuration is shown in Figure 29.
  • FIG. 41 is a block diagram of a flow meter according to Embodiment 22 of the present invention.
  • the transmitting and receiving means uses heat propagation as a change in the state of the fluid.
  • 336 is a heat sensor that transmits heat
  • 337 is a temperature sensor that receives heat.
  • the measurement and monitoring means detects each abnormality and performs each process in the same manner as in the embodiment described above, so that the flow rate can be reduced.
  • the measurement can be continuously performed with high accuracy.
  • FIG. 42 is a block diagram of a flow meter according to Embodiment 23 of the present invention.
  • 415 is an ultrasonic flow rate detecting means for detecting an instantaneous flow rate
  • 416 is a pulsation determining means for determining whether or not the flow rate value is pulsating
  • 417 is a determination of the pulsating determining means.
  • the stable flow rate calculating means for calculating the flow rate value using different means according to the result, and the filter means 418 for digitally filtering the flow rate value.
  • the flow meter of the present invention calculates the difference between the instantaneous flow rate Q (i) measured by the ultrasonic flow rate detecting means and the instantaneous flow rate Q (i-1) measured last time. If the difference is equal to or greater than a predetermined value (for example, 1 liter time), the pulsation determination means determines that there is pulsation. When there is a pulsation, digital filter processing is performed by changing the filter coefficient of the filter processing according to the magnitude of the difference. When there is no pulsation, the instantaneous flow rate value is processed as a stable flow rate without performing the filling process.
  • a predetermined value for example, 1 liter time
  • the digital filter processing is performed according to the flow shown in FIG. 3, and is expressed by the following formula.
  • One characteristic of such a filter is that of a low-pass filter, as shown in Fig. 45. As the filter coefficient ⁇ is closer to 1 (usually 0.999), only low frequency components are passed.
  • the filter can be used as a filter, and a variable value can be filtered and not passed.
  • the filtering process when the pulsation is equal to or more than the predetermined value, the fluctuation component can be removed, and the flow rate can be stably measured by one ultrasonic flow rate measuring unit during the pulsation.
  • arithmetic calculations equivalent to the averaging process can be performed without using a large amount of memory for data processing, and the filter characteristic can be freely changed by changing one variable called the filter coefficient ⁇ .
  • the filter characteristic can be changed according to the magnitude of the pulsation. Then, at the time of pulsation, steep filter characteristics can be used to stabilize large pulsation, and it is possible to perform filter processing only at the time of pulsation.
  • the filtering process can be changed according to the fluctuation range of the pulsation.
  • the filter characteristics according to the fluctuation range it is possible to quickly change to a change in the flow rate as a gentle filter characteristic when the fluctuation is small, and to make the filter one characteristic steep when the fluctuation is large. Fluctuations in the flow rate can be greatly suppressed.
  • flow meter is described as a general instrument, use of this flow meter as a gas meter will also allow it to be used in flow piping that generates pulsations, such as piping systems that use gas engine heat pumps. Is possible.
  • FIG. 46 is a flowchart showing the operation of the flow meter according to Embodiment 24 of the present invention.
  • the difference from Embodiment 23 is that a pulsation width detection means for detecting a fluctuation width of pulsation from two flow values obtained by performing two filter processes by changing a filter coefficient ⁇ is provided. That is.
  • FIG. 46 as shown in FIG. 46, as shown in FIG.
  • a predetermined value for example, 1 liter per hour
  • the response to the flow rate change is delayed when the flow rate changes during pulsation.
  • the flow rate calculated by the flow rate coefficient enables rapid follow-up even if the flow rate changes suddenly during pulsation.
  • FIG. 47 is a flowchart showing a flow meter according to Embodiment 25 of the present invention. The difference from Embodiment 23 is that the filter processing is performed only when the flow rate value detected by the instantaneous flow rate detection means is low.
  • the instantaneous flow rate measured by the ultrasonic flow rate measuring means is less than a predetermined flow rate (for example, 120 liter time), even if pulsation occurs due to the filtering process, The stable flow rate can be measured correctly.
  • a predetermined flow rate for example, 120 liter time
  • FIG. 48 is a flowchart showing the operation of the flow meter according to Embodiment 26 of the present invention.
  • the filter processing means is configured to change one filter characteristic according to the flow rate value.
  • the fill factor coefficient ⁇ 1 is reduced to respond quickly to the change in flow rate, thereby improving the responsiveness of the integrated flow rate.
  • filter processing is performed at low flow rates to quickly respond to flow rate changes at high flow rates and greatly reduce the effects of pulsation at low flow rates be able to.
  • the flow rate is high, the responsiveness is increased, and when the flow rate is low, the pulsation can be suppressed.
  • FIG. 49 is a flowchart showing the operation of the flow meter according to Embodiment 27 of the present invention.
  • the filter processing means is configured to change the filter characteristics depending on the flow time interval of the ultrasonic flow rate detection means.
  • the fluctuation can be suppressed by a gentle filter characteristic when the measurement interval is short, and by a steep filter characteristic when the measurement interval is wide.
  • FIG. 50 is a flowchart showing the operation of the flow meter according to Embodiment 28 of the present invention.
  • ⁇ A difference from Embodiment 23 is that the fluctuation ⁇ ; of the flow rate value calculated by the stable flow rate calculating means is within a predetermined value.
  • the filter characteristic is changed so that
  • the filter coefficient ⁇ is set. Control is performed in a direction to increase the flow rate fluctuation, and when it is less than the predetermined value, the filter coefficient ⁇ is reduced to perform the filter processing in a state that can respond to the flow rate change.
  • a predetermined value for example, 1 liter Z hour
  • the flow rate fluctuation can be constantly suppressed to a predetermined value or less by adaptively changing the filter characteristic so that the fluctuation value after the stable flow rate calculating means is within the predetermined value.
  • the amount of increase in the filter coefficient is changed depending on the fluctuation value of the flow rate.When the fluctuation amount is large, the increase amount is increased, and when the fluctuation amount is small, the increase amount is reduced and the filter coefficient is changed. By doing so, fluctuations in the flow rate can be suppressed promptly.
  • FIG. 51 is a block diagram of a flow meter according to Embodiment 29 of the present invention.
  • the instantaneous flow rate detecting means is a thermal flow rate detecting means 4 19.
  • the measurement flow rate fluctuates when the pressure fluctuates by using the thermal flow rate detection means 4 19, but the method of Embodiments 23 to 28 is used.
  • the same effect can be obtained, and the flow rate can be measured stably and accurately.
  • FIG. 52 is a block diagram of a flow meter showing the embodiment 30 of the present invention.
  • An arithmetic unit 506 to be obtained and a periodicity changing means 508 for sequentially changing the driving method of the drive circuit 503 are provided.
  • the difference from the conventional example is that a periodicity changing means 509 is provided, and a detailed diagram of the periodicity changing means 508 is shown in FIG.
  • the reference numeral 5100 generates a first oscillator, here an oscillation signal of 500 kHz.
  • Reference numeral 511 denotes a second oscillator, which generates an oscillation signal of 500 kHz.
  • Numeral 512 denotes a switch, which outputs the output of the first oscillator 510 or the output of the second oscillator 511 to the switching drive circuit 503 by the output of the controller 507.
  • the control unit 507 outputs a switching signal to the switching unit 512 to select the first oscillator 510.
  • the time measurement of the timer 505 is started, and at the same time, a transmission start signal is output to the drive circuit 503.
  • the drive circuit 503 that has received the transmission start signal drives the ultrasonic vibrator 502 with an oscillation signal of 500 kHz, which is an input from the switch 5 12. Subsequent operations are the same as in the conventional example.
  • the control unit 507 outputs a switching signal to the switch 511 and selects the second oscillator 511.
  • the time measurement of the timer 505 is started, and at the same time, a transmission start signal is output to the drive circuit 503.
  • the drive circuit 503 that has received the transmission start signal drives the ultrasonic transducer 501 with an oscillation signal of 520 kHz, which is an input from the switch 5 12.
  • Figure 54 shows the reception detection timing for such a measurement.
  • the reception signals at 500 kHz and 500 kHz are shifted in time, and the reception detection timings are as shown in (A) and (B) in Fig. 54. Shift in time. Therefore, in this embodiment, the control unit controls the periodicity changing means so as to sequentially change the cycle in the flow rate measurement so that the measurement cycle is not constant. Since the synchronized noise does not always exist in the same phase at the time of reception and is dispersed, the measurement error can be reduced.
  • the periodicity changing means is configured to switch and output a plurality of frequency output signals
  • the control unit controls the frequency setting of the periodicity changing means to change the driving frequency of the driving circuit every measurement, so that the driving frequency is changed.
  • the drive frequency is changed by switching between two oscillators, but the same effect can be obtained if the drive frequency can be changed to drive the ultrasonic transducer. It is not limited to the number of oscillators, drive frequency, and switch configuration.
  • FIG. 55 is a block diagram of a flow meter showing the embodiment 31 of the present invention.
  • a flow rate measuring section 500 through which the fluid to be measured flows, a pair of ultrasonic transducers 501 and 502 provided in the flow rate measuring section 500 to transmit and receive ultrasonic waves, and one of the ultrasonic transducers
  • a control unit 507 that controls the drive circuit 503 a predetermined number of times, a timer 505 that measures a predetermined number of elapsed times, and a calculation unit 5 that calculates the flow rate from the output of the timer 505
  • a periodicity changing means 508 for sequentially changing the driving method of the driving circuit 503.
  • FIG. 56 is a detailed block diagram of the periodicity changing means.
  • 5 1 2 is a first delay, which generates an output signal 150 s after receiving an input signal from the control unit 5 07
  • 5 1 3 is a second delay, which is the control unit 5 0 7
  • An output signal is generated 150.5 s after receiving these input signals
  • 514 is a third delay which is 15 1 ⁇ s after receiving an input signal from the control unit 507. Later, the output signal is generated.
  • 5 15 is the fourth delay, which is the input signal from the control unit 5 07 After receiving 151.5 s, an output signal is generated.
  • 5 15 is a switch which selects the first to fourth delay outputs according to the output of the control unit 507 and drives the drive circuit 5. 0 Output to 3.
  • control unit 507 receives the output of the reception detection circuit 504 and drives the ultrasonic vibrator again, and this operation is repeated as an integral multiple of the delay setting number of 4. During the repetition, the delay time of the periodicity changing means 508 is sequentially switched every time an ultrasonic wave is received.
  • control unit 507 changes the delay setting each time the ultrasonic wave is detected, so that the influence of the reverberation of the ultrasonic wave transmitted immediately before during one measurement or the tailing of the ultrasonic transducer is reduced. Dispersion and averaging can be performed, and measurement errors can be reduced.
  • the width of the cycle changed by the cycle changing means is a value obtained by equally dividing 2 s, which is the position cycle of the resonance frequency of 500 kHz of the ultrasonic vibrator, so that the sum of all the settings and the average value are:
  • the number of times the measurement is repeated is an integral multiple of 4 which is the number of changes of the periodicity changing means, the same number of measurements at each constant value of the periodicity changing means must be performed in one flow measurement. And the measurement results are not biased, so that the measurement results can be stabilized.
  • the order of the pattern for changing the periodicity is the same for the measurement in the upstream direction and the measurement in the downstream direction. Specifically, in the measurement from upstream to downstream, the first delay, then the second delay, then the third delay, then the fourth delay, and then back to the first delay repeat. In the measurement from downstream to upstream, the delay is always selected in the same order. By doing so, the flow rate measurement in the upstream direction and the downstream direction always becomes the same condition, and the measurement result can be stabilized particularly when there is a flow rate fluctuation.
  • the delay time is changed by switching the four delays in Embodiment 31, the same effect can be obtained if the drive timing can be changed to drive the ultrasonic transducer. It is not limited by the time, the number of delays, or the configuration of the switch.
  • the delay time to be changed is inserted between the control unit 507 and the drive circuit 503, the same effect can be obtained even between the reception detection circuit 504 and the control unit 507. be able to.
  • the delay change width is 2 s
  • the number of settings to be changed is 4
  • the change for each adjacent setting is 0.5 // 4 divided by 2 // s, but a value that is an integral multiple of one cycle
  • the value is not limited to this value as long as it is a value divided at equal intervals.
  • FIG. 57A is a block diagram of the periodicity changing means of the flow meter according to the embodiment 32.
  • 5 18 is an oscillator
  • 5 19 is a phase converter.
  • the oscillator outputs a signal at a frequency of 500 kHz, and the phase converter advances or delays the phase of the oscillator signal in accordance with the phase conversion signal from the control unit 507 and outputs the signal. For example, when the phase control signal is Hi, the output of the oscillator 518 is output as it is, and when the phase control signal is Lo, the output signal of the oscillator 518 is advanced by 180 ° and output.
  • Figure 57B shows the reception signal and reception detection timing at this time.
  • the shift time is I S.
  • the reception detection timing can be changed by converting the phase fluctuation of the drive signal into time by changing the drive phase. For this reason, noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • the phase of the drive signal is changed by switching the two phases.
  • FIG. 58 is a block diagram of a periodicity changing means of the flow meter according to the thirty-third embodiment.
  • Reference numeral 520 denotes a first oscillator, which outputs an oscillation signal having a resonance frequency of 500 kHz of the ultrasonic vibrator.
  • Reference numeral 521 denotes a second oscillator, which outputs an oscillation signal of 200 kHz.
  • Reference numeral 522 denotes an ONZOFF circuit which switches whether to output the output of the second oscillator to the waveform adding unit 523 according to the ONZO F F switching signal of the control unit 507.
  • Waveform adder 523 combines the input waveforms and outputs the result to drive circuit 503.
  • Ultrasonic transducers can receive ultrasonic signals with large amplitude when driven at about 500 kHz, and can hardly receive ultrasonic signals when driven with only 200 kHz signal components.
  • the period of the received ultrasonic signal changes slightly.
  • the reception detection timing can be changed. For this reason, noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • FIG. 59 is a block diagram of a periodicity changing means of the flow meter according to the thirty-fourth embodiment.
  • Reference numeral 520 denotes a first oscillator, which outputs an oscillation signal having a resonance frequency of 500 kHz of the ultrasonic vibrator.
  • 52 1 is a second oscillator, which outputs an oscillation signal of 200 kHz.
  • Reference numeral 524 denotes a phase conversion unit that converts the phase of the output signal of the second oscillator 521 by 180 ° according to the output of the control unit 507 and outputs the converted signal.
  • Reference numeral 523 denotes a waveform addition unit that combines the input waveforms and outputs the synthesized waveform to the drive circuit 503.
  • An ultrasonic transducer can receive an ultrasonic signal with a large amplitude when driven at about 500 kHz, and can hardly receive an ultrasonic signal when driven only with a signal component of 200 kHz.
  • the phase of the oscillation signal of about 200 kHz The period of the ultrasonic signal received by driving based on the added signal obtained by inverting the signal by 180 ° for each measurement changes slightly. As a result, the reception detection timing can be changed. For this reason, noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • FIG. 60 is a block diagram of the periodicity changing means of the flow meter according to the thirty-fifth embodiment.
  • Reference numeral 525 denotes a first oscillator, which outputs an oscillation signal having a resonance frequency of the ultrasonic transducer of 500 kHz.
  • Reference numeral 526 denotes a second oscillator, which outputs an oscillation signal of 200 kHz.
  • Reference numeral 522 converts the frequency of the signal input to the frequency conversion unit and outputs the converted signal. Here, it is converted to 100 kHz of 1Z2.
  • Reference numeral 523 denotes a waveform adding unit that combines the input waveform and outputs the synthesized waveform to the driving circuit 503.
  • Ultrasonic transducers can receive ultrasonic signals with large amplitude when driven at about 500 kHz, and can hardly receive ultrasonic signals when driven with only 200 kHz or 100 kHz signal components.
  • the period of the ultrasonic signal received by driving based on the addition signal obtained by adding about 200 kHz to the oscillation frequency of about 500 kHz and the addition signal obtained by adding 100 kHz to the oscillation frequency of 500 kHz is Subtle changes. As a result, the reception detection timing can be changed. For this reason, noise synchronized with the measurement period or the transmission period of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • FIG. 61 is a block diagram of a flow meter according to the thirty-sixth embodiment.
  • the control unit 530 outputs a measurement start signal to the drive circuit 503, and at the same time, starts the time measurement of the first evening timer 527.
  • the drive circuit 503 drives the ultrasonic vibrator 502 to transmit ultrasonic waves.
  • the transmitted ultrasonic wave propagates through the fluid and is received by the ultrasonic transducer 501.
  • the reception detection circuit 504 outputs the received ultrasonic signal to the first receiver 527 and the second receiver 528.
  • the first timer 527 receives an input signal from the reception detection circuit 504 and stops time measurement.
  • the second evening timer 528 receives the output of the reception detection circuit 504 and starts timing, and stops the timing in synchronization with the count-up timing output from the first evening timer 527.
  • the calculation unit 506 receives the time measurement results of the first timer 527 and the second timer 528, and obtains the flow rate by calculation.
  • Figure 62 shows the operation timing of the first timer 527 and the second timer 528.
  • the state of the first timer 527 changes at the rising edge of the clock, so the portion indicated by A is measured extra. Since the measurement resolution of the first timer 527 is at the interval shown by B in FIG. 62, the portion A which is a measurement error occurs for each measurement. Therefore, the extra part A is measured by the second timer 528 and subtracted by the arithmetic part 506, and the propagation time of the ultrasonic wave with higher resolution is obtained to obtain an accurate flow rate value.
  • the control unit 530 starts the first evening timer 527 and simultaneously outputs a start signal to the second timer 528 to start the second evening timer 528.
  • the first timer 527 When it is time to count up the first timer 527, the first timer 527 Then, an output signal synchronized with the count-up timing is output to the second timer 528, and the second timer 528 is stopped.
  • the value of the timer 528 at this time is the time measured at the time of one clock of the first evening. This time is processed by the arithmetic section 506, and the time per clock of the second evening image 528 is obtained, and the time per clock of the second evening image 528 used for the calculation is corrected.
  • This operation is performed when the output of the temperature sensor 531 or the output of the power supply voltage sensor 532 changes more than the set value. By doing so, the stability of the temperature and the power supply voltage is not required for the heater 528, and inexpensive components can be used. In addition, power consumption can be reduced without the need for frequent corrections.
  • the timing resolution is equivalent to that of the second timer 528 . Since the operation time of the second timer 528 is very short, power consumption can be reduced, and a flowmeter with high resolution can be realized with low power consumption. Furthermore, accurate flow measurement can be performed if the second timer 528 operates stably until flow measurement after correction, so accurate measurement can be performed even if the second timer 528 does not have long-term stability. It can be performed. A high-precision flowmeter can be easily realized with general parts.
  • a temperature sensor 531 is provided, and when the output of the temperature sensor 531 changes by more than a set value, the second timer 528 is corrected by the first timer 527. For this reason, even if the second timer 528 changes its characteristic with respect to a temperature change, it can be corrected and accurate measurement each time a temperature change occurs. Since correction is performed only when necessary, power consumption can be reduced.
  • a voltage sensor 532 is provided, and when the output of the voltage sensor 532 changes by more than a set value, the second evening time 528 is corrected by the first evening time 527. Therefore, even if the second timer 528 changes its characteristic with respect to the power supply voltage change, it can be corrected and accurate measurement each time the power supply voltage change occurs. And when needed Since only correction is performed, power consumption can be reduced.
  • a crystal oscillator is used for the clock of the first timer 527 and a CR oscillation circuit is used for the clock of the second timer 528. It is very stable with a clock using a crystal oscillator, but it takes time from the start of operation to the stable operation. In addition, although the CR oscillation circuit cannot secure long-term stability, it can easily realize a stable operation that operates quickly and operates quickly and asynchronously. By using a crystal oscillator for the clock of the first timer 527 and a CR oscillation circuit for the clock of the second timer 528, a stable timer with high resolution can be easily realized.
  • the timing at which the second timer stops is set to the timing at which the clock of the first timer falls after the second evening timer operates. As long as the timing is synchronized with the evening of 1, an accurate time can be obtained by the subsequent calculation, so that the timing is not limited to this evening.
  • FIG. 63 is a block diagram of the flow meter according to the third embodiment.
  • a flow rate measuring section 500 a pair of ultrasonic transducers 501, 502 provided in the flow rate measuring section 500 for transmitting and receiving ultrasonic waves, and one ultrasonic transducer 502,
  • the controller 507 controls the drive circuit 503 a predetermined number of times to drive the child 502, the timer 505 measures the elapsed time of the predetermined number of times, and calculates the flow rate from the output of the timer 505.
  • a delay section 533 as periodicity stabilizing means for sequentially changing the driving method of the drive circuit 503.
  • the control unit 507 outputs a measurement start signal to the delay unit 533, and at the same time, starts the time measurement of the timer 505.
  • the delay section 5 3 3 is set from the control section. After a delay time set by the constant signal, a signal is output to the drive circuit 503.
  • the drive circuit 503 drives the ultrasonic vibrator 502 to emit ultrasonic waves.
  • the transmitted ultrasonic wave propagates through the fluid and is received by the ultrasonic transducer 501.
  • the reception detection circuit 504 outputs the received ultrasonic signal to the delay unit 533, and operates the drive circuit in the same manner as before to transmit the ultrasonic wave again.
  • the control unit 507 that has received the output signal of the reception detection circuit 504 counts this repetitive operation, and stops the timer 505 when a predetermined number of times is reached.
  • the calculation unit 506 receives the time measurement result of the timer 505 and calculates the flow rate by calculation.
  • the control unit 507 receives the value of the timer 505, and sets the delay time of the delay unit 533 so that it is always constant. By doing so, the control unit 507 controls so that the measurement cycle is always constant. With this configuration, the measurement period is always constant even when the propagation time changes, so that noise synchronized with the measurement period or the transmission period of the ultrasonic wave is always present during reception regardless of the propagation time fluctuation. Since the phases are the same, the measurement error can be kept constant, and the flow measurement can be stabilized even with a very long noise period.
  • control unit 507 controls the delay unit 533 so as to keep the measurement time constant, the measurement cycle can be made constant by simple calculation without calculating the propagation time of each ultrasonic wave. Can be controlled.
  • the measurement period was made constant by changing the delay time.
  • the same effect can be obtained if the measurement period becomes constant, such as changing the distance between the ultrasonic transducers.
  • the same effect can be obtained by adopting the method described above.
  • the propagation time of the ultrasonic wave from the upstream to the downstream is different from the propagation time of the ultrasonic wave from the downstream to the upstream.Therefore, different delays should be set to stabilize the measurement cycle. Is also possible.
  • the operation of the periodic stabilization means is stopped, and the power can be reduced.
  • the flow rate is measured while changing the setting of the measurement cycle stabilization means, and the measurement cycle at which the measurement result does not change the most during the measurement cycle fluctuation is set as the target measurement cycle, so that more stable measurement The result can be obtained.
  • the present invention provides a transmitting / receiving means provided in a flow path for transmitting and receiving using a change in the state of a fluid, a repeating means for repeating the transmission and reception, and a propagation time repeated by the repeating means. Since there are provided a time measuring means for measuring, a flow detecting means for detecting a flow rate based on the value of the time measuring means, and a number changing means for changing to a predetermined number of repetitions, the flow is changed by changing to an optimum number of repetitions. The effect of fluctuations in flow can be suppressed, and stable flow measurement can be realized with high accuracy.
  • the use of the sound wave transmitting and receiving means enables the propagation of the sound wave even when the state of the fluid changes.
  • the flow rate can be measured accurately and stably by changing to the optimum number of repetitions for fluctuation.
  • the use of the heat transmission / reception unit allows heat to be transmitted even when the fluid state changes. By changing the number of repetitions to the optimal number, the flow rate can be measured accurately and stably.
  • an elapsed time detecting means for detecting information on the way of the propagation time repeatedly measured by the repeating means
  • a cycle detecting means for detecting a cycle of the flow rate variation from the information of the elapsed time detecting means
  • It has a number change means to set the measurement time to an almost integral multiple of the measured cycle, so no specific detection means is required, and the cycle is detected from the intermediate information of the time measurement means before detecting the flow rate. Since it can be an integral multiple of the cycle, the flow rate measurement can be performed stably and accurately.
  • a data holding unit that holds at least 1 ⁇ or more of each propagation time of repetitive transmission and reception obtained by the elapsed time detection unit, and compares the data held by the data holding unit with the measured propagation time data. Therefore, the period detecting means for detecting the period can be provided. Therefore, the period can be detected by holding and comparing the instantaneous time measurement information by the data holding means.
  • the number-of-times changing means is configured to operate at the time of predetermined processing, by performing the processing only at the time of predetermined processing, it is possible to minimize the processing required and to significantly reduce power consumption. it can.
  • the number-of-times changing means is configured to operate each time a predetermined flow rate is measured, it is possible to measure the flow rate stably and accurately even in a flow that fluctuates drastically by performing the measurement every time the predetermined flow rate is measured.
  • the number-of-times changing means is configured to be performed before the flow rate measurement process, the number of repetitions is set to a predetermined number before the flow rate measurement is performed, so that the flow rate measurement can be performed stably and accurately.
  • the predetermined processing is configured to perform abnormality determination means for determining an abnormality in the flow rate from the measured flow rate and flow rate management means for managing the usage state of the flow rate from the measured flow rate, the processing for the abnormality determination and the flow rate management is performed. By setting only the number of times, the process of changing the number of times can be minimized and the power consumption can be reduced.
  • the cycle detection means since the number of repetitions that match the cycle obtained by the cycle detection means is used for the next flow rate measurement, it is used for the next measurement, so that repeated measurement for cycle detection is not required. Thus, power consumption can be reduced.
  • the number-of-times changing means is operated when the measured flow rate is less than the predetermined flow rate, it is possible to reduce the power consumption without processing when the flow rate is high, by performing the operation only when the flow rate is less than the predetermined flow rate.
  • a transmitting / receiving unit provided in the flow path for transmitting / receiving a change in the state of the fluid; a timing unit for measuring a propagation time transmitted / received by the transmitting / receiving unit; Flow detecting means for detecting a flow rate, a fluctuation detecting means for measuring a fluctuation in the flow path by the transmitting and receiving means, and a measuring control means for starting measurement in synchronization with a fluctuation timing of the fluctuation detecting means.
  • the fluid state change can be detected by the sound wave transmitting and receiving means, and measurement is started in synchronization with the fluctuation timing. By doing so, the flow rate can be measured accurately and stably.
  • the transmitter / receiver uses heat propagation as a change in the fluid state
  • the change in the state of the fluid can be detected by the heat transmitter / receiver, and measurement can be started in synchronization with the timing of the fluctuation.
  • the flow rate can be measured accurately and stably.
  • a first vibrating means and a second vibrating means provided in the flow path for transmitting and receiving a sound wave; a switching means for switching the transmitting and receiving operations of the first vibrating means and the second vibrating means;
  • a fluctuation detecting means for detecting a pressure fluctuation in the flow path of at least one of the second vibrating means; a time measuring means for measuring a propagation time of a sound wave transmitted and received by the first vibrating means and the second vibrating means;
  • the time measuring means measures a first time T1 which propagates from the first vibrating means on the upstream side of the flow path to the second vibrating means on the downstream side.
  • the time measurement means controls the second time measurement T2 to be transmitted from the second vibration means on the downstream side of the flow path to the first vibration means on the upstream side.
  • Control means, and the first clock time T 1 Since the system is equipped with a flow rate detecting means that calculates the flow rate using the second clocking time T2, the phase of the pressure fluctuation and the timing of the measurement are measured by measuring at the timing when the change of the pressure fluctuation is reversed. Can be shifted, and measurement errors due to pressure fluctuations can be offset.
  • the measurement of the first clocking time T1 is started when the output of the fluctuation detecting means changes by a predetermined amount
  • the measurement of the second clocking time T2 is started when the output of the fluctuation detecting means changes in a direction opposite to the predetermined change. Measurement control, and at the next measurement, when the output of the fluctuation detecting means changes in reverse to the predetermined change, measurement of the first time T1 is started, and when the output of the fluctuation detecting means changes by a predetermined amount.
  • the measurement control means that performs the measurement control and the second clock time T2 obtained by using the previous first clock time T1 and the second clock time T2 while alternately changing the measurement start (1)
  • Flow rate and the flow rate detection means for calculating the flow rate by successively averaging the second flow rate obtained using the first time measurement time T1 and the second time measurement time T2 for the next measurement. Change the timing as described above, the first time T1 and the second time T2 By doing so, even if the pressure fluctuation is asymmetric on the high and low pressure sides, the effect of the pressure fluctuation can be offset.
  • the configuration is provided with a repetition means for performing transmission and reception a plurality of times, averaging can be performed by increasing the number of times of measurement, and stable flow rate measurement can be performed.
  • a repetition unit that performs transmission and reception multiple times over an integral multiple of the fluctuation period, pressure fluctuations are averaged by measuring at the fluctuation period, and a stable flow rate can be measured.
  • the transmission / reception measurement is started when the output of the fluctuation detection means changes by a predetermined amount, and the repetition means performs the transmission / reception measurement of the sound wave repeatedly until the output of the fluctuation detection means changes the same as the predetermined change, Since the start and stop of the measurement can be made to coincide with the cycle of the pressure fluctuation, the measurement can be performed at the fluctuation cycle, and the pressure fluctuation can be averaged and a stable flow rate can be measured.
  • first vibration means and the second vibration means are provided with a selection means for switching between a case where the first vibration means is used for transmitting and receiving a sound wave and a case where the first vibration means is used for detecting a pressure fluctuation
  • the first vibration means and the second vibration means are provided. At least one of them can be used for pressure detection, and both flow measurement and pressure measurement can be achieved.
  • a fluctuation detecting means for detecting the vicinity of zero of the AC component of the fluctuation waveform.
  • the range of the flow measurement time can be started from around the fluctuation zero, and the flow fluctuation can be measured by measuring the flow within the time where the fluctuation is small. Time measurement can be stabilized.
  • a cycle detecting means for detecting a cycle of a signal of the fluctuation detecting means, and a measurement control means for starting a measurement only when the cycle detected by the cycle detecting means is a predetermined cycle is provided. By starting the measurement only at the time, measurement can be performed at a predetermined fluctuation, and a stable flow rate can be measured.
  • a detection canceling means that automatically starts measurement after a predetermined time is provided. Can be measured.
  • the transmitting / receiving means, the first vibrating means, and the second vibrating means are composed of piezoelectric vibrators, the use of the piezoelectric vibrator allows ultrasonic waves to be used for transmission / reception and also detects pressure fluctuations. can do.
  • a transmission / reception unit provided in the flow path for transmitting / receiving using a change in the state of the fluid; a repetition unit for repeating the signal propagation of the transmission / reception unit; and measuring a propagation time during the repetition by the repetition unit.
  • Time measuring means flow rate detecting means for detecting a flow rate based on the value of the time measuring means, fluctuation detecting means for detecting fluid fluctuation in the flow path, measurement control means for controlling each of the means, and each of the means Since there is a measurement and monitoring means for monitoring abnormalities in the flow path, if there is a fluctuation in the flow in the flow path, the flow rate can be measured in accordance with the fluctuation and the abnormality can be quickly detected by the measurement and monitoring means. Corrective measures can be taken in the event of an abnormality, the measured value is stable, the flow rate can be measured accurately, and reliability can be improved.
  • the flow rate can be measured even if the fluid fluctuates by using the sound waves, and the measurement and monitoring means can be used to handle abnormalities. Can be performed accurately and reliability can be improved.
  • it since it has transmission and reception means using the propagation of heat as a state change of the fluid, By using heat propagation, the flow rate can be measured even if the fluid fluctuates, and the measurement and monitoring means can take corrective measures when an abnormality occurs, thereby improving reliability.
  • Time measuring means flow rate detecting means for detecting a flow rate based on the value of the time measuring means, fluctuation detecting means for detecting fluid fluctuation in the flow path, measurement control means for controlling each of the means, and the measurement control
  • a start signal instructing the start of sound wave transmission at the time of the first output signal of the fluctuation detecting means and an end signal instructing the repetition of transmission and reception of sound waves at the time of the second output signal of the fluctuation detecting means.
  • measurement and monitoring means for monitoring abnormalities of the start signal and the end signal, so that when there is a change in the flow in the flow path, the flow is measured in synchronization with the fluctuation cycle and the measurement and monitoring means is used. Detect abnormalities It is possible to, the measurement value can be measured stably and accurately the flow rate, or One abnormal response to be accurately line, it is possible to improve the reliability of the measurement flow rate value.
  • the measurement monitoring means for instructing the start of the transmission of the sound wave after a predetermined time is provided. Even when there is no signal, the flow rate can be measured at predetermined time intervals, and loss of data can be prevented.
  • the measurement monitoring means for instructing the start of the transmission of the sound wave after a predetermined time and performing the measurement at a predetermined number of repetitions is provided. Even if there is no fluctuation and there is no start signal within a predetermined time, the flow rate can be measured at a predetermined number of repetitions every predetermined time and data loss can be prevented.
  • the measurement monitoring unit that does not perform measurement until the instruction from the next measurement control unit is provided, so it waits for the next measurement instruction. By doing so, unnecessary measurement can be stopped and power consumption can be reduced.
  • there is no end signal within a predetermined time after the start signal there is a measurement monitoring means to end the reception of the sound wave, so that the measurement is stopped waiting for the end by forcibly terminating And the next processing can be performed, and stable measurement operation can be performed.
  • the end signal is not generated within a predetermined time after the start signal, the reception of the sound wave is terminated, and the measurement monitoring means for outputting the start signal again is provided.
  • the measurement does not stop waiting for completion, and the measurement is performed again by outputting the start signal again, and stable measurement operation can be performed.
  • the first number of repetitions at the time of measurement transmitted from one transmission / reception means and received by the other transmission / reception means, and transmitted from the other transmission / reception means and received by one transmission / reception means Compare the second number of repetitions at the time of measurement, and when the difference between the two repetitions is equal to or greater than a predetermined number, a measurement monitoring unit that outputs a start signal again is provided. Therefore, accurate measurement of flow rate can be performed by measuring in a state where the fluctuation cycle is stable.
  • the number of times the start signal is output again is up to the specified number of times, and measurement monitoring means is provided so as to monitor it so that it will not be repeated forever, so processing is continued indefinitely by limiting the number of times of re-measurement And stable flow measurement can be performed.
  • the flow rate can be calculated from the reciprocal difference Since ultrasonic waves are used, transmission and reception can be performed without being affected by the fluctuation frequency in the flow path, and the flow rate is measured from the reciprocal difference of the time when the propagation time is measured by repeating transmission and reception. By doing so, even long-period fluctuations can be measured in one-period units, and the difference in propagation time due to fluctuations can be offset by the reciprocal difference.
  • an instantaneous flow rate detecting means for detecting an instantaneous flow rate
  • a pulsation determining means for determining whether or not the flow rate value is pulsating
  • an instantaneous flow rate detecting means for detecting an instantaneous flow rate
  • a filter processing means for subjecting the flow rate value to digital filter processing
  • a stable flow rate calculating means for calculating a flow rate value by the filter processing means
  • the pulsation discriminating means determines a pulsation
  • the filter process is changed according to the fluctuation range of the pulsation by determining based on the fluctuation range of the pulsation. can do.
  • the filter processing means is configured to change the filter characteristics according to the fluctuation range of the flow rate value.By changing the filter characteristics according to the fluctuation range, the filter characteristics gradually change with small fluctuations as the filter characteristics gradually change. it can At the same time, when the fluctuation is large, the fluctuation of the flow rate due to the pulsation can be largely suppressed by using a steep filter characteristic.
  • the filter value is detected only when the flow rate detected by the instantaneous flow rate detection means is low, the filter process is performed only when the flow rate is low. The effect of pulsation at the time of flow can be greatly suppressed.
  • the filter processing means is configured to change the filter characteristics according to the flow rate value, by changing the filter characteristics according to the flow rate value, the filter processing is performed only at a low flow rate, so that the flow rate change at a large flow rate can be quickly performed. In addition to this, the effects of pulsation at low flow rates can be significantly reduced.
  • the filter processing means is configured to change the filter characteristics according to the flow time interval of the instantaneous flow rate detection means, the filter characteristics are changed according to the flow rate detection time intervals, so that when the measurement interval is short. Is a gentle filter characteristic, and when the interval is wide, a steep filter characteristic can suppress the fluctuation.
  • the cutoff frequency of the filter characteristics is changed to be higher, and when the flow rate is low, the filter processing means is changed so that the cutoff frequency has a lower filter characteristic. In some cases, the responsiveness becomes faster, and pulsation can be suppressed at low flow rates.
  • the filter characteristic is changed so that the fluctuation range of the flow rate value calculated by the stable flow rate calculation means is within a predetermined value
  • the filter characteristic is changed so that the fluctuation value is within the predetermined value.
  • the flow rate fluctuation can always be suppressed to a predetermined value or less.
  • the instantaneous flow rate detection means since the ultrasonic flowmeter that detects the flow rate by ultrasonic waves is used as the instantaneous flow rate detection means, the instantaneous flow rate can be measured even if a large flow rate fluctuation occurs by using the ultrasonic flowmeter. A stable flow rate can be obtained from the flow rate value by arithmetic. In addition, since the thermal flow meter is used as the instantaneous flow rate detection means, the instantaneous flow rate can be measured even if a large flow rate fluctuation occurs by using the thermal flow meter. A stable flow rate can be determined.
  • control unit controls the periodicity changing means to change the cycle in the flow measurement in order so that the measurement cycle does not become constant, so that noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves is always received when receiving. Since they do not exist in the same phase and are dispersed, measurement errors can be reduced.
  • the control unit further includes a periodicity changing unit that sequentially changes a driving method of the drive circuit, wherein the control unit receives the output of the reception detection circuit so that the period does not become constant. Since the characteristic changing means is changed, the measurement can be performed by operating the period changing means with a plurality of settings in one flow measurement, so that the measurement result is a noise-dispersed and averaged result, and a stable measurement result can be obtained.
  • the periodicity changing means is configured to switch and output output signals of a plurality of frequencies, and the control unit controls so as to change the frequency setting of the periodicity changing means and change the driving frequency of the driving circuit every measurement.
  • the control unit controls so as to change the frequency setting of the periodicity changing means and change the driving frequency of the driving circuit every measurement.
  • the periodicity changing means is configured to output an output signal having a plurality of phases at the same frequency
  • the control unit changes the phase setting of the output signal of the periodicity changing means for each measurement to drive the driving circuit. Since control is performed to change the phase, the reception detection timing can be changed by converting the phase fluctuation of the drive signal into time by changing the drive phase. For this reason, noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • the frequency changing means may be configured to determine the first frequency, which is the operating frequency of the ultrasonic vibrator, and the first frequency.
  • the control unit outputs the output signal obtained by changing the setting of the second frequency of the periodicity changing unit for each measurement via the drive circuit, with a configuration in which a signal of a second frequency different from the one frequency is superimposed and output. Therefore, the periodicity in the flow measurement can be disturbed. For this reason, noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • the periodicity changing means changes the vibration of the ultrasonic transducer at the time of transmission and changes the reception detection timing by switching the setting with and without the second frequency, so that the periodicity in the flow rate measurement may be disturbed. Since the noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, the measurement error can be reduced.
  • the periodicity changing means changes the phase setting of the second frequency, thereby changing the vibration of the ultrasonic vibrator at the time of transmission and changing the reception detection timing.
  • noise synchronized with the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception, and is dispersed and averaged, so that measurement errors can be reduced.
  • the periodicity changing means changes the frequency setting of the second frequency, changes the vibration of the ultrasonic transducer at the time of transmission, and changes the reception detection timing, so that the periodicity in the flow measurement can be disturbed, and the measurement cycle can be changed.
  • noise synchronized with the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
  • the periodicity changing means includes a delay unit capable of setting a different delay time, and the control unit changes the delay setting every time ultrasonic transmission or ultrasonic reception is detected. This makes it possible to disperse the reverberation of the transmitted ultrasonic wave and the effect of tailing of the ultrasonic transducer, thereby reducing measurement errors.
  • the width of the cycle changed by the cycle changing means is an integral multiple of the value corresponding to the propagation time variation due to measurement error, the error is minimized when all settings are summed and averaged. be able to.
  • the width of the cycle changed by the cycle changing means is the cycle of the resonance frequency of the ultrasonic transducer
  • the average value of the sum of all settings is the minimum measurement error generated by the reverberation and tailing of the ultrasonic sensor. Therefore, the measurement error can be reduced.
  • the order of the pattern for changing the periodicity is the same for the measurement in the upstream direction and the measurement in the downstream direction, the measurement in the upstream direction and the measurement in the downstream direction are always the same condition, and the measurement when the flow rate fluctuates The result can be stabilized.
  • the predetermined number is an integral multiple of the number of changes of the periodicity changing means, all the set values of the periodicity changing means can be set uniformly in one flow measurement, and the measurement result is stable. Can be done.
  • the second timer by measuring the time from reception detection to the next timer count-up / time by using the second time, measurement with higher resolution than the first time can be performed. Also, compared to a flow meter having the same resolution, the second timer only needs to be operated for a short time after the reception is detected, so that power consumption can be reduced.
  • the second evening image is corrected by the first timer, the second evening image only needs to be stable for a short time, and there is no need to use special parts. Therefore, a high-resolution flowmeter can be easily realized.
  • the second timer is corrected by the first timer, so even if the operation of the second timer largely changes due to a change in temperature, It can be used.
  • the second timer is corrected by the first timer, so even if the operation of the second timer greatly changes due to the voltage change, it can be used. It is possible to do.
  • a reception detection circuit that is connected to the other ultrasonic transducer and detects an ultrasonic signal; and a control unit that receives the output of the reception detection circuit and controls the drive circuit a predetermined number of times to drive the ultrasonic transducer again.
  • the period stabilization means is controlled so that the measurement period is always constant.
  • the measurement cycle is always constant even when the propagation time changes, so that the noise synchronized with the measurement cycle or the ultrasonic transmission cycle always has the same phase during reception regardless of the propagation time fluctuation. Therefore, the measurement error can be kept constant, and the flow measurement can be stabilized even with a very long noise period.
  • control unit has periodicity stabilizing means including a delay unit that can set a different delay time, and the control unit changes the output time of the drive circuit by switching the delay time. Since the measurement period is stabilized by changing the delay time, the measurement period can be stabilized without affecting the driving of the ultrasonic transducer.
  • control unit controls the drive circuit to keep the measurement time constant
  • the measurement cycle can be controlled to be constant by a simple calculation without calculating the propagation time of each ultrasonic wave. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

To solve the problems, a flowmeter comprises transmitting/receiving means adapted for transmission/reception using the variation of the state of a fluid and provided in a passage, repeating means for repeating the transmission and reception, time measuring means for measuring the propagation time repeated by the repeating means, a flow rate measuring means for measuring the rate of flow according to the value measured by the time measuring means, and number-of-repetitions changing means for changing the number of repetitions to a predetermined number. The influence of the variation of the flow can be suppressed by changing the number of repetitions to a number suitable for the variation, and thus stable flow rate measurement with high accuracy is possible.

Description

明 細 書 流量計  Description Flow meter
技術分野 Technical field
本発明は、 液体や気体の流量を計測する流量計に関し、 圧力変動や温度変化が ある場合にも精度よく流量値を計測する手段に関するものである。 背景技術  The present invention relates to a flow meter for measuring a flow rate of a liquid or a gas, and to a means for measuring a flow rate value accurately even when there is a pressure fluctuation or a temperature change. Background art
従来、 この種の流量計は、 例えば特開平 9一 1 5 0 0 6号公報が知られており、 図 6 4に示すように、 ガス流量を計測するアナログフローセンサ 1から所定の第 1サンプリング時間毎に計測値を読み取るサンプリングプログラム 2と、 所定時 間におけるガス消費流量を算出するガス消費量算出プログラム 3と、 第 1サンプ リング時間に所定時間内で第 2サンプリング時間毎にアナログフローセンサの計 測値を読み出してその平均値を演算する平均値演算プログラム 4と、 フローセン ザの出力から圧力変動の周期を推定する圧力変動周期推定プログラム 5と、 メモ リーとしての R AM 6で構成されていた。 ここで、 7 aはそのプログラムを実行 する C P U、 7 bは前記各プログラムを記憶しておくメモリーの R OMである。 この構成により、 所定計測時間がポンプの振動周期の 1周期以上、 またはその周 期の倍数であるように計測処理するものであり、 平均化することで流量に変動が 抑制するものである。  Conventionally, a flow meter of this type is known, for example, from Japanese Patent Application Laid-Open No. Hei 9-150006. As shown in FIG. 64, a predetermined first sampling is performed from an analog flow sensor 1 that measures a gas flow rate. A sampling program 2 for reading the measured value at each time, a gas consumption calculation program 3 for calculating the gas consumption flow rate at a predetermined time, and an analog flow sensor for the second sampling time within the predetermined time during the first sampling time. It consists of an average value calculation program 4 that reads out measured values and calculates the average value, a pressure fluctuation period estimation program 5 that estimates the period of pressure fluctuations from the output of the flow sensor, and a RAM 6 as memory. Was. Here, 7a is a CPU that executes the program, and 7b is a ROM of a memory that stores the programs. With this configuration, the measurement processing is performed so that the predetermined measurement time is at least one cycle of the oscillation cycle of the pump or a multiple of the cycle, and fluctuations in the flow rate are suppressed by averaging.
また、 他の従来例として、 特開平 1 0— 1 9 7 3 0 3号公報のようなものが知 られていた。 図 6 5に示すように、 流量を検出する流量検出手段 8と、 流れの変 動周期を検出する周期検出手段 9と、 流量検出の測定時間を前記周期のほぼ整数 倍に設定する測定時間変更手段 1 0を備えた構成である。 ここで、 1 1は流量演 算手段、 1 2は計測開始手段、 1 3は信号処理手段、 1 4は流路である。 この構 成により、 変動波形の周期に合せて流量を計測して短時間に正確な流量計測を行 うものである。 Further, as another conventional example, one disclosed in Japanese Patent Application Laid-Open No. 10-197303 is known. As shown in Fig. 65, the flow rate detection means 8 for detecting the flow rate, the cycle detection means 9 for detecting the fluctuation cycle of the flow, and the measurement time change for setting the measurement time for the flow rate detection to almost an integral multiple of the above cycle This is a configuration including means 10. Here, 11 is a flow rate calculating means, 12 is a measurement starting means, 13 is a signal processing means, and 14 is a flow path. With this configuration, the flow rate is measured according to the cycle of the fluctuation waveform, and accurate flow rate measurement is performed in a short time. Is Umono.
また、 他の従来例として、 特開平 1 1一 4 4 5 6 3号公報のようなものが知ら れていた。 図 6 6に示すように、 流量を検出する流量検出手段 1 5と、 流体の変 動波形を検出する変動検出手段 1 6と、 流量検出手段の測定を変動波形の交流成 分のゼロ付近で開始する脈動計測手段 1 7と、 流量検出手段の信号を処理する流 量演算手段 1 8を備えた構成である。 ここで、 1 9は信号処理回路、 2 0は計時 回路、 2 1はトリガ回路、 2 2は送信回路、 2 3は比較回路、 2 4は増幅回路、 2 5は切換器、 2 6は計測開始信号回路、 2 7は起動手段、 2 8は流路である。 この構成により、 変動波形の平均付近の流量を計測して短時間に正確な流量計測 を行うものである。  Further, as another conventional example, one disclosed in Japanese Patent Application Laid-Open No. 11-44563 is known. As shown in Fig. 66, the flow rate detection means 15 for detecting the flow rate, the fluctuation detection means 16 for detecting the fluctuation waveform of the fluid, and the measurement of the flow rate detection means near the zero of the AC component of the fluctuation waveform The configuration is provided with a pulsation measuring means 17 to be started and a flow rate calculating means 18 for processing a signal of the flow rate detecting means. Here, 19 is a signal processing circuit, 20 is a timing circuit, 21 is a trigger circuit, 22 is a transmission circuit, 23 is a comparison circuit, 24 is an amplification circuit, 25 is a switch, and 26 is measurement. A start signal circuit, 27 is a starting means, and 28 is a flow path. With this configuration, the flow rate around the average of the fluctuation waveform is measured, and accurate flow rate measurement is performed in a short time.
また、 他の従来例として、 特開平 8— 2 7 1 3 1 3号公報のようなものが知ら れていた。 図 6 7に示すように、 フローセンサ計測 (2 9 ) で検出した流量値が、 あるか否かを確認し (3 0 ) 、 流量があるまでは先に進まず、 フローセンサによ り計測を続ける。 そして、 流量がある場合で、 流量 Qが規定値以上か否かを判別 し (3 1 ) 、 規定値以上の場合において、 圧力変動が所定値 C f を超えるか否か を判別する (3 2 ) 。 そして、 圧力変動が所定値 C f を超えない場合は、 フルイ デック式流量計の圧電膜センサで計測 3 4を行う。 また、 圧力変動が所定値 C f を超える場合は、 第 2の規定値を超えるか否かを判別し (3 3 ) 、 第 2の規定値 を超える場合は、 フルイデック式流量計の圧電膜センサで計測 (3 4 ) を行う。 また、 第 2の規定値未満の場合は、 フローセンサで計測 (2 9 ) を行うものであ る。  Further, as another conventional example, one as disclosed in Japanese Patent Application Laid-Open No. 8-271313 is known. As shown in Fig. 67, it is checked whether or not the flow rate value detected by the flow sensor measurement (29) is present (30). Continue. Then, if there is a flow rate, it is determined whether or not the flow rate Q is equal to or more than a specified value (31). If the flow rate is equal to or more than the specified value, it is determined whether the pressure fluctuation exceeds a predetermined value C f (3 2 ). If the pressure fluctuation does not exceed the predetermined value C f, measurement 34 is performed with a piezoelectric film sensor of a full-id flow meter. If the pressure fluctuation exceeds the predetermined value C f, it is determined whether the pressure fluctuation exceeds the second specified value (33). If the pressure fluctuation exceeds the second specified value, the piezoelectric film sensor of the Fluidec flow meter is determined. Perform measurement (3 4) with. If the value is less than the second specified value, measurement (29) is performed using a flow sensor.
また、 図 6 8に示すように、 流量測定部 5 0に超音波振動子 5 1および 5 2を 流れの方向に相対して設置し、 制御部 5 3は夕イマ 5 4をスタートさせると同時 に駆動回路 5 5に発信信号を出力する。 駆動回路 5 5の出力を受けた超音波振動 子 5 1から超音波を送信し、 超音波振動子 5 2で受信する。 そして、 超音波振動 子 5 2の出力を受けた受信検知回路 5 6で超音波を検知しタイマ 5 4をストップ させる。 この動作によって超音波が超音波振動子 5 1より送信されてから超音波 振動子 5 2に検知されるまでの時間 (t 1 ) を測定する。 次に制御部 5 3の信号 によって切替回路 5 8を動作させ、 駆動回路 5 5と超音波振動子 5 2とを接続し 受信検知回路 5 6と超音波振動子 5 1とを接続させる。 この状態で再度超音波の 送受信を行い超音波が超音波振動子 5 2から送信されてから超音波振動子 5 1に 検知されるまでの時間 (t 2 ) を測定する。 この 2つの伝搬時間 ( t 1 ) 、 ( t 2 ) から演算部 5 7において伝搬時間の逆数差から流量を求めていた。 Also, as shown in Fig. 68, the ultrasonic transducers 51 and 52 are installed in the flow rate measuring section 50 in the direction of the flow, and the control section 53 simultaneously starts the The transmission signal is output to the drive circuit 55. Ultrasonic waves are transmitted from the ultrasonic transducer 51 receiving the output of the drive circuit 55, and received by the ultrasonic transducer 52. Then, the reception detection circuit 56 receiving the output of the ultrasonic transducer 52 detects the ultrasonic wave and stops the timer 54. Let it. By this operation, the time (t 1) from when the ultrasonic wave is transmitted from the ultrasonic vibrator 51 to when it is detected by the ultrasonic vibrator 52 is measured. Next, the switching circuit 58 is operated by the signal of the control unit 53, the drive circuit 55 is connected to the ultrasonic transducer 52, and the reception detection circuit 56 is connected to the ultrasonic transducer 51. In this state, transmission and reception of the ultrasonic wave are performed again, and the time (t 2) from when the ultrasonic wave is transmitted from the ultrasonic vibrator 52 to when the ultrasonic wave is detected by the ultrasonic vibrator 51 is measured. Based on these two propagation times (t 1) and (t 2), the calculation unit 57 calculates the flow rate from the reciprocal difference of the propagation times.
この種の流量計の従来例としては、 特開平 6— 2 6 9 5 2 8号公報のようなも のが知られていた。  As a conventional example of this type of flow meter, there has been known one as disclosed in Japanese Patent Application Laid-Open No. 6-269528.
しかしながら上記従来技術の第 1の引例では、 平均値を用いてガス流量を計測 するもので、 安定した平均値を得るには長時間の計測が必要で、 瞬時の流量計測 は困難という課題があった。 また、 第 2の引例では、 周期が変動した場合に適応 できないという課題があった。 また、 第 3の引例と第 4の引例では、 圧力変動の ある無しで流量計測の方法を変えるもので、 圧力計測手段および流量計測手段の 2つの手段を備えなければならないという課題があった。 そして、 第 1から 4の 引例では、 計測に異常が生じたときには計測できないか精度が低下した状態で計 測されるという課題があつた。  However, in the first reference of the prior art described above, the gas flow rate is measured using the average value, and a long-term measurement is required to obtain a stable average value. Was. Also, in the second reference, there was a problem that it was not possible to adapt when the period fluctuated. Further, in the third and fourth references, the method of measuring the flow rate is changed without pressure fluctuation, and there is a problem that it is necessary to provide two means, a pressure measuring means and a flow measuring means. In the first to fourth references, there was a problem that when an abnormality occurred in the measurement, the measurement could not be performed or the measurement was performed with reduced accuracy.
しかしながら上記従来の構成では、 受信時に測定周期あるいは超音波の送信周 期に同期した雑音が存在すると、 伝搬時間が同じであれば受信時には常に同じ位 相で畳重するため、 その雑音は測定誤差として計測され、 正確な測定ができない という課題があった。 さらに温度変動等によって伝搬時間が変動した場合、 畳重 する位相が変化し、 測定誤差が変動し補正値を一定とできないという課題があつ た。 また測定分解能が夕イマ 5 4の分解能によって決まるので、 単に測定値を平 均処理したのでは測定精度が上がらず、 分解能が必要な測定を行うには夕イマ 5 4の分解能を高くする必要かある。 そして、 夕イマ 5 4の動作クロックを高い周 波数にすると、 消費電流の増大、 高周波ノイズの増大、 回路の大型化などの問題 があり、 低い周波数で動作するタイマ測定での高分解能化を実現し測定精度を向 上させるという課題があった。 However, in the above-described conventional configuration, if noise synchronized with the measurement period or the transmission period of the ultrasonic wave is present during reception, if the propagation time is the same, the same phase will always be multiplied during reception. There was a problem that accurate measurement was not possible. Furthermore, when the propagation time fluctuates due to temperature fluctuations and the like, the phase to be superposed changes, and the measurement error fluctuates, making it impossible to keep the correction value constant. In addition, since the measurement resolution is determined by the resolution of the timer 54, simply averaging the measured values does not increase the measurement accuracy. Is it necessary to increase the resolution of the timer 54 to perform measurements that require resolution? is there. If the operating clock of the timer 54 is set to a high frequency, problems such as an increase in current consumption, an increase in high-frequency noise, and an increase in the size of the circuit will occur. There was a problem of improving the measurement accuracy by realizing high resolution in timer measurement that operates at a low frequency.
第 5の引例では遅延手段を制御部と駆動回路との間に挿入しこの遅延量を変化 させることによって反射波を避けることによって反射波の影響を小さくするもの であり、 例えば超音波送信時に発生するノイズによって受信側の超音波振動子が 振動し、 その振動の残響と超音波受信信号が重なることによって生じる受信検知 時間の変動を小さくすることはできないという課題があった。  In the fifth reference, a delay means is inserted between the control unit and the drive circuit, and the influence of the reflected wave is reduced by changing the amount of delay to avoid the reflected wave. There was a problem that the fluctuation of the reception detection time caused by the vibration of the ultrasonic transducer on the receiving side vibrating due to the noise and the reverberation of the vibration and the ultrasonic reception signal could not be reduced.
本発明は、 上記課題を解決するも φで、 新しい変動検出装置を用いずに、 ソフ ト的に変動周期を検出して、 逐次繰返し回数を変更することで、 流れの変動に応 じて最適な繰返し回数を設定することができ、 圧力変動や変動周期の変化がある 場合にも、 短時間でかつ安定した計測流量を精度よく計測することを第 1の目的 としている。 また、 新しい変動検出装置を用いずに、 送受信手段で変動を検出す るように切換えるとともに、 変動に同期した計測処理を行うことで、 精度の高い 流量計測を瞬時に行うことを第 2の目的している。 また、 計測監視手段によって 異常を素早く見つけ計測を的確に処理することで、 計測処理に異常が発生したと きにも精度の高い流量計測を行うことを第 3目的としている。 また、 瞬時流量計 測手段とデジタルフィルター手段を用いることで、 短時間で安定した精度の高い 流量計測を行うことを第 4の目的としている。 また、 温度変動がある場合にも、 精度よく流量値を計測することを第 5の目的としている。 発明の開示  The present invention solves the above-mentioned problems, but with φ, without using a new fluctuation detection device, detects the fluctuation period softly and changes the number of repetitions repeatedly, so that it is optimal according to the flow fluctuation The first objective is to be able to set a sufficient number of repetitions, and to accurately measure a stable and measured flow rate in a short time even when there is a change in pressure or a fluctuation cycle. The second purpose is to switch the transmission and reception means to detect fluctuations without using a new fluctuation detection device, and to perform highly accurate flow measurement instantaneously by performing measurement processing synchronized with fluctuations. are doing. The third objective is to perform high-precision flow measurement even when an abnormality occurs in the measurement process by quickly detecting the abnormality by the measurement monitoring means and processing the measurement accurately. The fourth object is to perform stable and accurate flow rate measurement in a short time by using instantaneous flow rate measuring means and digital filter means. The fifth object is to measure the flow rate value accurately even when there is temperature fluctuation. Disclosure of the invention
本発明は上記課題を解決するために、 流路に設けられて流体の状態変化を用い て送受信する送受信手段と、 前記送受信を繰返し行う繰返手段と、 前記繰返手段 で繰り返される伝搬時間を計測する計時手段と、 前記計時手段の値に基づいて流 量を検出する流量検出手段と、 所定の繰返し回数に変更する回数変更手段を備え た構成とした。 そして、 変動に適した繰返し回数に変更することで、 流れの変 動による影響を抑制することができ、 安定した流量計測を高精度で実現できる。 また、 流体の状態変化として音波の伝搬を用いた一対の送受信手段を備えた。 そして、 音波の送受信手段を用いることで、 流体の状態変化があった場合でも音 波の伝搬を行うことができ、 変動に適した繰返し回数に変更することで精度よく 安定して流量計測を行うことができる。 In order to solve the above problems, the present invention provides a transmitting / receiving means provided in a flow path for transmitting and receiving using a change in the state of a fluid, a repeating means for repeating the transmission and reception, and a propagation time repeated by the repeating means. It has a configuration including a time measuring means for measuring, a flow detecting means for detecting a flow rate based on the value of the time measuring means, and a number changing means for changing to a predetermined number of repetitions. Then, by changing the number of repetitions suitable for fluctuations, The effect of movement can be suppressed, and stable flow measurement can be realized with high accuracy. Further, a pair of transmission / reception means using the propagation of sound waves as a change in the state of the fluid is provided. By using sound wave transmission / reception means, sound waves can be propagated even when there is a change in the state of the fluid, and the flow rate can be measured accurately and stably by changing the number of repetitions to a value suitable for the fluctuation. be able to.
また、 流体の状態変化として熱の伝搬を用いた送受信手段を備えた。 そして、 熱の送受信手段をもちいることで、 流体の状態変化があった場合でも熱の伝搬を 行うことができ、 変動に適した繰返し回数を変更することで精度よく安定して流 量計測を行うことができる。  In addition, a transmission / reception means using the propagation of heat as a state change of the fluid is provided. By using the heat transmission and reception means, heat can be transmitted even when the state of the fluid changes, and the flow rate can be measured stably with high accuracy by changing the number of repetitions suitable for the fluctuation. It can be carried out.
また、 繰返手段で繰返し計測する伝搬時間の途中情報を検出する経過時間検出 手段と、 前記経過時間検出手段の情報から流量変動の周期を検出する周期検出手 段と、 前記周期検出手段で検出された周期のほぼ整数倍の測定時間に設定する回 数変更手段とを備えた構成とした。 そして、 特定の検出手段を必要とせず、 流量 検出を行う前に計時手段の途中情報から周期を検出して周期の整数倍とすること ができるので、 流量計測は安定して精度よく計測することができる。  Further, an elapsed time detecting means for detecting information on the way of the propagation time repeatedly measured by the repeating means, a cycle detecting means for detecting a cycle of the flow rate variation from the information of the elapsed time detecting means, And a frequency changing means for setting the measurement time to be substantially an integral multiple of the set period. Since no specific detection means is required and the cycle can be detected from the information on the way of the timing means before the flow rate is detected and can be set to an integral multiple of the cycle, the flow rate measurement must be performed stably and accurately. Can be.
また、 経過時間検出手段により得られた繰返し行われる送受信の各伝搬時間を 少なくとも 1個以上保持するデータ保持手段と、 前記データ保持手段により保持 されたデータと計測された伝搬時間のデータを比較することによって周期を検出 する周期検出手段を備えた構成とした。 そして、 データ保持手段によって瞬時瞬 時の計時情報を保持し比較することで周期を検出することができる。  Further, a data holding unit that holds at least one or more propagation times of repetition transmission and reception obtained by the elapsed time detection unit, and compares the data held by the data holding unit with the measured propagation time data. In this way, a configuration is provided that includes a period detecting means for detecting the period. Then, the period can be detected by holding and comparing the time information of the instantaneous moment by the data holding means.
また、 回数変更手段は、 所定の処理の時に動作する構成とした。 そして、 所定 の処理の時のみに行うことで、 必要最低限の処理にすることができ消費電力を大 幅に低減することができる。  Further, the number-of-times changing means is configured to operate at the time of predetermined processing. By performing the processing only at the time of the predetermined processing, the processing can be reduced to the minimum required, and the power consumption can be significantly reduced.
また、 回数変更手段は、 所定流量計測のたびに動作する構成とした。 そして、 所定流量計測のたびに行うことで、 激しく変動する流れにおいても安定して流量 を精度よく計測することができる。 また、 回数変更手段は、 流量計測処理の前に行われる構成とした。 そして、 流 量計測を行う前に繰返し回数を所定の回数に設定するので、 流量計測は安定して 精度よく行える。 The number-of-times changing means is configured to operate each time a predetermined flow rate is measured. By performing the measurement every time the predetermined flow rate is measured, the flow rate can be measured stably and accurately even in a flow that fluctuates drastically. Also, the frequency change means is configured to be performed before the flow rate measurement processing. Since the number of repetitions is set to a predetermined number before performing the flow rate measurement, the flow rate measurement can be performed stably and accurately.
また、 所定処理は、 計測流量から流量の異常を判別する異常判別手段と、 計測 流量から流量の使用状況を管理する流量管理手段とを行う構成とした。 そして、 異常判別や流量管理の処理の時のみとすることで、 回数変更を行う処理を最低限 押さえられ低消費電力とすることができる。  In addition, the predetermined processing is configured to perform abnormality determination means for determining an abnormality in the flow rate from the measured flow rate, and flow rate management means for managing the usage state of the flow rate from the measured flow rate. Then, by performing only the processing of the abnormality determination and the flow rate management, the processing of changing the number of times can be suppressed to a minimum, and the power consumption can be reduced.
また、 周期検出手段で得られた周期に合せた繰返し回数は、 次回の流量計測時 に使用される構成とした。 そして、 次回の計測に使用することで、 周期検出のた めの繰返し計測が不要となり、 低消費電力とすることができる。  In addition, the number of repetitions corresponding to the cycle obtained by the cycle detection means was used in the next flow measurement. Then, by using it for the next measurement, it is not necessary to repeat the measurement for detecting the period, and the power consumption can be reduced.
また、 計測流量が所定流量未満の時に、 回数変更手段を動作させる構成とした。 そして、 所定流量以下の時のみ行うことで、 大流量時には処理せず低消費電力と することができる。  Further, when the measured flow rate is less than the predetermined flow rate, the number-of-times changing means is operated. By performing the processing only when the flow rate is equal to or less than the predetermined flow rate, the processing is not performed at the time of a large flow rate, and the power consumption can be reduced.
また、 流路に設けられて流体の状態変化を送受信する送受信手段と、 前記送受 信手段で送受信される伝搬時間を計測する計時手段と、 前記計時手段の値に基づ いて流量を検出する流量検出手段と、 前記送受信手段で流路内の変動を計測する 変動検出手段と、 前記変動検出手段の変動のタイミングに同期して計測を開始す る計測制御手段とを備えた。 そして、 送受信手段で流路内の変動を計測すること によって、 変動検出用の別センサを設ける必要がなく、 小型化ゃ流路などを簡素 化することができるとともに、 変動が発生した場合でも短時間で安定して精度よ く流量が計測できる。  A transmitting / receiving unit provided in the flow path for transmitting / receiving a change in the state of the fluid; a timing unit for measuring a propagation time transmitted / received by the transmitting / receiving unit; and a flow rate for detecting a flow rate based on the value of the timing unit. Detecting means, fluctuation detecting means for measuring fluctuations in the flow path by the transmitting and receiving means, and measurement control means for starting measurement in synchronization with the fluctuation timing of the fluctuation detecting means. By measuring fluctuations in the flow path by the transmission / reception means, there is no need to provide a separate sensor for detecting fluctuations, so that the size can be reduced, the flow path can be simplified, and even if fluctuations occur, short The flow rate can be measured stably and accurately over time.
また、 流体の状態変化として音波の伝搬を用いた一対の送受信手段を備えた。 そして、 流体の状態変化を音波の送受信手段で検出することができ、 変動のタイ ミングに同期して計測を開始することで精度よく安定して流量計測を行うことが できる。  Further, a pair of transmission / reception means using the propagation of sound waves as a change in the state of the fluid is provided. Then, the change in the state of the fluid can be detected by the sound wave transmitting / receiving means, and by starting the measurement in synchronization with the timing of the fluctuation, the flow rate can be measured accurately and stably.
また、 流体の状態変化として熱の伝搬を用いた送受信手段を備えた。 そして、 流体の状態変化を熱の送受信手段で検出することができ、 変動のタイミングに同 期して計測を開始することで精度よく安定して流量計測を行うことができる。 また、 流路に設けられて音波を送受信する第 1振動手段および第 2振動手段と、 前記第 1振動手段および第 2振動手段の送受信の動作を切換える切換手段と、 前 記第 1振動手段および第 2振動手段の少なくとも一方で流路内の圧力変動を検出 する変動検出手段と、 前記第 1振動手段および第 2振動手段で送受信される音波 の伝搬時間を計測する計時手段と、 前記変動検出手段の出力が所定変化した時に 流路の上流側の第 1振動手段から下流側の第 2振動手段に伝搬する第 1計時時間 T 1を前記計時手段が測定し、 また、 前記変動検出手段の出力が前記所定変化と 逆に変化した時には流路の下流側の第 2振動手段から上流側の第 1振動手段に伝 搬する第 2計時時間 T 2を前記計時手段が測定する制御を行う計測制御手段と、 前記第 1計時時間 T 1と前記第 2計時時間 T 2を用いて流量を算出する流量検出 手段とを備えた構成とした。 そして、 圧力変動の変化が逆になるタイミングで計 測することで、 圧力変動と計測するタイミングの位相をずらすことができ、 圧力 変動による計測誤差を相殺することができる。 In addition, a transmission / reception means using the propagation of heat as a state change of the fluid is provided. And Fluid state changes can be detected by the heat transmission / reception means, and measurement can be started in synchronization with the timing of the fluctuations, enabling accurate and stable flow measurement. A first vibrating means and a second vibrating means provided in the flow path for transmitting and receiving a sound wave; a switching means for switching the transmitting and receiving operations of the first vibrating means and the second vibrating means; A fluctuation detecting means for detecting a pressure fluctuation in the flow path of at least one of the second vibrating means; a time measuring means for measuring a propagation time of a sound wave transmitted and received by the first vibrating means and the second vibrating means; When the output of the means changes by a predetermined amount, the time measuring means measures a first time T1 which propagates from the first vibrating means on the upstream side of the flow path to the second vibrating means on the downstream side. When the output changes in reverse to the predetermined change, the time measurement means controls the second time measurement T2 to be transmitted from the second vibration means on the downstream side of the flow path to the first vibration means on the upstream side. Control means, and the first clock time T 1 And a configuration in which a flow rate detection means for calculating the flow rate using a serial second measured time T 2. By measuring at the timing when the change in the pressure fluctuation is reversed, the phase of the pressure fluctuation and the timing of the measurement can be shifted, and the measurement error due to the pressure fluctuation can be canceled.
また、 変動検出手段の出力が所定変化した時に第 1計時時間 T 1の測定を開始 し、 前記変動検出手段の出力が前記所定変化と逆に変化した時に第 2計時時間 T 2の測定を開始する計測制御と、 次回の計測時は、 変動検出手段の出力が前記所 定変化と逆に変化した時に第 1計時時間 T 1の測定を開始し、 前記変動検出手段 の出力が所定変化した時に第 2計時時間 T 2の測定を開始計測制御を行う計測制 御手段と、 計測開始を交互に変更しながら前回の第 1計時時間 T 1と第 2計時時 間 T 2を用いて求めた第 1流量と、 次回の第 1計時時間 T 1と第 2計時時間 T 2 を用いて求めた第 2流量を逐次平均処理することにより流量を算出する流量検出 手段を備えた構成とした。 そして、 計測するタイミングを前述のように変えて第 1計時時間 T 1と第 2計時時間 T 2することで、 圧力変動が高圧側、 低圧側で非 対称となっていても、 その圧力変動の影響を相殺することができる。 また、 送受信を複数回行う繰返手段を傭えた構成とした。 そして、 計測回数を 増加することで平均化することができ、 安定した流量計測を行うことができる。 また、 変動周期の整数倍時間にわたって送受信を複数回行う繰返手段を備えた 構成とした。 そして、 変動周期で計測することで圧力変動が平均化され安定した 流量を計測することができる。 In addition, the measurement of the first clocking time T1 is started when the output of the fluctuation detecting means changes by a predetermined amount, and the measurement of the second clocking time T2 is started when the output of the fluctuation detecting means changes in a direction opposite to the predetermined change. Measurement control, and at the next measurement, when the output of the fluctuation detecting means changes in reverse to the predetermined change, measurement of the first time T1 is started, and when the output of the fluctuation detecting means changes by a predetermined amount. Start the measurement of the second clock time T2 The measurement control means that performs the measurement control and the second clock time T2 obtained by using the previous first clock time T1 and the second clock time T2 while alternately changing the measurement start The flow rate detecting means is configured to calculate the flow rate by sequentially averaging the first flow rate and the second flow rate obtained using the next first time measurement time T1 and second time measurement time T2. By changing the measurement timing as described above and performing the first clocking time T1 and the second clocking time T2, even if the pressure fluctuation is not symmetrical on the high pressure side and low pressure side, The effects can be offset. In addition, a repetition unit that performs transmission and reception multiple times is adopted. Then, by increasing the number of measurements, averaging can be performed, and stable flow measurement can be performed. In addition, a configuration is provided that includes a repetition unit that performs transmission and reception multiple times over an integral multiple of the fluctuation period. Then, by measuring at the fluctuation cycle, the pressure fluctuation is averaged, and a stable flow rate can be measured.
また、 変動検出手段の出力が所定変化した時に送受信計測を開始し、 前記変動 検出手段の出力が前記所定変化と同じ変化をするまで繰返し音波の送受信計測を 行う繰返手段を備えた。 そして、 計測の開始と停止を圧力変動の周期と一致させ ることができるので、 変動周期で計測することができ圧力変動が平均化され安定 した流量を計測することができる。  Further, there is provided a repetition means for starting transmission / reception measurement when the output of the fluctuation detection means changes by a predetermined amount, and repeatedly performing transmission / reception measurement of the sound wave until the output of the fluctuation detection means changes the same as the predetermined change. Since the start and stop of the measurement can be made to coincide with the cycle of the pressure fluctuation, the measurement can be performed at the fluctuation cycle, and the pressure fluctuation can be averaged and a stable flow rate can be measured.
また、 第 1振動手段および第 2振動手段を、 音波の送受信に用いる場合と、 圧 力変動の検出に用いる場合を切換える選択手段を備えた構成とした。 そして、 第 1振動手段および第 2振動手段の少なくとも 1方を圧力検出に使用することがで き、 流量計測と圧力計測を両立することができる。  In addition, the first vibration means and the second vibration means are provided with a selection means for switching between a case where the first vibration means is used for transmitting and receiving a sound wave and a case where the first vibration means is used for detecting a pressure fluctuation. Then, at least one of the first vibrating means and the second vibrating means can be used for pressure detection, and both flow rate measurement and pressure measurement can be achieved.
また、 変動波形の交流成分のゼロ付近を検出する変動検出手段を備えた構成と した。 そして、 変動のゼロ成分付近で変動を検出することで流量計測を行う時間 の範囲が変動ゼロ付近から計測を開始することができ、 変動の少ない時間内に流 量計測を行うことで流体変動時の計測を安定化することができる。  In addition, the configuration is provided with a fluctuation detecting means for detecting the vicinity of zero of the AC component of the fluctuation waveform. Then, by detecting the fluctuation near the zero component of the fluctuation, the range of the time for performing the flow measurement can be started from near the fluctuation zero. Measurement can be stabilized.
また、 変動検出手段の信号の周期を検出する周期検出手段と、 前記周期検出手 段の検出した周期が、 所定の周期の時にのみ計測を開始する計測制御手段を備え た構成とした。 そして、 所定周期の時のみに計測を開始することで、 所定の変動 時に計測が行え、 安定した流量を計測することができる。  Further, a configuration is provided which includes a cycle detecting means for detecting a cycle of the signal of the fluctuation detecting means, and a measuring control means for starting the measurement only when the cycle detected by the cycle detecting means is a predetermined cycle. By starting the measurement only at the predetermined period, the measurement can be performed at the predetermined fluctuation, and the stable flow rate can be measured.
また、 変動検出手段の信号が検出できなかった時は、 所定時間後に計測を自動 的にスタートする検出解除手段を備えた構成とした。 そして、 変動がなくなった 場合でも所定時間がくれば自動的に流量を計測することができる。  In addition, when a signal from the fluctuation detecting means cannot be detected, a configuration is provided in which a detection canceling means is automatically started after a predetermined time. Then, even if the fluctuation disappears, the flow rate can be automatically measured after a predetermined time.
また、 送受信手段および第 1振動手段および第 2振動手段は、 圧電式振動子か らなる構成とした。 そして、 圧電式振動子とすることで超音波を送受信に用いな がら、 かつ圧力変動も検出することができる。 Also, the transmitting / receiving means, the first vibrating means and the second vibrating means may be a piezoelectric vibrator. The configuration was composed of By using a piezoelectric vibrator, it is possible to detect pressure fluctuations while using ultrasonic waves for transmission and reception.
また、 流路に設けられて流体の状態変化を用いて送受信する送受信手段と、 前 記送受信手段の信号伝搬を繰返し行う繰返手段と、 前記繰返手段で繰り返される 間の伝搬時間を計測する計時手段と、 前記計時手段の値に基づいて流量を検出す る流量検出手段と、 流路内の流体変動を検出する変動検出手段と、 前記各手段を 制御する計測制御手段と、 前記各手段の異常を監視する計測監視手段とを備えた。 そして、 流路内の流れに変動がある場合、 その変動に合せて流量を計測するとと もに計測監視手段によって異常を素早く検出することができるので、 異常時の処 置が的確に行え、 計測値が安定し精度よく流量が計測でき信頼性を向上すること ができる。  A transmission / reception unit provided in the flow path for transmitting / receiving using a change in the state of the fluid; a repetition unit for repeating the signal propagation of the transmission / reception unit; and measuring a propagation time during the repetition by the repetition unit. Time measuring means, flow rate detecting means for detecting a flow rate based on the value of the time measuring means, fluctuation detecting means for detecting fluid fluctuation in the flow path, measurement control means for controlling each of the means, and each of the means Measurement monitoring means for monitoring abnormalities in the data. If there is a fluctuation in the flow in the flow path, the flow rate is measured in accordance with the fluctuation, and the abnormality can be quickly detected by the measurement and monitoring means. The value is stable, the flow rate can be measured with high accuracy, and the reliability can be improved.
また、 流体の状態変化として音波の伝搬を用いた一対の送受信手段を備えた。 そして、 音波を用いることで流体に変動があっても流量計測が行えると共に、 計 測監視手段によって異常時の処置が的確に行え信頼性を向上することができる。 また、 流体の状態変化として熱の伝搬を用いた送受信手段を備えた。 そして、 熱伝搬を用いることで流体に変動があっても流量計測が行えると共に、 計測監視 手段によって異常時の処置が的確に行え信頼性を向上することができる。  Further, a pair of transmission / reception means using the propagation of sound waves as a change in the state of the fluid is provided. By using sound waves, flow rate measurement can be performed even if the fluid fluctuates, and the measurement and monitoring means can take corrective measures when an abnormality occurs, thereby improving reliability. In addition, transmission / reception means using heat propagation as a change in the state of the fluid is provided. By using the heat propagation, the flow rate can be measured even if the fluid fluctuates, and the measurement and monitoring means can take corrective action in the event of an abnormality to improve reliability.
また、 流路に設けられて音波を送受信する 1対の送受信手段と、 前記送受信手 段の信号伝搬を繰返し行う繰返手段と、 前記繰返手段で繰り返される間の音波の 伝搬時間を計測する計時手段と、 前記計時手段の値に基づいて流量を検出する流 量検出手段と、 流路内の流体変動を検出する変動検出手段と、 前記各手段を制御 する計測制御手段と、 前記計測制御手段の指示信号後、 前記変動検出手段の第 1 出力信号時に音波の送信開始を指示する開始信号と、 前記変動検出手段の第 2出 力信号時に音波の送受信の繰返終了を指示する終了信号と、 前記開始信号と前記 終了信号の異常を監視する計測監視手段とを備えた。 そして、 流路内の流れに変 動がある場合、 その変動周期に同期して計測するとともに計測監視手段によって 異常を検出することができるので、 計測値が安定し精度よく流量が計測でき、 か つ異常時の処置が的確に行へ、 計測流量値の信頼性を向上することができる。 また、 計測制御手段の指示の後、 所定時間内に開始信号が発生しなかった時、 所定時間後に音波の送信開始を指示する計測監視手段を備えた。 そして、 変動が なく所定時間内に開始信号がない場合でも、 所定時間ごとに流量を計測すること ができるとともに、 データの欠落を防止することができる。 A pair of transmitting / receiving means provided in the flow path for transmitting / receiving a sound wave; a repeating means for repeating signal propagation of the transmitting / receiving means; and measuring a propagation time of the sound wave during the repetition by the repeating means. Time measuring means, flow rate detecting means for detecting a flow rate based on the value of the time measuring means, fluctuation detecting means for detecting fluid fluctuation in the flow path, measurement control means for controlling each of the means, and the measurement control After the instruction signal of the means, a start signal instructing the start of sound wave transmission at the time of the first output signal of the fluctuation detecting means, and an end signal instructing the repetition of transmission and reception of sound waves at the time of the second output signal of the fluctuation detecting means. And measurement monitoring means for monitoring abnormalities of the start signal and the end signal. When there is a fluctuation in the flow in the flow path, measurement is performed in synchronization with the fluctuation cycle, and the measurement and monitoring means are used. Since an abnormality can be detected, the measured value is stable and the flow rate can be measured with high accuracy. In addition, when an abnormality is taken, correct measures can be taken and the reliability of the measured flow rate value can be improved. Also, a measurement monitoring means is provided for instructing the start of sound wave transmission after a predetermined time when a start signal is not generated within a predetermined time after the instruction of the measurement control means. Then, even when there is no fluctuation and there is no start signal within a predetermined time, the flow rate can be measured every predetermined time, and data loss can be prevented.
また、 計測制御手段の指示の後、 所定時間内に開始信号が発生しなかった時、 所定時間後に音波の送信開始を指示し、 所定の繰返し回数で計測を行う計測監視 手段を備えた。 そして、 変動がなく所定時間内に開始信号がない場合でも、 所定 時間ごとに所定の繰返し回数で流量を計測することができるとともに、 デ一夕の 欠落を防止することができる。  In addition, there is provided a measurement monitoring means for instructing the start of sound wave transmission after a predetermined time when no start signal is generated within a predetermined time after the instruction of the measurement control means, and performing measurement at a predetermined number of repetitions. Even if there is no fluctuation and there is no start signal within a predetermined time, the flow rate can be measured at a predetermined number of repetitions every predetermined time, and loss of data can be prevented.
また、 計測制御手段の指示の後、 所定時間内に開始信号が発生しなかった時、 次の計測制御手段の指示まで計測を行わない計測監視手段を備えた。 そして、 次 の計測指示まで待機することで、 無駄な計測を止め消費電力の節減を行うことが できる。  In addition, when the start signal is not generated within a predetermined time after the instruction of the measurement control means, the measurement monitoring means which does not perform the measurement until the instruction of the next measurement control means is provided. By waiting for the next measurement instruction, useless measurement can be stopped and power consumption can be reduced.
また、 開始信号の後、 所定時間内に終了信号が発生しなかった時、 音波の受信 を終了する計測監視手段を備えた。 そして、 強制的に終了することで終了待ちで 計測が停止することがなく、 次の処理に進むことができ、 安定した計測動作が行 える。  In addition, a measurement monitoring means is provided for terminating the reception of the sound wave when the end signal is not generated within a predetermined time after the start signal. Then, by forcibly terminating the measurement, the measurement does not stop waiting for the termination, and the process can proceed to the next processing, and a stable measurement operation can be performed.
また、 開始信号の後、 所定時間内に終了信号が発生しなかった時、 音波の受信 を終了して、 再度開始信号を出力する計測監視手段を備えた。 そして、 強制的に 終了することで終了待ちで計測が停止することがなく、 再度開始信号を出力する ことで再計測を行い、 安定した計測動作が行うことができる。  In addition, when the end signal is not generated within a predetermined time after the start signal, the measurement monitoring means for terminating the reception of the sound wave and outputting the start signal again is provided. Then, by forcibly terminating the measurement, the measurement does not stop waiting for the end, and re-measurement is performed by outputting the start signal again, so that a stable measurement operation can be performed.
また、 繰返し回数が異常になったとき、 送受信の処理を停止する計測監視手段 を備えた。 そして、 繰返し回数が異常の時は、 計測を停止することによって精度 のよいデータのみを使用して流量計測を行うことができる。 また、 1対の送受信手段のうち、 一方の送受信手段から送信を行い他方の送受 信手段で受信する計測時の第 1繰返し回数と、 他方の送受信手段から送信を行い 一方の送受信手段で受信する計測時の第 2繰返し回数を比較し、 両繰返し回数の 差が所定回数以上の時、 再度開始信号を出力する計測監視手段を備えた。 そして、 繰返し回数が大きく異なる時は再計測を行うことで、 変動周期が安定した状態で 計測することで精度の高い流量計測を行うことができる。 Also provided is a measurement monitoring means that stops transmission / reception processing when the number of repetitions becomes abnormal. Then, when the number of repetitions is abnormal, by stopping the measurement, the flow rate can be measured using only accurate data. Also, of the pair of transmission / reception means, the first number of repetitions at the time of measurement transmitted from one transmission / reception means and received by the other transmission / reception means, and transmitted from the other transmission / reception means and received by one transmission / reception means Measurement monitoring means for comparing the second number of repetitions at the time of measurement and outputting a start signal again when the difference between the two repetitions is equal to or more than a predetermined number is provided. When the number of repetitions is significantly different, remeasurement is performed, and measurement is performed in a state where the fluctuation period is stable, so that highly accurate flow rate measurement can be performed.
また、 1対の送受信手段のうち、 一方の送受信手段から送信を行い他方の送受 信手段で受信する計測時の第 1繰返し回数と、 他方の送受信手段から送信を行い 一方の送受信手段で受信する計測時の第 2繰返し回数は同じ回数になるように設 定する繰返手段を備えた。 そして、 同じ繰返し回数とするとこで、 変動周期が不 安定な場合でも所定の流量計測を行うことができる。  Also, of the pair of transmission / reception means, the first number of repetitions at the time of measurement transmitted from one transmission / reception means and received by the other transmission / reception means, transmitted from the other transmission / reception means and received by one transmission / reception means A repetition means was provided to set the second number of repetitions during measurement to be the same. With the same number of repetitions, a predetermined flow rate measurement can be performed even when the fluctuation cycle is unstable.
また、 再度開始信号を出力する回数は所定回数までとし、 永久に繰返すことがな いように監視する計測監視手段を備えた。 そして、 再計測の回数を制限すること で無限に処理が続くことがないようにして安定した流量計測を行うことができる。 また、 超音波の送受信を複数回繰返して計測した伝搬時間の逆数差から流量を 計測することとした。 そして、 超音波を用いることで、 流路内の変動周波数の影 響を受けずに送受信が可能で、 かつ送受信を繰返して伝搬時間を計測した時間の 逆数差から流量を計測することで、 周期の長い変動でも 1周期単位で計測するこ とができるとともに、 逆数差により変動による伝搬時間の差を相殺することがで きる。 Also, the number of times the start signal is output again is set to a predetermined number of times, and a measurement / monitoring means is provided for monitoring such that the signal is not repeated forever. By limiting the number of re-measurements, stable processing can be performed without infinite processing. In addition, the flow rate was determined from the reciprocal difference of the propagation time measured by repeating the transmission and reception of the ultrasonic waves multiple times. By using ultrasonic waves, transmission and reception can be performed without being affected by the fluctuating frequency in the flow path, and by measuring the flow rate from the reciprocal difference of the propagation time measured by repeating transmission and reception, the cycle It is possible to measure even long-term fluctuations in units of one cycle, and the difference in propagation time due to fluctuations can be offset by the reciprocal difference.
また、 瞬時流量を検出する瞬時流量検出手段と、 流量値が脈動しているか否か 判別する脈動判別手段と、 前記脈動判別手段の判定結果によって異なった手段を 用いて流量値を算出する少なくとも 1つ以上の安定流量算出手段を備えた。 そし て、 計測流量の変動を判別して流量の算出手段を切換えることで、 変動量に応じ て一つの流量計測手段で安定した流量の算出が可能とすることができる。  Further, an instantaneous flow rate detecting means for detecting an instantaneous flow rate, a pulsation determining means for determining whether or not the flow rate value is pulsating, and at least one of calculating a flow rate value using means different depending on the determination result of the pulsation determining means. At least one stable flow rate calculating means is provided. Then, by determining the variation of the measured flow rate and switching the flow rate calculation means, it is possible to calculate a stable flow rate with one flow rate measurement means according to the variation amount.
また、 瞬時流量を検出する瞬時流量検出手段と、 流量値をデジタルフィルター 処理するフィルター処理手段と、 前記フィルター処理手段によって流量値を算出 する安定流量算出手段を備えた構成とした。 そして、 デジタルフィルター処理す ることによって、 平均処理相当の算術計算が多くのデータ用メモリーを使用せず に行うことができるとともに、 フィルタ一係数という一つの変数を変更すること で、 フィルター特性を変更することができる。 In addition, instantaneous flow rate detection means for detecting instantaneous flow rate and digital filter for flow rate value The filter processing means for processing, and the stable flow rate calculating means for calculating the flow rate value by the filter processing means are provided. By performing digital filtering, arithmetic calculations equivalent to averaging can be performed without using a lot of data memory, and filter characteristics can be changed by changing one variable called a filter coefficient. can do.
また、 脈動判別手段が脈動と判別した時に、 流量値をデジタルフィルター処理 手段によって安定値を算出する安定流量算出手段を備えた。 そして、 脈動時には、 急峻なフィルター特性とすることで大きな脈動を安定させることができるととも に、 脈動時のみフィルター処理することが可能である。  Also, a stable flow rate calculating means for calculating a stable value of the flow rate value by the digital filter processing means when the pulsation determining means determines pulsation is provided. Then, at the time of pulsation, it is possible to stabilize a large pulsation by using a steep filter characteristic, and it is possible to perform a filtering process only at the time of pulsation.
また、 脈動判別手段は、 流量値の変動幅が所定値以上か否かを判別する構成と した。 そして、 脈動の変動幅によって判別することで脈動の変動幅に応じてフィ ルター処理を変更することができる。  Further, the pulsation determination means is configured to determine whether the fluctuation width of the flow value is equal to or greater than a predetermined value. Then, by performing the determination based on the fluctuation range of the pulsation, the filter processing can be changed according to the fluctuation range of the pulsation.
また、 フィルター処理手段は、 流量値の変動幅によってフィルター特性を変更 する構成とした。 そして、 変動幅によってフィルター特性を変更することで、 小 さい変動時には緩やかなフィルター特性として流量の変動に速やかに変動できる ようにするとともに、 大きい変動時には、 急峻なフィルター特性とすることで脈 動による流量の変動を大きく抑制することができる。  The filter processing means is configured to change the filter characteristics according to the fluctuation range of the flow value. By changing the filter characteristics according to the fluctuation range, the filter characteristics are gradual when the fluctuations are small, so that the fluctuations in the flow rate can be quickly changed. Fluctuations in the flow rate can be greatly suppressed.
また、 瞬時流量検出手段が検出した流量値が、 低流量時にのみフィルター処理 を行う構成とした。 そして、 低流量時にのみフィルター処理を行うことで大流量 時の流量変化に素早く対応するとともに、 低流量時の脈動の影響を大幅に抑制す ることができる。  Also, the filter processing is performed only when the flow rate value detected by the instantaneous flow rate detection means is low. By performing filter processing only at low flow rates, it is possible to quickly respond to flow rate changes at large flow rates and to significantly reduce the effects of pulsation at low flow rates.
また、 フィルター処理手段は、 流量値によってフィルター特性を変更する構成 とした。 そして、 流量値によってフィルタ一特性を変更することで、 低流量時に のみフィルター処理を行うことで大流量時の流量変化に素早く対応するとともに、 低流量時の脈動の影響を大幅に抑制することができる。  The filter processing means is configured to change the filter characteristics according to the flow rate value. By changing the filter characteristics according to the flow rate value, the filter process is performed only at low flow rates to quickly respond to changes in flow rate at high flow rates and greatly reduce the effects of pulsation at low flow rates. it can.
また、 フィルター処理手段は、 瞬時流量検出手段の流量時間の間隔によってフ ィルター特性を変更する構成とした。 そして、 流量検出時間の間隔によってフィ ルター特性を変更することで、 計測間隔が短いときは、 緩やかなフィルター特性 で、 間隔が広いときには急峻なフィルター特性で変動を抑えることができる。 また、 大流量値の時には、 フィルター特性のカツ卜オフ周波数が高くなるよう に変更し、 低流量時には、 カットオフ周波数が低いフィルター特性を持つように 変更するフィルター処理手段を備えた。 そして、 大流量時には、 応答性が速くな り、 低流量時には脈動を抑制する処理とすることができる。 In addition, the filter processing means is configured to filter according to the flow time interval of the instantaneous flow rate detection means. The filter characteristics are changed. By changing the filter characteristics according to the interval of the flow rate detection time, fluctuations can be suppressed by a gentle filter characteristic when the measurement interval is short and by a steep filter characteristic when the measurement interval is wide. In addition, a filter processing means is provided to change the cutoff frequency of the filter characteristics to be higher when the flow rate is large, and to change the cutoff frequency to have a lower filter characteristic when the flow rate is low. Then, the response becomes faster at a large flow rate, and the pulsation can be suppressed at a low flow rate.
また、 安定流量算出手段により算出した流量値の変動幅が所定値以内になるよ うにフィルター特性を変更する構成とした。 そして、 変動値が所定値内になるよ うにフィルター特性を変更することによって、 流量変動を常に所定値以下に抑制 することができる。  Further, the filter characteristic is changed so that the fluctuation range of the flow rate value calculated by the stable flow rate calculation means is within a predetermined value. Then, by changing the filter characteristic so that the fluctuation value falls within the predetermined value, the flow rate fluctuation can always be suppressed to a predetermined value or less.
また、 超音波により流量を検出する超音波流量計を瞬時流量検出手段とした。 そして、 超音波流量計を用いることで、 大幅な流量変動が発生しても瞬時流量を 計測することができるので、 その流量値から算術により安定流量を求めることが できる。  In addition, an ultrasonic flowmeter that detects the flow rate using ultrasonic waves was used as the instantaneous flow rate detection means. By using an ultrasonic flow meter, the instantaneous flow rate can be measured even when a large flow rate fluctuation occurs, and a stable flow rate can be obtained from the flow rate value by arithmetic.
また、 熱式流量計を瞬時流量検出手段とした。 そして、 熱式流量計を用いるこ とで、 大幅な流量変動が発生しても瞬時流量を計測することができるので、 その 流量値から算術により安定流量を求めることができる。  A thermal flow meter was used as the instantaneous flow rate detection means. By using a thermal flow meter, the instantaneous flow rate can be measured even if a large flow rate fluctuation occurs, and a stable flow rate can be obtained from the flow rate value by arithmetic.
また、 被測定流体が流れる流量測定部と、 この流量測定部に設けられ超音波を 送受信する一対の超音波振動子と、 一方の前記超音波振動子を駆動する駆動回路 と、 他方の前記超音波振動子に接続され超音波信号を検知する受信検知回路と、 前記超音波信号の伝搬時間を測定するタイマと、 前記駆動回路を制御する制御部 と、 前記夕イマの出力より流量を演算によって求める演算部と、 駆動回路の駆動 方法を順次変更する周期性変更手段とを備え、 測定の周期が一定とならないよう に前記制御部が流量計測における周期を順次変更するよう前記周期性変更手段を 制御する。 このため測定周期あるいは超音波の送信周期に同期した雑音が受信の 時に常に同じ位相に存在せず分散されるので、 測定誤差を小さくすることができ る。 A flow rate measuring unit through which the fluid to be measured flows; a pair of ultrasonic vibrators provided in the flow measuring unit for transmitting and receiving ultrasonic waves; a driving circuit for driving one ultrasonic vibrator; A reception detection circuit that is connected to the ultrasonic transducer and detects an ultrasonic signal; a timer that measures the propagation time of the ultrasonic signal; a control unit that controls the drive circuit; A calculating unit for determining the driving method, and a periodicity changing unit for sequentially changing a driving method of the drive circuit, wherein the control unit changes the periodicity in the flow rate measurement so that the measuring period does not become constant. Control. For this reason, noise synchronized with the measurement cycle or the ultrasound transmission cycle Sometimes, they are not always in the same phase and are dispersed, so that measurement errors can be reduced.
また、 被測定流体が流れる流量測定部と、 この流量測定部に設けられ超音波を 送受信する一対の超音波振動子と、 一方の前記超音波振動子を駆動する駆動回路 と、 他方の前記超音波振動子に接続され超音波信号を検知する受信検知回路と、 受信検知回路の出力をうけ再度超音波振動子を駆動するよう前記駆動回路を所定 回数制御する制御部と、 前記所定回数の経過時間を測定する夕イマと、 前記タイ マの出力より流量を演算によって求める演算部と、 駆動回路の駆動方法を順次変 更する周期性変更手段とを備え、 周期が一定とならないように制御部は前記受信 検知回路の出力を受けると前記受信検知回路の受信検知ごとに周期性変更手段を 変更する。 1回の流量測定の中で周期変更手段を複数の設定で動作させ測定でき るので、 雑音が分散平均化した測定結果となり安定した測定結果を得ることがで さる。  A flow rate measuring unit through which the fluid to be measured flows; a pair of ultrasonic vibrators provided in the flow measuring unit for transmitting and receiving ultrasonic waves; a driving circuit for driving one ultrasonic vibrator; A reception detection circuit that is connected to the ultrasonic transducer and detects an ultrasonic signal; a control unit that receives the output of the reception detection circuit and controls the drive circuit a predetermined number of times so as to drive the ultrasonic transducer again; A controller for measuring the time, calculating a flow rate from the output of the timer by calculation, and a periodicity changing means for sequentially changing the driving method of the drive circuit, wherein the control unit controls the cycle so as not to be constant. When receiving the output of the reception detection circuit, changes the periodicity changing means for each reception detection of the reception detection circuit. Since the measurement can be performed by operating the cycle changing means with multiple settings in one flow measurement, the noise becomes a dispersion-averaged measurement result, and a stable measurement result can be obtained.
また、 周期性変更手段を複数の周波数の出力信号を切り替え出力する構成とし、 制御部は計測ごとに前記周期性変更手段の周波数設定を変更し駆動回路の駆動周 波数を変更するよう制御するので、 駆動周波数変更によつて受信検知タイミング を駆動信号の周期変動に相当する時間変化させることができる。 このため測定周 期あるいは超音波の送信周期に同期した雑音が受信の時に常に同じ位相に存在せ ず、 分散されるので、 測定誤差を小さくすることができる。  Further, the periodicity changing means is configured to switch and output output signals of a plurality of frequencies, and the control unit controls so as to change the frequency setting of the periodicity changing means and change the driving frequency of the driving circuit every measurement. By changing the drive frequency, the reception detection timing can be changed over time corresponding to the period change of the drive signal. For this reason, noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
また、 周期性変更手段を同じ周波数で複数の位相を持った出力信号を出力する 構成とし、 制御部は計測ごとに前記周期性変更手段の出力信号の位相設定を変更 し駆動回路の駆動位相を変更するよう制御するので、 駆動位相変更によつて受信 検知タイミングを駆動信号の位相変動を時間に換算した時間変化させることがで きる。 このため測定周期あるいは超音波の送信周期に同期した雑音が受信の時に 常に同じ位相に存在せず、 分散されるので、 測定誤差を小さくすることができる。 また、 周波数変更手段を超音波振動子の使用周波数である第 1周波数と前記第 1周波数とは異なる第 2周波数の信号を重ね合わせて出力する構成とし、 制御部 は計測毎に前記周期性変更手段の第 2周波数の設定を変更した出力信号を前記駆 動回路を介して出力するので、 流量計測における周期性を乱すことができる。 こ のため測定周期あるいは超音波の送信周期に同期した雑音が受信の時に常に同じ 位相に存在せず、 分散されるので、 測定誤差を小さくすることができる。 Further, the periodicity changing means is configured to output an output signal having a plurality of phases at the same frequency, and the control unit changes the phase setting of the output signal of the periodicity changing means for each measurement to change the drive phase of the drive circuit. Since control is performed to change the timing, the reception detection timing can be changed over time by converting the phase fluctuation of the drive signal into time by changing the drive phase. For this reason, noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced. Further, the frequency changing means may be configured to determine the first frequency, which is the operating frequency of the ultrasonic vibrator, and the first frequency. The control unit outputs the output signal obtained by changing the setting of the second frequency of the periodicity changing unit for each measurement via the drive circuit, with a configuration in which a signal of a second frequency different from the one frequency is superimposed and output. Therefore, the periodicity in the flow measurement can be disturbed. For this reason, noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
また、 周期性変更手段は第 2周波数がある場合と無い場合の設定を切り替える ことによって、 送信時の超音波振動子の振動を変え受信検知タイミングを変える ので、 流量計測における周期性を乱すことができ、 測定周期あるいは超音波の送 信周期に同期した雑音が受信の時に常に同じ位相に存在せず、 分散されるので、 測定誤差を小さくすることができる。  In addition, the periodicity changing means changes the vibration of the ultrasonic transducer at the time of transmission and changes the reception detection timing by switching the setting with and without the second frequency, so that the periodicity in the flow rate measurement may be disturbed. Since the noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, the measurement error can be reduced.
また、 周期性変更手段は第 2周波数の位相設定を変更するので、 送信時の超音 波振動子の振動を変え受信検知タイミングを変えるので、 流量計測における周期 性を乱すことができ、 測定周期あるいは超音波の送信周期に同期した雑音が受信 の時に常に同じ位相に存在せず、 分散 ·平均化されるので、 測定誤差を小さくす ることができる。  In addition, the periodicity changing means changes the phase setting of the second frequency, thereby changing the vibration of the ultrasonic vibrator at the time of transmission and changing the reception detection timing. Alternatively, noise synchronized with the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception, and is dispersed and averaged, so that measurement errors can be reduced.
また、 周期性変更手段は第 2周波数の周波数設定を変更するので、 送信時の超 音波振動子の振動を変え受信検知タイミングを変えるので、 流量計測における周 期性を乱すことができ、 測定周期あるいは超音波の送信周期に同期した雑音が受 信の時に常に同じ位相に存在せず、 分散されるので、 測定誤差を小さくすること ができる。  Also, the periodicity changing means changes the frequency setting of the second frequency, changes the vibration of the ultrasonic transducer at the time of transmission, and changes the reception detection timing, so that the periodicity in the flow measurement can be disturbed, and the measurement cycle can be changed. Alternatively, noise synchronized with the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
また、 周期性変更手段は異なる遅延時間が設定可能なディレイ部を備え、 制御 部は超音波の送信または超音波の受信検知ごとに前記ディレイの設定を変更する ので、 一回の測定中で直前に送信した超音波の残響や超音波振動子の尾引きの影 響を分散させることができ、 測定誤差を小さくすることができる。  In addition, the periodicity changing means includes a delay unit capable of setting a different delay time, and the control unit changes the delay setting every time ultrasonic transmission or ultrasonic reception is detected. This makes it possible to disperse the reverberation of the transmitted ultrasonic wave and the effect of tailing of the ultrasonic transducer, thereby reducing measurement errors.
また、 周期変更手段が変更する周期の幅が測定誤差による伝搬時間変動に相当 する値の整数倍とするので、 全設定を合計し平均をとつた時に誤差を最小とする ことができる。 Also, since the width of the cycle changed by the cycle changing means is an integral multiple of the value corresponding to the propagation time variation due to measurement error, the error is minimized when all settings are summed and averaged. be able to.
また、 周期変更手段が変更する周期の幅が超音波振動子の共振周波数の周期と するので、 全設定を合計を平均した値は、 超音波センサの残響や尾引きによって 発生する測定誤差が最小となるので、 測定誤差を小さくすることができる。 また、 周期性を変更するパターンの順番を上流方向への測定と下流方向への測 定とを同じとするので、 上流方向と下流方向への測定が常に同じ条件となり流量 変動がある場合の測定結果を安定化することができる。  In addition, since the width of the cycle changed by the cycle changing means is the cycle of the resonance frequency of the ultrasonic transducer, the average value of the sum of all settings is the minimum measurement error generated by the reverberation and tailing of the ultrasonic sensor. Therefore, the measurement error can be reduced. In addition, since the order of the pattern for changing the periodicity is the same for the measurement in the upstream direction and the measurement in the downstream direction, the measurement in the upstream direction and the measurement in the downstream direction are always the same condition, and the measurement when the flow rate fluctuates The result can be stabilized.
また、 所定回数が周期性変更手段の変更数の整数倍であるので、 一回の流量計 測の中で前記周期性変更手段の全設定値を均一に設定することができ、 測定結果 を安定させることができる。  Also, since the predetermined number is an integral multiple of the number of changes of the periodicity changing means, all the set values of the periodicity changing means can be set uniformly in one flow measurement, and the measurement result is stable. Can be done.
また、 被測定流体が流れる流量測定部と、 この流量測定部に設けられ超音波を 送受信する一対の超音波振動子と、 一方の前記超音波振動子を駆動する駆動回路 と、 他方の前記超音波振動子に接続され超音波信号を検知する受信検知回路と、 前記超音波信号の伝搬時間を測定する第 1の夕イマと、 前記受信検知回路が受信 検知してから前記第 1のタイマの値が変化するまでの時間を測定する第 2のタイ マと、 前記駆動回路を制御する制御部と、 前記第 1のタイマ及び前記第 2のタイ マの出力より流量を演算によって求める演算部を備え、 第 2のタイマを第 1の夕 イマで補正する構成を備えるものである。 そして前記第 1の夕イマの値から前記 第 2のタイマの値を引いた値によって流量の演算を行うので、 計時分解能は前記 第 2の夕イマと同等になる。 そして第 2のタイマの動作時間は非常に短いので消 費電力を小さくすることができ、 分解能の高い流量計を低消費電力で実現するこ とができる。 さらに補正後流量測定するまでの間前記第 2の夕イマが安定に動作 すれば正確な流量測定ができるので、 前記第 2の夕イマに長期的な安定性がなく でも正確な測定を行うことができる。 一般的な部品で容易に高精度の流量計を実 現できる。  A flow rate measuring unit through which the fluid to be measured flows; a pair of ultrasonic vibrators provided in the flow measuring unit for transmitting and receiving ultrasonic waves; a driving circuit for driving one ultrasonic vibrator; A reception detection circuit connected to the ultrasonic transducer for detecting an ultrasonic signal; a first timer for measuring a propagation time of the ultrasonic signal; and a first timer for detecting reception of the ultrasonic signal after the reception detection circuit detects the reception time. A second timer for measuring the time until the value changes, a control unit for controlling the drive circuit, and a calculation unit for calculating the flow rate from the outputs of the first timer and the second timer. And a configuration for correcting the second timer with the first timer. Then, the flow rate is calculated based on the value obtained by subtracting the value of the second timer from the value of the first timer, so that the timing resolution becomes equal to that of the second timer. Since the operation time of the second timer is very short, power consumption can be reduced, and a flowmeter with high resolution can be realized with low power consumption. In addition, accurate flow measurement can be performed if the second image stably operates until the flow measurement after the correction, so that accurate measurement can be performed even if the second image has no long-term stability. Can be. A high-precision flowmeter can be easily realized with general parts.
また、 温度センサを設け、 温度センサの出力が設定値以上変化した時に第 2の タイマを第 1のタイマで補正するものである。 このため、 前記第 2のタイマが温 度変化に対して特性が変化するものであっても温度変化が起こる都度補正し正確 な測定を行うことができる。 と同時に、 必要なときだけ補正を行うので、 消費電 力を小さくすることができる。 Also, a temperature sensor is provided, and when the output of the temperature sensor changes by more than the set value, the second The timer is corrected by the first timer. For this reason, even if the second timer changes its characteristic with respect to the temperature change, it can be corrected and accurate measurement each time a temperature change occurs. At the same time, correction is performed only when necessary, so that power consumption can be reduced.
また、 回路の電源電圧を検知する電圧センサを設け、 電圧センサの出力が設定 値以上変化した時に第 2のタイマを第 1のタイマで補正する構成とするものであ る。 このため、 前記第 2の夕イマが電源電圧変化に対して特性が変化するもので あっても電源電圧変化が起こる都度補正し正確な測定を行うことができる。 と同 時に、 定期的に補正を行う必要がないので、 消費電力を小さくすることができる。 また、 被測定流体が流れる流量測定部と、 この流量測定部に設けられ超音波を 送受信する一対の超音波振動子と、 一方の前記超音波振動子を駆動する駆動回路 と、 他方の前記超音波振動子に接続され超音波信号を検知する受信検知回路と、 受信検知回路の出力をうけ再度超音波振動子を駆動するよう前記駆動回路を所定 回数制御する制御部と、 前記所定回数の経過時間を測定する夕イマと、 前記タイ マの出力より流量を演算によって求める演算部と、 駆動回路の駆動方法を順次変 更する周期性安定化手段とを備え、 制御部は測定周期が常に一定となるように周 期性安定化手段を制御するものである。 そして、 この構成によって、 伝搬時間が 変化した時であっても測定周期が常に一定になるので、 測定周期あるいは超音波 の送信周期に同期した雑音が伝搬時間変動に関係なく受信の時に常に同じ位相で あるので、 測定誤差を一定値とすることができ、 非常に長い雑音周期であっても 流量計測を安定化することができる。  Further, a voltage sensor for detecting a power supply voltage of the circuit is provided, and the second timer is corrected by the first timer when the output of the voltage sensor changes by a set value or more. For this reason, even if the second image has a characteristic that changes with respect to the power supply voltage change, it can be corrected and accurate measurement can be performed each time the power supply voltage change occurs. At the same time, the power consumption can be reduced because it is not necessary to perform the correction periodically. A flow rate measuring unit through which the fluid to be measured flows; a pair of ultrasonic vibrators provided in the flow measuring unit for transmitting and receiving ultrasonic waves; a driving circuit for driving one ultrasonic vibrator; A reception detection circuit that is connected to the ultrasonic transducer and detects an ultrasonic signal; a control unit that receives the output of the reception detection circuit and controls the drive circuit a predetermined number of times so as to drive the ultrasonic transducer again; The control section has a constant measurement cycle, including a timer for measuring time, a calculation section for calculating a flow rate from the output of the timer by calculation, and periodicity stabilizing means for sequentially changing a driving method of the drive circuit. The periodic stabilization means is controlled so that With this configuration, the measurement cycle is always constant even when the propagation time changes, so that the noise synchronized with the measurement cycle or the ultrasonic transmission cycle always has the same phase during reception regardless of the propagation time fluctuation. Therefore, the measurement error can be kept constant, and the flow measurement can be stabilized even with a very long noise period.
また、 制御部は異なる遅延時間が設定可能なディレイ部からなる周期性安定化 手段を有し、 前記制御部は遅延時間を切り替えて駆動回路の出力タイミングを変 更するものである。 そして、 ディレイ時間を変更することによって測定周期を安 定化させるので、 超音波振動子の駆動に影響を与えること無く測定周期を安定化 できる。 また、 制御部は測定時間を一定とするよう駆動回路を制御するので、 一回一回 の超音波の伝搬時間を演算すること無く、 簡単な演算で測定周期を一定に制御す ることができる。 図面の簡単な説明 Further, the control unit has periodicity stabilizing means including a delay unit that can set a different delay time, and the control unit changes the output time of the drive circuit by switching the delay time. Since the measurement period is stabilized by changing the delay time, the measurement period can be stabilized without affecting the driving of the ultrasonic transducer. In addition, since the control unit controls the drive circuit to keep the measurement time constant, the measurement cycle can be controlled to be constant by a simple calculation without calculating the propagation time of each ultrasonic wave. . BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態 1の流量計のブロック図である。  FIG. 1 is a block diagram of a flow meter according to Embodiment 1 of the present invention.
図 2は、 同流量計の動作を説明するタイミングチヤ一トである。  FIG. 2 is a timing chart illustrating the operation of the flowmeter.
図 3は、 同流量計の動作を説明する変動波形図である。  FIG. 3 is a fluctuation waveform diagram illustrating the operation of the flow meter.
図 4は、 同流量計の動作を示すフローチャートである。  FIG. 4 is a flowchart showing the operation of the flow meter.
図 5は、 同流量計の動作を示すフローチャートである。  FIG. 5 is a flowchart showing the operation of the flow meter.
図 6は、 本発明の実施の形態 2の流量計の動作を示すフローチヤ一トである。 図 7は、 本発明の実施の形態 3の流量計のブロック図である。  FIG. 6 is a flowchart showing the operation of the flow meter according to the second embodiment of the present invention. FIG. 7 is a block diagram of a flow meter according to Embodiment 3 of the present invention.
図 8は、 同流量計の動作を示すフローチャートである。  FIG. 8 is a flowchart showing the operation of the flow meter.
図 9は、 同流量計の動作を示す別のフローチャートである。  FIG. 9 is another flowchart showing the operation of the flow meter.
図 1 0は、 本発明の実施の形態 4の流量計のブロック図である。  FIG. 10 is a block diagram of a flow meter according to Embodiment 4 of the present invention.
図 1 1は、 同流量計の動作を示すフローチャートである。  FIG. 11 is a flowchart showing the operation of the flow meter.
図 1 2は、 本発明の実施の形態 5の流量計のブロック図である。  FIG. 12 is a block diagram of a flow meter according to the fifth embodiment of the present invention.
図 1 3は、 本発明の実施の形態 6の流量計のブロック図である。  FIG. 13 is a block diagram of a flow meter according to Embodiment 6 of the present invention.
図 1 4は、 同流量計の構成図である。  FIG. 14 is a configuration diagram of the flow meter.
図 1 5は、 同流量計の動作を示すタイミングチヤ一トである。  Fig. 15 is a timing chart showing the operation of the flowmeter.
図 1 6は、 同流量計の動作を示す別のタイミングチャートである。  FIG. 16 is another timing chart showing the operation of the flow meter.
図 1 7は、 同流量計の動作を示すフローチャートである。  FIG. 17 is a flowchart showing the operation of the flow meter.
図 1 8は、 同流量計の動作を示す別のフローチャートである。  FIG. 18 is another flowchart showing the operation of the flow meter.
図 1 9は、 同流量計の別のブロック図である。  Figure 19 is another block diagram of the flow meter.
図 2 0は、 本発明の実施の形態 7の流量計の動作を示すタイミングチャートで ある。 図 2 1は、 同流量計の動作を示すフローチャートである。 FIG. 20 is a timing chart showing the operation of the flow meter according to the seventh embodiment of the present invention. FIG. 21 is a flowchart showing the operation of the flow meter.
図 2 2は、 本発明の実施の形態 8の流量計の動作を示すタイミングチャートで ある。  FIG. 22 is a timing chart showing the operation of the flow meter according to the eighth embodiment of the present invention.
図 2 3は、 同流量計の動作を示すフローチャートである。  FIG. 23 is a flowchart showing the operation of the flow meter.
図 2 4は、 本発明の実施の形態 9の流量計のブロック図である。  FIG. 24 is a block diagram of a flow meter according to the ninth embodiment of the present invention.
図 2 5は、 同流量計の動作を示すタイミングチャートである。  FIG. 25 is a timing chart showing the operation of the flowmeter.
図 2 6は、 本発明の実施の形態 1 0の流量計のブロック図である。  FIG. 26 is a block diagram of a flow meter according to Embodiment 10 of the present invention.
図 2 7は、 同流量計の動作を示すフローチャートである。  FIG. 27 is a flowchart showing the operation of the flow meter.
図 2 8は、 本発明の実施の形態 1 1の流量計の動作を示すタイミングチャート である。  FIG. 28 is a timing chart showing the operation of the flow meter according to Embodiment 11 of the present invention.
図 2 9は、 本発明の実施の形態 1 2の流量計の動作を示すタイミングチャート である。  FIG. 29 is a timing chart showing the operation of the flow meter according to Embodiment 12 of the present invention.
図 3 0は、 同流量計の動作を示すタイミングチャートである。  FIG. 30 is a timing chart showing the operation of the flow meter.
図 3 1は、 同流量計の動作を示す別のタイミングチャートである。  FIG. 31 is another timing chart showing the operation of the flow meter.
図 3 2は、 本発明の実施の形態 1 3の流量計を動作を示すタイミングチャート である。  FIG. 32 is a timing chart showing the operation of the flow meter according to Embodiment 13 of the present invention.
図 3 3は、 本発明の実施の形態 1 4の流量計の動作を示すタイミングチャート である。  FIG. 33 is a timing chart showing the operation of the flow meter according to Embodiment 14 of the present invention.
図 3 4は、 本発明の実施の形態 1 5の流量計の動作を示すフローチャートであ る。  FIG. 34 is a flowchart showing the operation of the flow meter according to Embodiment 15 of the present invention.
図 3 5は、 本発明の実施の形態 1 6の流量計の動作を示すフローチャートであ る。  FIG. 35 is a flowchart showing the operation of the flow meter according to Embodiment 16 of the present invention.
図 3 6は、 本発明の実施の形態 1 7の流量計の動作を示すフローチャートであ る。  FIG. 36 is a flowchart showing the operation of the flow meter according to Embodiment 17 of the present invention.
図 3 7は、 本発明の実施の形態 1 8の流量計の動作を示すフローチャートであ る。 図 3 8は、 本発明の実施の形態 1 9の流量計の動作を示すフローチャートであ る。 FIG. 37 is a flowchart showing an operation of the flow meter according to Embodiment 18 of the present invention. FIG. 38 is a flowchart showing the operation of the flow meter according to Embodiment 19 of the present invention.
図 3 9は、 本発明の実施の形態 2 0の流量計の動作を示すフローチャートであ る。  FIG. 39 is a flowchart showing the operation of the flow meter according to Embodiment 20 of the present invention.
図 4 0は、 本発明の実施の形態 2 1の流量計の動作を示すフローチャートであ る。  FIG. 40 is a flowchart showing the operation of the flow meter according to Embodiment 21 of the present invention.
図 4 1は、 本発明の実施の形態 2 2の流量計のブロック図である。  FIG. 41 is a block diagram of a flow meter according to Embodiment 22 of the present invention.
図 4 2は、 本発明の実施の形態 2 3の流量計のブロック図である。  FIG. 42 is a block diagram of a flow meter according to Embodiment 23 of the present invention.
図 4 3は、 同流量計の動作を示すフローチヤ一卜である。  Fig. 43 is a flow chart showing the operation of the flowmeter.
図 4 4は、 同流量計のデジタルフィルター処理を示すフローチャートである。 図 4 5は、 同流量計の動作を説明するフィルタ一特性図である。  FIG. 44 is a flowchart showing digital filter processing of the flow meter. FIG. 45 is a filter characteristic diagram illustrating the operation of the flow meter.
図 4 6は、 本発明の実施の形態 2 4の流量計の動作を示すフローチャートであ る。  FIG. 46 is a flowchart showing the operation of the flow meter according to Embodiment 24 of the present invention.
図 4 7は、 本発明の実施の形態 2 5の流量計の動作を示すフローチャートであ る。  FIG. 47 is a flowchart showing the operation of the flow meter according to Embodiment 25 of the present invention.
図 4 8は、 本発明の実施の形態 2 6の流量計の動作を示すフローチャートであ る。  FIG. 48 is a flowchart showing the operation of the flow meter according to Embodiment 26 of the present invention.
図 4 9は、 本発明の実施の形態 2 7の流量計の動作を示すフローチャートであ る。  FIG. 49 is a flowchart showing the operation of the flow meter according to Embodiment 27 of the present invention.
図 5 0は、 本発明の実施の形態 2 8の流量計の動作を示すフローチャートであ る。  FIG. 50 is a flowchart showing the operation of the flow meter according to Embodiment 28 of the present invention.
図 5 1は、 本発明の実施の形態 2 9の流量計のブロック図である。  FIG. 51 is a block diagram of a flow meter according to Embodiment 29 of the present invention.
図 5 2は、 本発明の実施の形態 3 0の流量計のブロック図である。  FIG. 52 is a block diagram of a flow meter according to Embodiment 30 of the present invention.
図 5 3は、 同流量計の周期性変更手段のブロック図である。  FIG. 53 is a block diagram of the periodicity changing means of the flow meter.
図 5 4は、 同流量計の受信検知タイミングを示す図である。  Fig. 54 is a diagram showing the reception detection timing of the flow meter.
図 5 5は、 本発明の実施の形態 3 1の流量計のブロック図である。 図 5 6は、 同流量計の周期性変更手段のブロック図である。 FIG. 55 is a block diagram of a flow meter according to Embodiment 31 of the present invention. FIG. 56 is a block diagram of the periodicity changing means of the flow meter.
図 5 7 Aは、 本発明の実施の形態 3 2の流量計の周期性変更手段のブロック図 である。  FIG. 57A is a block diagram of a periodicity changing unit of the flow meter according to Embodiment 32 of the present invention.
図 5 7 Bは、 同流量計の受信検知タイミングを示す図である。  FIG. 57B is a diagram showing the reception detection timing of the flow meter.
図 5 8は、 本発明の実施の形態 3 3の流量計の周期性変更手段のブロック図で ある。  FIG. 58 is a block diagram of a periodicity changing unit of the flow meter according to Embodiment 33 of the present invention.
図 5 9は、 本発明の実施の形態 3 4の流量計の周期性変更手段のブロック図で ある。  FIG. 59 is a block diagram of a periodicity changing means of the flow meter according to Embodiment 34 of the present invention.
図 6 0は、 本発明の実施の形態 3 5の流量計の周期性変更手段のブロック図で ある。  FIG. 60 is a block diagram of the periodicity changing means of the flow meter according to Embodiment 35 of the present invention.
図 6 1は、 本発明の実施の形態 3 6の流量計のブロック図である。  FIG. 61 is a block diagram of a flow meter according to Embodiment 36 of the present invention.
図 6 2は、 本発明の実施の形態 3 6の第 1のタイマおよび第 2の夕イマの動作 を示す図である。  FIG. 62 illustrates operations of the first timer and the second timer according to Embodiment 36 of the present invention.
図 6 3は、 本発明の実施の形態 3 7の流量計のブロック図である。  FIG. 63 is a block diagram of a flow meter according to Embodiment 37 of the present invention.
図 6 4は、 従来の流量計のブロック図である。  FIG. 64 is a block diagram of a conventional flow meter.
図 6 5は、 従来の他の流量計のブロック図である。  FIG. 65 is a block diagram of another conventional flow meter.
図 6 6は、 従来の他の流量計のブロック図である。  FIG. 66 is a block diagram of another conventional flow meter.
図 6 7は、 従来の他の流量計の動作を示すフローチャートである。  FIG. 67 is a flowchart showing the operation of another conventional flowmeter.
図 6 8は、 従来の流量計のブロック図である。 発明を実施するための最良の形態  FIG. 68 is a block diagram of a conventional flow meter. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1 )  (Embodiment 1)
図 1は本発明の実施の形態 1の流量計のブロック図である。 図 1において、 1 1 7は流路 1 1 6に設けられ流体の状態変化として音波の伝搬を用いて送受信す る送受信手段としての第 1送受信手段、 1 1 8は送受信手段としての第 2送受信 手段、 1 1 9は前記第 1送受信手段 1 1 7と第 2送受信手段 1 1 8の信号伝搬を 繰返し行う繰返手段、 1 2 0は前記繰返手段 1 1 9で繰り返される間の音波の伝 搬時間を計測する計時手段、 1 2 1は前記計時手段 1 2 0の値に基づいて流量を 検出する流量検出手段、 1 2 2は所定の繰返し回数に逐次変更する回数変更手段 である。 そして、 繰返手段 1 1 9で繰返す伝搬時間の途中情報を検出する経過時 間検出手段 1 2 3と、 前記経過時間検出手段 1 2 3の情報から流量変動の周期を 検出する周期検出手段 1 2 4と、 前記周期検出手段 1 2 4で検出された周期のほ ぼ整数倍の測定時間になるように設定変更する回数変更手段 1 2 2を備えた構成 とした。 ここで、 経過時間検出手段 1 2 3により得られた送受信の各伝搬時間を 1個保持するデータ保持手段 1 2 5と、 前記データ保持手段 1 2 5により保持さ れたデータと計測された伝搬時間のデータを比較することによって周期を周期検 出手段 1 2 4により検出することにした。 そして、 1 2 6は第 1振動子 1 1 7と 第 2振動子 1 1 8の送受信の動作を切換える切換手段、 1 2 7は超音波信号を送 信する送信器、 1 2 8は超音波信号を受信する受信器である。 FIG. 1 is a block diagram of a flow meter according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 117 denotes a first transmission / reception means provided in the flow path 116 for transmitting / receiving using a sound wave propagation as a change in state of a fluid, and 118 denotes a second transmission / reception means as a transmission / reception means Means, 1 19 is a repetition means for repeating the signal transmission of the first transmission / reception means 117 and the second transmission / reception means 118, 120 is a sound wave during repetition by the repetition means 1 19 A time measuring means for measuring the propagation time, a flow rate detecting means for detecting a flow rate based on the value of the time measuring means, and a frequency changing means for sequentially changing the flow rate to a predetermined number of repetitions. Then, an elapsed time detecting means 1 23 for detecting information on the way of the propagation time repeated by the repeating means 1 19, and a cycle detecting means 1 for detecting a cycle of the flow rate variation from the information of the elapsed time detecting means 123. 24, and a number-of-times changing means 122 for changing the setting so that the measurement time is almost an integral multiple of the cycle detected by the cycle detecting means 124. Here, data holding means 125 holding one transmission time of each transmission and reception obtained by the elapsed time detecting means 123, and data held by the data holding means 125 and measured propagation The period is detected by the period detecting means 124 by comparing time data. Reference numeral 1 26 denotes switching means for switching the transmission / reception operation of the first vibrator 1 17 and the second vibrator 1 18, 1 2 7 denotes a transmitter for transmitting an ultrasonic signal, and 1 2 8 denotes an ultrasonic wave It is a receiver that receives a signal.
次に動作、 作用について図 2から図 5を用いて説明する。 図 2に示すように、 本発明の流量計は、 繰返し開始信号により計測が開始され、 入力信号を第 1振動 子に入力することによって、 第 1振動子が振動して音波を発信する。 その音波を 第 2振動子が受信して、 この間の伝搬時間を計時手段が所定クロックでカウント しつつ計測するものである。 図中の遅延時間は、 音波の減衰を待っための待機時 間であり、 固定のものである。 そして、 この遅延時間と伝搬時間をカウントした 値を C iとして検出した後、 再び第 1振動子に入力信号を入れ音波を発信して、 第 2振動子で受信する繰返し計測を所定回数行う。 このとき、 第 2振動時で受信 した際のカウント数 C i + 1は、 前回の C iと比較し、 流速変動が繰り返し発生 している周期を検出する。 例えば、 図 3に示すように、 流速変動の V 5と V 6は、 カウント数の差 C 5— C 6は負の値となっていたが、 V 6と V 7の流速変動では、 カウント数の差 C 6— C 7は正の値となり符号が反転する。 そして、 ふたたび、 5 Next, the operation and action will be described with reference to FIGS. As shown in FIG. 2, in the flow meter of the present invention, measurement is started by a repetition start signal, and the input signal is input to the first vibrator, whereby the first vibrator vibrates and emits a sound wave. The sound wave is received by the second vibrator, and the propagation time during this time is measured while the time counting means is counting with a predetermined clock. The delay time in the figure is a waiting time for waiting for sound wave attenuation, and is fixed. Then, after detecting the value obtained by counting the delay time and the propagation time as C i, an input signal is again input to the first vibrator, a sound wave is transmitted, and the second vibrator receives and repeats the measurement a predetermined number of times. At this time, the count number C i +1 received at the time of the second vibration is compared with the previous C i to detect a cycle in which the flow velocity fluctuation occurs repeatedly. For example, as shown in Fig. 3, the flow velocity fluctuations V5 and V6 have a negative count value difference C5—C6, but the flow velocity fluctuations V6 and V7 have The difference C 6 — C 7 becomes a positive value and the sign is inverted. And again, Five
カウント数の差 C i一 C i + 1が負の値から正の値となる時を、 図 4のフローチ ヤー卜で示すような処理にしたがって繰返し毎に行い、 周期を検出するものであ る。 When the difference between the counts C i-1 C i +1 changes from a negative value to a positive value, the cycle is detected at each repetition according to the process shown in the flowchart of FIG. 4. .
図 4のフローチャートでは、 周期を検出する流れについて示し、 計時カウン夕 を 1個保持して次回の計時力ゥンタと比較することによつて流速変動の変化を検 出することを示している。 また、 図 5に示すように、 ①の処理と回数変更手段は、 流量計測の前に毎回行われる構成とした。 このように、 周期を検出して、 その周 期の間、 繰返して伝搬時間の計測を行うことで、 流れに変動があっても変動の 1 周期で計測することで平均化されるので、 計測流量は変動の影響を受けずにに計 測されることになる。 1周期に限らず、 複数の周期にわたって計測すれば更に安 定して精度の高い流量計測ができる。  The flowchart of FIG. 4 shows the flow of detecting the cycle, and shows that a change in the flow velocity fluctuation is detected by holding one clock counter and comparing it with the next clock counter. Also, as shown in Fig. 5, the processing of ① and the means for changing the number of times were configured to be performed every time before the flow rate measurement. In this way, by detecting the period and repeatedly measuring the propagation time during that period, even if there is a fluctuation in the flow, it is averaged by measuring in one period of the fluctuation, so the measurement is performed. The flow rate will be measured without being affected by fluctuations. If the measurement is performed not only for one cycle but also for multiple cycles, more stable and accurate flow rate measurement can be performed.
なお、 周期の検出については、 カウント値の差を取って符号が反転することで 検出する方法について述べたが、 差が最大となるポイントを検出しても良いし、 保持されたカウント値と最も近いカウント値が再度計測されるポイントを検出し て周期を求めても良い。 また、 1個の保持データを比較することで説明したが、 複数個の保持データを用いて、 自己相関や周波数解析手法を用いて周期を求めて も良いし、 あるいは複数個の保持データから前述のように差を求めて周期を検出 しても良い。  As for the detection of the period, the method of detecting the difference by counting the difference between the count values and inverting the sign has been described.However, the point where the difference is the largest may be detected, or the held count value and the most The cycle may be obtained by detecting a point at which a close count value is measured again. In addition, as described by comparing one piece of held data, a cycle may be obtained by using an autocorrelation or a frequency analysis method using a plurality of held data, or the period may be obtained from a plurality of held data. The period may be detected by calculating the difference as shown in FIG.
このように、 流れの変動検出手段を必要とせず構成を簡素化できることと、 流 量検出を行う前に計時手段の途中情報から周期を検出して、 繰返し計測の時間を 周期の整数倍とすることができるので、 流量計測は安定して精度よく計測するこ とができる。 そして、 データ保持手段によって瞬時瞬時の計時情報を保持し比較 することで周期をその都度検出することができる。 また、 逐次繰返し回数を変更 することで流れの変動の変化による影響を抑制することができ安定した流量計測 を実現できる。 そして、 流量計測を行う直前に繰返し回数を、 周期の整数倍の回 数に設定するので、 流れの変動が平均化され流量計測は安定して精度よく行える。 (実施の形態 2 ) In this way, the configuration can be simplified without the need for the flow fluctuation detection means, and the cycle is detected from the intermediate information of the time measurement means before the flow rate detection, and the time of the repeated measurement is set to an integral multiple of the cycle. Therefore, flow measurement can be performed stably and accurately. The period can be detected each time by storing and comparing the instantaneous timing information by the data holding means. In addition, by changing the number of successive repetitions, the influence of a change in flow fluctuation can be suppressed, and stable flow measurement can be realized. Since the number of repetitions is set to an integral multiple of the cycle immediately before the flow rate measurement, the flow fluctuation is averaged, and the flow rate measurement can be performed stably and accurately. (Embodiment 2)
図 6は本発明の実施の形態 2の流量計の動作を示すフローチャートである。 実 施の形態 1と異なる点は、 周期検出手段で得られた周期に合せた繰返し回数は、 次回の流量計測時に使用される処理構成としたことにある。 構成は図 1に示すも のである。  FIG. 6 is a flowchart showing the operation of the flow meter according to the second embodiment of the present invention. The difference from the first embodiment is that the number of repetitions according to the cycle obtained by the cycle detecting means is a processing configuration used at the next flow rate measurement. The configuration is shown in Fig. 1.
図 6に示すように、 第 1振動子からの伝搬時間の計測 T 1を行いながら、 一方 でその時の計時手段の計時情報 C iをデータ保持手段に保持しておく。 そして、 第 2の振動子からの伝搬時間の計測 T 2を行い、 前記 T 1と T 2から流速、 流量 を算出する。 そして、 保持しておいた計時情報 C iから実施の形態 1で示したよ うな方法で、 流れ変動の周期を検出し、 次回の繰返し回数を変更して次回の計測 に反映させる。  As shown in FIG. 6, while measuring the propagation time T1 from the first vibrator, the time information Ci of the time means at that time is held in the data holding means. Then, measurement T2 of the propagation time from the second vibrator is performed, and the flow velocity and the flow rate are calculated from T1 and T2. Then, the period of the flow fluctuation is detected from the held timing information Ci by the method described in the first embodiment, and the number of repetitions is changed and reflected in the next measurement.
このように、 次回の計測に使用することで、 流量計測と周期の計測が兼用で行 え、 周期検出のためだけに音波の伝搬を行う繰返し計測が不要となり、 低消費電 力とすることができる。 そして、 変動周期に合せて繰返し回数を設定することで、 変動が平均化され、 安定して精度よく流量を計測することができる。  In this way, by using it for the next measurement, it is possible to perform both flow measurement and cycle measurement, eliminating the need for repetitive measurement of sound wave propagation just for cycle detection, and reducing power consumption. it can. By setting the number of repetitions in accordance with the fluctuation cycle, the fluctuations are averaged, and the flow rate can be measured stably and accurately.
(実施の形態 3 )  (Embodiment 3)
図 7は本発明の実施の形態 3の流量計のブロック図である。 実施の形態 1と異 なる点は、 流量検出手段 1 2 1で検出した流量の変動の大小を判定する流量変動 判別手段 1 2 9と、 前記流量変動判別手段 1 2 9により判別される流量変動が小 さくなるように繰返し回数を変更する回数変更手段 1 2 2とを備え、 前記流量変 動判別手段 1 2 9は、 流量の標準偏差を用いて行う構成としたことにある。  FIG. 7 is a block diagram of a flow meter according to Embodiment 3 of the present invention. The difference from the first embodiment is that the flow rate fluctuation discriminating means 12 9 for judging the magnitude of the fluctuation of the flow rate detected by the flow rate detecting means 122 1 and the flow rate fluctuation discriminated by the flow rate fluctuation determining means 1 29 And a number change means 122 for changing the number of repetitions so as to reduce the number of repetitions, and the flow rate change determination means 122 is configured to perform the determination using a standard deviation of the flow rate.
そして、 図 8のフローチヤ一卜に示すように、 流量 Q iを計測し、 ます、 その 流量が所定値 Qm以上 (例えば、 1 0 0リツトル Z時間) であれば、 繰返し回数 はそのままとするが、 所定値 Qm未満の場合、 計測流量 Q iの前の n個のデータ を基に、 標準偏差 H iを求める。 そして、 その標準偏差 H iが所定値 Hm以上 (例えば、 1リットル 時間) の時、 繰返し回数を変更する。 この時、 繰返し回 数は、 初期値 K 0から所定値 d K (例えば、 2回) だけ増加するようにして変更 していく。 そして、 所定回数 Km以上の時は、 回数を初期値に戻し、 再度変更し ていく。 Then, as shown in the flow chart of FIG. 8, the flow rate Qi is measured. First, if the flow rate is equal to or more than a predetermined value Qm (for example, 100 liters Z time), the number of repetitions is kept as it is. If it is less than the predetermined value Qm, the standard deviation Hi is obtained based on the n data before the measured flow rate Qi. When the standard deviation Hi is equal to or greater than a predetermined value Hm (for example, 1 liter time), the number of repetitions is changed. At this time, repeated times The number is changed so as to increase from the initial value K 0 by a predetermined value d K (for example, twice). If the number of times is equal to or more than the predetermined number Km, the number is returned to the initial value and changed again.
このように、 計測流量が所定流量未満の時のみ、 回数変更の処理を行うことで、 大流量時には処理せず低消費電力とすることができる。 そして、 標準偏差が所定 値以上の時に、 流量変動が小さくなるように、 回数を変更することで流れに変動 があっても、 回数を変更していくことで安定した流量計測が行えるようにするこ とができる。 そして、 流量変動を標準偏差を用いて判別することで的確に変動を 検出することができる。 また、 繰返し回数は、 所定回数から徐々に増加する方向 に変更してすることで、 少ない回数から検討していけるので短時間で必要回数を 見つけることができる。  In this way, by performing the process of changing the number of times only when the measured flow rate is less than the predetermined flow rate, it is possible to reduce the power consumption without processing when the flow rate is large. And, when the standard deviation is more than a predetermined value, the number of times is changed so that the flow rate fluctuation can be reduced. be able to. Then, the fluctuation can be detected accurately by judging the flow fluctuation using the standard deviation. In addition, by changing the number of repetitions from a predetermined number to a gradually increasing direction, the number of repetitions can be examined from a small number, so that the required number can be found in a short time.
また、 図 9に示すように、 計測流量が所定流量以下で、 かつ標準偏差が所定値 以上の時のみ、 繰返し回数変更手段を動作させることで、 回数変更の処理の回数 がより制限され低消費電力とすることができる。  Also, as shown in FIG. 9, by operating the repetition number changing means only when the measured flow rate is equal to or lower than the predetermined flow rate and the standard deviation is equal to or higher than the predetermined value, the number of times of changing the number of times is further restricted, thereby reducing the consumption. It can be electric power.
なお、 回数変更を徐々に増加する方法で説明したが、 変更した時の標準偏差が 大きくなつた時には、 減少する方向に変更する方法を用いて、 標準偏差の変化に 応じて回数の増加、 減少の変更方向ほ制御するとさらに安定して計測することが できる。 また、 本流量計の電源を電池とした場合、 低消費電力となることは、 流 量計を長時間使用することができる効果がある。  The method of gradually increasing the number of changes has been described.However, when the standard deviation at the time of change increases, the method of changing in the direction of decreasing increases and decreases the number of times according to the change of the standard deviation. More stable measurement can be obtained by controlling the direction of change. In addition, when the flowmeter is powered by a battery, low power consumption has the effect that the flowmeter can be used for a long time.
(実施の形態 4 )  (Embodiment 4)
図 1 0は本発明の実施の形態 4の流量計のブロック図である。 実施の形態 1と 異なる点は、 異常判別手段 1 3 0と、 流量管理手段 1 3 1を設けたことにある。 そして、 回数変更手段は、 所定の処理としての異常判別手段 1 3 0の実行時、 お よび流量管理手段 1 3 1の実行の時に動作する構成とした。  FIG. 10 is a block diagram of a flow meter according to Embodiment 4 of the present invention. The difference from the first embodiment is that an abnormality determining means 130 and a flow rate managing means 131 are provided. The number-of-times changing means is configured to operate when the abnormality determining means 130 as a predetermined process is executed and when the flow rate managing means 131 is executed.
そして、 図 1 1に示すフローチャートのように、 異常判別手段の実行時、 およ び流量管理手段の実行の時に行うことで、 必要な時だけに回数変更の処理するこ とができ消費電力を低減することができる。 すなわち、 異常判別はその緊急性か ら短時間で流量を計測する必要がある。 そのため、 流れの変動を受け変動してい る計測流量では異常判別が遅くなるので、 変動周期にあった繰返し回数に変更し て計測することで短時間で計測することができる。 また、 流量管理は、 下流側で どのような負荷が使用されているかを管理するためのもので、 短時間で流量を検 出して判別する必要があり、 異常判別と同様に、 変動周期にあった繰返し回数に 変更して計測することで短時間に計測することができる。 Then, as shown in the flowchart of FIG. 11, when the abnormality determination means is executed and when the flow rate management means is executed, the number of times can be changed only when necessary. Thus, power consumption can be reduced. In other words, it is necessary to measure the flow rate in a short time due to its urgency. As a result, the abnormality determination becomes slower when the measured flow rate fluctuates due to the fluctuation of the flow, so that the measurement can be performed in a short time by changing the measurement to the number of repetitions corresponding to the fluctuation cycle. In addition, flow control is for managing what kind of load is used on the downstream side, and it is necessary to detect and determine the flow rate in a short time. The measurement can be performed in a short time by changing to the number of repetitions.
(実施の形態 5 )  (Embodiment 5)
図 1 2は本発明の実施の形態 5の流量計のブロック図である。 実施の形態 1と 異なる点は、 流体の状態変化として熱の伝搬を利用した送受信手段としたところ である。 1 3 2は熱を送信するヒー夕、 1 3 3は熱を受信する温度センサである。 そして、 熱の送信手段と受信手段を用いることでも同様に、 熱の伝搬時間の変 動から変動周期を検出できるので構成を簡素化できることと、 繰返し計測の時間 を変更することができるので、 周期の整数倍とすることで流量計測は安定して精 度よく計測することができる。 また、 逐次繰返し回数を流れの変動の変化に合わ せて変更することができ変動の影響をすぐに抑制することができ安定した流量計 測を実現できる。 そして、 流量計測を行う直前に繰返し回数を、 周期の整数倍の 回数に設定するので、 流れの変動が平均化され流量計測は安定して精度よく行え る。  FIG. 12 is a block diagram of a flow meter according to the fifth embodiment of the present invention. The difference from the first embodiment is that the transmitting and receiving means uses the propagation of heat as a state change of the fluid. 1 32 is a heater for transmitting heat, and 1 33 is a temperature sensor for receiving heat. Similarly, by using the heat transmitting means and the heat receiving means, the fluctuation period can be detected from the fluctuation of the heat propagation time, so that the configuration can be simplified, and the time of the repeated measurement can be changed. The flow rate can be measured stably and accurately by setting it to an integral multiple of. In addition, the number of successive repetitions can be changed in accordance with the change in flow fluctuation, and the effect of the fluctuation can be suppressed immediately, and stable flow measurement can be realized. Since the number of repetitions is set to an integral multiple of the cycle immediately before performing the flow rate measurement, the flow fluctuation is averaged, and the flow rate measurement can be performed stably and accurately.
(実施の形態 6 )  (Embodiment 6)
図 1 3は本発明の実施の形態 6の流量計のブロック図である。 図 1 3において、 2 2 3は流路 2 2 4に設けられて流体の状態変化として超音波を用いて送受信す る送受信手段の第 1振動手段としての第 1圧電振動子、 2 2 5は超音波を送受信 する送受信手段の第 2振動手段としての第 2圧電振動子、 2 2 6は前記第 1圧電 振動子および第 2圧電振動子の送受信の動作を切換える切換手段としての切換ス イッチ、 2 2 7は前記第 1圧電振動子 2 2 3および第 2圧電振動子 2 2 5で繰返 し送受信される音波の伝搬時間をシングァラウンド法により計測する計時手段、FIG. 13 is a block diagram of a flow meter according to Embodiment 6 of the present invention. In FIG. 13, reference numeral 2 23 denotes a first piezoelectric vibrator provided as a first vibrating means of a transmitting / receiving means provided in the flow path 2 24 and transmitting and receiving using ultrasonic waves as a state change of a fluid, and 2 25 A second piezoelectric vibrator as a second vibrating means of transmitting / receiving means for transmitting and receiving ultrasonic waves, a switching switch as a switching means for switching the transmitting and receiving operations of the first piezoelectric vibrator and the second piezoelectric vibrator; 227 is repeated by the first piezoelectric vibrator 222 and the second piezoelectric vibrator 222. Time-measuring means for measuring the propagation time of transmitted and received sound waves by the single round method,
228は前記計時手段の値に基づいて流量を検出する流量検出手段、 229は前 記第 1圧電振動子 223および第 2圧電振動子 225で流路内の圧力変動を計測 する変動検出手段、 230は前記変動検出手段の圧力変動のタイミングに同期し て計測を開始する計測制御手段である。 228 is a flow rate detecting means for detecting a flow rate based on the value of the time measuring means, 229 is a fluctuation detecting means for measuring the pressure fluctuation in the flow path by the first piezoelectric vibrator 223 and the second piezoelectric vibrator 225, Is a measurement control unit that starts measurement in synchronization with the pressure fluctuation timing of the fluctuation detection unit.
ここで、 計測制御手段 230は、 変動検出手段 229の出力の立上り時に第 1 計時時間 T 1の測定を開始し、 前記変動検出手段 229の出力の立ち下がり時に 第 2計時時間 T2の測定を開始する計測制御と、 次回の計測時は、 変動検出手段 の出力が立ち下がり時に第 1計時時間 T 1の測定を開始し、 前記変動検出手段の 出力が立上り時に第 2計時時間 T 2の測定を開始計測制御を行い、 流量計測手段 228は、 計測開始を交互に変更しながら前回の第 1計時時間 T 1と第 2計時時 間 T 2を用いて求めた第 1流量と、 次回の第 1計時時間 T 1と第 2計時時間 T 2 を用いて求めた第 2流量を逐次平均処理することにより流量を算出する構成とし た。 そして、 23 1は第 2圧電振動子を超音波の送受信を行うか圧力変動を検出 するかを選択する選択手段としての選択スィッチ、 232は超音波信号の送信器、 233は超音波信号の受信器、 234はシングアラウンド計測を行う繰返手段、 235は第 1圧電振動子と第 2圧電振動子の動作チェック手段である。  Here, the measurement control means 230 starts measurement of the first time measurement time T1 when the output of the fluctuation detection means 229 rises, and starts measurement of the second time measurement T2 when the output of the fluctuation detection means 229 falls. During the next measurement, the measurement of the first time T1 is started when the output of the fluctuation detecting means falls, and the measurement of the second time T2 is measured when the output of the fluctuation detecting means rises. Start measurement control is performed, and the flow measurement means 228 alternates the measurement start with the first flow rate obtained using the previous first time measurement time T1 and the second time measurement time T2, and the next first time measurement value. The flow rate was calculated by successively averaging the second flow rate obtained using the clocking time T1 and the second clocking time T2. Reference numeral 231 denotes a selection switch as selection means for selecting whether to transmit / receive ultrasonic waves to the second piezoelectric vibrator or to detect pressure fluctuation, 232 denotes an ultrasonic signal transmitter, and 233 denotes an ultrasonic signal reception. 234 is a repetition means for performing sing-around measurement, and 235 is operation check means for the first piezoelectric vibrator and the second piezoelectric vibrator.
次に動作、 作用について図 14から図 1 9を用いて説明する。 図 14のような 構成の流路において、 第 1圧電振動子 223から第 2圧電振動子 225に向かつ て伝搬する時間 T 1を計測すると、 T 1 =LZ (C + Vc o s Θ) となる。 また、 第 2圧電振動子 225から第 1圧電振動子 223に向かって伝搬する時間 Τ 2を 計測すると、 T2=L/ (C-Vc o s Θ) となる。 ここで、 Vは流路内の流速、 Cは音速、 Θは傾斜角度である。 そして、 Τ 1と Τ 2の逆数の差をとると、 次式 のようにして T l、 Τ 2から流速 Vが求まる。  Next, the operation and action will be described with reference to FIGS. In the flow path having the configuration shown in FIG. 14, when the time T 1 for propagation from the first piezoelectric vibrator 223 to the second piezoelectric vibrator 225 is measured, T 1 = LZ (C + Vc os Θ) . When the time 時間 2 of propagation from the second piezoelectric vibrator 225 to the first piezoelectric vibrator 223 is measured, T2 = L / (C−VcosΘ). Here, V is the flow velocity in the channel, C is the speed of sound, and Θ is the inclination angle. Then, taking the reciprocal difference between Τ 1 and Τ 2, the flow velocity V is obtained from T l and Τ 2 as shown in the following equation.
l/T l - l/T2 = 2Vc o s Q /\,  l / T l-l / T2 = 2Vcos Q / \,
V= (L/2 c 0 s · ( 1/T 1 - 1/T 2) ここで、 流路内に圧力変動があると、 その圧力変動に応じて流速が変化する。 よって、 変動周波数 f、 変動流速 uとすると、 T l、 Τ2は V = (L / 2 c 0 s (1 / T1-1 / T2) Here, if there is a pressure fluctuation in the flow path, the flow velocity changes according to the pressure fluctuation. Therefore, assuming fluctuating frequency f and fluctuating flow velocity u, Tl, Τ2 is
Τ 1 =L/ (C + V c o s Θ + u - s i n ( 2 π f t ) )  Τ 1 = L / (C + V c os Θ + u-s in (2 π f t))
T 2 =L/ (C-Vc o s Θ - u · s i n ( 2 π f t +ゆ) )  T 2 = L / (C-Vco s Θ-u · s i n (2πf t + Y))
となる。 ここで、 は、 T 1計測の開始と T 2計測の開始の時間差 (位相差) で ある。 そして、 T 1と T2の逆数の差をとると、 Becomes Here, is the time difference (phase difference) between the start of the T1 measurement and the start of the T2 measurement. And taking the reciprocal difference between T1 and T2,
1/T 1 - 1/T2  1 / T 1-1 / T2
= (2 Vc o s Θ  = (2 Vcos Θ
+ u - (s i n (2 π f t ) + s i n ( 2 π f t + ) ) /L であるから、 ゆ =πのとき、 s i n (2 π f ) =— s i n (2 π f t ) となり、 変動の影響は、 キャンセルされることになる。 よって、  + u-(sin (2 π ft) + sin (2 π ft +)) / L, so when ゆ = π, sin (2 π f) = — sin (2 π ft) and the effect of fluctuation Will be canceled. Therefore,
V= (L/2 c o s θ) · (l/T 1 - 1/T2)  V = (L / 2 c os θ) (l / T 1-1 / T2)
として、 変動時においても流速 Vが計測でき、 流路の断面積などを考慮して流量 を算出することができるのである。 以上は、 1回の送受信の計測で説明している が、 繰返手段 234で伝搬時間を繰り返して計測するシングァラウンド手法で積 算時間を求める場合も同様に次式のように求めることができる。 As a result, the flow velocity V can be measured even during fluctuations, and the flow rate can be calculated in consideration of the cross-sectional area of the flow path. Although the above description has been given of the measurement of one transmission / reception, when the integration time is obtained by the single round method in which the propagation time is repeatedly measured by the repetition means 234, the calculation can be similarly performed by the following equation. it can.
T 1 =∑ [LZ (C + Vc 0 s 0 + u · s i n (2 π f t i ) ) ]  T 1 = ∑ [LZ (C + Vc 0 s 0 + u · s i n (2 π f t i))]
=∑L/ (∑ (C + V c o s 0) +∑ (u - s i n ( 2 π f t i ) ) ) T2 =∑ [LZ (C-Vc o s Θ θ - u - s i n ( 2 π f t i + ·φ) ) ] =∑L/ (∑ (C + V c o s Θ ) +∑ (u · s i n ( 2 π f t i + ゆ) ) )  = ∑L / (∑ (C + V cos 0) + ∑ (u-sin (2 π fti))) T2 = ∑ (LZ (C-Vc os Θ θ-u-sin (2 π fti + )] = ∑L / (∑ (C + V cos Θ) + ∑ (u · sin (2π fti + yu))))
ここで、 添え字 iはシングァラウンドの回数、 ∑は i = 1から N回までの積算 を示す。 なお、 シングァラウンド手法の計測処理についての詳細な説明は略すが、 超音波の送受信伝搬を繰返し行い、 トータルの伝搬時間を長くして計測精度を高 める方法である。  Here, the subscript i indicates the number of single rounds, and ∑ indicates the integration from i = 1 to N times. Although the detailed description of the measurement process of the single round method is omitted, this is a method in which transmission and reception of ultrasonic waves are repeated to increase the total propagation time and improve measurement accuracy.
そして、 T l、 Τ 2の逆数差から 1/T 1 - 1/T 2 And from the reciprocal difference of T l, Τ 2 1 / T 1-1 / T 2
= (∑ [2 V c o s Θ] +∑ [ιι · (s i n (2 π f t ) )  = (∑ [2 V c os Θ] + ∑ [ιι · (s i n (2 π f t))
+∑ [u - s i n (27C f t +φ) ) ] ) /∑L  + ∑ [u-s i n (27C f t + φ))]) /) L
そして、 =πのとき、 s i n (2 π f t +^) ) =一 s i n ( 2 π f t) と なり、 シングァラウンド手法を用いても変動の影響は、 キャンセルされることに なる。 よって、  Then, when = π, s in (2π f t + ^)) = one s in (2π f t), and the influence of the fluctuation is canceled even if the sing-around method is used. Therefore,
V= (L/2 c o s O) · (1/T 1 - 1/T2)  V = (L / 2 c o s O) (1 / T 1-1 / T2)
として、 変動時においても流速 Vが計測でき、 流路の断面積などを考慮して流量 を算出することができるのである。 As a result, the flow velocity V can be measured even during fluctuations, and the flow rate can be calculated in consideration of the cross-sectional area of the flow path.
ここで、 この時間差ゆが πとなる計測の開始タイミングを、 図 1 5で説明する。 変動検出手段 229の出力信号は、 圧力変動の交流成分のゼロクロス点を比較器 で比較して検出することによって実現している。 すなわち、 T 1計測の開始は、 変動検出手段の出力信号の立上りで行い、 所定のシングァラウンド回数で積算時 間 T 1を計測する。 一方、 Τ2計測の開始は、 変動検出手段 29の出力信号の立 下がりで行い、 同じ所定のシングアラウンド回数で積算時間 Τ 2を計測する。 図 1 5で示すと、 T 1は、 圧力波形の A、 B、 C間を計測し、 T2は A、 B、 Cと 逆の振幅になる F、 G、 H間を計測する。 よって、 圧力変動はキャンセルされる ことになる。  Here, the start timing of the measurement at which the time difference becomes π will be described with reference to FIG. The output signal of the fluctuation detecting means 229 is realized by comparing and detecting the zero-cross point of the AC component of the pressure fluctuation with a comparator. That is, the T1 measurement is started at the rising edge of the output signal of the fluctuation detecting means, and the integrated time T1 is measured at a predetermined number of single rounds. On the other hand, the start of the Τ2 measurement is performed at the fall of the output signal of the fluctuation detecting means 29, and the integration time Τ2 is measured at the same predetermined number of sing-arounds. As shown in Figure 15, T1 measures the pressure waveform between A, B, and C, and T2 measures the pressure waveform between F, G, and H, which have the opposite amplitudes of A, B, and C. Therefore, the pressure fluctuation is canceled.
また、 図 1 5のような正負対称の圧力変動の場合は、 1回の T 1と T2の計測 でキャンセルできるが、 図 16のような正負非対称の場合は、 計測の開始を工夫 することによってキャンセルすることができる。 すなわち、 T 1計測の開始は、 変動検出手段 229の出力信号の立上りで行い、 所定のシングァラウンド回数で 積算時間 T 1を計測する。 一方、 T 2計測の開始は、 変動検出手段 229の出力 信号の立下がりで行い、 同じ所定のシングァラウンド回数で積算時間 T 2を計測 する。 そして、 次回の計測では、 T 1計測の開始は、 変動検出手段 29の出力信 号の立下がりで行い、 所定のシングアラウンド回数で積算時間 T 1を計測する。 一方、 T 2計測の開始は、 変動検出手段 2 2 9の出力信号の立上がりで行い、 同 じ所定のシングァラウンド回数で積算時間 Τ 2を計測する。 図 1 6で示すと、 1 回目の T 1は、 圧力波形の A、 B、 C間を計測し、 丁2は0、 E、 F間を計測す る。 これでは、 Cと Fは波形が異なるので Cと Fの分が誤差 C一 (― F ) として 残るが、 2回目の計測の時には、 T 1は、 逆波形の H、 I、 Jで計測し、 T 2は K、 L、 Mで計測する。 ここでも、 Jと Mは波形が異なり誤差として残るが、 2 回目の計測では、 上流側から計測した時の Mと、 下流から計測した時の Jとなつ ており、 符号が反転するので、 Jと Mの分が誤差 (― J— M) として残る。 そし て、 C =M、 F = Jであることから、 C— (一 F ) と (一 J— M) を加算して平 均を取ると、 ゼロになり、 圧力変動はキャンセルされることになる。 なお、 超音 波の送受信の方向を計測のたびに交互に反転している場合は、 計測の開始タイミ ングは一定でよいことは明白である。 また、 ここでは 2回の計測で説明したが、 圧力変動の波形が非対称で複雑な場合は、 計測の開始を波形の周期性に応じて順 次、 変更して繰返すことにより平均化され、 誤差は最小限に抑えることができる。 次に、 図 1 7と図 1 8のフローチャートを用いて計測の流れを説明する。 まず、 変動検出手段の信号が立上りか否かを判別する。 立上りでなければ、 変動検出手 段 2 2 9の出力信号が立ち上がるまで判別を繰り返す。 ここで、 所定時間立って も立上りが発生しない時は、 検出解除手段としての処理が立上り検出を中止し、 圧力変動がないものとして第 1計時時間 T 1と第 2計時時間 T 2の計測を行う。 また、 立上りが検出された時は、 第 1計時時間 T 1の計測を行う。 そして、 次に 変動検出手段 2 2 9の信号が立下がりか否かを判別する。 ここで立ち下がりが検 出された時は、 第 2計時時間 T 2の計測を行う。 また、 所定時間立っても、 立下 がりが検出されない時は、 検出解除手段としての処理が立下がり検出を中止し、 圧力変動がないものとして第 2計時時間 T 2の計測を行い、 第 1計時時間 T 1と 第 2計時時間 T 2から流量 Q ( j ) を算出する。 In addition, in the case of positive and negative symmetric pressure fluctuations as shown in Fig. 15, it can be canceled by one measurement of T1 and T2, but in the case of positive and negative asymmetry as in Fig. 16, the start of measurement can be improved. Can be canceled. That is, the start of the T1 measurement is performed at the rising edge of the output signal of the fluctuation detecting unit 229, and the integrated time T1 is measured at a predetermined number of single rounds. On the other hand, the T2 measurement is started at the fall of the output signal of the fluctuation detecting means 229, and the integrated time T2 is measured at the same predetermined number of single rounds. Then, in the next measurement, the T1 measurement is started at the falling edge of the output signal of the fluctuation detecting means 29, and the integration time T1 is measured at a predetermined number of sing-arounds. On the other hand, T2 measurement is started at the rise of the output signal of the fluctuation detecting means 229, and the integration time 時間 2 is measured at the same predetermined number of single rounds. As shown in Fig. 16, the first T1 measures between A, B, and C of the pressure waveform, and D2 measures between 0, E, and F. In this case, since C and F have different waveforms, the difference between C and F remains as an error C1 (-F), but at the time of the second measurement, T1 is measured with the inverted waveforms H, I, and J. , T 2 are measured in K, L, M. Again, J and M have different waveforms and remain as errors, but in the second measurement, M is measured from the upstream side and J is measured from the downstream side. And M remain as an error (-J-M). Then, since C = M and F = J, adding C-(-1F) and (1J-M) and taking the average results in zero and the pressure fluctuation is canceled. Become. It should be noted that when the direction of transmission and reception of ultrasonic waves is alternately inverted each time measurement is performed, it is clear that the measurement start timing may be constant. In addition, here, the measurement was explained twice, but if the waveform of the pressure fluctuation is asymmetric and complicated, the start of the measurement is changed and repeated according to the periodicity of the waveform, and the measurement is averaged. Can be minimized. Next, the flow of the measurement will be described with reference to the flowcharts of FIGS. First, it is determined whether or not the signal of the fluctuation detecting means is rising. If not, the determination is repeated until the output signal of the fluctuation detecting means 229 rises. Here, when the rise does not occur even after standing for a predetermined time, the processing as the detection canceling means stops the rise detection and measures the first time T1 and the second time T2 assuming that there is no pressure fluctuation. Do. When a rising edge is detected, the first time T1 is measured. Then, it is determined whether or not the signal of the fluctuation detecting means 229 falls. If a falling edge is detected here, the second time T2 is measured. If the falling is not detected even after standing for a predetermined time, the processing as the detection canceling means stops the falling detection, measures the second time T2 assuming that there is no pressure fluctuation, and Calculate the flow rate Q (j) from the measured time T1 and the second measured time T2.
そして、 次の計測時には、 図 1 8に示すように、 今度は立下がり検出からはじ め、 立下がり検出後、 第 1計時時間 T 1の計測を行った後、 立上り検出を行い、 第 2計時時間 T 2の計測を行い、 第 1計時時間 T 1と第 2計時時間 T 2から流量 Q ( j + 1 ) を算出する。 そして、 この計測開始を交互に変更しながら繰返し、 第 1流量 Q ( j ) と第 2流量 Q ( j + 1 ) を計測して逐次平均処理することによ り流量 Qを算出することで、 平均化され誤差を原理的になくすことができる。 このように、 第 2圧電振動子 2 2 5で流路内の圧力変動を計測することができ るので、 圧力センサを設ける必要がなく、 小型化ゃ流路などを簡素化することが できるとともに、 圧力変動が発生した場合でも瞬時流量の計測が安定して精度よ く行える。 そして、 圧力変動の変化が逆になるタイミングで計測することで、 圧 力変動と計測するタイミングの位相をずらすことができ、 圧力変動による計測誤 差を相殺することができる。 そして、 計測する毎にタイミングを正負逆にとつて 行くことで、 圧力変動が高圧側、 低圧側で非対称となっていても、 その圧力変動 の影響を相殺することができる。 そして、 シングアラウンドで繰返し計測するこ とで 1回の計測で平均化することができ、 安定した流量計測を行うことができる。 そして、 選択手段を用いることで第 1振動手段および第 2振動手段の少なくとも 1方を圧力検出に使用することができ、 流量計測と圧力計測を両立することがで きる。 そして、 圧力変動のゼロ成分付近で変動を検出することで変動の周期を正 確に捉えることができ、 流量の相殺が行える。 そして、 変動がなくなった場合で も所定時間がくれば自動的に流量を計測することができる。 そして、 圧電式振動 子を変動検出手段と用いることで、 超音波を送受信に用いながら、 かつ圧力変動 も検出することができ、 さらに、 専用の圧力検出手段を設ける場所が不要であり、 漏洩の要因となる部位を削減することができる効果がある。 Then, at the next measurement, as shown in Fig. 18, this time, After detecting the fall, measure the first time T1, measure the rise, measure the second time T2, and calculate the first time T1 and the second time T2. Calculate the flow rate Q (j + 1). Then, the measurement start is repeated while changing alternately, the first flow rate Q (j) and the second flow rate Q (j + 1) are measured, and the flow rate Q is calculated by successively averaging. It is averaged and the error can be eliminated in principle. As described above, since the pressure fluctuation in the flow path can be measured by the second piezoelectric vibrator 225, there is no need to provide a pressure sensor, and the size and the flow path can be simplified. Even when pressure fluctuations occur, the instantaneous flow rate can be measured stably and accurately. By measuring at the timing when the change in the pressure fluctuation is reversed, the phase of the pressure fluctuation and the timing of the measurement can be shifted, and the measurement error due to the pressure fluctuation can be canceled. By following the timing in the opposite direction each time measurement is performed, even if the pressure fluctuation is asymmetric on the high pressure side and the low pressure side, the effect of the pressure fluctuation can be offset. Then, by repeating measurements in sing-around, averaging can be performed in one measurement, and stable flow measurement can be performed. Then, by using the selecting means, at least one of the first vibrating means and the second vibrating means can be used for pressure detection, and both flow rate measurement and pressure measurement can be achieved. Then, by detecting the fluctuation near the zero component of the pressure fluctuation, the period of the fluctuation can be accurately grasped, and the flow rate can be offset. Then, even if the fluctuation disappears, the flow rate can be automatically measured after a predetermined time. By using a piezoelectric vibrator as a fluctuation detecting means, it is possible to detect pressure fluctuations while using ultrasonic waves for transmission and reception.Furthermore, there is no need to provide a dedicated pressure detecting means, and leakage can be prevented. There is an effect that a part which becomes a factor can be reduced.
なお、 本実施の形態で説明した圧力変動の検出は、 専用の圧力検出手段を用い て行っても機能的には同様の効果が得られる。 また、 下流側の第 2圧電振動子を 用いる場合で説明したが、 上流側の第 1圧電振動子を用いる場合でも同様の効果 が得られる。 さらに、 図 1 9に示すように、 上流側と下流側の圧電振動子を交互 に用いても同様の効果が得られるが、 交互に用いることによって、 互いの圧電振 動子の動作状態をチェックすることも可能になる。 すなわち、 変動検出手段の信 号がどちらの圧電振動子からの信号においても同じ周期の信号の時はどちらも正 常に動作していると、 判定することができる。 Note that the same effect can be obtained functionally by detecting pressure fluctuation described in the present embodiment using a dedicated pressure detecting means. Further, the case where the second piezoelectric vibrator on the downstream side is used has been described, but the same effect can be obtained when the first piezoelectric vibrator on the upstream side is used. Furthermore, as shown in Fig. 19, the upstream and downstream piezoelectric vibrators are alternated. The same effect can be obtained by using the piezoelectric vibrator, but it is also possible to check the operating state of each piezoelectric vibrator by using them alternately. That is, when the signal of the fluctuation detecting means is a signal of the same cycle in signals from either of the piezoelectric vibrators, it can be determined that both are operating normally.
また、 流量計は一般計器として説明しているが、 ガスメーターに本流量計を使 用することで、 ガスエンジンヒートポンプを使用している配管系など、 脈動が発 生する流路配管で使用することが可能である。 さらに、 圧力変動で説明している が、 流量変動のある場合も同様の効果があることは明白である。  Although the flow meter is described as a general instrument, use of this flow meter as a gas meter will allow it to be used in pulsating flow piping, such as a piping system that uses a gas engine heat pump. Is possible. Furthermore, as explained in the case of pressure fluctuation, it is clear that the same effect can be obtained when there is flow rate fluctuation.
(実施の形態 7 )  (Embodiment 7)
図 2 0は本発明の実施の形態 7の流量計の動作を示すタイミングチャートであ る。 実施の形態 6と異なる点は、 変動周期の整数倍時間にわたってシングアラウ ンドの送受信を複数回行う繰返手段 2 3 4を備えたことにある。 構成は図 1 3に 示す。  FIG. 20 is a timing chart showing the operation of the flow meter according to the seventh embodiment of the present invention. The difference from the sixth embodiment is that repetition means 234 for transmitting and receiving a single round a plurality of times over an integral multiple of the fluctuation period is provided. The configuration is shown in Figure 13.
図 2 1に示すように、 所定時間 (例えば、 2秒周期) 間隔で、 計測を開始する 場合、 所定時間になれば、 変動検出手段 2 2 9が検出する変動の周期を計測する。 そして、 その周期にほぼ一致するシングアラウンドの回数を設定する。 例えば、 超音波の圧電振動子間の距離を音速で割ると 1回の伝搬時間が算出できる。 そし て、 計測した周期をその伝搬時間で割ることで必要なシングアラウンドの回数が 算出できる。 そのシングァラウンド回数で繰返して流量の計測を行うのである。 図 2 1中の⑦は、 図 1 7の⑦の処理を行うことである。  As shown in FIG. 21, when the measurement is started at intervals of a predetermined time (for example, a period of 2 seconds), when the predetermined time comes, the fluctuation period detected by the fluctuation detecting means 229 is measured. Then, the number of sing-arounds substantially matching the cycle is set. For example, one propagation time can be calculated by dividing the distance between ultrasonic transducers by the speed of sound. The required number of sing-arounds can be calculated by dividing the measured period by the propagation time. The flow rate is measured repeatedly by the number of single rounds. (1) in FIG. 21 is to perform the process (2) in FIG.
このように、 シングアラウンド回数を変動周期に合わせることで、 変動の 1周 期を計測することができ、 圧力変動が平均化され安定した流量を計測することが できるのである。 そして、 圧力同期とシングァラウンド回数を周期の整数倍に合 せて計測することで、 更に流量の計測を安定して行うことができる。 さらに、 圧 力同期を圧電振動子の信号で検出することができるので、 周期の検出が可能で、 かつ安定した流量計測が行えるという相乗効果がある。 なお、 図 2 0では、 2周期を計測する場合について示した。 伝搬距離が短い場 合は、 計測精度を上げるために、 所定回数以上のシングァラウンドが必要となる ので、 変動周期から求めたシングァラウンド回数がその所定回数よりも小さい時 は、 周期の倍数になるようにシングァラウンド回数を決定するとよい。 Thus, by adjusting the number of sing-arounds to the fluctuation cycle, one cycle of the fluctuation can be measured, and the pressure fluctuation can be averaged and a stable flow rate can be measured. By measuring the pressure synchronization and the number of single rounds in accordance with an integral multiple of the cycle, the flow rate can be measured more stably. Furthermore, since the pressure synchronization can be detected by the signal of the piezoelectric vibrator, there is a synergistic effect that the period can be detected and the flow rate can be measured stably. FIG. 20 shows a case where two cycles are measured. If the propagation distance is short, more than a predetermined number of single rounds are required to increase the measurement accuracy.If the number of single rounds determined from the fluctuation period is smaller than the predetermined number, a multiple of the period The number of single rounds may be determined so that
(実施の形態 8 )  (Embodiment 8)
図 2 2は本発明の実施の形態 8の流量計の動作を示すタイミングチヤ一トであ る。 実施の形態 6と異なる点は、 変動検出手段 2 2 9の出力が所定変化した時 (例えば、 立下り時) に音波の送受信計測を開始し、 前記変動検出手段の出力が 前記所定変化と同じ変化 (例えば、 立下り時) をするまでシングァラウンドを繰 返し、 音波の送受信計測を行う繰返手段 2 3 4を備えた構成とした。 構成は図 1 3に示す。  FIG. 22 is a timing chart showing the operation of the flow meter according to the eighth embodiment of the present invention. The difference from the sixth embodiment is that the transmission / reception measurement of the sound wave is started when the output of the fluctuation detecting means 229 changes by a predetermined amount (for example, at the time of falling), and the output of the fluctuation detecting means is the same as the predetermined change. The structure is provided with a repetition means 234 that repeats the sing-around until a change (for example, at the time of a fall) is made, and performs transmission / reception measurement of sound waves. The configuration is shown in Figure 13.
図 2 3に示すように、 計測の開始に変動検出信号の立上りを検出し、 シングァ ラウンドを開始する。 そして、 再度変動検出信号の信号が立ち上がった時に、 シ ングアラウンドを停止して第 1計時時間 T 1を計測する。 次に、 計測の開始に変 動検出信号の立下りを検出し、 シングァラウンドを開始する。 そして、 再度変動 検出信号の信号が立ち下がつた時に、 シングァラウンドを停止して第 2計時時間 T 2を計測する。 それらの T 1と T 2から流量を算出するものである。  As shown in Fig. 23, the rise of the fluctuation detection signal is detected at the start of measurement, and the single round is started. Then, when the signal of the fluctuation detection signal rises again, the single round is stopped and the first clock time T1 is measured. Next, at the start of measurement, the falling of the fluctuation detection signal is detected, and the sing-around is started. Then, when the signal of the fluctuation detection signal falls again, the sing-around is stopped and the second clock time T2 is measured. The flow rate is calculated from T1 and T2.
このように、 計測の開始と停止を圧力変動の周期と一致させることができるの で、 変動周期で計測することができ、 圧力変動が平均化され安定した流量を計測 することができる。  As described above, the start and stop of the measurement can be made to coincide with the cycle of the pressure fluctuation, so that the measurement can be performed at the fluctuation cycle, and the pressure fluctuation can be averaged and a stable flow rate can be measured.
(実施の形態 9 )  (Embodiment 9)
図 2 4は本発明の実施の形態 9の流量計を示す構成図である。 実施の形態 6と 異なる点は、 変動検出手段 2 2 9の出力信号の変動をカウントする 2ビッ卜の力 ゥント手段 2 3 6と、 前記カウント手段 2 3 6のカウント値が、 第 1計時の時と 第 2計時の時で異なるようにして計測し、 2ビットのすべての組み合わせが同じ 回数だけ実現した時に流量を計測する流量検出手段 2 2 8を備えた構成とした。 図 25にそのタイミングチャートを示す。 FIG. 24 is a configuration diagram showing a flow meter according to the ninth embodiment of the present invention. The difference from the sixth embodiment is that the two-bit force counting means 2336 for counting the fluctuation of the output signal of the fluctuation detecting means 229 and the count value of the counting The measurement was performed differently between the time and the second time, and the flow rate detection means 228 was used to measure the flow rate when all the combinations of the two bits were realized the same number of times. Figure 25 shows the timing chart.
図 25に示すように、 変動が 2周期で繰返される場合、 例えば、 T1計測は力 ゥント手段の出力が (1、 0) で、 かつ変動検出手段の出力が立上りの時に開始 し、 T2計測は、 その後変動検出手段の立下りで計測が開始される。 このときの 計測流量を概念的に表現して、 Q ( i) = (A-B + C) 一 (-B + C-D) = A + Dとする。 そして、 次回の計測を T 1計測はカウン卜手段の出力が ( 1、 1) で、 かつ変動検出手段の立下りに開始し、 T 2計測はその後の立上りで開始 される。 このときの計測流量を概念的に表現して、 Q ( i + 1) = (-B + C- D) ― (C-D + A) =_A— Bとする。 このように繰返して計測を行うと、 Q ( i + 2) = (C-D + A) - (-D + A-B) =C + B、 Q ( i +3) = (- As shown in FIG. 25, when the fluctuation is repeated in two cycles, for example, the T1 measurement starts when the output of the force-measuring means is (1, 0) and the output of the fluctuation detecting means rises, and the T2 measurement is performed. Then, the measurement is started at the fall of the fluctuation detecting means. The measured flow rate at this time is conceptually expressed as Q (i) = (A-B + C) one (-B + C-D) = A + D. Then, for the next measurement, the T1 measurement starts when the output of the counting means is (1, 1) and the fluctuation detecting means falls, and the T2 measurement starts at the subsequent rising. The measured flow rate at this time is conceptually expressed as Q (i + 1) = (-B + C-D)-(C-D + A) = _ A-B. Repeated measurement in this way gives Q (i + 2) = (C-D + A)-(-D + A-B) = C + B, Q (i + 3) = (-
D + A-B) - (A-B + C) =— C— Dとなる。 ここで、 Q ( i) +Q ( i + 1) +Q ( i +2) +Q ( i +3) =0となり、 圧力変動はキャンセルされるこ とになる。 また、 ここでは 4回の計測で説明したが、 圧力変動の波形が非対称で 複雑な場合は、 計測の開始を波形の周期性に応じて順次、 変更して繰返すことに より平均化され、 誤差は最小限に抑えることができる。 すべての変動タイミング で計測することができるので、 平均化が行われ安定して流量を計測することがで さる。 D + A-B)-(A-B + C) = — C— D Here, Q (i) + Q (i + 1) + Q (i + 2) + Q (i + 3) = 0, and the pressure fluctuation is canceled. In addition, although the measurement was explained four times here, if the waveform of the pressure fluctuation is asymmetric and complicated, the start of the measurement is changed and repeated according to the periodicity of the waveform, and the measurement is averaged. Can be minimized. Since measurement can be performed at all fluctuation timings, averaging is performed and the flow rate can be measured stably.
(実施の形態 10)  (Embodiment 10)
図 26は、 本発明の実施の形態 5の流量計を示す構成図である。 実施の形態 6 と異なる点は、 変動検出手段 229の信号の周期を検出する周期検出手段 237 と、 前記周期検出手段 237の検出した周期が、 所定の周期の時にのみ計測を開 始する計測制御手段 230を備えた構成とした。  FIG. 26 is a configuration diagram showing a flow meter according to the fifth embodiment of the present invention. The difference from the sixth embodiment is that a cycle detecting means 237 for detecting the cycle of the signal of the fluctuation detecting means 229 and a measurement control for starting the measurement only when the cycle detected by the cycle detecting means 237 is a predetermined cycle. The configuration provided with the means 230 was adopted.
すなわち、 図 27に示すように、 変動検出手段 229の信号が所定周期 Tmの 時のみに計測を開始することで、 周期が変動するような場合でも所定の変動周期 時に計測が行える。 図 25に示すような圧力波形の場合でも、 周期を検出すれば 特定の圧力変動の時のみ、 流量を計測することができる。 よって、 圧力変動の周 期が変動する場合でも、 安定した流量を短時間で計測することができる。 なお、 周期の検出は所定の時間幅 (例えば、 2ミリ秒) を持って検出することで柔軟性 を持たせ計測が途切れることなく継続される。 That is, as shown in FIG. 27, by starting the measurement only when the signal of the fluctuation detecting means 229 has the predetermined period Tm, the measurement can be performed at the predetermined fluctuation period even when the period fluctuates. Even in the case of the pressure waveform shown in Fig. 25, the flow rate can be measured only at a specific pressure fluctuation by detecting the period. Therefore, the pressure fluctuation Even when the period fluctuates, a stable flow rate can be measured in a short time. In addition, the detection of the period has a predetermined time width (for example, 2 milliseconds) so that the measurement is performed flexibly and the measurement is continued without interruption.
(実施の形態 1 1 )  (Embodiment 11)
図 2 8は、 本発明の実施の形態 1 1の流量計を示す構成図である。 実施の形態 FIG. 28 is a configuration diagram showing a flow meter according to Embodiment 11 of the present invention. Embodiment
6と異なる点は、 流体の状態変化として熱の伝搬を利用した送受信手段としたと ころである。 2 3 8は熱を送信するヒー夕、 2 3 9は熱を受信する第 1温度セン サ、 2 4 0は熱を受信する第 2温度センサである。 また、 第 2温度センサ 2 4 0 は自ら発熱して自己抵抗値の変化で流体の状態変化を検出することができる。 そして、 熱の送受信手段である第 2の温度センサを兼用することで、 流体の状 態変化、 すなわち流速変動や圧力変動を検出することができる。 そして、 検出し た変動に同期して、 1周期の計測を行うことで、 前述の実施の形態と同様に流量 計測は安定して精度よく行える。 The difference from 6 is that the transmission / reception means uses the propagation of heat as a fluid state change. 238 is a heater for transmitting heat, 239 is a first temperature sensor for receiving heat, and 240 is a second temperature sensor for receiving heat. In addition, the second temperature sensor 240 generates heat by itself and can detect a change in the state of the fluid by a change in the self-resistance value. By using the second temperature sensor, which is a means for transmitting and receiving heat, as well, it is possible to detect a change in the state of the fluid, that is, a change in flow velocity or pressure. Then, by performing one-cycle measurement in synchronization with the detected fluctuation, the flow measurement can be performed stably and accurately as in the above-described embodiment.
(実施の形態 1 2 )  (Embodiment 12)
図 2 9は本発明の実施の形態 1 2の流量計のブロック図である。 図 2 9におい て、 3 2 3は流路 3 2 4に設けられて流体の状態変化としての超音波を用いて送 受信する送受信手段の第 1振動手段としての第 1圧電振動子、 3 2 5は同様に超 音波を送受信する送受信手段の第 2振動手段としての第 2圧電振動子、 3 2 6は 前記第 1圧電振動子および第 2圧電振動子の送受信の動作を切換える切換手段と しての切換スィッチ、 3 2 7は前記第 1圧電振動子 3 2 3および第 2圧電振動子 3 2 5で繰返し送受信される音波の伝搬時間を計測する計時手段、 3 2 8は前記 計時手段の値に基づいて流量を計測する流量検出手段、 3 2 9は流路 3 2 4内の 圧力変動を計測する変動検出手段としての圧力変動検出器、 3 3 0は圧力検出器 3 2 9の圧力信号をデジタル信号に変換する変動検出手段としての同期パルス出 力手段、 3 3 1は前記変動検出手段の圧力変動のタイミングに同期して計測を指 示する計測制御手段である。 ここで、 3 3 2は超音波信号の送受信手段の送信器、 333は超音波信号の送受信手段の受信器、 334は超音波の送受信を繰返し行 う繰返手段、 335は計測制御手段の異常を監視する計測監視手段である。 次に動作、 作用について図 14と、 図 30から図 3 1を用いて説明する。 図 1 4のような構成の流路において、 第 1圧電振動子 323から第 2圧電振動子 32 5に向かって伝搬する時間 T 1を計測すると、 T 1 =LZ (C + Vc o s 0) と なる。 また、 第 2圧電振動子 325から第 1圧電振動子 323に向かって伝搬す る時間 T 2を計測すると、 T2=LZ (C-Vc o s Θ) となる。 ここで、 Vは 流路内の流速、 Cは音速、 0は傾斜角度である。 そして、 T 1と Τ2の逆数の差 をとり、 式を変形すると T l、 Τ2から流速 Vが次式のように求まる。 FIG. 29 is a block diagram of a flow meter according to Embodiment 12 of the present invention. In FIG. 29, reference numeral 32 3 denotes a first piezoelectric vibrator provided as a first vibrating means of the transmitting / receiving means provided in the flow path 3 24 for transmitting and receiving using ultrasonic waves as a change in the state of the fluid; Similarly, 5 is a second piezoelectric vibrator as a second vibrating means of transmitting / receiving means for transmitting and receiving ultrasonic waves, and 326 is a switching means for switching the transmitting and receiving operations of the first piezoelectric vibrator and the second piezoelectric vibrator. All the switching switches, 327 are time-measuring means for measuring the propagation time of sound waves repeatedly transmitted and received by the first piezoelectric vibrator 323 and the second piezoelectric vibrator 325, and 328 is the time-measuring means. Flow rate detection means that measures the flow rate based on the value, 329 is a pressure fluctuation detector as a fluctuation detection means that measures the pressure fluctuation in the flow path 324, and 330 is the pressure of the pressure detector 329 Synchronous pulse output means as fluctuation detecting means for converting a signal into a digital signal; This is a measurement control unit that instructs measurement in synchronization with the timing of pressure fluctuation. Here, 3 3 2 is a transmitter of the transmitting and receiving means of the ultrasonic signal, Numeral 333 is a receiver of an ultrasonic signal transmitting / receiving means, 334 is a repeating means for repeatedly transmitting and receiving ultrasonic waves, and 335 is a measurement monitoring means for monitoring an abnormality of the measurement control means. Next, the operation and action will be described with reference to FIG. 14 and FIGS. 30 to 31. In the flow path having the configuration shown in FIG. 14, when the time T 1 of propagation from the first piezoelectric vibrator 323 to the second piezoelectric vibrator 325 is measured, T 1 = LZ (C + Vc os 0). Become. In addition, when the time T 2 that propagates from the second piezoelectric vibrator 325 to the first piezoelectric vibrator 323 is measured, T 2 = LZ (C−VcosΘ). Here, V is the flow velocity in the channel, C is the speed of sound, and 0 is the inclination angle. Then, taking the difference between the reciprocals of T 1 and Τ2, and transforming the equation, the flow velocity V is obtained from T l and Τ2 as follows.
V= (L/2 c o s θ) · (l/T 1 - 1/T2)  V = (L / 2 c os θ) (l / T 1-1 / T2)
ここで、 流路内に圧力変動があると、 その圧力変動に応じて流速が変化する。 よって、 圧力の変動周波数 f、 変動流速 uとすると、 T l、 Τ2は  Here, if there is a pressure fluctuation in the flow path, the flow velocity changes according to the pressure fluctuation. Therefore, assuming that the pressure fluctuating frequency f and the fluctuating flow velocity u, Tl,
T l =L/ (C + Vc o s ^ + u - s i n ( 2 π f t) )  T l = L / (C + Vcos ^ + u-sin (2πft))
T2 = L/ (C-V c o s Θ - u · s i n (2 π f t +τ>) )  T2 = L / (C-V c os Θ-uSin (2 π f t + τ>))
となる。 ここで、 ゆは、 Τ 1計測の開始と Τ 2計測の開始の時間差 (位相差) で ある。 そして、 Τ 1と Τ2の逆数の差をとると、 Becomes Here, Yu is the time difference (phase difference) between the start of Τ1 measurement and the start of Τ2 measurement. And taking the reciprocal difference between Τ1 and Τ2,
1/Τ 1 - 1/T2  1 / Τ 1-1 / T2
= (2 Vc o s Θ  = (2 Vcos Θ
+ u - (s i n (2 π f t ) + s i n ( 2 π f t +-φ) ) ) /L であるから、 ゆ =πのとき、 s i n (2 π f t +φ) ) =- s i n ( 2 ττ f t ) となり、 変動の影響は、 キャンセルされることになる。 よって、  + u-(sin (2 π ft) + sin (2 π ft + -φ)))) / L, so if = = π, sin (2 π ft + φ)) =-sin (2 ττ ft) ), And the effect of the fluctuation is cancelled. Therefore,
V= (L/2 c o s d) · (1ZT 1 - 1ZT2)  V = (L / 2 c os d) (1ZT 1-1ZT2)
として、 変動時においても流速 Vが計測でき、 流路の断面積などを考慮して流量 を算出することができるのである。 このように、 圧力変動を検出しながら流量を 計測する計測制御手段が、 ゆ- とすることによって圧力変動の影響を受けずに 精度よく流量を計測することができる。 以上は、 1回の送受信の計測で説明して いるが、 繰返手段 3 4で伝搬時間を繰り返して計測する方法で積算時間を求める 場合も同様に求めることができるのは明白である。 As a result, the flow velocity V can be measured even during fluctuations, and the flow rate can be calculated in consideration of the cross-sectional area of the flow path. As described above, the measurement control means that measures the flow rate while detecting the pressure fluctuation can accurately measure the flow rate without being affected by the pressure fluctuation by setting the measurement flow rate. The above is explained with one transmission / reception measurement However, it is clear that the integration time can be obtained in the same manner when the integration time is obtained by a method of repeatedly measuring the propagation time by the repeating means 34.
そして、 図 3 0に示すように、 計測制御手段 3 3 1は、 所定の計測時期 (例え ば、 2秒経過ごと) になれば、 計測開始信号を出力し、 圧力変動のゼロクロス点 を閾値とした同期パルス出力手段の出力信号の変化を待つ。 そして、 同期パルス 出力手段 3 3 0の出力信号が、 第 1出力信号としての出力信号の立下がり信号を 出力した時に第 1計時時間 T 1の測定を開始し、 同期パルス出力手段 3 3 0の第 2出力信号としての出力信号の立ち上がり信号が出力されるまで伝搬時間の計測 を繰返し行う。 その次の計測は、 前記同期パルス出力手段 3 3 0の第 1出力信号 としての出力信号の立ち上がり信号が出力した時に第 2計時時間 T 2の測定を開 始し、 同期パルス出力手段 3 3 0の第 2出力信号としての出力信号の立ち下がり 信号が出力されるまで伝搬時間の計測を繰返し行う。 そして、 その時の計時手段 3 2 7の計時時間 T 1, T 2から流量検出手段 3 2 8が流量に換算して流量計測 を完了するものである。  Then, as shown in FIG. 30, the measurement control means 331 outputs a measurement start signal at a predetermined measurement time (for example, every two seconds), and sets a zero cross point of the pressure fluctuation as a threshold value. Wait for a change in the output signal of the synchronized pulse output means. Then, when the output signal of the synchronization pulse output means 330 outputs a falling signal of the output signal as the first output signal, measurement of the first clocking time T1 is started, and the synchronization pulse output means 330 The measurement of the propagation time is repeated until the rising signal of the output signal as the second output signal is output. In the next measurement, when the rising signal of the output signal as the first output signal of the synchronous pulse output means 330 is output, the measurement of the second clock time T 2 is started, and the synchronous pulse output means 330 The measurement of the propagation time is repeated until the falling signal of the output signal as the second output signal is output. Then, the flow rate detecting means 328 converts the time from the time T1, T2 of the time measuring means 327 to the flow rate and completes the flow rate measurement.
しかし、 図 3 1に示すように、 計測制御手段 3 3 1は、 所定の計測時期になれ ば、 計測開始信号を出力するが、 同期パルス出力手段 3 3 0の出力信号の変化を 所定時間待っても、 同期パルス出力手段の出力信号の変化が現れない場合、 自動 的に計測開始信号を出力して所定の繰返し回数 (例えば、 2 5 6回) で計測を行 う。 例えば、 計測の間隔が 2秒とし、 圧力変動の周波数が 1 0 H zから 2 0 H z の範囲で発生すると、 待ち時間の所定時間は、 0 . 1秒から 2秒の間で設定でき るが、 1秒を最適値として設定することが望ましい。 また、 所定の繰返し回数は、 2回から 5 1 2回で設定でき、 圧力変動の周波数によって最適値を設定すること が望ましい。  However, as shown in FIG. 31, the measurement control means 331 outputs a measurement start signal at a predetermined measurement time, but waits for a predetermined time for a change in the output signal of the synchronous pulse output means 330. Even if the output signal of the synchronous pulse output means does not change, a measurement start signal is automatically output and measurement is performed at a predetermined number of repetitions (for example, 256 times). For example, if the measurement interval is 2 seconds and the frequency of pressure fluctuation occurs in the range of 10 Hz to 20 Hz, the predetermined waiting time can be set between 0.1 seconds and 2 seconds. However, it is desirable to set 1 second as the optimal value. Also, the predetermined number of repetitions can be set from 2 to 5 12 times, and it is desirable to set an optimum value according to the frequency of pressure fluctuation.
このように、 計測開始信号を出力してから圧力の変動がない場合でも、 所定時 間後に計測を開始し、 流量計測を行わなければならない時には必ず流量計測を行 うことができる。 例えば、 ガスメータ一などでは、 地震が発生した時に流量の有 無を計測するが、 その時に圧力変動を待機していた場合、 圧力変動に異常が生じ て同期パルス出力信号がえられなかった時でも、 自動的に流量計測を行うことが でき、 異常事態に対処することができる。 In this way, even if the pressure does not fluctuate after the output of the measurement start signal, the measurement can be started after a predetermined time and the flow measurement can be performed whenever the flow measurement needs to be performed. For example, in a gas meter, etc. If no pressure fluctuation is detected at that time, the flow rate measurement can be performed automatically even when the synchronous pulse output signal is not obtained due to the pressure fluctuation, and the I can deal with it.
なお、 流れの変動は、 流路内の圧力変動で説明しているが、 流速変動のある場 合も、 流速変動検出手段を用いることで同様の効果があることは明白である。  Although the fluctuation of the flow is explained by the fluctuation of the pressure in the flow channel, it is clear that the same effect can be obtained by using the flow velocity fluctuation detecting means even when the flow velocity varies.
(実施の形態 1 3 )  (Embodiment 13)
図 3 2は本発明の実施の形態 1 3の流量計の動作を示すタイミングチャートで ある。 実施の形態 1 2と異なる点は、 計測制御手段 3 3 1の指示の後、 所定時間 内に開始信号が発生しなかった時、 次の計測制御手段の指示まで計測を行わない 計測監視手段 3 3 5を備えたことにある。 構成は図 2 9に示す。  FIG. 32 is a timing chart showing the operation of the flow meter according to Embodiment 13 of the present invention. The difference from the first and second embodiments is that, when the start signal is not generated within a predetermined time after the instruction of the measurement control means 331, measurement is not performed until the next instruction of the measurement control means. 3 to have 5 The configuration is shown in Figure 29.
図 3 2に示すように、 計測制御手段 3 3 1は、 所定の計測時期になれば、 計測開 始信号を出力する。 そして、 同期パルス出力手段 3 3 0の出力信号の変化を所定 時間待っても、 同期パルス出力手段の出力信号の変化が現れない場合、 計測監視 手段 3 3 5が、 同期パルス信号の待機を終了するように、 計測制御手段 3 3 1に 指示し、 次の計測時期である計測タイミング (例えば、 2秒後) を待つこととし た。 ここで、 計測の間隔が 2秒とし、 圧力変動の周波数が 1 0 H zから 2 0 H z の範囲で発生すると、 待ち時間の所定時間は、 0 . 1秒から 2秒の間で設定でき るが、 1秒を最適値として設定することが望ましい。 As shown in FIG. 32, the measurement control means 331 outputs a measurement start signal at a predetermined measurement time. If no change in the output signal of the synchronous pulse output means appears even after waiting for a change in the output signal of the synchronous pulse output means 330 for a predetermined time, the measurement and monitoring means 335 ends the standby of the synchronous pulse signal. The measurement control means 331 is instructed to wait for the next measurement timing (for example, two seconds later). Here, if the measurement interval is 2 seconds and the frequency of pressure fluctuation occurs in the range of 10 Hz to 20 Hz, the predetermined waiting time can be set between 0.1 seconds and 2 seconds. However, it is desirable to set 1 second as the optimal value.
このように、 計測開始信号を出力してから圧力の変動がない場合、 所定時間後 に待機を終了し、 流量計測を行わないことで、 精度の悪い流量計測を避けること ができる。 図 3 2では、 第 1の伝搬時間 T 1を計測するタイミングで図示してい るが、 第 2の伝搬時間 T 2を計測する時に、 同期パルスが発生しないと、 T 1と T 2の計測時間の間隔が異常に長くなるので、 計測精度が低下する。 このような 計測精度が低下する計測を回避することができるのである。 そして、 次の計測指 示まで待機することで、 無駄な計測を止め消費電力の節減を行うことができるの である。 例えば、 ガスメーターのように電池で保安機能を制御するマイコンを駆 動しているときは、 この消費電力を低減することで長寿命とすることができる。As described above, when the pressure does not fluctuate after the output of the measurement start signal, the standby is ended after a predetermined time and the flow measurement is not performed, so that inaccurate flow measurement can be avoided. FIG. 32 shows the timing at which the first propagation time T 1 is measured. However, when the second propagation time T 2 is measured, if no synchronization pulse occurs, the measurement time of T 1 and T 2 is measured. The measurement interval is abnormally long because the interval between them becomes abnormally long. It is possible to avoid such measurement in which the measurement accuracy is reduced. By waiting for the next measurement instruction, unnecessary measurement can be stopped and power consumption can be reduced. For example, drive a microcomputer that controls the security function with a battery, such as a gas meter. When the power is on, a long life can be achieved by reducing this power consumption.
(実施の形態 1 4 ) (Embodiment 14)
図 3 3は本発明の実施の形態 1 4の流量計の動作を示すタイミングチャートで ある。 実施の形態 1 2と異なる点は、 開始信号の後、 所定時間内に終了信号が発 生しなかった時、 音波の受信を終了するとともに、 所定時間内に終了信号が発生 しなかった時、 音波の受信を終了して、 再度開始信号を出力する計測監視手段 3 3 5を備えた構成とした。 構成は図 2 9に示す。  FIG. 33 is a timing chart showing the operation of the flow meter according to Embodiment 14 of the present invention. The difference from the first and second embodiments is that when the end signal is not generated within a predetermined time after the start signal, the reception of the sound wave is ended, and the end signal is not generated within the predetermined time, The configuration is provided with the measurement monitoring means 335 which ends the reception of the sound wave and outputs the start signal again. The configuration is shown in Figure 29.
図 3 3に示すように、 計測制御手段 3 3 1は、 所定の計測時期になれば、 計測 開始信号を出力し、 同期パルス出力手段の出力信号が立下り時に第 1出力信号を 検出して計測を開始する。 そして、 同期パルス出力手段の出力信号が立下がる第 2の出力信号が所定時間待っても現れない場合、 同期パルス信号の待機を終了し、 再度開始信号を出力して計測を行なうこととした。 ここで、 計測の間隔が 2秒と し、 圧力変動の周波数が 1 0 H zから 2 0 H zの範囲で発生すると、 待ち時間の 所定時間は、 0 . 1秒から 2秒の間で設定できるが、 1秒を最適値として設定す ることが望ましい。 1秒であれば、 再計測を行なっても次の計測時期としての 2 秒後までに計測を完了することができるからである。 こごて、 再計測の時にも、 第 2の出力信号が現れない時は、 次の計測時期まで待つこととする。  As shown in FIG. 33, the measurement control means 331 outputs a measurement start signal at a predetermined measurement time, and detects the first output signal when the output signal of the synchronous pulse output means falls. Start measurement. If the second output signal, at which the output signal of the synchronization pulse output means falls, does not appear after waiting for a predetermined time, the standby for the synchronization pulse signal is terminated, and a start signal is output again to perform measurement. Here, assuming that the measurement interval is 2 seconds and the pressure fluctuation frequency occurs in the range of 10 Hz to 20 Hz, the predetermined waiting time is set between 0.1 seconds and 2 seconds. Yes, but it is desirable to set 1 second as the optimal value. If it is 1 second, even if re-measurement is performed, the measurement can be completed within 2 seconds after the next measurement time. If the second output signal does not appear even after re-measurement, wait until the next measurement time.
このように、 計測を開始してから圧力の変動がない場合、 所定時間後に待機を 終了し、 流量計測を行わないことで、 間違った流量計測を避けることができる。 また、 再計測を補行なうことで、 所定の定期計測のデータ抜けを防止し、 平均化 などの計測処理をスムーズに行ない計測流量値の精度を向上することができる。 さらに、 計測の終了が指示されないと、 計時手段などが誤計測してしまい、 計測 精度が低下する。 このような計測精度が低下する計測を回避することができるの である。 そして、 強制的に終了することで終了待ちで計測が停止することがなく、 次の処理に進むことができ、 安定した計測動作が行える。  In this way, if there is no pressure fluctuation after the start of the measurement, the standby is ended after a predetermined time and the flow measurement is not performed, so that an erroneous flow measurement can be avoided. In addition, by supplementing the re-measurement, it is possible to prevent missing of data of the predetermined periodic measurement, to smoothly perform the measurement processing such as averaging, and to improve the accuracy of the measured flow rate value. Furthermore, if the end of the measurement is not instructed, the timing means and the like will incorrectly measure, and the measurement accuracy will be reduced. It is possible to avoid such measurement in which the measurement accuracy is reduced. Then, by forcibly terminating the measurement, the measurement can be stopped without waiting for the termination, and the process can proceed to the next processing, and a stable measurement operation can be performed.
(実施の形態 1 5 ) 図 3 4は本発明の実施の形態 1 5の流量計の動作を示すフローチヤ一トである。 実施の形態 1 2と異なる点は、 開始信号の後、 所定時間 T内に終了信号が発生し なかった時、 音波の受信を終了して、 計測デ一夕を破棄する計測監視手段 3 3 5 を備えた構成とした。 構成は図 2 9に示す。 (Embodiment 15) FIG. 34 is a flowchart showing the operation of the flow meter according to Embodiment 15 of the present invention. The difference from the first and second embodiments is that when no end signal is generated within a predetermined time T after the start signal, the measurement monitoring means 3 3 5 terminates the reception of the sound wave and discards the measurement data. Was provided. The configuration is shown in Figure 29.
図 3 4に示すように、 第 1出力信号を出力した後、 所定時間 T (例えば、 0 . As shown in FIG. 34, after outputting the first output signal, a predetermined time T (for example, 0.
5秒) 経過しても、 1周期の終了を示す第 2の出力信号が発生しない時、 送受信 の繰返しを終了してそれまでの計測データを破棄することとした。 そして、 所定 時間待機した後、 計測を再開することにした。 When the second output signal indicating the end of one cycle is not generated even after 5 seconds, the repetition of transmission and reception is terminated and the measurement data up to that point is discarded. Then, after waiting for a predetermined time, the measurement was restarted.
このように、 計測がうまく行われなかった時、 そのデ一夕を破棄することで、 精度の良いデータのみを使用することができ安定した計測動作が行える。 また、 計測データを保持しておく必要がなく、 計測に必要な消費電力も低減できる。 さ らに、 所定時間 Tを管理することで、 定期的な計測周期 (例えば、 2秒) を超え ていることなどを管理することができ、 計測タイミングが重なり合わないように 計測を行なうことができる。 そして、 温度が変化して超音波の伝搬時間が変化し た場合でも、 同じ所定時間 Tで管理することができる。  In this way, when measurement is not performed well, by discarding the data, only accurate data can be used and stable measurement operation can be performed. Also, there is no need to store measurement data, and the power consumption required for measurement can be reduced. In addition, by managing the predetermined time T, it is possible to manage that the periodic measurement cycle (for example, 2 seconds) has been exceeded, and to perform measurements so that the measurement timings do not overlap. it can. Then, even when the propagation time of the ultrasonic wave changes due to a change in temperature, it can be managed with the same predetermined time T.
(実施の形態 1 6 )  (Embodiment 16)
図 3 5は本発明の実施の形態 1 6の流量計の動作を示すフローチャートである。 実施の形態 1 2と異なる点は、 繰返し回数が所定回数 N 1以上になった時に、 音 波の受信を終了して、 計測データを破棄する計測監視手段 3 3 5を備えた構成と した。 構成は図 2 9に示す。  FIG. 35 is a flowchart showing the operation of the flow meter according to Embodiment 16 of the present invention. The difference from the first and second embodiments is that, when the number of repetitions becomes equal to or more than a predetermined number N1, the configuration is provided with measurement monitoring means 335 for terminating the reception of the sound wave and discarding the measurement data. The configuration is shown in Figure 29.
図 3 5に示すように、 第 1出力信号を出力した後、 所定回数 N 1 (例えば、 5 1 2回) 以上になっても、 1周期の終了を示す第 2の出力信号が発生しない時、 送受信の繰返しを終了してそれまでの計測データを破棄することとした。 そして、 所定時間待機した後、 計測を再開することにした。  As shown in FIG. 35, after the first output signal is output, the second output signal indicating the end of one cycle is not generated even when the number of times exceeds a predetermined number N 1 (for example, 5 1 2 times). It was decided to end the repetition of transmission and reception and discard the measurement data up to that point. Then, after waiting for a predetermined time, the measurement was restarted.
このように、 計測がうまく行われなかった時、 そのデータを破棄することで、 精度の良いデータのみを使用することができ安定した計測動作が行える。 また、 計測データを保持しておく必要がなく、 計測に必要な消費電力も低減できる。 さ らに、 繰返し回数で管理することで、 温度が変化して超音波の伝搬時間が変化し た場合でも、 繰返し回数の限界まで伝搬時間に関係なく計測することができる。 In this way, when measurement is not performed well, by discarding the data, only accurate data can be used, and stable measurement operation can be performed. Also, There is no need to store measurement data, and the power consumption required for measurement can be reduced. Furthermore, by managing the number of repetitions, even if the propagation time of the ultrasonic wave changes due to a change in temperature, it is possible to measure up to the limit of the number of repetitions regardless of the propagation time.
(実施の形態 1 7 )  (Embodiment 17)
図 3 6は本発明の実施の形態 1 7の流量計の動作を示すフローチャートである。 実施の形態 1 2と異なる点は、 繰返し回数が所定回数 N 2以下の時、 計測データ を破棄する計測監視手段 3 3 5を備え、 繰返し回数が所定回数以下の時、 計測デ 一夕を破棄して、 再度開始信号を出力する計測監視手段 3 3 5を備えた構成とし た。 構成は図 1 2に示す。  FIG. 36 is a flowchart showing the operation of the flow meter according to Embodiment 17 of the present invention. The difference from the first and second embodiments is that a measurement monitoring means 335 is provided for discarding measurement data when the number of repetitions is equal to or less than a predetermined number N2, and the measurement data is discarded when the number of repetitions is equal to or less than a predetermined number. Then, a configuration was provided in which the measurement monitoring means 335 for outputting the start signal again was provided. The configuration is shown in Figure 12.
図 3 6に示すように、 変動周期を基に行なった所定の計測において繰返し回数 が、 所定回数 N 2 (例えば、 1 0 0回) 以下の時、 それまでの計測データを破棄 することとした。 そして、 所定時間待機した後、 計測を再開することにした。 このように、 正常に計測が行われても、 その繰返し回数が所定の回数以下の時 は、 圧力変動を正確にとらえていない可能性があり、 1周期の計測ではないので、 そのデータを破棄して再度計測を行なうことで安定した計測動作が行える。 また、 計測データを保持しておく必要がなく、 計測に必要な消費電力も低減できる。  As shown in Fig. 36, when the number of repetitions in the predetermined measurement performed based on the fluctuation period is less than the predetermined number N2 (for example, 100 times), the measurement data up to that point is discarded. . Then, after waiting for a predetermined time, the measurement was restarted. Thus, even if measurement is performed normally, if the number of repetitions is less than the specified number, it is possible that pressure fluctuations may not be accurately captured, and the data is discarded because it is not a one-cycle measurement. Then, by performing measurement again, a stable measurement operation can be performed. Also, there is no need to store measurement data, and the power consumption required for measurement can be reduced.
(実施の形態 1 8 )  (Embodiment 18)
図 3 7は本発明の実施の形態 1 8の流量計の動作を示すフローチャートである。 実施の形態 1 2と異なる点は、 繰返回数が所定回数 N 2以下の時、 計測データを 破棄して、 再度開始信号を出力するとともに、 変動検出手段としての同期パルス 出力手段 3 3 0は、 2周期目に達した時に第 2出力信号を出力して、 2周期目の 終了信号まで計測を継続する計測監視手段 3 5を備えた構成とした。 構成は図 2 9に示す。  FIG. 37 is a flowchart showing the operation of the flow meter according to Embodiment 18 of the present invention. The difference from the first and second embodiments is that when the number of repetitions is equal to or less than a predetermined number N2, the measurement data is discarded, the start signal is output again, and the synchronization pulse output means 330 as a fluctuation detection means is However, the configuration is provided with the measurement monitoring means 35 that outputs the second output signal when the second cycle is reached and continues the measurement until the end signal in the second cycle. The configuration is shown in Figure 29.
図 3 7に示すように、 変動周期を基に行なった所定の計測において繰返し回数 が、 所定回数 N 2 (例えば、 1 0 0回) 以下の時、 それまでの計測データを破棄 することとした。 そして、 所定時間待機した後、 同期パルス出力手段 3 3 0の信 号が、 2周期目に達した時に第 2出力信号を出力して、 2周期目の終了信号まで 計測を継続する計測を再開することにした。 As shown in Fig. 37, when the number of repetitions in the predetermined measurement performed based on the fluctuation cycle is less than the predetermined number N2 (for example, 100 times), the measurement data up to that point is discarded. . After waiting for a predetermined time, the signal of the synchronous pulse output means 330 is output. The second output signal is output when the signal reaches the second cycle, and the measurement that continues the measurement until the end signal of the second cycle is restarted.
このように、 正常に計測が行われても、 その繰返し回数が所定の回数以下の時 は、 圧力変動を正確にとらえていない可能性があり、 1周期の計測ではないので、 そのデータを破棄して再度計測を行なうことで安定した計測動作が行える。 また、 再計測の時には、 2周期の計測を行なうことで、 長時間の計測が行なえ計測精度 が向上することができる。  Thus, even if measurement is performed normally, if the number of repetitions is less than the specified number, it is possible that pressure fluctuations may not be accurately captured, and the data is discarded because it is not a one-cycle measurement. Then, by performing measurement again, a stable measurement operation can be performed. In addition, when remeasurement is performed, by performing two cycles of measurement, measurement can be performed for a long time and measurement accuracy can be improved.
(実施の形態 1 9 )  (Embodiment 19)
図 3 8は本発明の実施の形態 1 9の流量計の動作を示すフローチャートである。 実施の形態 1 2と異なる点は、 1対の送受信手段のうち、 一方の送受信手段から 送信を行い他方の送受信手段で受信する計測時の第 1繰返し回数 N 3と、 他方の 送受信手段から送信を行い一方の送受信手段で受信する計測時の第 2繰返し回数 N 4を比較し、 両繰返し回数の差が所定回数以上の時、 再度開始信号を出力する 計測監視手段 3 3 5を備えた構成とした。 構成は図 2 9に示す。  FIG. 38 is a flowchart showing the operation of the flow meter according to Embodiment 19 of the present invention. The difference from the first and second embodiments is that, of the pair of transmitting and receiving means, the first number of repetitions N3 at the time of measurement when transmission is performed from one of the transmitting and receiving means and received by the other transmitting and receiving means, and the transmission is performed from the other transmitting and receiving means And the second monitoring number N 4 is compared with the second number of times N 4 at the time of measurement received by one of the transmission / reception means.If the difference between the two number of times is equal to or more than a predetermined number, a start signal is output again. And The configuration is shown in Figure 29.
図 3 8に示すように、 変動周期を基に行なった所定の計測において第 1繰返し 回数 N 3と、 第 2繰返し回数 N 4の差が所定回数 M (例えば、 1 0回) 以上の時、 それまでの計測データを破棄するとともに、 所定時間待機した後、 計測を再開す ることにした。  As shown in FIG. 38, when the difference between the first number of repetitions N3 and the second number of repetitions N4 is equal to or greater than a predetermined number M (for example, 10 times) in a predetermined measurement performed based on the fluctuation cycle, The measurement data up to that point was discarded, and measurement was resumed after waiting for a predetermined time.
このように、 正常に計測が行われても、 第 1繰返し回数 N 3と第 2繰返し回数 N 4の差が大きい時には、 圧力変動を正確にとらえていないか、 圧力変動の周期 が変動しているかの可能性があり、 正しく計測できていないので、 そのデータを 破棄して再度計測を行なうことで安定した計測動作が行える。  Thus, even if the measurement is performed normally, when the difference between the first number of repetitions N 3 and the second number of repetitions N 4 is large, the pressure fluctuation is not accurately captured or the period of the pressure fluctuation fluctuates. Since the measurement has not been performed correctly, a stable measurement operation can be performed by discarding the data and performing the measurement again.
(実施の形態 2 0 )  (Embodiment 20)
図 3 9は本発明の実施の形態 2 0の流量計の動作を示すフローチャートである。 実施の形態 1 2と異なる点は、 1対の送受信手段のうち、 一方の送受信手段から 送信を行い他方の送受信手段で受信する計測時の第 1繰返し回数 N 3と、 他方の 送受信手段から送信を行い一方の送受信手段で受信する計測時の第 2繰返し回数 N 4は同じ回数になるように設定する繰返手段 3 3 4を備えた構成とした。 構成 は図 2 9に示す。 FIG. 39 is a flowchart showing the operation of the flow meter according to Embodiment 20 of the present invention. The first embodiment differs from the first and second embodiments in that, out of a pair of transmitting and receiving means, the first number of repetitions N 3 at the time of measurement performed by transmitting from one of the transmitting and receiving means and receiving by the other transmitting and receiving means, The second repetition number N 4 at the time of measurement, which is transmitted from the transmission / reception means and received by one of the transmission / reception means, is configured to include the repetition means 3 3 4 for setting the same number. The configuration is shown in Figure 29.
図 3 9に示すように、 変動周期を基に行なった所定の計測において第 1繰返し 回数 N 3と同じ繰返し回数で、 第 2繰返し回数を行なうことで、 圧力変動の周期 変動が激しい時でも、 第 1繰返し回数 N 3で第 2計測を行なうことで、 真値との 差を大きく異なることなく計測することができる。  As shown in Fig. 39, by performing the second repetition with the same repetition number as the first repetition number N3 in the predetermined measurement performed based on the fluctuation cycle, even when the pressure fluctuation cycle is severe, By performing the second measurement with the first number of repetitions N 3, the difference from the true value can be measured without a large difference.
このように、 圧力変動の周期変動が激しい時でも、 流量計測を行なうことがで きる。 例えば、 ガスメータの場合、 保安のための流量計測が必要な時期があるが、 このように圧力変動の周期変動が激しい時でも、 このような計測を行なうことで 所定流量付近かどうかの判定が瞬時に行なえる。  Thus, the flow rate can be measured even when the periodic fluctuation of the pressure fluctuation is severe. For example, in the case of a gas meter, there are times when it is necessary to measure the flow rate for security.However, even when the periodic fluctuation of the pressure fluctuation is severe, it is possible to judge whether the flow rate is near the predetermined flow rate by performing such measurement. Can be done.
(実施の形態 2 1 )  (Embodiment 21)
図 4 0は本発明の実施の形態 2 1の流量計の動作を示すフローチャートである。 実施の形態 1 2と異なる点は、 再度開始信号を出力する回数は所定回数じまでと し、 永久に繰返すことがないように監視する計測監視手段 3 3 5を備えた構成と した。 構成は図 2 9に示す。  FIG. 40 is a flowchart showing the operation of the flow meter according to Embodiment 21 of the present invention. The difference from the first and second embodiments is that the number of times the start signal is output again is up to a predetermined number of times, and a configuration is provided in which a measurement monitoring means 335 for monitoring such that the signal is not repeated forever is provided. The configuration is shown in Figure 29.
図 4 0に示すように、 圧力変動に基づいて計測することに失敗して再度計測す る場合には、 その再計測の回数 Cを制限する (例えば、 2回まで) ことで、 無限 に処理が続くことがないようにして安定した流量計測を行うことができる。  As shown in Fig. 40, when the measurement based on the pressure fluctuation fails and the measurement is performed again, the number of re-measurements C is limited (for example, up to two times) so that the processing is infinite. , So that stable flow measurement can be performed.
(実施の形態 2 2 )  (Embodiment 22)
図 4 1は本発明の実施の形態 2 2の流量計のブロック図である。 実施の形態 1 2と異なる点は、 流体の状態変化として熱の伝搬を利用した送受信手段としたと ころである。 3 3 6は熱を送信するヒー夕、 3 3 7は熱を受信する温度センサで ある。  FIG. 41 is a block diagram of a flow meter according to Embodiment 22 of the present invention. The difference from Embodiment 12 is that the transmitting and receiving means uses heat propagation as a change in the state of the fluid. 336 is a heat sensor that transmits heat, and 337 is a temperature sensor that receives heat.
そして、 熱の送受信手段である温度センサを用いた場合でも、 前述の実施の形 態と同様に計測監視手段が各異常を検出してそれぞれの処理を行うことで、 流量 計測は継続して精度よく行える。 Even when a temperature sensor, which is a means for transmitting and receiving heat, is used, the measurement and monitoring means detects each abnormality and performs each process in the same manner as in the embodiment described above, so that the flow rate can be reduced. The measurement can be continuously performed with high accuracy.
(実施の形態 2 3 )  (Embodiment 23)
図 4 2は本発明の実施の形態 2 3の流量計のブロック図である。 図 4 2におい て、 4 1 5は瞬時流量を検出する超音波流量検出手段、 4 1 6は流量値が脈動し ているか否か判別する脈動判別手段、 4 1 7は前記脈動判別手段の判定結果によ つて異なった手段を用いて流量値を算出する安定流量算出手段、 4 1 8は流量値 をデジタルフィルター処理するフィルター処理手段である。  FIG. 42 is a block diagram of a flow meter according to Embodiment 23 of the present invention. In FIG. 42, 415 is an ultrasonic flow rate detecting means for detecting an instantaneous flow rate, 416 is a pulsation determining means for determining whether or not the flow rate value is pulsating, and 417 is a determination of the pulsating determining means. The stable flow rate calculating means for calculating the flow rate value using different means according to the result, and the filter means 418 for digitally filtering the flow rate value.
次に動作、 作用について図 4 3から図 4 5を用いて説明する。 図 4 3に示すよ うに、 本発明の流量計は、 超音波流量検出手段によって計測された瞬時流量 Q ( i ) と、 前回に測定された瞬時流量 Q ( i - 1 ) との差をとり、 その差が所定 値 (例えば、 1リットルノ時間) 以上の場合、 脈動判別手段が脈動ありと判別す る。 そして、 脈動ありの場合、 その差の大きさによってフィルター処理のフィル 夕一係数を変更するようにしてデジタルフィルター処理を行う。 また、 脈動なし の場合は、 フィル夕一処理を行わずに瞬時流量値を安定流量として処理すること とする。 ここで、 デジタルフィルター処理は、 図 3に示すフローによって行うも ので、 数式では次のように表される。 例えば、 フィルター係数をひ、 i番目の瞬 時流量を Q ( i ) 、 求めるフィルター処理後の安定流量を D ( i ) とすると、 D ( i ) = · Ό ( i - 1 ) + ( 1 - ) - Q ( i ) となる。 このようなフィルタ 一の特性は、 図 4 5に示すようにローパスフィルターの特性を有し、 フィルター 係数 αが 1に近い (通常 0 . 9 9 9 ) ほど、 低い周波数成分のみしか通過させな いフィルタ一とすることができ、 変動する値を濾過して通過させないことができ る。 そして、 変動幅が小さい時は、 フィルター係数 α 2 (通常 α 2 = 0 . 9 ) と し、 緩やかなフィルター特性として流量変動への応答性をよくして流量変動にす みやかに応答できるようにしたものである。 また、 変動幅が大きい時は、 フィル ター係数 α ΐ (通常ひ 2 = 0 . 9 9 9 9 ) とし、 極度の低域フィルター特性とし て変動を抑制するようにしたものである。 また、 脈動成分 A ( i ) は、 A ( i ) = Q ( i ) — D ( i ) により求めること が可能であり、 A ( i ) を変動幅として使用することも可能である。 Next, the operation and action will be described with reference to FIGS. 43 to 45. As shown in FIG. 43, the flow meter of the present invention calculates the difference between the instantaneous flow rate Q (i) measured by the ultrasonic flow rate detecting means and the instantaneous flow rate Q (i-1) measured last time. If the difference is equal to or greater than a predetermined value (for example, 1 liter time), the pulsation determination means determines that there is pulsation. When there is a pulsation, digital filter processing is performed by changing the filter coefficient of the filter processing according to the magnitude of the difference. When there is no pulsation, the instantaneous flow rate value is processed as a stable flow rate without performing the filling process. Here, the digital filter processing is performed according to the flow shown in FIG. 3, and is expressed by the following formula. For example, if the filter coefficient is set, the i-th instantaneous flow rate is Q (i), and the desired stable flow rate after filtering is D (i), D (i) = · Ό (i-1) + (1- )-Q (i). One characteristic of such a filter is that of a low-pass filter, as shown in Fig. 45. As the filter coefficient α is closer to 1 (usually 0.999), only low frequency components are passed. The filter can be used as a filter, and a variable value can be filtered and not passed. When the fluctuation width is small, the filter coefficient is set to α2 (normally α2 = 0.9), and the response to the flow rate fluctuation is improved as a gentle filter characteristic so that it can respond quickly to the flow rate fluctuation. It was made. When the fluctuation width is large, the filter coefficient αΐ (normally 2 = 0.9999) is set, and the fluctuation is suppressed as an extremely low-pass filter characteristic. Further, the pulsation component A (i) can be obtained by A (i) = Q (i) -D (i), and A (i) can be used as a fluctuation range.
このように、 脈動が所定値以上の時にフィルター処理を行うことで変動成分を 除去することができ、 脈動時に一つの超音波流量計測手段で安定した流量計測を 行うことができる。 そして、 フィル夕一処理によって平均処理相当の算術計算が 多くのデ一夕用メモリーを使用せずに行うことができるとともに、 フィルター係 数 αという一つの変数を変更することで、 フィルター特性を自由に変更すること ができ、 脈動の大きさによってフィルタ一特性を変えることができる。 そして、 脈動時には、 急峻なフィルター特性とすることで大きな脈動を安定させることが できるとともに、 脈動時のみフィルター処理することが可能である。 そして、 脈 動の変動幅によって判別することで脈動の変動幅に応じてフィルター処理を変更 することができる。 そして、 変動幅によってフィルター特性を変更することで、 小さい変動時には緩やかなフィルター特性として流量の変動に速やかに変動でき るようにするとともに、 大きい変動時には、 急峻なフィルタ一特性とすることで 脈動による流量の変動を大きく抑制することができる。  As described above, by performing the filtering process when the pulsation is equal to or more than the predetermined value, the fluctuation component can be removed, and the flow rate can be stably measured by one ultrasonic flow rate measuring unit during the pulsation. By performing the filtering process, arithmetic calculations equivalent to the averaging process can be performed without using a large amount of memory for data processing, and the filter characteristic can be freely changed by changing one variable called the filter coefficient α. The filter characteristic can be changed according to the magnitude of the pulsation. Then, at the time of pulsation, steep filter characteristics can be used to stabilize large pulsation, and it is possible to perform filter processing only at the time of pulsation. Then, by performing determination based on the fluctuation range of the pulsation, the filtering process can be changed according to the fluctuation range of the pulsation. By changing the filter characteristics according to the fluctuation range, it is possible to quickly change to a change in the flow rate as a gentle filter characteristic when the fluctuation is small, and to make the filter one characteristic steep when the fluctuation is large. Fluctuations in the flow rate can be greatly suppressed.
なお、 本実施の形態では、 デジタルフィル夕一処理の方法として図 4 4のよう なもので説明したが、 他のフィルター処理の方法を用いても同様の効果が得られ る。  Although the present embodiment has been described with reference to FIG. 44 as an example of a digital filtering process, similar effects can be obtained by using other filtering processes.
また、 流量計は一般計器として説明しているが、 ガスメーターに本流量計を使 用することで、 ガスエンジンヒートポンプを使用している配管系など、 脈動が発 生する流路配管でも使用することが可能である。  Although the flow meter is described as a general instrument, use of this flow meter as a gas meter will also allow it to be used in flow piping that generates pulsations, such as piping systems that use gas engine heat pumps. Is possible.
(実施の形態 2 4 )  (Embodiment 24)
図 4 6は本発明の実施の形態 2 4の流量計の動作を示すフローチャートである。 実施の形態 2 3と異なる点は、 フィルター係数 αを変えることによって 2個のフ ィル夕一処理を行った 2個の流量値から、 脈動の変動幅を検出する脈動幅検出手 段を備えたことにある。 図 4 6に示すように、 フィルター係数 α ΐ (例えば、 ひ 1 = 0 . 9 9 9 ) によ るフィルター処理を行った第 1の流量値と、 フィルター係数 α 2 (例えば、 α 2 = 0 . 9 ) によるフィル夕一処理を行った第 2の流量値とを比較して、 その差が 所定値 (例えば、 1リットル Ζ時間) より大きくなると、 値の大きいフィルター 係数 α 1を少しずつ小さくなるようにすることによって、 安定流量算出後の流量 値が早く安定するようにした。 ただし、 1 > Q! 1 > α 2 > 0の時とする。 FIG. 46 is a flowchart showing the operation of the flow meter according to Embodiment 24 of the present invention. The difference from Embodiment 23 is that a pulsation width detection means for detecting a fluctuation width of pulsation from two flow values obtained by performing two filter processes by changing a filter coefficient α is provided. That is. As shown in FIG. 46, as shown in FIG. 46, the first flow rate value subjected to the filtering process using the filter coefficient α ΐ (for example, 1 = 0.999) and the filter coefficient α 2 (for example, α 2 = 0 .9) Compared with the second flow rate value after the filter process was performed, and when the difference became larger than a predetermined value (for example, 1 liter per hour), the filter coefficient α1 with the larger value was gradually reduced. As a result, the flow rate value after the calculation of the stable flow rate was stabilized quickly. However, when 1> Q! 1> α 2> 0.
すなわち、 フィルタ一係数の大きなフィルター処理をした安定流量を用いてい ると、 脈動時に流量が変化した時、 流量変化への応答性が遅れるが、 2個のフィ ル夕一処理行うことで、 小さい方の流量係数で算出している流量によって、 脈動 時に流量が急に変化しても速やかに追随することができるのである。  In other words, if a stable flow rate with a large filter coefficient is used, the response to the flow rate change is delayed when the flow rate changes during pulsation. The flow rate calculated by the flow rate coefficient enables rapid follow-up even if the flow rate changes suddenly during pulsation.
(実施の形態 2 5 )  (Embodiment 25)
図 4 7は本発明の実施の形態 2 5の流量計を示すフローチャートである。 実施 の形態 2 3と異なる点は、 瞬時流量検出手段が検出した流量値が、 低流量時にの みフィルタ一処理を行う構成とした。  FIG. 47 is a flowchart showing a flow meter according to Embodiment 25 of the present invention. The difference from Embodiment 23 is that the filter processing is performed only when the flow rate value detected by the instantaneous flow rate detection means is low.
すなわち、 図 4 7に示すように、 超音波流量計測手段で計測した瞬時流量が、 所定流量 (例えば、 1 2 0リツトル 時間) 未満の時、 フィルター処理を行うこ とで脈動が発生しても正しく安定流量を計測することができる。 また、 所定流量 以上の時は、 脈動による流量計測の変動幅がの比率が小さいので、 フィルター処 理することなく正しく流量計測を行うことができる。 そして、 流量が小さい時な ので、 フィルター係数ひは、 大きい値 (例えば、 ひ = 0 . 9 9 9 ) を使用して行 うこととした。  That is, as shown in FIG. 47, when the instantaneous flow rate measured by the ultrasonic flow rate measuring means is less than a predetermined flow rate (for example, 120 liter time), even if pulsation occurs due to the filtering process, The stable flow rate can be measured correctly. In addition, when the flow rate is equal to or more than the predetermined flow rate, the fluctuation range of the flow rate measurement due to the pulsation is small, so that the flow rate measurement can be performed correctly without filtering. Since the flow rate is small, the filter coefficient was set to a large value (for example, hi = 0.999).
このように、 低流量時にのみフィルタ一処理を行うことで大流量時の流量変化 に素早く対応するとともに、 低流量時の脈動の影響を大幅に抑制することができ る。  As described above, by performing the filter processing only at the low flow rate, it is possible to quickly respond to the flow rate change at the large flow rate and to significantly suppress the influence of the pulsation at the low flow rate.
(実施の形態 2 6 )  (Embodiment 26)
図 4 8は本発明の実施の形態 2 6の流量計の動作を示すフローチャートである。 実施の形態 2 3と異なる点は、 フィルター処理手段は、 流量値によってフィルタ 一特性を変更する構成とした。 FIG. 48 is a flowchart showing the operation of the flow meter according to Embodiment 26 of the present invention. The difference from the embodiment 23 is that the filter processing means is configured to change one filter characteristic according to the flow rate value.
すなわち、 図 4 8に示すように、 超音波流量計測手段で計測した瞬時流量が所 定値 (例えば、 1 2 0リツトル Z時間) 以上の時、 フィル夕一係数 α 1 (例えば、 α 1 = 0 . 9 ) 、 そして、 所定値未満の流量の時、 フィルター係数ひ 2 (例えば、 α 2 = 0 . 9 9 9 ) とする。 よって、 低流量時はフィルター係数ひ 2を大きくし て、 安定流量の計測に主眼をおき、 例えばガスメータ一に使用する場合、 漏洩検 知や器具判別、 種火登録を正確に行うようにした。 また、 大流量の時は、 フィル 夕一係数 α 1を小さくして流量変化の敏速に応答するようにして積算流量の応答 性を向上するようにした。  That is, as shown in FIG. 48, when the instantaneous flow rate measured by the ultrasonic flow rate measuring means is equal to or larger than a predetermined value (eg, 120 liter Z time), the fill coefficient α 1 (eg, α 1 = 0) 9) And, when the flow rate is less than the predetermined value, the filter coefficient is set to 2 (for example, α 2 = 0.999). Therefore, when the flow rate is low, the filter coefficient H2 is increased to focus on the measurement of the stable flow rate. For example, when using a gas meter, leak detection, appliance discrimination, and pilot fire registration are performed accurately. In addition, when the flow rate is large, the fill factor coefficient α1 is reduced to respond quickly to the change in flow rate, thereby improving the responsiveness of the integrated flow rate.
このように、 流量値によってフィルター特性を変更することで、 低流量時にフ ィルター処理を行うことで大流量時の流量変化に素早く対応するとともに、 低流 量時の脈動の影響を大幅に抑制することができる。 そして、 大流量時には、 応答 性が速くなり、 低流量時には脈動を抑制する処理とすることができる。  In this way, by changing the filter characteristics according to the flow rate value, filter processing is performed at low flow rates to quickly respond to flow rate changes at high flow rates and greatly reduce the effects of pulsation at low flow rates be able to. When the flow rate is high, the responsiveness is increased, and when the flow rate is low, the pulsation can be suppressed.
(実施の形態 2 7 )  (Embodiment 27)
図 4 9は本発明の実施の形態 2 7の流量計の動作を示すフローチャートである。 実施の形態 2 3と異なる点は、 フィルター処理手段は、 超音波流量検出手段の流 量時間の間隔によってフィルター特性を変更する構成とした。  FIG. 49 is a flowchart showing the operation of the flow meter according to Embodiment 27 of the present invention. The difference from the twenty-third embodiment is that the filter processing means is configured to change the filter characteristics depending on the flow time interval of the ultrasonic flow rate detection means.
すなわち、 図 4 9に示すように、 超音波流量計測手段で流量を計測する時間間 隔が長い (例えば、 1 2秒) 時は、 フィルター係数 α 1が小さい値 (例えば、 ひ 1 = 0 . 9 ) を使用し、 時間間隔が短い時は、 フィル夕一係数 α 2が大きい値 (例えば、 ひ 1 = 0 . 9 9 9 ) を使用して、 フィルター処理を行うこととした。 このように、 流量検出時間の間隔によってフィルター特性を変更することで、 計測間隔が短いときは、 緩やかなフィルター特性で、 間隔が広いときには急峻な フィルター特性で変動を抑えることができる。  That is, as shown in FIG. 49, when the time interval for measuring the flow rate by the ultrasonic flow rate measuring means is long (for example, 12 seconds), the filter coefficient α1 is a small value (for example, 1 = 0. 9) was used, and when the time interval was short, filtering was performed using a large value of the filter coefficient α2 (for example, 1 = 0.999). As described above, by changing the filter characteristics according to the interval of the flow rate detection time, the fluctuation can be suppressed by a gentle filter characteristic when the measurement interval is short, and by a steep filter characteristic when the measurement interval is wide.
(実施の形態 2 8 ) 図 5 0は本発明の実施の形態 2 8の流量計の動作を示すフローチャートである < 実施の形態 2 3と異なる点は、 安定流量算出手段により算出した流量値の変動 Φ; が所定値以内になるようにフィルタ一特性を変更する構成とした。 (Embodiment 28) FIG. 50 is a flowchart showing the operation of the flow meter according to Embodiment 28 of the present invention. <A difference from Embodiment 23 is that the fluctuation Φ; of the flow rate value calculated by the stable flow rate calculating means is within a predetermined value. The filter characteristic is changed so that
すなわち、 図 5 0に示すように、 フィルター処理後の安定流量算出処理によつ て求められた流量の変動値が、 所定値 (例えば、 1リットル Z時間) 以上の時は、 フィルター係数 αを増加して流量変動が抑制される方向に制御し、 所定値未満の 時はフィルタ一係数 αを減少して流量変化に応答できる状態でフィルター処理を 行うようにした。  That is, as shown in FIG. 50, when the fluctuation value of the flow rate obtained by the stable flow rate calculation processing after the filter processing is equal to or more than a predetermined value (for example, 1 liter Z hour), the filter coefficient α is set. Control is performed in a direction to increase the flow rate fluctuation, and when it is less than the predetermined value, the filter coefficient α is reduced to perform the filter processing in a state that can respond to the flow rate change.
このように、 安定流量算出手段後の変動値が所定値内になるようにフィルタ一 特性を適応しながら変更することによって、 流量変動を常に所定値以下に抑制す ることができる。  As described above, the flow rate fluctuation can be constantly suppressed to a predetermined value or less by adaptively changing the filter characteristic so that the fluctuation value after the stable flow rate calculating means is within the predetermined value.
なお、 フィル夕一係数の増加幅は、 流量の変動値によって変化させ、 変動幅が 大きい時は増加幅を大きくして、 変動幅が小さい時は、 増加幅を小さくしてフィ ルター係数を変化させることによって、 流量の変動をすみやかに抑制することが できる。  The amount of increase in the filter coefficient is changed depending on the fluctuation value of the flow rate.When the fluctuation amount is large, the increase amount is increased, and when the fluctuation amount is small, the increase amount is reduced and the filter coefficient is changed. By doing so, fluctuations in the flow rate can be suppressed promptly.
(実施の形態 2 9 )  (Embodiment 29)
図 5 1は本発明の実施の形態 2 9の流量計のブロック図である。 実施の形態 2 3と異なる点は、 瞬時流量検出手段を熱式流量検出手段 4 1 9としたことである。 図 5 1に示すように、 熱式流量検出手段 4 1 9を用いることで、 圧力変動があ る場合に計測流量が変動するが、 前記実施の形態 2 3から 2 8の方法を用いるこ とで、 同様の効果が得られ、 流量を安定して精度よく計測することができる。  FIG. 51 is a block diagram of a flow meter according to Embodiment 29 of the present invention. The difference from the embodiment 23 is that the instantaneous flow rate detecting means is a thermal flow rate detecting means 4 19. As shown in FIG. 51, the measurement flow rate fluctuates when the pressure fluctuates by using the thermal flow rate detection means 4 19, but the method of Embodiments 23 to 28 is used. Thus, the same effect can be obtained, and the flow rate can be measured stably and accurately.
(実施の形態 3 0 )  (Embodiment 30)
図 5 2は本発明の実施の形態 3 0を示す流量計のブロック図である。  FIG. 52 is a block diagram of a flow meter showing the embodiment 30 of the present invention.
被測定流体が流れる流量測定部 5 0 0と、 この流量測定部 5 0 0に設けられ超 音波を送受信する一対の超音波振動子 5 0 1 , 5 0 2と、 一方の超音波振動子 5 0 2を駆動する駆動回路 5 0 3と、 他方の超音波振動子 5 0 1に接続され超音波 信号を検知する受信検知回路 5 0 4と、 超音波信号の伝搬時間を測定するタイマ 5 0 5と、 駆動回路 5 0 3を制御する制御部 5 0 7と、 タイマの出力より流量を 演算によって求める演算部 5 0 6と、 駆動回路 5 0 3の駆動方法を順次変更する 周期性変更手段 5 0 8を備える。 従来例と異なるところは、 周期性変更手段 5 0 9を設けたところであり、 周期性変更手段 5 0 8の詳細な図を図 5 3に示す。 5 1 0は第 1発振器ここでは 5 0 0 k H zの発振信号を発生する。 5 1 1は第 2発 振器であり 5 2 0 k H zの発振信号を発生する。 5 1 2は切替器であり、 第 1発 振器 5 1 0の出力か第 2発振器 5 1 1の出力を制御部 5 0 7の出力によって切替 え駆動回路 5 0 3へ出力する。 A flow rate measuring section 500 through which the fluid to be measured flows; a pair of ultrasonic transducers 501 and 502 provided in the flow rate measuring section 500 to transmit and receive ultrasonic waves; and one ultrasonic transducer 5 A drive circuit 5 0 3 for driving 0 2 and an ultrasonic wave connected to the other ultrasonic transducer 5 0 1 A reception detection circuit 504 for detecting the signal, a timer 505 for measuring the propagation time of the ultrasonic signal, a control unit 507 for controlling the drive circuit 503, and a flow rate calculated from the output of the timer An arithmetic unit 506 to be obtained and a periodicity changing means 508 for sequentially changing the driving method of the drive circuit 503 are provided. The difference from the conventional example is that a periodicity changing means 509 is provided, and a detailed diagram of the periodicity changing means 508 is shown in FIG. The reference numeral 5100 generates a first oscillator, here an oscillation signal of 500 kHz. Reference numeral 511 denotes a second oscillator, which generates an oscillation signal of 500 kHz. Numeral 512 denotes a switch, which outputs the output of the first oscillator 510 or the output of the second oscillator 511 to the switching drive circuit 503 by the output of the controller 507.
まず制御部 5 0 7が切替器 5 1 2へ切替信号を出力し第 1発振器 5 1 0を選択 する。 つぎに夕イマ 5 0 5の時間計測を開始すると同時に駆動回路 5 0 3へ送信 開始信号を出力する。 送信開始信号を受けた駆動回路 5 0 3は切替器 5 1 2から の入力である 5 0 0 k H zの発振信号によって超音波振動子 5 0 2を駆動する。 その後の動作は従来例と同じである。 次に制御部 5 0 7は切替器 5 1 2へ切替信 号を出力し第 2発振器 5 1 1を選択する。 そして前回の流量測定と同じように夕 イマ 5 0 5の時間計測を開始すると同時に駆動回路 5 0 3へ送信開始信号を出力 する。 送信開始信号を受けた駆動回路 5 0 3は切替器 5 1 2からの入力である 5 2 0 k H zの発振信号によって超音波振動子 5 0 1を駆動する。  First, the control unit 507 outputs a switching signal to the switching unit 512 to select the first oscillator 510. Next, the time measurement of the timer 505 is started, and at the same time, a transmission start signal is output to the drive circuit 503. The drive circuit 503 that has received the transmission start signal drives the ultrasonic vibrator 502 with an oscillation signal of 500 kHz, which is an input from the switch 5 12. Subsequent operations are the same as in the conventional example. Next, the control unit 507 outputs a switching signal to the switch 511 and selects the second oscillator 511. Then, as in the previous flow measurement, the time measurement of the timer 505 is started, and at the same time, a transmission start signal is output to the drive circuit 503. The drive circuit 503 that has received the transmission start signal drives the ultrasonic transducer 501 with an oscillation signal of 520 kHz, which is an input from the switch 5 12.
その後は交互にこの動作を続け流量測定する。 このような測定をした場合の受 信検知タイミングを図 5 4に示す。 この図に示すように 5 0 0 k H zと 5 2 0 k H zの受信信号は時間的にずれており、 それぞれの受信検知タイミングは図 5 4 の (A) 、 ( B) に示すように時間的にシフトする。 このためこの実施の形態で は測定の周期が一定とならないように制御部が流量計測における周期を順次変更 するよう周期性変更手段を制御することとなり、 、 測定周期あるいは超音波の送 信周期に同期した雑音が受信の時に常に同じ位相に存在せず分散されるので、 測 定誤差を小さくすることができる。 また周期性変更手段を複数の周波数の出力信号を切り替え出力する構成とし、 制御部は計測ごとに周期性変更手段の周波数設定を変更し駆動回路の駆動周波数 を変更するよう制御するので、 駆動周波数変更によって受信検知タイミングを駆 動信号の周期変動に相当する時間変化させることができるので、 測定周期あるい は超音波の送信周期に同期した雑音が受信の時に常に同じ位相に存在せず、 分散 されるので、 測定誤差を小さくすることができる。 Thereafter, this operation is alternately continued to measure the flow rate. Figure 54 shows the reception detection timing for such a measurement. As shown in this figure, the reception signals at 500 kHz and 500 kHz are shifted in time, and the reception detection timings are as shown in (A) and (B) in Fig. 54. Shift in time. Therefore, in this embodiment, the control unit controls the periodicity changing means so as to sequentially change the cycle in the flow rate measurement so that the measurement cycle is not constant. Since the synchronized noise does not always exist in the same phase at the time of reception and is dispersed, the measurement error can be reduced. In addition, the periodicity changing means is configured to switch and output a plurality of frequency output signals, and the control unit controls the frequency setting of the periodicity changing means to change the driving frequency of the driving circuit every measurement, so that the driving frequency is changed. By changing this, the reception detection timing can be changed over time corresponding to the period fluctuation of the drive signal, so that noise synchronized with the measurement period or the transmission period of ultrasonic waves does not always exist in the same phase at the time of reception. Therefore, the measurement error can be reduced.
なお、 実施の形態 3 0では 2つの発振器を切り替えることによって駆動周波数 を変化させているが、 駆動周波数を変化させて超音波振動子を駆動することがで きれば同様の効果を得ることができ、 発振器の個数、 駆動周波数、 切替器の構成 にとらわれるものではない。  In Embodiment 30, the drive frequency is changed by switching between two oscillators, but the same effect can be obtained if the drive frequency can be changed to drive the ultrasonic transducer. It is not limited to the number of oscillators, drive frequency, and switch configuration.
(実施の形態 3 1 )  (Embodiment 3 1)
図 5 5は本発明の実施の形態 3 1を示す流量計のブロック図である。  FIG. 55 is a block diagram of a flow meter showing the embodiment 31 of the present invention.
被測定流体が流れる流量測定部 5 0 0と、 この流量測定部 5 0 0に設けられ超 音波を送受信する一対の超音波振動子 5 0 1 , 5 0 2と、 一方の超音波振動子を 駆動する駆動回路 5 0 3と、 他方の超音波振動子に接続され超音波信号を検知す る受信検知回路 5 0 4と、 受信検知回路 5 0 4の出力をうけ再度超音波振動子を 駆動するよう駆動回路 5 0 3を所定回数制御する制御部 5 0 7と、 所定回数の経 過時間を測定する夕イマ 5 0 5と、 タイマ 5 0 5の出力より流量を演算によって 求める演算部 5 0 6と、 駆動回路 5 0 3の駆動方法を順次変更する周期性変更手 段 5 0 8とを備える。  A flow rate measuring section 500 through which the fluid to be measured flows, a pair of ultrasonic transducers 501 and 502 provided in the flow rate measuring section 500 to transmit and receive ultrasonic waves, and one of the ultrasonic transducers The drive circuit 503 for driving, the reception detection circuit 504 connected to the other ultrasonic transducer to detect an ultrasonic signal, and the output of the reception detection circuit 504 to drive the ultrasonic transducer again A control unit 507 that controls the drive circuit 503 a predetermined number of times, a timer 505 that measures a predetermined number of elapsed times, and a calculation unit 5 that calculates the flow rate from the output of the timer 505 And a periodicity changing means 508 for sequentially changing the driving method of the driving circuit 503.
図 5 6は周期性変更手段の詳細なブロック図である。  FIG. 56 is a detailed block diagram of the periodicity changing means.
5 1 2は第 1のディレイであり制御部 5 0 7からの入力信号を受けた後 1 5 0 s後に出力信号を発生させる、 5 1 3は第 2のディレイであり制御部 5 0 7か らの入力信号を受けた後 1 5 0 . 5 s後に出力信号を発生させる、 5 1 4は第 3のディレイであり制御部 5 0 7からの入力信号を受けた後 1 5 1 μ. s後に出力 信号を発生させる、 5 1 5は第 4のディレイであり制御部 5 0 7からの入力信号 を受けた後 1 5 1 . 5 s後に出力信号を発生させる、 5 1 5は切替器であり第 1から第 4ののディレイ出力を制御部 5 0 7の出力に応じて選別し駆動回路 5 0 3に出力する。 5 1 2 is a first delay, which generates an output signal 150 s after receiving an input signal from the control unit 5 07, 5 1 3 is a second delay, which is the control unit 5 0 7 An output signal is generated 150.5 s after receiving these input signals, and 514 is a third delay which is 15 1 μs after receiving an input signal from the control unit 507. Later, the output signal is generated. 5 15 is the fourth delay, which is the input signal from the control unit 5 07 After receiving 151.5 s, an output signal is generated. 5 15 is a switch which selects the first to fourth delay outputs according to the output of the control unit 507 and drives the drive circuit 5. 0 Output to 3.
実施の形態 1と異なるところは、 制御部 5 0 7が受信検知回路 5 0 4の出力を 受けて再度超音波振動子を駆動するところと、 この動作をディレイ設定数である 4の整数倍繰り返し、 その繰り返す中で、 超音波の受信ごとに周期性変更手段 5 0 8のディレ時間を順次切替えるところである。  The difference from the first embodiment is that the control unit 507 receives the output of the reception detection circuit 504 and drives the ultrasonic vibrator again, and this operation is repeated as an integral multiple of the delay setting number of 4. During the repetition, the delay time of the periodicity changing means 508 is sequentially switched every time an ultrasonic wave is received.
この構成によって、 制御部 5 0 7が超音波の受信検知ごとにディレイの設定を 変更するので、 一回の測定中で直前に送信した超音波の残響や超音波振動子の尾 引きの影響を分散 ·平均化するることができ、 測定誤差を小さくすることができ る。  With this configuration, the control unit 507 changes the delay setting each time the ultrasonic wave is detected, so that the influence of the reverberation of the ultrasonic wave transmitted immediately before during one measurement or the tailing of the ultrasonic transducer is reduced. Dispersion and averaging can be performed, and measurement errors can be reduced.
また周期変更手段が変更する周期の幅を超音波振動子の共振周波数 5 0 0 k H zの位置周期である 2 sを均等に分割した値としているので、 全設定を合計し 平均した値は、 周期 2 sの雑音である超音波センサの残響や尾引きによって発 生する誤差を最小とすることができる。  In addition, the width of the cycle changed by the cycle changing means is a value obtained by equally dividing 2 s, which is the position cycle of the resonance frequency of 500 kHz of the ultrasonic vibrator, so that the sum of all the settings and the average value are: However, it is possible to minimize the error generated by the reverberation or tailing of the ultrasonic sensor, which is noise having a period of 2 s.
更にまた、 測定を繰り返す回数が、 周期性変更手段の変更数である 4のの整数 倍としているので、 一回の流量計測の中で周期性変更手段の各定値での測定を同 数行うこととなり、 測定結果が偏らなくなるため測定結果を安定させることがで さる。  Furthermore, since the number of times the measurement is repeated is an integral multiple of 4 which is the number of changes of the periodicity changing means, the same number of measurements at each constant value of the periodicity changing means must be performed in one flow measurement. And the measurement results are not biased, so that the measurement results can be stabilized.
更にまた、 周期性を変更するパターンの順番を上流方向への測定と下流方向へ の測定とを同じとしている。 具体的には、 上流から下流への測定では、 初めは第 1のディレイ、 次に第 2のディレイ、 次に第 3のディレイ、 次に第 4のディレイ、 そして第 1のディレイに戻りこれを繰り返す。 下流から上流への測定では必ず同 じ順番でディレイを選択する様に動作している。 このようにすることによって、 上流方向と下流方向への流量計測が常に同じ条件となり特に流量変動がある場合 の測定結果を安定化することができる。 なお、 実施の形態 3 1では 4つのディレイを切り替えることによってディレイ 時間を変化させているが、 駆動タイミングを変化させて超音波振動子を駆動する ことができれば同様の効果を得ることができ、 ディレイ時間、 ディレイの個数、 切替器の構成にとらわれるものではない。 Furthermore, the order of the pattern for changing the periodicity is the same for the measurement in the upstream direction and the measurement in the downstream direction. Specifically, in the measurement from upstream to downstream, the first delay, then the second delay, then the third delay, then the fourth delay, and then back to the first delay repeat. In the measurement from downstream to upstream, the delay is always selected in the same order. By doing so, the flow rate measurement in the upstream direction and the downstream direction always becomes the same condition, and the measurement result can be stabilized particularly when there is a flow rate fluctuation. Although the delay time is changed by switching the four delays in Embodiment 31, the same effect can be obtained if the drive timing can be changed to drive the ultrasonic transducer. It is not limited by the time, the number of delays, or the configuration of the switch.
また、 変更するディレイ時間を制御部 5 0 7と駆動回路 5 0 3との間に入れて いるが受信検知回路 5 0 4と制御部 5 0 7との間であっても同様の効果を得るこ とができる。  Although the delay time to be changed is inserted between the control unit 507 and the drive circuit 503, the same effect can be obtained even between the reception detection circuit 504 and the control unit 507. be able to.
また、 ディレイを変化させる幅を 2 s、 変化させる設定数を 4、 隣り合う設 定ごとの変化は 2 // sを 4分割した 0 . 5 Sとしているが、 1周期の整数倍の 値を等間隔に分割した値であれば良くこの値に制限されるものではない。  Also, the delay change width is 2 s, the number of settings to be changed is 4 and the change for each adjacent setting is 0.5 // 4 divided by 2 // s, but a value that is an integral multiple of one cycle The value is not limited to this value as long as it is a value divided at equal intervals.
(実施の形態 3 2 )  (Embodiment 32)
図 5 7 Aは実施の形態 3 2の流量計の周期性変更手段のブロック図である。 5 1 8は発振器であり、 5 1 9は位相変換器である。 発振器は 5 0 0 k H zの 周波数で信号を出力し、 位相変換器では制御部 5 0 7からの位相変換信号に応じ て発振器の信号の位相を進むあるいは遅らせ出力する。 たとえば位相制御信号が H iの時には発振器 5 1 8の出力をそのまま出力し、 位相制御信号が L oの時に は発振器 5 1 8の出力信号の位相を 1 8 0 ° 進めて出力する。 この時の受信信号 及び受信検知タイミングを図 5 7 Bに示す。  FIG. 57A is a block diagram of the periodicity changing means of the flow meter according to the embodiment 32. 5 18 is an oscillator, and 5 19 is a phase converter. The oscillator outputs a signal at a frequency of 500 kHz, and the phase converter advances or delays the phase of the oscillator signal in accordance with the phase conversion signal from the control unit 507 and outputs the signal. For example, when the phase control signal is Hi, the output of the oscillator 518 is output as it is, and when the phase control signal is Lo, the output signal of the oscillator 518 is advanced by 180 ° and output. Figure 57B shows the reception signal and reception detection timing at this time.
この図のように、 受信ポイントが 1 2周期ずれるので、 シフト時間は I S となる。  As shown in this figure, since the receiving point is shifted by 12 periods, the shift time is I S.
このように駆動位相変更によつて受信検知タイミングを駆動信号の位相変動を 時間に換算した時間変化させることができる。 このため測定周期あるいは超音波 の送信周期に同期した雑音が受信の時に常に同じ位相に存在せず、 分散されるの で、 測定誤差を小さくすることができる。  As described above, the reception detection timing can be changed by converting the phase fluctuation of the drive signal into time by changing the drive phase. For this reason, noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
なお、 実施の形態 3 2では 2つの位相を切り替えることによって駆動信号の位 相を変化させているが、 駆動位相を変化させて超音波振動子を駆動することがで きれば同様の効果を得ることができ、 変化させる位相、 切替器の構成にとらわれ るものではない。 In Embodiment 32, the phase of the drive signal is changed by switching the two phases. However, it is possible to drive the ultrasonic transducer by changing the drive phase. The same effect can be obtained if possible, and it is not limited to the phase to be changed and the configuration of the switch.
(実施の形態 33)  (Embodiment 33)
図 58は実施の形態 33の流量計の周期性変更手段のブロック図である。 520は第 1発振器であり超音波振動子の共振周波数 500 kHzの発振信号 を出力する。 521は第 2発振器であり、 200 kHzの発振信号を出力する。 522は ONZOFF回路であり、 制御部 507の ONZO F F切替信号によつ て第 2発振器の出力を波形加算部 523へ出力する しないを切り替える。 波形 加算器 523は入力波形を合成し駆動回路 503へ出力する。  FIG. 58 is a block diagram of a periodicity changing means of the flow meter according to the thirty-third embodiment. Reference numeral 520 denotes a first oscillator, which outputs an oscillation signal having a resonance frequency of 500 kHz of the ultrasonic vibrator. Reference numeral 521 denotes a second oscillator, which outputs an oscillation signal of 200 kHz. Reference numeral 522 denotes an ONZOFF circuit which switches whether to output the output of the second oscillator to the waveform adding unit 523 according to the ONZO F F switching signal of the control unit 507. Waveform adder 523 combines the input waveforms and outputs the result to drive circuit 503.
超音波振動子は約 500 kHzで駆動すると振幅の大きい超音波信号が受信で き、 200 kHzの信号成分だけで駆動しても超音波信号はほとんど受信できな レ。 しかし約 500 kHzの発振周波数に対し約 200 kHzの発振信号を加算 したりしなかったりすることいより、 受信される超音波信号の周期が微妙に変化 する。 この結果受信検知タイミングを変化させることができる。 このため測定周 期あるいは超音波の送信周期に同期した雑音が受信の時に常に同じ位相に存在せ ず、 分散されるので、 測定誤差を小さくすることができる。  Ultrasonic transducers can receive ultrasonic signals with large amplitude when driven at about 500 kHz, and can hardly receive ultrasonic signals when driven with only 200 kHz signal components. However, by adding or not adding an oscillation signal of about 200 kHz to an oscillation frequency of about 500 kHz, the period of the received ultrasonic signal changes slightly. As a result, the reception detection timing can be changed. For this reason, noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
(実施の形態 34)  (Embodiment 34)
図 59は実施の形態 34の流量計の周期性変更手段のブロック図である。 520は第 1発振器であり超音波振動子の共振周波数 500 kHzの発振信号 を出力する。 52 1は第 2発振器であり、 200 kHzの発振信号を出力する。 524は位相変換部であり、 制御部 507の出力に応じて第 2発振器 521の出 力信号の位相を 180° 変換し出力する。 523は波形加算部であり、 入力波形 を合成し駆動回路 503へ出力する。  FIG. 59 is a block diagram of a periodicity changing means of the flow meter according to the thirty-fourth embodiment. Reference numeral 520 denotes a first oscillator, which outputs an oscillation signal having a resonance frequency of 500 kHz of the ultrasonic vibrator. 52 1 is a second oscillator, which outputs an oscillation signal of 200 kHz. Reference numeral 524 denotes a phase conversion unit that converts the phase of the output signal of the second oscillator 521 by 180 ° according to the output of the control unit 507 and outputs the converted signal. Reference numeral 523 denotes a waveform addition unit that combines the input waveforms and outputs the synthesized waveform to the drive circuit 503.
超音波振動子は約 500 kHzで駆動すると振幅の大きい超音波信号が受信で き、 200 kHzの信号成分だけで駆動しても超音波信号はほとんど受信できな い。 しかし約 500 kHzの発振周波数に対し約 200 kHzの発振信号の位相 を計測ごとに 180° 変転して加算した加算信号を基に駆動して受信される超音 波信号の周期が微妙に変化する。 この結果受信検知タイミングを変化させること ができる。 このため測定周期あるいは超音波の送信周期に同期した雑音が受信の 時に常に同じ位相に存在せず、 分散されるので、 測定誤差を小さくすることがで きる。 An ultrasonic transducer can receive an ultrasonic signal with a large amplitude when driven at about 500 kHz, and can hardly receive an ultrasonic signal when driven only with a signal component of 200 kHz. However, for an oscillation frequency of about 500 kHz, the phase of the oscillation signal of about 200 kHz The period of the ultrasonic signal received by driving based on the added signal obtained by inverting the signal by 180 ° for each measurement changes slightly. As a result, the reception detection timing can be changed. For this reason, noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
(実施の形態 35)  (Embodiment 35)
図 60は実施の形態 35の流量計の周期性変更手段のブロック図である。 525は第 1発振器であり超音波振動子の共振周波数 500 kHzの発振信号 を出力する。 526は第 2発振器であり、 200 kHzの発振信号を出力する。 522は周波数変換部入力した信号の周波数を変換して出力する。 ここでは 1 Z 2の 100 kHzに変換する。 523は波形加算部であり、 入力波形を合成し駆 動回路 503へ出力する。  FIG. 60 is a block diagram of the periodicity changing means of the flow meter according to the thirty-fifth embodiment. Reference numeral 525 denotes a first oscillator, which outputs an oscillation signal having a resonance frequency of the ultrasonic transducer of 500 kHz. Reference numeral 526 denotes a second oscillator, which outputs an oscillation signal of 200 kHz. Reference numeral 522 converts the frequency of the signal input to the frequency conversion unit and outputs the converted signal. Here, it is converted to 100 kHz of 1Z2. Reference numeral 523 denotes a waveform adding unit that combines the input waveform and outputs the synthesized waveform to the driving circuit 503.
超音波振動子は約 500 kHzで駆動すると振幅の大きい超音波信号が受信で き、 200 kHzや 100 kHzの信号成分だけで駆動しても超音波信号はほと んど受信できない。 しかし約 500 kHzの発振周波数に対し約 200 kHzを 加算した加算信号と、 500 kHzの発振周波数に対し 100 k H zを加算した 加算信号を基に駆動して受信される超音波信号の周期が微妙に変化する。 この結 果受信検知タイミングを変化させることができる。 このため測定周期あるいは超 音波の送信周期に同期した雑音が受信の時に常に同じ位相に存在せず、 分散され るので、 測定誤差を小さくすることができる。  Ultrasonic transducers can receive ultrasonic signals with large amplitude when driven at about 500 kHz, and can hardly receive ultrasonic signals when driven with only 200 kHz or 100 kHz signal components. However, the period of the ultrasonic signal received by driving based on the addition signal obtained by adding about 200 kHz to the oscillation frequency of about 500 kHz and the addition signal obtained by adding 100 kHz to the oscillation frequency of 500 kHz is Subtle changes. As a result, the reception detection timing can be changed. For this reason, noise synchronized with the measurement period or the transmission period of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
(実施の形態 36)  (Embodiment 36)
図 61は実施の形態 36の流量計のブロック図である。  FIG. 61 is a block diagram of a flow meter according to the thirty-sixth embodiment.
被測定流体が流れる流量測定部 500と、 この流量測定部に設けられ超音波を 送受信する一対の超音波振動子 501, 502と、 一方の超音波振動子 502を 駆動する駆動回路 503と、 他方の超音波振動子 501に接続され超音波信号を 検知する受信検知回路 504と、 超音波信号の伝搬時間を測定する第 1の夕イマ 5 2 7と、 受信検知回路 5 0 4が受信検知してから第 1の夕イマ 5 2 7の値が変 化するまでの時間を測定する第 2のタイマ 5 2 8と、 駆動回路 5 0 3を制御する 制御部 5 3 0と、 第 1の夕イマ 5 2 7及び第 2の夕イマ 5 2 8の出力より流量を 演算によって求める演算部 5 0 6と、 超音波振動子 5 0 1 , 5 0 2と駆動回路 5 0 3、 受信検知回路 5 0 4との接続を切り替える切替回路 5 0 9と、 流量計の温 度を測定し制御部 5 3 0に出力する温度センサ 5 3 1と、 流量計を動作させてい る電源の電圧を測定する電圧センサ 5 3 2を備える。 A flow measuring unit 500 through which the fluid to be measured flows, a pair of ultrasonic transducers 501 and 502 provided in the flow measuring unit for transmitting and receiving ultrasonic waves, a driving circuit 503 for driving one ultrasonic transducer 502, and the other Detection circuit 504 that is connected to the ultrasonic transducer 501 of the first embodiment and detects an ultrasonic signal, and a first receiver that measures the propagation time of the ultrasonic signal 5 2 7, a second timer 5 2 8 for measuring the time from when the reception detection circuit 5 4 4 detects the reception until the value of the first timer 5 2 7 changes, and a driving circuit 5 0 A control unit 530 for controlling the control unit 3; an operation unit 506 for calculating the flow rate from the outputs of the first and second imagers 527 and 528; and an ultrasonic transducer 510 , 502, the drive circuit 503, the reception detection circuit 504, a switching circuit 509 for switching the connection, and the temperature sensor that measures the temperature of the flow meter and outputs it to the control unit 530 And a voltage sensor 532 for measuring the voltage of the power supply operating the flowmeter.
そして制御部 5 3 0は駆動回路 5 0 3に計測開始の信号を出力すると同時に第 1の夕イマ 5 2 7の時間計測をスタートさせる。 駆動回路 5 0 3は信号入力があ ると超音波振動子 5 0 2を駆動し超音波を発信する。 発信された超音波は流体を 伝播し超音波振動子 5 0 1で受信される。 受信検知回路 5 0 4は受信した超音波 信号を第 1の夕イマ 5 2 7および第 2の夕イマ 5 2 8へ出力する。 第 1のタイマ 5 2 7は受信検知回路 5 0 4からの入力信号をうけ時間計測をストップさせる。 第 2の夕イマ 5 2 8は受信検知回路 5 0 4の出力を受け計時を開始し、 第 1の夕 イマ 5 2 7から出力されているカウントアップタイミングに同期し計時をストツ プさせる。 演算部 5 0 6では第 1のタイマ 5 2 7および第 2の夕イマ 5 2 8の時 間計測結果を受け取り演算によって流量を求める。  Then, the control unit 530 outputs a measurement start signal to the drive circuit 503, and at the same time, starts the time measurement of the first evening timer 527. When there is a signal input, the drive circuit 503 drives the ultrasonic vibrator 502 to transmit ultrasonic waves. The transmitted ultrasonic wave propagates through the fluid and is received by the ultrasonic transducer 501. The reception detection circuit 504 outputs the received ultrasonic signal to the first receiver 527 and the second receiver 528. The first timer 527 receives an input signal from the reception detection circuit 504 and stops time measurement. The second evening timer 528 receives the output of the reception detection circuit 504 and starts timing, and stops the timing in synchronization with the count-up timing output from the first evening timer 527. The calculation unit 506 receives the time measurement results of the first timer 527 and the second timer 528, and obtains the flow rate by calculation.
図 6 2に第 1の夕イマ 5 2 7および第 2のタイマ 5 2 8の動作タイミングを示 す。 図 6 2に示すように第 1のタイマ 5 2 7はクロックの立ち上がりで状態を変 化するので、 Aで示す部分を余分に測定している。 第 1のタイマ 5 2 7の測定分 解能が図 6 2の Bで示す間隔となっているため測定誤差となる Aの部分は測定ご とに発生している。 そこで余分な A部を第 2のタイマ 5 2 8で測定し演算部 5 0 6で引き、 より分解能の高い超音波の伝播時間を求め正確な流量値を得ている。 また、 制御部 5 3 0は第 1の夕イマ 5 2 7をスタートすると同時に第 2のタイ マ 5 2 8ヘスタート信号を出力し第 2の夕イマ 5 2 8をスタートさせる。 第 1の タイマ 5 2 7がカウントアップするタイミングとなると、 第 1のタイマ 5 2 7か ら第 2のタイマ 5 2 8へカウントアップタイミングと同期した出力信号が出力さ れ第 2の夕イマ 5 2 8を停止させる。 この時のタイマ 5 2 8の値は第 1の夕イマ 1クロックの時間に測定する時間となる。 この時間を演算部 5 0 6で処理し、 第 2の夕イマ 5 2 8の 1クロックあたりの時間を求め演算に使用する第 2の夕イマ 5 2 8の 1クロックあたりの時間を補正する。 Figure 62 shows the operation timing of the first timer 527 and the second timer 528. As shown in FIG. 62, the state of the first timer 527 changes at the rising edge of the clock, so the portion indicated by A is measured extra. Since the measurement resolution of the first timer 527 is at the interval shown by B in FIG. 62, the portion A which is a measurement error occurs for each measurement. Therefore, the extra part A is measured by the second timer 528 and subtracted by the arithmetic part 506, and the propagation time of the ultrasonic wave with higher resolution is obtained to obtain an accurate flow rate value. The control unit 530 starts the first evening timer 527 and simultaneously outputs a start signal to the second timer 528 to start the second evening timer 528. When it is time to count up the first timer 527, the first timer 527 Then, an output signal synchronized with the count-up timing is output to the second timer 528, and the second timer 528 is stopped. The value of the timer 528 at this time is the time measured at the time of one clock of the first evening. This time is processed by the arithmetic section 506, and the time per clock of the second evening image 528 is obtained, and the time per clock of the second evening image 528 used for the calculation is corrected.
この動作を温度センサ 5 3 1または、 電源電圧センサ 5 3 2の出力がそれぞれ 設定した値以上変動した場合に行う。 このようにすることで、 夕イマ 5 2 8は温 度、 電源電圧に対する安定度は不要となり、 安価な部品を使用することができる ようになる。 さらに、 頻繁に補正を行う必要もなく、 消費電力を低く押さえる事 ができる。  This operation is performed when the output of the temperature sensor 531 or the output of the power supply voltage sensor 532 changes more than the set value. By doing so, the stability of the temperature and the power supply voltage is not required for the heater 528, and inexpensive components can be used. In addition, power consumption can be reduced without the need for frequent corrections.
そして第 1のタイマ 5 2 7の値から第 2のタイマ 5 2 8の値を引いた値によつ て流量の演算を行うので、 計時分解能は第 2の夕イマ 5 2 8と同等になる。 そし て第 2のタイマ 5 2 8の動作時間は非常に短いので消費電力を小さくすることが でき、 分解能の高い流量計を低消費電力で実現することができる。 さらに補正後 流量測定するまでの間第 2のタイマ 5 2 8が安定に動作すれば正確な流量測定が できるので、 第 2の夕イマ 5 2 8に長期的な安定性がなくでも正確な測定を行う ことができる。 一般的な部品で容易に高精度の流量計を実現できる。  Then, since the flow rate is calculated by subtracting the value of the second timer 528 from the value of the first timer 527, the timing resolution is equivalent to that of the second timer 528 . Since the operation time of the second timer 528 is very short, power consumption can be reduced, and a flowmeter with high resolution can be realized with low power consumption. Furthermore, accurate flow measurement can be performed if the second timer 528 operates stably until flow measurement after correction, so accurate measurement can be performed even if the second timer 528 does not have long-term stability. It can be performed. A high-precision flowmeter can be easily realized with general parts.
また温度センサ 5 3 1を設け、 温度センサ 5 3 1の出力が設定値以上変化した 時に第 2のタイマ 5 2 8を第 1の夕イマ 5 2 7で補正するものである。 このため、 第 2のタイマ 5 2 8が温度変化に対して特性が変化するものであっても温度変化 が起こる都度補正し正確な測定を行うことができる。 そして必要なときだけ補正 を行うので、 消費電力を小さくすることができる。  Also, a temperature sensor 531 is provided, and when the output of the temperature sensor 531 changes by more than a set value, the second timer 528 is corrected by the first timer 527. For this reason, even if the second timer 528 changes its characteristic with respect to a temperature change, it can be corrected and accurate measurement each time a temperature change occurs. Since correction is performed only when necessary, power consumption can be reduced.
また電圧センサ 5 3 2を設け、 電圧センサ 5 3 2の出力が設定値以上変化した 時に第 2の夕イマ 5 2 8を第 1の夕イマ 5 2 7で補正するものである。 このため、 第 2のタイマ 5 2 8が電源電圧変化に対して特性が変化するものであっても電源 電圧変化が起こる都度補正し正確な測定を行うことができる。 そして必要なとき だけ補正を行うので、 消費電力を小さくすることができる。 Further, a voltage sensor 532 is provided, and when the output of the voltage sensor 532 changes by more than a set value, the second evening time 528 is corrected by the first evening time 527. Therefore, even if the second timer 528 changes its characteristic with respect to the power supply voltage change, it can be corrected and accurate measurement each time the power supply voltage change occurs. And when needed Since only correction is performed, power consumption can be reduced.
またこのような補正を行うので、 第 1のタイマ 5 2 7のクロックに水晶振動子、 第 2の夕イマ 5 2 8のクロックに C R発振回路を使用している。 水晶振動子を使 用したクロックなどでは非常に安定であるが動作開始から安定動作までに時間が かかる。 また C R発振回路は長時間にわたる安定性は確保できないが、 動作がす ぐに安定し非同期ですばやく動作する夕イマを容易に実現することができる。 第 1のタイマ 5 2 7のクロックに水晶振動子、 第 2の夕イマ 5 2 8のクロックに C R発振回路を使用することによって、 分解能が高く安定したタイマを容易に実現 することができる。  In order to perform such correction, a crystal oscillator is used for the clock of the first timer 527 and a CR oscillation circuit is used for the clock of the second timer 528. It is very stable with a clock using a crystal oscillator, but it takes time from the start of operation to the stable operation. In addition, although the CR oscillation circuit cannot secure long-term stability, it can easily realize a stable operation that operates quickly and operates quickly and asynchronously. By using a crystal oscillator for the clock of the first timer 527 and a CR oscillation circuit for the clock of the second timer 528, a stable timer with high resolution can be easily realized.
なお、 実施の形態 3 6の図 6 2では、 第 2のタイマが停止するタイミングを、 第 2の夕イマが動作した後に次に第 1のタイマのクロックが立ち下がるタイミン グとしているが、 第 1の夕イマと同期したタイミングであればその後の演算によ つて正確な時間を求めることができるので、 この夕イミングに制限されるもので はない。  In FIG. 62 of Embodiment 36, the timing at which the second timer stops is set to the timing at which the clock of the first timer falls after the second evening timer operates. As long as the timing is synchronized with the evening of 1, an accurate time can be obtained by the subsequent calculation, so that the timing is not limited to this evening.
(実施の形態 3 7 )  (Embodiment 37)
図 6 3は実施の形態 3 7の流量計のブロック図である。  FIG. 63 is a block diagram of the flow meter according to the third embodiment.
また流量測定部 5 0 0と、 この流量測定部 5 0 0に設けられ超音波を送受信す る一対の超音波振動子 5 0 1 , 5 0 2と、 一方の超音波振動子 5 0 2を駆動する 駆動回路 5 0 3と、 他方の超音波振動子 5 0 1に接続され超音波受信信号を検知 する受信検知回路 5 0 4と、 受信検知回路 5 0 4の出力をうけ再度超音波振動子 5 0 2を駆動するよう駆動回路 5 0 3を所定回数制御する制御部 5 0 7と、 所定 回数の経過時間を測定するタイマ 5 0 5と、 夕イマ 5 0 5の出力より流量を演算 によって求める演算部 5 0 6と、 駆動回路 5 0 3の駆動方法を順次変更する周期 性安定化手段であるディレイ部 5 3 3とを備える。  Also, a flow rate measuring section 500, a pair of ultrasonic transducers 501, 502 provided in the flow rate measuring section 500 for transmitting and receiving ultrasonic waves, and one ultrasonic transducer 502, The drive circuit 503 to be driven, the reception detection circuit 504 connected to the other ultrasonic transducer 501 to detect the ultrasonic reception signal, and the ultrasonic vibration again after receiving the output of the reception detection circuit 504 The controller 507 controls the drive circuit 503 a predetermined number of times to drive the child 502, the timer 505 measures the elapsed time of the predetermined number of times, and calculates the flow rate from the output of the timer 505. And a delay section 533 as periodicity stabilizing means for sequentially changing the driving method of the drive circuit 503.
そして制御部 5 0 7はディレイ部 5 3 3に計測開始の信号を出力すると同時に タイマ 5 0 5の時間計測をスタートさせる。 ディレイ部 5 3 3は制御部からの設 定信号で設定した遅延時間の後に駆動回路 5 0 3へ信号を出力する。 駆動回路 5 0 3は信号入力があると超音波振動子 5 0 2を駆動し超音波を発信する。 発信さ れた超音波は流体を伝播し超音波振動子 5 0 1で受信される。 受信検知回路 5 0 4は受信した超音波信号をディレイ部 5 3 3へ出力し駆動回路を前回と同様に動 作させ再度超音波を送信させる。 受信検知回路 5 0 4の出力信号を受けた制御部 5 0 7はこの繰り返し動作をカウントし所定回数に達するとタイマ 5 0 5を停止 させる。 演算部 5 0 6ではタイマ 5 0 5の時間計測結果を受け取り演算によって 流量を求める。 Then, the control unit 507 outputs a measurement start signal to the delay unit 533, and at the same time, starts the time measurement of the timer 505. The delay section 5 3 3 is set from the control section. After a delay time set by the constant signal, a signal is output to the drive circuit 503. When there is a signal input, the drive circuit 503 drives the ultrasonic vibrator 502 to emit ultrasonic waves. The transmitted ultrasonic wave propagates through the fluid and is received by the ultrasonic transducer 501. The reception detection circuit 504 outputs the received ultrasonic signal to the delay unit 533, and operates the drive circuit in the same manner as before to transmit the ultrasonic wave again. The control unit 507 that has received the output signal of the reception detection circuit 504 counts this repetitive operation, and stops the timer 505 when a predetermined number of times is reached. The calculation unit 506 receives the time measurement result of the timer 505 and calculates the flow rate by calculation.
制御部 5 0 7は夕イマ 5 0 5の値を受け取り、 常に一定となるようにディレイ 部 5 3 3のディレイ時間を設定する。 こうすることによって制御部 5 0 7は測定 周期が常に一定となるように制御するものである。 そして、 この構成によって、 伝搬時間が変化した時であっても測定周期が常に一定になるので、 測定周期ある いは超音波の送信周期に同期した雑音が伝搬時間変動に関係なく受信の時に常に 同じ位相であるので、 測定誤差を一定値とすることができ、 非常に長い雑音周期 であっても流量計測を安定化することができる。  The control unit 507 receives the value of the timer 505, and sets the delay time of the delay unit 533 so that it is always constant. By doing so, the control unit 507 controls so that the measurement cycle is always constant. With this configuration, the measurement period is always constant even when the propagation time changes, so that noise synchronized with the measurement period or the transmission period of the ultrasonic wave is always present during reception regardless of the propagation time fluctuation. Since the phases are the same, the measurement error can be kept constant, and the flow measurement can be stabilized even with a very long noise period.
また制御部 5 0 7は測定時間を一定とするようディレイ部 5 3 3を制御するの で、 一回一回の超音波の伝搬時間を演算すること無く、 簡単な演算で測定周期を 一定に制御することができる。  In addition, since the control unit 507 controls the delay unit 533 so as to keep the measurement time constant, the measurement cycle can be made constant by simple calculation without calculating the propagation time of each ultrasonic wave. Can be controlled.
なお、 実施の形態 3 7ではディレイ時間を変えて測定周期を一定としたが、 測 定周期が一定となれば同様の効果を得ることができ、 たとえば超音波振動子間の 距離を変更するなどの方法を取っても同様の効果を得ることができる。  In Embodiment 37, the measurement period was made constant by changing the delay time. However, the same effect can be obtained if the measurement period becomes constant, such as changing the distance between the ultrasonic transducers. The same effect can be obtained by adopting the method described above.
また、 流れがある場合には上流から下流方向への超音波の伝搬時間と、 下流か ら上流方向への超音波の伝搬時間とが異なるので、 測定周期安定のために異なる ディレイを設定することも可能である。  If there is a flow, the propagation time of the ultrasonic wave from the upstream to the downstream is different from the propagation time of the ultrasonic wave from the downstream to the upstream.Therefore, different delays should be set to stabilize the measurement cycle. Is also possible.
また、 流量がさらに大きく周期的な雑音による誤差が無視できるような場合に は、 周期性安定化手段の動作を停止し、 電力を低減することができる。 また、 測定開始時に測定周期安定化手段の設定を変更しつつ流量測定し、 測定 周期変動に対し測定結果がもっとも変化しない測定周期を、 目標の測定周期に設 定することによって、 更に安定した測定結果を得ることができる。 産業上の利用可能性 When the flow rate is larger and the error due to the periodic noise can be ignored, the operation of the periodic stabilization means is stopped, and the power can be reduced. In addition, at the start of measurement, the flow rate is measured while changing the setting of the measurement cycle stabilization means, and the measurement cycle at which the measurement result does not change the most during the measurement cycle fluctuation is set as the target measurement cycle, so that more stable measurement The result can be obtained. Industrial applicability
以上説明したように本発明の流量計によれば、 次の効果が得られる。  As described above, according to the flowmeter of the present invention, the following effects can be obtained.
本発明は上記課題を解決するために、 流路に設けられて流体の状態変化を用い て送受信する送受信手段と、 前記送受信を繰返し行う繰返手段と、 前記繰返手段 で繰り返される伝搬時間を計測する計時手段と、 前記計時手段の値に基づいて流 量を検出する流量検出手段と、 所定の繰返し回数に変更する回数変更手段を備え ているので、 最適な繰返し回数に変更することで流れの変動による影響を抑制す ることができ安定した流量計測を高精度で実現できる。  In order to solve the above problems, the present invention provides a transmitting / receiving means provided in a flow path for transmitting and receiving using a change in the state of a fluid, a repeating means for repeating the transmission and reception, and a propagation time repeated by the repeating means. Since there are provided a time measuring means for measuring, a flow detecting means for detecting a flow rate based on the value of the time measuring means, and a number changing means for changing to a predetermined number of repetitions, the flow is changed by changing to an optimum number of repetitions. The effect of fluctuations in flow can be suppressed, and stable flow measurement can be realized with high accuracy.
また、 流体の状態変化として音波の伝搬を用いた一対の送受信手段を備えてい るので、 音波の送受信手段を用いることで、 流体の状態変化があった場合でも音 波の伝搬を行うことができ、 変動に最適な繰返し回数に変更することで精度よく 安定して流量計測を行うことができる。  In addition, since a pair of transmitting and receiving means using sound wave propagation is provided as a change in the state of the fluid, the use of the sound wave transmitting and receiving means enables the propagation of the sound wave even when the state of the fluid changes. The flow rate can be measured accurately and stably by changing to the optimum number of repetitions for fluctuation.
また、 流体の状態変化として熱の伝搬を用いた送受信手段を備えているので、 熱の送受信手段をもちいることで、 流体の状態変化があった場合でも熱の伝搬を 行うことができ、 変動に最適な繰返し回数に変更することで精度よく安定して流 量計測を行うことができる。  In addition, since a transmission / reception unit that uses heat propagation as a change in the fluid state is provided, the use of the heat transmission / reception unit allows heat to be transmitted even when the fluid state changes. By changing the number of repetitions to the optimal number, the flow rate can be measured accurately and stably.
また、 繰返手段で繰返し計測する伝搬時間の途中情報を検出する経過時間検出 手段と、 前記経過時間検出手段の情報から流量変動の周期を検出する周期検出手 段と、 前記周期検出手段で検出された周期のほぼ整数倍の測定時間に設定する回 数変更手段とを備えているので、 特定の検出手段を必要とせず、 流量検出を行う 前に計時手段の途中情報から周期を検出して周期の整数倍とすることができるの で、 流量計測は安定して精度よく計測することができる。 また、 経過時間検出手段により得られた繰返し行われる送受信の各伝搬時間を 少なくとも 1偭以上保持するデータ保持手段と、 前記データ保持手段により保持 されたデータと計測された伝搬時間のデータを比較することによって周期を検出 する周期検出手段を備えているので、 データ保持手段によって瞬時瞬時の計時情 報を保持し比較することで周期を検出することができる。 Further, an elapsed time detecting means for detecting information on the way of the propagation time repeatedly measured by the repeating means, a cycle detecting means for detecting a cycle of the flow rate variation from the information of the elapsed time detecting means, It has a number change means to set the measurement time to an almost integral multiple of the measured cycle, so no specific detection means is required, and the cycle is detected from the intermediate information of the time measurement means before detecting the flow rate. Since it can be an integral multiple of the cycle, the flow rate measurement can be performed stably and accurately. Also, a data holding unit that holds at least 1 偭 or more of each propagation time of repetitive transmission and reception obtained by the elapsed time detection unit, and compares the data held by the data holding unit with the measured propagation time data. Therefore, the period detecting means for detecting the period can be provided. Therefore, the period can be detected by holding and comparing the instantaneous time measurement information by the data holding means.
また、 回数変更手段は、 所定の処理の時に動作する構成としているので、 所定 の処理の時のみに行うことで、 必要最低限の処理にすることができ消費電力を大 幅に低減することができる。  In addition, since the number-of-times changing means is configured to operate at the time of predetermined processing, by performing the processing only at the time of predetermined processing, it is possible to minimize the processing required and to significantly reduce power consumption. it can.
また、 回数変更手段は、 所定流量計測のたびに動作する構成としているので、 所定流量計測のたびに行うことで、 激しく変動する流れにおいても安定して流量 を精度よく計測することができる。  In addition, since the number-of-times changing means is configured to operate each time a predetermined flow rate is measured, it is possible to measure the flow rate stably and accurately even in a flow that fluctuates drastically by performing the measurement every time the predetermined flow rate is measured.
また、 回数変更手段は、 流量計測処理の前に行われる構成としているので、 流 量計測を行う前に繰返し回数を所定の回数に設定するので、 流量計測は安定して 精度よく行える。  In addition, since the number-of-times changing means is configured to be performed before the flow rate measurement process, the number of repetitions is set to a predetermined number before the flow rate measurement is performed, so that the flow rate measurement can be performed stably and accurately.
また、 所定処理は、 計測流量から流量の異常を判別する異常判別手段と、 計測 流量から流量の使用状況を管理する流量管理手段とを行う構成としているので、 異常判別や流量管理の処理の時のみとすることで、 回数変更を行う処理を最低限 押さえられ低消費電力とすることができる。  In addition, since the predetermined processing is configured to perform abnormality determination means for determining an abnormality in the flow rate from the measured flow rate and flow rate management means for managing the usage state of the flow rate from the measured flow rate, the processing for the abnormality determination and the flow rate management is performed. By setting only the number of times, the process of changing the number of times can be minimized and the power consumption can be reduced.
また、 周期検出手段で得られた周期に合せた繰返し回数は、 次回の流量計測時 に使用される構成としているので、 次回の計測に使用することで、 周期検出のた めの繰返し計測が不要となり、 低消費電力とすることができる。  Also, since the number of repetitions that match the cycle obtained by the cycle detection means is used for the next flow rate measurement, it is used for the next measurement, so that repeated measurement for cycle detection is not required. Thus, power consumption can be reduced.
また、 計測流量が所定流量未満の時に、 回数変更手段を動作させる構成として いるので、 所定流量以下の時のみ行うことで、 大流量時には処理せず低消費電力 とすることができる。  Further, since the number-of-times changing means is operated when the measured flow rate is less than the predetermined flow rate, it is possible to reduce the power consumption without processing when the flow rate is high, by performing the operation only when the flow rate is less than the predetermined flow rate.
また、 流路に設けられて流体の状態変化を送受信する送受信手段と、 前記送受 信手段で送受信される伝搬時間を計測する計時手段と、 前記計時手段の値に基づ いて流量を検出する流量検出手段と、 前記送受信手段で流路内の変動を計測する 変動検出手段と、 前記変動検出手段の変動のタイミングに同期して計測を開始す る計測制御手段とを備えているので、 送受信手段で流路内の変動を計測すること によって、 変動検出用の別センサを設ける必要がなく、 小型化ゃ流路などを簡素 化することができるとともに、 変動が発生した場合でも短時間で安定して精度よ く流量が計測できる。 A transmitting / receiving unit provided in the flow path for transmitting / receiving a change in the state of the fluid; a timing unit for measuring a propagation time transmitted / received by the transmitting / receiving unit; Flow detecting means for detecting a flow rate, a fluctuation detecting means for measuring a fluctuation in the flow path by the transmitting and receiving means, and a measuring control means for starting measurement in synchronization with a fluctuation timing of the fluctuation detecting means. By measuring the fluctuations in the flow path with the transmission / reception means, there is no need to provide a separate sensor for detecting fluctuations, making it possible to reduce the size, simplify the flow path, etc., and if fluctuations occur However, the flow rate can be measured stably and accurately in a short time.
また、 流体の状態変化として音波の伝搬を用いた一対の送受信手段を備えてい るので、 流体の状態変化を音波の送受信手段で検出することができ、 変動のタイ ミングに同期して計測を開始することで精度よく安定して流量計測を行うことが できる。  In addition, since a pair of transmitting and receiving means that uses sound wave propagation as a fluid state change is provided, the fluid state change can be detected by the sound wave transmitting and receiving means, and measurement is started in synchronization with the fluctuation timing. By doing so, the flow rate can be measured accurately and stably.
また、 流体の状態変化として熱の伝搬を用いた送受信手段を備えているので、 流体の状態変化を熱の送受信手段で検出することができ、 変動のタイミングに同 期して計測を開始することで精度よく安定して流量計測を行うことができる。 また、 流路に設けられて音波を送受信する第 1振動手段および第 2振動手段と、 前記第 1振動手段および第 2振動手段の送受信の動作を切換える切換手段と、 前 記第 1振動手段および第 2振動手段の少なくとも一方で流路内の圧力変動を検出 する変動検出手段と、 前記第 1振動手段および第 2振動手段で送受信される音波 の伝搬時間を計測する計時手段と、 前記変動検出手段の出力が所定変化した時に 流路の上流側の第 1振動手段から下流側の第 2振動手段に伝搬する第 1計時時間 T 1を前記計時手段が測定し、 また、 前記変動検出手段の出力が前記所定変化と 逆に変化した時には流路の下流側の第 2振動手段から上流側の第 1振動手段に伝 搬する第 2計時時間 T 2を前記計時手段が測定する制御を行う計測制御手段と、 前記第 1計時時間 T 1と前記第 2計時時間 T 2を用いて流量を算出する流量検出 手段とを備えた構成としているので、 圧力変動の変化が逆になるタイミングで計 測することで、 圧力変動と計測するタイミングの位相をずらすことができ、 圧力 変動による計測誤差を相殺することができる。 また、 変動検出手段の出力が所定変化した時に第 1計時時間 T 1の測定を開始 し、 前記変動検出手段の出力が前記所定変化と逆に変化した時に第 2計時時間 T 2の測定を開始する計測制御と、 次回の計測時は、 変動検出手段の出力が前記所 定変化と逆に変化した時に第 1計時時間 T 1の測定を開始し、 前記変動検出手段 の出力が所定変化した時に第 2計時時間 T 2の測定を開始計測制御を行う計測制 御手段と、 計測開始を交互に変更しながら前回の第 1計時時間 T 1と第 2計時時 間 T 2を用いて求めた第 1流量と、 次回の第 1計時時間 T 1と第 2計時時間 T 2 を用いて求めた第 2流量を逐次平均処理することにより流量を算出する流量検出 手段を備えた構成としているので、 計測するタイミングを前述のように変えて第 1計時時間 T 1と第 2計時時間 T 2することで、 圧力変動が高圧側、 低圧側で非 対称となっていても、 その圧力変動の影響を相殺することができる。 In addition, since the transmitter / receiver uses heat propagation as a change in the fluid state, the change in the state of the fluid can be detected by the heat transmitter / receiver, and measurement can be started in synchronization with the timing of the fluctuation. The flow rate can be measured accurately and stably. A first vibrating means and a second vibrating means provided in the flow path for transmitting and receiving a sound wave; a switching means for switching the transmitting and receiving operations of the first vibrating means and the second vibrating means; A fluctuation detecting means for detecting a pressure fluctuation in the flow path of at least one of the second vibrating means; a time measuring means for measuring a propagation time of a sound wave transmitted and received by the first vibrating means and the second vibrating means; When the output of the means changes by a predetermined amount, the time measuring means measures a first time T1 which propagates from the first vibrating means on the upstream side of the flow path to the second vibrating means on the downstream side. When the output changes in reverse to the predetermined change, the time measurement means controls the second time measurement T2 to be transmitted from the second vibration means on the downstream side of the flow path to the first vibration means on the upstream side. Control means, and the first clock time T 1 Since the system is equipped with a flow rate detecting means that calculates the flow rate using the second clocking time T2, the phase of the pressure fluctuation and the timing of the measurement are measured by measuring at the timing when the change of the pressure fluctuation is reversed. Can be shifted, and measurement errors due to pressure fluctuations can be offset. In addition, the measurement of the first clocking time T1 is started when the output of the fluctuation detecting means changes by a predetermined amount, and the measurement of the second clocking time T2 is started when the output of the fluctuation detecting means changes in a direction opposite to the predetermined change. Measurement control, and at the next measurement, when the output of the fluctuation detecting means changes in reverse to the predetermined change, measurement of the first time T1 is started, and when the output of the fluctuation detecting means changes by a predetermined amount. Start the measurement of the second clock time T2 The measurement control means that performs the measurement control and the second clock time T2 obtained by using the previous first clock time T1 and the second clock time T2 while alternately changing the measurement start (1) Flow rate and the flow rate detection means for calculating the flow rate by successively averaging the second flow rate obtained using the first time measurement time T1 and the second time measurement time T2 for the next measurement. Change the timing as described above, the first time T1 and the second time T2 By doing so, even if the pressure fluctuation is asymmetric on the high and low pressure sides, the effect of the pressure fluctuation can be offset.
また、 送受信を複数回行う繰返手段を備えた構成としているので、 計測回数を 増加することで平均化することができ、 安定した流量計測を行うことができる。 また、 変動周期の整数倍時間にわたって送受信を複数回行う繰返手段を備えて いるので、 変動周期で計測することで圧力変動が平均化され安定した流量を計測 することができる。  In addition, since the configuration is provided with a repetition means for performing transmission and reception a plurality of times, averaging can be performed by increasing the number of times of measurement, and stable flow rate measurement can be performed. In addition, since there is provided a repetition unit that performs transmission and reception multiple times over an integral multiple of the fluctuation period, pressure fluctuations are averaged by measuring at the fluctuation period, and a stable flow rate can be measured.
また、 変動検出手段の出力が所定変化した時に送受信計測を開始し、 前記変動 検出手段の出力が前記所定変化と同じ変化をするまで繰返し音波の送受信計測を 行う繰返手段を備えているので、 計測の開始と停止を圧力変動の周期と一致させ ることができるので、 変動周期で計測することができ圧力変動が平均化され安定 した流量を計測することができる。  Further, since the transmission / reception measurement is started when the output of the fluctuation detection means changes by a predetermined amount, and the repetition means performs the transmission / reception measurement of the sound wave repeatedly until the output of the fluctuation detection means changes the same as the predetermined change, Since the start and stop of the measurement can be made to coincide with the cycle of the pressure fluctuation, the measurement can be performed at the fluctuation cycle, and the pressure fluctuation can be averaged and a stable flow rate can be measured.
また、 第 1振動手段および第 2振動手段を、 音波の送受信に用いる場合と、 圧 力変動の検出に用いる場合を切換える選択手段を備えた構成としているので、 第 1振動手段および第 2振動手段の少なくとも 1方を圧力検出に使用することがで き、 流量計測と圧力計測を両立することができる。  Further, since the first vibration means and the second vibration means are provided with a selection means for switching between a case where the first vibration means is used for transmitting and receiving a sound wave and a case where the first vibration means is used for detecting a pressure fluctuation, the first vibration means and the second vibration means are provided. At least one of them can be used for pressure detection, and both flow measurement and pressure measurement can be achieved.
また、 変動波形の交流成分のゼロ付近を検出する変動検出手段を備えているの で、 変動のゼロ成分付近で変動を検出することで流量計測を行う時間の範囲が変 動ゼロ付近から計測を開始することができ、 変動の少ない時間内に流量計測を行 うことで流体変動時の計測を安定化することができる。 In addition, a fluctuation detecting means for detecting the vicinity of zero of the AC component of the fluctuation waveform is provided. By detecting the fluctuation near the zero component of the fluctuation, the range of the flow measurement time can be started from around the fluctuation zero, and the flow fluctuation can be measured by measuring the flow within the time where the fluctuation is small. Time measurement can be stabilized.
また、 変動検出手段の信号の周期を検出する周期検出手段と、 前記周期検出手 段の検出した周期が、 所定の周期の時にのみ計測を開始する計測制御手段を備え ているので、 所定周期の時のみに計測を開始することで、 所定の変動時に計測が 行え、 安定した流量を計測することができる。  In addition, a cycle detecting means for detecting a cycle of a signal of the fluctuation detecting means, and a measurement control means for starting a measurement only when the cycle detected by the cycle detecting means is a predetermined cycle is provided. By starting the measurement only at the time, measurement can be performed at a predetermined fluctuation, and a stable flow rate can be measured.
また、 変動検出手段の信号が検出できなかった時は、 所定時間後に計測を自動 的にスタートする検出解除手段を備えているので、 変動がなくなった場合でも所 定時間がくれば自動的に流量を計測することができる。  In addition, when a signal from the fluctuation detecting means cannot be detected, a detection canceling means that automatically starts measurement after a predetermined time is provided. Can be measured.
また、 送受信手段および第 1振動手段および第 2振動手段は、 圧電式振動子か らなる構成としているので、 圧電式振動子とすることで超音波を送受信に用いな がら、 かつ圧力変動も検出することができる。  In addition, since the transmitting / receiving means, the first vibrating means, and the second vibrating means are composed of piezoelectric vibrators, the use of the piezoelectric vibrator allows ultrasonic waves to be used for transmission / reception and also detects pressure fluctuations. can do.
また、 流路に設けられて流体の状態変化を用いて送受信する送受信手段と、 前 記送受信手段の信号伝搬を繰返し行う繰返手段と、 前記繰返手段で繰り返される 間の伝搬時間を計測する計時手段と、 前記計時手段の値に基づいて流量を検出す る流量検出手段と、 流路内の流体変動を検出する変動検出手段と、 前記各手段を 制御する計測制御手段と、 前記各手段の異常を監視する計測監視手段とを備えて いるので、 流路内の流れに変動がある場合、 その変動に合せて流量を計測すると ともに計測監視手段によって異常を素早く検出することができるので、 異常時の 処置が的確に行え、 計測値が安定し精度よく流量が計測でき信頼性を向上するこ とができる。  A transmission / reception unit provided in the flow path for transmitting / receiving using a change in the state of the fluid; a repetition unit for repeating the signal propagation of the transmission / reception unit; and measuring a propagation time during the repetition by the repetition unit. Time measuring means, flow rate detecting means for detecting a flow rate based on the value of the time measuring means, fluctuation detecting means for detecting fluid fluctuation in the flow path, measurement control means for controlling each of the means, and each of the means Since there is a measurement and monitoring means for monitoring abnormalities in the flow path, if there is a fluctuation in the flow in the flow path, the flow rate can be measured in accordance with the fluctuation and the abnormality can be quickly detected by the measurement and monitoring means. Corrective measures can be taken in the event of an abnormality, the measured value is stable, the flow rate can be measured accurately, and reliability can be improved.
また、 流体の状態変化として音波の伝搬を用いた一対の送受信手段を備えてい るので、 音波を用いることで流体に変動があっても流量計測が行えると共に、 計 測監視手段によって異常時の処置が的確に行え信頼性を向上することができる。 また、 流体の状態変化として熱の伝搬を用いた送受信手段を備えているので、 熱伝搬を用いることで流体に変動があっても流量計測が行えると共に、 計測監視 手段によって異常時の処置が的確に行え信頼性を向上することができる。 In addition, since a pair of transmitting and receiving means using the propagation of sound waves as a change in the state of the fluid is provided, the flow rate can be measured even if the fluid fluctuates by using the sound waves, and the measurement and monitoring means can be used to handle abnormalities. Can be performed accurately and reliability can be improved. In addition, since it has transmission and reception means using the propagation of heat as a state change of the fluid, By using heat propagation, the flow rate can be measured even if the fluid fluctuates, and the measurement and monitoring means can take corrective measures when an abnormality occurs, thereby improving reliability.
また、 流路に設けられて音波を送受信する 1対の送受信手段と、 前記送受信手 段の信号伝搬を繰返し行う繰返手段と、 前記繰返手段で繰り返される間の音波の 伝搬時間を計測する計時手段と、 前記計時手段の値に基づいて流量を検出する流 量検出手段と、 流路内の流体変動を検出する変動検出手段と、 前記各手段を制御 する計測制御手段と、 前記計測制御手段の指示信号後、 前記変動検出手段の第 1 出力信号時に音波の送信開始を指示する開始信号と、 前記変動検出手段の第 2出 力信号時に音波の送受信の繰返終了を指示する終了信号と、 前記開始信号と前記 終了信号の異常を監視する計測監視手段とを備えているので、 流路内の流れに変 動がある場合、 その変動周期に同期して計測するとともに計測監視手段によって 異常を検出することができるので、 計測値が安定し精度よく流量が計測でき、 か つ異常時の処置が的確に行へ、 計測流量値の信頼性を向上することができる。 また、 計測制御手段の指示の後、 所定時間内に開始信号が発生しなかった時、 所定時間後に音波の送信開始を指示する計測監視手段を備えているので、 変動が なく所定時間内に開始信号がない場合でも、 所定時間ごとに流量を計測すること ができるとともに、 デ一夕の欠落を防止することができる。  A pair of transmitting / receiving means provided in the flow path for transmitting / receiving a sound wave; a repeating means for repeating signal propagation of the transmitting / receiving means; and measuring a propagation time of the sound wave during the repetition by the repeating means. Time measuring means, flow rate detecting means for detecting a flow rate based on the value of the time measuring means, fluctuation detecting means for detecting fluid fluctuation in the flow path, measurement control means for controlling each of the means, and the measurement control After the instruction signal of the means, a start signal instructing the start of sound wave transmission at the time of the first output signal of the fluctuation detecting means, and an end signal instructing the repetition of transmission and reception of sound waves at the time of the second output signal of the fluctuation detecting means. And measurement and monitoring means for monitoring abnormalities of the start signal and the end signal, so that when there is a change in the flow in the flow path, the flow is measured in synchronization with the fluctuation cycle and the measurement and monitoring means is used. Detect abnormalities It is possible to, the measurement value can be measured stably and accurately the flow rate, or One abnormal response to be accurately line, it is possible to improve the reliability of the measurement flow rate value. In addition, when the start signal is not generated within a predetermined time after the instruction of the measurement control means, the measurement monitoring means for instructing the start of the transmission of the sound wave after a predetermined time is provided. Even when there is no signal, the flow rate can be measured at predetermined time intervals, and loss of data can be prevented.
また、 計測制御手段の指示の後、 所定時間内に開始信号が発生しなかった時、 所定時間後に音波の送信開始を指示し、 所定の繰返し回数で計測を行う計測監視 手段を備えているので、 変動がなく所定時間内に開始信号がない場合でも、 所定 時間ごとに所定の繰返し回数で流量を計測することができるとともに、 データの 欠落を防止することができる。  In addition, when the start signal is not generated within a predetermined time after the instruction of the measurement control means, the measurement monitoring means for instructing the start of the transmission of the sound wave after a predetermined time and performing the measurement at a predetermined number of repetitions is provided. Even if there is no fluctuation and there is no start signal within a predetermined time, the flow rate can be measured at a predetermined number of repetitions every predetermined time and data loss can be prevented.
また、 計測制御手段の指示の後、 所定時間内に開始信号が発生しなかった時、 次の計測制御手段の指示まで計測を行わない計測監視手段を備えているので、 次 の計測指示まで待機することで、 無駄な計測を止め消費電力の節減を行うことが できる。 また、 開始信号の後、 所定時間内に終了信号が発生しなかった時、 音波の受信 を終了する計測監視手段を備えているので、 強制的に終了することで終了待ちで 計測が停止することがなく、 次の処理に進むことができ、 安定した計測動作が行 える。 In addition, when the start signal is not generated within a predetermined time after the instruction from the measurement control unit, the measurement monitoring unit that does not perform measurement until the instruction from the next measurement control unit is provided, so it waits for the next measurement instruction. By doing so, unnecessary measurement can be stopped and power consumption can be reduced. In addition, if there is no end signal within a predetermined time after the start signal, there is a measurement monitoring means to end the reception of the sound wave, so that the measurement is stopped waiting for the end by forcibly terminating And the next processing can be performed, and stable measurement operation can be performed.
また、 開始信号の後、 所定時間内に終了信号が発生しなかった時、 音波の受信 を終了して、 再度開始信号を出力する計測監視手段を備えているので、 強制的に 終了することで終了待ちで計測が停止することがなく、 再度開始信号を出力する ことで再計測を行い、 安定した計測動作が行うことができる。  In addition, when the end signal is not generated within a predetermined time after the start signal, the reception of the sound wave is terminated, and the measurement monitoring means for outputting the start signal again is provided. The measurement does not stop waiting for completion, and the measurement is performed again by outputting the start signal again, and stable measurement operation can be performed.
また、 繰返し回数が異常になったとき、 送受信の処理を停止する計測監視手段 を備えているので、 繰返し回数が異常の時は、 計測を停止することによって精度 のよいデータのみを使用して流量計測を行うことができる。  In addition, when the number of repetitions becomes abnormal, there is a measurement monitoring unit that stops transmission / reception processing, so when the number of repetitions is abnormal, the measurement is stopped to use only accurate data and flow Measurement can be performed.
また、 1対の送受信手段のうち、 一方の送受信手段から送信を行い他方の送受 信手段で受信する計測時の第 1繰返し回数と、 他方の送受信手段から送信を行い 一方の送受信手段で受信する計測時の第 2繰返し回数を比較し、 両繰返し回数の 差が所定回数以上の時、 再度開始信号を出力する計測監視手段を備えているので、 繰返し回数が大きく異なる時は再計測を行うことで、 変動周期が安定した状態で 計測することで精度の高い流量計測を行うことができる。  Also, of the pair of transmission / reception means, the first number of repetitions at the time of measurement transmitted from one transmission / reception means and received by the other transmission / reception means, and transmitted from the other transmission / reception means and received by one transmission / reception means Compare the second number of repetitions at the time of measurement, and when the difference between the two repetitions is equal to or greater than a predetermined number, a measurement monitoring unit that outputs a start signal again is provided. Therefore, accurate measurement of flow rate can be performed by measuring in a state where the fluctuation cycle is stable.
また、 1対の送受信手段のうち、 一方の送受信手段から送信を行い他方の送受 信手段で受信する計測時の第 1繰返し回数と、 他方の送受信手段から送信を行い 一方の送受信手段で受信する計測時の第 2繰返し回数は同じ回数になるように設 定する繰返手段を備えているので、 同じ繰返し回数とするとこで、 変動周期が不 安定な場合でも所定の流量計測を行うことができる。  Also, of the pair of transmission / reception means, the first number of repetitions at the time of measurement transmitted from one transmission / reception means and received by the other transmission / reception means, and transmitted from the other transmission / reception means and received by one transmission / reception means Since there is a repetition means that sets the second number of repetitions during measurement to be the same, the same number of repetitions allows the specified flow rate measurement to be performed even when the fluctuation cycle is unstable. it can.
また、 再度開始信号を出力する回数は所定回数までとし、 永久に繰返すことがな いように監視する計測監視手段を備えているので、 再計測の回数を制限すること で無限に処理が続くことがないようにして安定した流量計測を行うことができる。 また、 超音波の送受信を複数回繰返して計測した伝搬時間の逆数差から流量を 計測することとしているので、 超音波を用いることで、 流路内の変動周波数の影 響を受けずに送受信が可能で、 かつ送受信を繰返して伝搬時間を計測した時間の 逆数差から流量を計測することで、 周期の長い変動でも 1周期単位で計測するこ とができるとともに、 逆数差により変動による伝搬時間の差を相殺することがで きる。 Also, the number of times the start signal is output again is up to the specified number of times, and measurement monitoring means is provided so as to monitor it so that it will not be repeated forever, so processing is continued indefinitely by limiting the number of times of re-measurement And stable flow measurement can be performed. In addition, the flow rate can be calculated from the reciprocal difference Since ultrasonic waves are used, transmission and reception can be performed without being affected by the fluctuation frequency in the flow path, and the flow rate is measured from the reciprocal difference of the time when the propagation time is measured by repeating transmission and reception. By doing so, even long-period fluctuations can be measured in one-period units, and the difference in propagation time due to fluctuations can be offset by the reciprocal difference.
また、 瞬時流量を検出する瞬時流量検出手段と、 流量値が脈動しているか否か 判別する脈動判別手段と、 前記脈動判別手段の判定結果によって異なった手段を 用いて流量値を算出する少なくとも 1つ以上の安定流量算出手段を備えているの で、 計測流量の変動を判別して流量の算出手段を切換えることで、 変動量に応じ て一つの流量計測手段で安定した流量の算出が可能とすることができる。  Further, an instantaneous flow rate detecting means for detecting an instantaneous flow rate, a pulsation determining means for determining whether or not the flow rate value is pulsating, and at least one of calculating a flow rate value using means different depending on the determination result of the pulsation determining means. Since more than one stable flow rate calculating means is provided, it is possible to calculate the stable flow rate with one flow rate measuring means according to the fluctuation amount by determining the fluctuation of the measured flow rate and switching the flow rate calculating means. can do.
また、 瞬時流量を検出する瞬時流量検出手段と、 流量値をデジタルフィルタ一 処理するフィルター処理手段と、 前記フィルター処理手段によって流量値を算出 する安定流量算出手段を備えているので、 デジタルフィルター処理することによ つて、 平均処理相当の算術計算が多くのデータ用メモリーを使用せずに行うこと ができるとともに、 フィルター係数という一つの変数を変更することで、 フィル 夕一特性を変更することができる。  In addition, since there are provided an instantaneous flow rate detecting means for detecting an instantaneous flow rate, a filter processing means for subjecting the flow rate value to digital filter processing, and a stable flow rate calculating means for calculating a flow rate value by the filter processing means, digital filter processing is performed. As a result, arithmetic calculations equivalent to averaging can be performed without using a lot of data memory, and the filter characteristic can be changed by changing one variable called a filter coefficient. .
また、 脈動判別手段が脈動と判別した時に、 流量値をデジタルフィルター処理 手段によって安定値を算出する安定流量算出手段を備えているので、 脈動時には、 急峻なフィルター特性とすることで大きな脈動を安定させることができるととも に、 脈動時のみフィルター処理することが可能である。  In addition, when the pulsation discriminating means determines a pulsation, there is a stable flow rate calculating means that calculates a stable value of the flow value by digital filter processing means. It is possible to perform filtering only during pulsation.
また、 脈動判別手段は、 流量値の変動幅が所定値以上か否かを判別する構成と しているので、 脈動の変動幅によって判別することで脈動の変動幅に応じてフィ ルター処理を変更することができる。  In addition, since the pulsation determination means determines whether or not the fluctuation range of the flow rate value is equal to or greater than a predetermined value, the filter process is changed according to the fluctuation range of the pulsation by determining based on the fluctuation range of the pulsation. can do.
また、 フィルター処理手段は、 流量値の変動幅によってフィルター特性を変更 する構成としているので、 変動幅によってフィルター特性を変更することで、 小 さい変動時には緩やかなフィルター特性として流量の変動に速やかに変動できる ようにするとともに、 大きい変動時には、 急峻なフィルタ一特性とすることで脈 動による流量の変動を大きく抑制することができる。 In addition, the filter processing means is configured to change the filter characteristics according to the fluctuation range of the flow rate value.By changing the filter characteristics according to the fluctuation range, the filter characteristics gradually change with small fluctuations as the filter characteristics gradually change. it can At the same time, when the fluctuation is large, the fluctuation of the flow rate due to the pulsation can be largely suppressed by using a steep filter characteristic.
また、 瞬時流量検出手段が検出した流量値が、 低流量時にのみフィルタ一処理 を行う構成としているので、 低流量時にのみフィルター処理を行うことで大流量 時の流量変化に素早く対応するとともに、 低流量時の脈動の影響を大幅に抑制す ることができる。  In addition, since the filter value is detected only when the flow rate detected by the instantaneous flow rate detection means is low, the filter process is performed only when the flow rate is low. The effect of pulsation at the time of flow can be greatly suppressed.
また、 フィルター処理手段は、 流量値によってフィルター特性を変更する構成 としているので、 流量値によってフィルター特性を変更することで、 低流量時に のみフィルタ一処理を行うことで大流量時の流量変化に素早く対応するとともに、 低流量時の脈動の影響を大幅に抑制することができる。  Also, since the filter processing means is configured to change the filter characteristics according to the flow rate value, by changing the filter characteristics according to the flow rate value, the filter processing is performed only at a low flow rate, so that the flow rate change at a large flow rate can be quickly performed. In addition to this, the effects of pulsation at low flow rates can be significantly reduced.
また、 フィル夕一処理手段は、 瞬時流量検出手段の流量時間の間隔によってフ ィルター特性を変更する構成としているので、 流量検出時間の間隔によってフィ ルター特性を変更することで、 計測間隔が短いときは、 緩やかなフィル夕一特性 で、 間隔が広いときには急峻なフィルター特性で変動を抑えることができる。 また、 大流量値の時には、 フィルター特性のカットオフ周波数が高くなるよう に変更し、 低流量時には、 カットオフ周波数が低いフィルター特性を持つように 変更するフィルター処理手段を備えているので、 大流量時には、 応答性が速くな り、 低流量時には脈動を抑制する処理とすることができる。  In addition, since the filter processing means is configured to change the filter characteristics according to the flow time interval of the instantaneous flow rate detection means, the filter characteristics are changed according to the flow rate detection time intervals, so that when the measurement interval is short. Is a gentle filter characteristic, and when the interval is wide, a steep filter characteristic can suppress the fluctuation. In addition, when the flow rate is large, the cutoff frequency of the filter characteristics is changed to be higher, and when the flow rate is low, the filter processing means is changed so that the cutoff frequency has a lower filter characteristic. In some cases, the responsiveness becomes faster, and pulsation can be suppressed at low flow rates.
また、 安定流量算出手段により算出した流量値の変動幅が所定値以内になるよ うにフィルタ一特性を変更する構成としているので、 変動値が所定値内になるよ うにフィルター特性を変更することによって、 流量変動を常に所定値以下に抑制 することができる。  In addition, since the filter characteristic is changed so that the fluctuation range of the flow rate value calculated by the stable flow rate calculation means is within a predetermined value, the filter characteristic is changed so that the fluctuation value is within the predetermined value. In addition, the flow rate fluctuation can always be suppressed to a predetermined value or less.
また、 超音波により流量を検出する超音波流量計を瞬時流量検出手段としてい るので、 超音波流量計を用いることで、 大幅な流量変動が発生しても瞬時流量を 計測することができるので、 その流量値から算術により安定流量を求めることが できる。 また、 熱式流量計を瞬時流量検出手段としているので、 熱式流量計を用いるこ とで、 大幅な流量変動が発生しても瞬時流量を計測することができるので、 その 流量値から算術により安定流量を求めることができる。 In addition, since the ultrasonic flowmeter that detects the flow rate by ultrasonic waves is used as the instantaneous flow rate detection means, the instantaneous flow rate can be measured even if a large flow rate fluctuation occurs by using the ultrasonic flowmeter. A stable flow rate can be obtained from the flow rate value by arithmetic. In addition, since the thermal flow meter is used as the instantaneous flow rate detection means, the instantaneous flow rate can be measured even if a large flow rate fluctuation occurs by using the thermal flow meter. A stable flow rate can be determined.
また、 測定の周期が一定とならないように制御部が流量計測における周期を順 次変更するよう周期性変更手段を制御するので、 測定周期あるいは超音波の送信 周期に同期した雑音が受信の時に常に同じ位相に存在せず分散されるので、 測定 誤差を小さくすることができる。  In addition, the control unit controls the periodicity changing means to change the cycle in the flow measurement in order so that the measurement cycle does not become constant, so that noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves is always received when receiving. Since they do not exist in the same phase and are dispersed, measurement errors can be reduced.
また、 駆動回路の駆動方法を順次変更する周期性変更手段とを備え、 周期が一 定とならないように制御部は前記受信検知回路の出力を受けると前記受信検知回 路の受信検知ごとに周期性変更手段を変更するので、 1回の流量測定の中で周期 変更手段を複数の設定で動作させ測定できるので、 雑音が分散平均化した測定結 果となり安定した測定結果を得ることができる。  The control unit further includes a periodicity changing unit that sequentially changes a driving method of the drive circuit, wherein the control unit receives the output of the reception detection circuit so that the period does not become constant. Since the characteristic changing means is changed, the measurement can be performed by operating the period changing means with a plurality of settings in one flow measurement, so that the measurement result is a noise-dispersed and averaged result, and a stable measurement result can be obtained.
また、 周期性変更手段を複数の周波数の出力信号を切り替え出力する構成とし、 制御部は計測ごとに前記周期性変更手段の周波数設定を変更し駆動回路の駆動周 波数を変更するよう制御するので、 駆動周波数変更によって受信検知タイミング を駆動信号の周期変動に相当する時間変化させることができる。 このため測定周 期あるいは超音波の送信周期に同期した雑音が受信の時に常に同じ位相に存在せ ず、 分散されるので、 測定誤差を小さくすることができる。  Further, the periodicity changing means is configured to switch and output output signals of a plurality of frequencies, and the control unit controls so as to change the frequency setting of the periodicity changing means and change the driving frequency of the driving circuit every measurement. By changing the drive frequency, the reception detection timing can be changed over time corresponding to the period change of the drive signal. For this reason, noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
また、 周期性変更手段を同じ周波数で複数の位相を持った出力信号を出力す る構成とし、 制御部は計測ごとに前記周期性変更手段の出力信号の位相設定を変 更し駆動回路の駆動位相を変更するよう制御するので、 駆動位相変更によつて受 信検知タイミングを駆動信号の位相変動を時間に換算した時間変化させることが できる。 このため測定周期あるいは超音波の送信周期に同期した雑音が受信の時 に常に同じ位相に存在せず、 分散されるので、 測定誤差を小さくすることができ る。  Further, the periodicity changing means is configured to output an output signal having a plurality of phases at the same frequency, and the control unit changes the phase setting of the output signal of the periodicity changing means for each measurement to drive the driving circuit. Since control is performed to change the phase, the reception detection timing can be changed by converting the phase fluctuation of the drive signal into time by changing the drive phase. For this reason, noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
また、 周波数変更手段を超音波振動子の使用周波数である第 1周波数と前記第 1周波数とは異なる第 2周波数の信号を重ね合わせて出力する構成とし、 制御部 は計測毎に前記周期性変更手段の第 2周波数の設定を変更した出力信号を前記駆 動回路を介して出力するので、 流量計測における周期性を乱すことができる。 こ のため測定周期あるいは超音波の送信周期に同期した雑音が受信の時に常に同じ 位相に存在せず、 分散されるので、 測定誤差を小さくすることができる。 Further, the frequency changing means may be configured to determine the first frequency, which is the operating frequency of the ultrasonic vibrator, and the first frequency. The control unit outputs the output signal obtained by changing the setting of the second frequency of the periodicity changing unit for each measurement via the drive circuit, with a configuration in which a signal of a second frequency different from the one frequency is superimposed and output. Therefore, the periodicity in the flow measurement can be disturbed. For this reason, noise synchronized with the measurement cycle or the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
また、 周期性変更手段は第 2周波数がある場合と無い場合の設定を切り替える ことによって、 送信時の超音波振動子の振動を変え受信検知タイミングを変える ので、 流量計測における周期性を乱すことができ、 測定周期あるいは超音波の送 信周期に同期した雑音が受信の時に常に同じ位相に存在せず、 分散されるので、 測定誤差を小さくすることができる。  In addition, the periodicity changing means changes the vibration of the ultrasonic transducer at the time of transmission and changes the reception detection timing by switching the setting with and without the second frequency, so that the periodicity in the flow rate measurement may be disturbed. Since the noise synchronized with the measurement cycle or the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, the measurement error can be reduced.
また、 周期性変更手段は第 2周波数の位相設定を変更するので、 送信時の超音 波振動子の振動を変え受信検知タイミングを変えるので、 流量計測における周期 性を乱すことができ、 測定周期あるいは超音波の送信周期に同期した雑音が受信 の時に常に同じ位相に存在せず、 分散 ·平均化されるので、 測定誤差を小さくす ることができる。  In addition, the periodicity changing means changes the phase setting of the second frequency, thereby changing the vibration of the ultrasonic vibrator at the time of transmission and changing the reception detection timing. Alternatively, noise synchronized with the transmission cycle of ultrasonic waves does not always exist in the same phase at the time of reception, and is dispersed and averaged, so that measurement errors can be reduced.
また、 周期性変更手段は第 2周波数の周波数設定を変更するので、 送信時の超 音波振動子の振動を変え受信検知タイミングを変えるので、 流量計測における周 期性を乱すことができ、 測定周期あるいは超音波の送信周期に同期した雑音が受 信の時に常に同じ位相に存在せず、 分散されるので、 測定誤差を小さくすること ができる。  Also, the periodicity changing means changes the frequency setting of the second frequency, changes the vibration of the ultrasonic transducer at the time of transmission, and changes the reception detection timing, so that the periodicity in the flow measurement can be disturbed, and the measurement cycle can be changed. Alternatively, noise synchronized with the transmission cycle of the ultrasonic wave does not always exist in the same phase at the time of reception and is dispersed, so that the measurement error can be reduced.
また、 周期性変更手段は異なる遅延時間が設定可能なディレイ部を備え、 制御 部は超音波の送信または超音波の受信検知ごとに前記ディレイの設定を変更する ので、 一回の測定中で直前に送信した超音波の残響や超音波振動子の尾引きの影 響を分散させることができ、 測定誤差を小さくすることができる。  In addition, the periodicity changing means includes a delay unit capable of setting a different delay time, and the control unit changes the delay setting every time ultrasonic transmission or ultrasonic reception is detected. This makes it possible to disperse the reverberation of the transmitted ultrasonic wave and the effect of tailing of the ultrasonic transducer, thereby reducing measurement errors.
また、 周期変更手段が変更する周期の幅が測定誤差による伝搬時間変動に相当 する値の整数倍とするので、 全設定を合計し平均をとつた時に誤差を最小とする ことができる。 Also, since the width of the cycle changed by the cycle changing means is an integral multiple of the value corresponding to the propagation time variation due to measurement error, the error is minimized when all settings are summed and averaged. be able to.
また、 周期変更手段が変更する周期の幅が超音波振動子の共振周波数の周期と するので、 全設定を合計を平均した値は、 超音波センサの残響や尾引きによって 発生する測定誤差が最小となるので、 測定誤差を小さくすることができる。 また、 周期性を変更するパターンの順番を上流方向への測定と下流方向への測 定とを同じとするので、 上流方向と下流方向への測定が常に同じ条件となり流量 変動がある場合の測定結果を安定化することができる。  In addition, since the width of the cycle changed by the cycle changing means is the cycle of the resonance frequency of the ultrasonic transducer, the average value of the sum of all settings is the minimum measurement error generated by the reverberation and tailing of the ultrasonic sensor. Therefore, the measurement error can be reduced. In addition, since the order of the pattern for changing the periodicity is the same for the measurement in the upstream direction and the measurement in the downstream direction, the measurement in the upstream direction and the measurement in the downstream direction are always the same condition, and the measurement when the flow rate fluctuates The result can be stabilized.
また、 所定回数が周期性変更手段の変更数の整数倍であるので、 一回の流量計 測の中で前記周期性変更手段の全設定値を均一に設定することができ、 測定結果 を安定させることができる。  Also, since the predetermined number is an integral multiple of the number of changes of the periodicity changing means, all the set values of the periodicity changing means can be set uniformly in one flow measurement, and the measurement result is stable. Can be done.
また、 第 2の夕イマによって、 受信検知から次のタイマのカウントアップ ·夕 ィムまでの時間を測定することによって、 第 1の夕イマより分解能が高い測定を することができる。 また、 同じ分解能の流量計と比較して、 受信検知後にわずか な時間第 2のタイマを動作させればよいので、 消費電力も小さくすることができ る。  Also, by measuring the time from reception detection to the next timer count-up / time by using the second time, measurement with higher resolution than the first time can be performed. Also, compared to a flow meter having the same resolution, the second timer only needs to be operated for a short time after the reception is detected, so that power consumption can be reduced.
また、 第 2の夕イマを第 1のタイマで補正するので、 第 2の夕イマは短い時間 の安定度さえあればよく、 特殊な部品を使用する必要がない。 このため高分解能 の流量計を容易に実現できる。  In addition, since the second evening image is corrected by the first timer, the second evening image only needs to be stable for a short time, and there is no need to use special parts. Therefore, a high-resolution flowmeter can be easily realized.
また、 温度センサの出力が設定値以上変動した場合に第 1のタイマによって第 2の夕イマを補正するので、 第 2の夕イマが温度の変化によって動作が大きく変 化するものであっても使用することが可能となる。  In addition, when the output of the temperature sensor fluctuates more than the set value, the second timer is corrected by the first timer, so even if the operation of the second timer largely changes due to a change in temperature, It can be used.
また、 電圧センサの出力が設定値以上変動した場合に第 1の夕イマによって第 2のタイマを補正するので、 第 2のタイマが電圧の変化によって動作が大きく変 化するものであっても使用することが可能となる。  In addition, when the output of the voltage sensor fluctuates more than the set value, the second timer is corrected by the first timer, so even if the operation of the second timer greatly changes due to the voltage change, it can be used. It is possible to do.
また、 被測定流体が流れる流量測定部と、 この流量測定部に設けられ超音波を 送受信する一対の超音波振動子と、 一方の前記超音波振動子を駆動する駆動回路 と、 他方の前記超音波振動子に接続され超音波信号を検知する受信検知回路と、 受信検知回路の出力をうけ再度超音波振動子を駆動するよう前記駆動回路を所定 回数制御する制御部と、 前記所定回数の経過時間を測定するタイマと、 前記タイ マの出力より流量を演算によって求める演算部と、 駆動回路の駆動方法を順次変 更する周期性安定化手段とを備え、 制御部は測定周期が常に一定となるように周 期性安定化手段を制御するものである。 そして、 この構成によって、 伝搬時間が 変化した時であっても測定周期が常に一定になるので、 測定周期あるいは超音波 の送信周期に同期した雑音が伝搬時間変動に関係なく受信の時に常に同じ位相で あるので、 測定誤差を一定値とすることができ、 非常に長い雑音周期であっても 流量計測を安定化することができる。 A flow measuring unit through which the fluid to be measured flows; a pair of ultrasonic transducers provided in the flow measuring unit for transmitting and receiving ultrasonic waves; and a driving circuit for driving one of the ultrasonic transducers A reception detection circuit that is connected to the other ultrasonic transducer and detects an ultrasonic signal; and a control unit that receives the output of the reception detection circuit and controls the drive circuit a predetermined number of times to drive the ultrasonic transducer again. A timer for measuring the elapsed time of the predetermined number of times, a calculation unit for calculating a flow rate from the output of the timer by calculation, and a periodicity stabilizing unit for sequentially changing a driving method of the drive circuit. The period stabilization means is controlled so that the measurement period is always constant. With this configuration, the measurement cycle is always constant even when the propagation time changes, so that the noise synchronized with the measurement cycle or the ultrasonic transmission cycle always has the same phase during reception regardless of the propagation time fluctuation. Therefore, the measurement error can be kept constant, and the flow measurement can be stabilized even with a very long noise period.
また、 制御部は異なる遅延時間が設定可能なディレイ部からなる周期性安定化 手段を有し、 前記制御部は遅延時間を切り替えて駆動回路の出力タイミングを変 更するものである。 そして、 ディレイ時間を変更することによって測定周期を安 定化させるので、 超音波振動子の駆動に影響を与えること無く測定周期を安定化 できる。  Further, the control unit has periodicity stabilizing means including a delay unit that can set a different delay time, and the control unit changes the output time of the drive circuit by switching the delay time. Since the measurement period is stabilized by changing the delay time, the measurement period can be stabilized without affecting the driving of the ultrasonic transducer.
また、 制御部は測定時間を一定とするよう駆動回路を制御するので、 一回一回 の超音波の伝搬時間を演算すること無く、 簡単な演算で測定周期を一定に制御す ることができる。  In addition, since the control unit controls the drive circuit to keep the measurement time constant, the measurement cycle can be controlled to be constant by a simple calculation without calculating the propagation time of each ultrasonic wave. .

Claims

請求の範囲 The scope of the claims
1 . 流路に設けられて流体の状態変化を用いて送受信する送受信手段と、 前記送 受信手段の信号伝搬を繰返し行う繰返手段と、 前記繰返手段で繰り返される間の 状態変化の伝搬時間を計測する計時手段と、 前記計時手段の値に基づいて流量を 検出する流量検出手段と、 所定の繰返し回数に変更する回数変更手段を備えた流 量計。 1. Transmission / reception means provided in the flow path for transmitting / receiving using a change in the state of the fluid, repetition means for repeating the signal propagation of the transmission / reception means, and propagation time of the state change during repetition by the repetition means And a flow rate detecting means for detecting a flow rate based on the value of the time measuring means, and a number changing means for changing the number of times to a predetermined number of repetitions.
2 . 流体の状態変化として音波の伝搬を用いた一対の送受信手段を備えた請求項 1記載の流量計。 2. The flowmeter according to claim 1, further comprising a pair of transmission / reception means using propagation of a sound wave as a change in the state of the fluid.
3 . 流体の状態変化として熱の伝搬を用いた送受信手段を備えた請求項 1記載の 3. The method according to claim 1, further comprising a transmitting / receiving means using heat propagation as a change in the state of the fluid.
4 . 繰返手段で繰返す伝搬時間の途中情報を検出する経過時間検出手段と、 前記 経過時間検出手段の情報から流量変動の周期を検出する周期検出手段と、 前記周 期検出手段で検出された周期のほぼ整数倍の測定時間に設定する回数変更手段と を備えた請求項 1力 ^ら 3のいずれか 1項記載の流量計。 4. Elapsed time detecting means for detecting information on the way of the propagation time repeated by the repeating means, cycle detecting means for detecting the cycle of the flow rate variation from the information of the elapsed time detecting means, and detecting by the cycle detecting means. The flowmeter according to any one of claims 1 to 3, further comprising means for changing the number of times set to a measurement time that is approximately an integral multiple of the cycle.
5 . 経過時間検出手段により得られた送受信の伝搬時間を少なくとも 1偭以上保 持するデー夕保持手段と、 前記データ保持手段により保持されたデー夕と計測さ れた伝搬時間のデータを比較することによって周期を検出する周期検出手段を備 えた請求項 4記載の流量計。 5. The data holding means for holding the transmission / reception propagation time obtained by the elapsed time detecting means at least one kilometer or more, and comparing the data held by the data holding means with the measured propagation time data. 5. The flowmeter according to claim 4, further comprising a cycle detecting means for detecting a cycle by detecting.
6 . 回数変更手段は、 所定処理の時に動作する請求項 1から 5のいずれか 1項項 記載の流量計。 6. The flow meter according to any one of claims 1 to 5, wherein the number-of-times changing means operates during predetermined processing.
7 . 回数変更手段は、 所定流量計測のたびに動作する請求項 6記載の流量計。 7. The flowmeter according to claim 6, wherein the number changing means operates each time a predetermined flow rate is measured.
8 . 回数変更手段は、 流量計測処理の前に行われる請求項 6記載の流量計。 8. The flowmeter according to claim 6, wherein the number changing means is performed before the flow measurement processing.
9 . 所定処理は、 流量計測から流量の異常を判別する異常判別手段と、 計測流量 から流量の使用状況を管理する流量管理手段とを行う請求項 6記載の流量計。 9. The flowmeter according to claim 6, wherein the predetermined processing includes performing abnormality determination means for determining an abnormality in the flow rate from the flow rate measurement and flow rate management means for managing a usage state of the flow rate from the measured flow rate.
1 0 . 周期検出手段で得られた周期に合せた繰返し回数は、 次回の流量計測時に 使用される請求項 4から 9のいずれか 1項記載の流量計。 10. The flowmeter according to claim 4, wherein the number of repetitions according to the cycle obtained by the cycle detection means is used at the next flow rate measurement.
1 1 . 計測流量が所定流量未満の時に、 回数変更手段を動作させる請求項 1から 5のいずれか 1項記載の流量計。 The flowmeter according to any one of claims 1 to 5, wherein the number-of-times changing means is operated when the measured flow rate is less than a predetermined flow rate.
1 2 . 流路に設けられて流体の状態変化を用いて送受信する送受信手段と、 前記 送受信手段で送受信される状態変化の伝搬時間を計測する計時手段と、 前記計時 手段の値に基づいて流量を検出する流量検出手段と、 前記送受信手段で流路内の 変動を計測する変動検出手段と、 前記変動検出手段の変動のタイミングに同期し て計測を開始する計測制御手段とを備えた流量計。 12. A transmission / reception unit provided in the flow path for transmitting and receiving using a state change of the fluid, a time measurement unit for measuring a propagation time of the state change transmitted and received by the transmission / reception unit, and a flow rate based on the value of the time measurement unit A flowmeter comprising: a flow rate detecting means for detecting the fluctuation; a fluctuation detecting means for measuring a fluctuation in the flow path by the transmitting / receiving means; and a measurement control means for starting the measurement in synchronization with the fluctuation timing of the fluctuation detecting means. .
1 3 . 流体の状態変化として音波の伝搬を用いた一対の送受信手段を備えた請求 項 1 2記載の流量計。 13. The flowmeter according to claim 12, further comprising a pair of transmission / reception means using propagation of a sound wave as a change in the state of the fluid.
1 4. 流体の状態変化として熱の伝搬を用いた送受信手段を備えた請求項 1 2記 載の流量計。 13. The flowmeter according to claim 12, further comprising transmission / reception means using heat propagation as a fluid state change.
1 5 . 流路に設けられて音波を送受信する第 1振動手段および第 2振動手段と、 前記第 1振動手段および第 2振動手段の送受信の動作を切換える切換手段と、 前 記第 1振動手段および第 2振動手段の少なくとも一方で流路内の圧力変動を検出 する変動検出手段と、 前記第 1振動手段および第 2振動手段で送受信される音波 の伝搬時間を計測する計時手段と、 前記変動検出手段の出力が所定変化した時に 流路の上流側の第 1振動手段から下流側の第 2振動手段に伝搬する第 1計時時間 T 1を前記計時手段が測定し、 また、 前記変動検出手段の出力が前記所定変化と 逆に変化した時には流路の下流側の第 2振動手段から上流側の第 1振動手段に伝 搬する第 2計時時間 T 2を前記計時手段が測定する同期制御を行う計測制御手段 と、 前記第 1計時時間 T 1と前記第 2計時時間 T 2を用いて流量を算出する流量 検出手段とを備えた請求項 1 3記載の流量計。 15. First and second vibrating means provided in the flow path for transmitting and receiving sound waves, switching means for switching the transmitting and receiving operations of the first and second vibrating means, and the first vibrating means A fluctuation detecting means for detecting a pressure fluctuation in the flow path of at least one of the first and second vibrating means; a time measuring means for measuring a propagation time of a sound wave transmitted and received by the first vibrating means and the second vibrating means; When the output of the detecting means has changed by a predetermined amount, the time measuring means measures a first time T 1 which propagates from the first vibrating means on the upstream side of the flow path to the second vibrating means on the downstream side, and the fluctuation detecting means When the output of the clock changes in reverse to the predetermined change, the timing control means measures the second time T2 transmitted from the second vibration means on the downstream side of the flow path to the first vibration means on the upstream side. Measurement control means to perform, and the first time measurement time T 1 Flowmeter according to claim 1 3, further comprising a flow detection means for calculating the flow rate using the second measured time T 2.
1 6 . 変動検出手段の出力が所定変化した時に第 1計時時間 T 1の測定を開始し、 前記変動検出手段の出力が前記所定変化と逆に変化した時に第 2計時時間 T 2の 測定を開始する計測制御と、 次回の計測時は、 変動検出手段の出力が前記所定変 化と逆に変化した時に第 1計時時間 T 1の測定を開始し、 前記変動検出手段の出 力が所定変化した時に第 2計時時間 T 2の測定を開始計測制御を行う計測制御手 段と、 計測開始を交互に変更しながら前回の第 1計時時間 T 1と第 2計時時間 T 2を用いて求めた第 1流量と、 次回の第 1計時時間 T 1と第 2計時時間 T 2を用 いて求めた第 2流量を逐次平均処理することにより流量を算出する流量検出手段 を備えた請求項 1 5記載の流量計。 1 6. Start measurement of the first clocking time T1 when the output of the fluctuation detecting means changes by a predetermined amount, and start measuring the second clocking time T2 when the output of the fluctuation detecting means changes in the opposite direction to the predetermined change. In the measurement control to be started, and at the next measurement, when the output of the fluctuation detecting means changes in reverse to the predetermined change, the measurement of the first time T1 is started, and the output of the fluctuation detecting means changes by a predetermined amount. Measurement of the second clock time T2 is started when the measurement is started.The measurement control means performs the measurement control, and the measurement was performed using the previous first clock time T1 and the second clock time T2 while alternately changing the measurement start. The method according to claim 15, further comprising a flow rate detecting unit configured to calculate a flow rate by sequentially averaging the first flow rate and the second flow rate obtained using the next first time counting time T 1 and second time counting time T 2. Flow meter.
1 7 . 送受信を複数回行う繰返手段を備えた請求項 1 2から 1 6のいずれか 1項 記載の流量計。 17. The flow meter according to any one of claims 12 to 16, further comprising a repetition means for performing transmission and reception a plurality of times.
1 8 . 変動周期の整数倍時間にわたって送受信を複数回行う繰返手段を備えた請 求項 1 7項記載の流量計。 1 8. Contracts with repetitive means for sending and receiving multiple times over an integral multiple of the The flowmeter according to claim 17.
1 9 . 変動検出手段の出力が所定変化した時に送受信計測を開始し、 前記変動検 出手段の出力が前記所定変化と同じ変化をするまで繰返し送受信計測を行う繰返 手段を備えた請求項 1 8項記載の流量計。 19. A repetition means which starts transmission / reception measurement when the output of the fluctuation detection means changes by a predetermined amount, and repeatedly performs transmission / reception measurement until the output of the fluctuation detection means changes the same as the predetermined change. Flow meter according to clause 8.
2 0 . 第 1振動手段および第 2振動手段を、 音波の送受信に用いる場合と、 圧力 変動の検出に用いる場合を切換える選択手段を備えた請求項 1 2と 1 5から 1 9 のいずれか 1項記載の流量計。 20. A method according to any one of claims 12 and 15 to 19, further comprising selection means for switching between a case where the first vibration means and the second vibration means are used for transmitting and receiving sound waves and a case where they are used for detecting pressure fluctuation. Flow meter according to the item.
2 1 . 変動波形の交流成分のゼロ付近を検出する変動検出手段を備えた請求項 1 5力 ら 2 0項のいずれか 1項記載の流量計。 21. The flowmeter according to any one of claims 15 to 20, further comprising a fluctuation detecting means for detecting a vicinity of zero of an AC component of the fluctuation waveform.
2 2 . 変動検出手段の信号の周期を検出する周期検出手段と、 前記周期検出手段 の検出した周期が、 所定の周期の時にのみ計測を開始する計測制御手段を備えた 請求項 1 5から 2 1のいずれか 1項記載の流量計。 22. A cycle detection means for detecting a cycle of a signal of the fluctuation detection means, and a measurement control means for starting measurement only when the cycle detected by the cycle detection means is a predetermined cycle. The flowmeter according to any one of the preceding items.
2 3 . 変動検出手段の信号が検出できなかった時は、 所定時間後に計測を自動的 にスター卜する検出解除手段を備えた請求項 1 5から 2 2のいずれか 1項記載の 流量計。 23. The flow meter according to any one of claims 15 to 22, further comprising a detection canceling means for automatically starting measurement after a predetermined time when a signal from the fluctuation detecting means cannot be detected.
2 4 . 送受信手段および第 1振動手段と第 2振動手段は、 圧電式振動子からなる 請求項 1 5から 2 3のいずれか 1項記載の流量計。 24. The flow meter according to any one of claims 15 to 23, wherein the transmitting / receiving means, the first vibrating means, and the second vibrating means comprise a piezoelectric vibrator.
2 5 . 流路に設けられて流体の状態変化を用いて送受信する送受信手段と、 前記 送受信を繰返し行う繰返手段と、 前記繰返手段で繰り返される間の伝搬時間を計 測する計時手段と、 前記計時手段の値に基づいて流量を検出する流量検出手段と、 流路内の流体変動を検出する変動検出手段と、 前記各手段を制御する計測制御手 段と、 前記各手段の異常を監視する計測監視手段とを備えた流量計。 25. A transmitting / receiving unit provided in the flow path for transmitting and receiving using a change in the state of the fluid, a repeating unit for repeating the transmission and reception, and a propagation time during the repetition by the repeating unit is measured. A time measuring means for measuring, a flow rate detecting means for detecting a flow rate based on a value of the time measuring means, a fluctuation detecting means for detecting a fluid fluctuation in the flow path, a measurement control means for controlling the respective means, A flow meter comprising: a measurement monitoring unit that monitors an abnormality of each unit.
2 6 . 流体の状態変化として音波の伝搬を用いた一対の送受信手段を備えた請求 項 2 5記載の流量計。 26. The flowmeter according to claim 25, further comprising a pair of transmission / reception means using propagation of a sound wave as a change in the state of the fluid.
2 7 . 流体の状態変化として熱の伝搬を用いた送受信手段を備えた請求項 2 5記 載の流量計。 27. The flowmeter according to claim 25, further comprising transmission / reception means using heat propagation as a change in the state of the fluid.
2 8 . 流路に設けられて音波を送受信する 1対の送受信手段と、 前記送受信手段 の信号伝搬を繰返し行う繰返手段と、 前記繰返手段で繰り返される間の音波の伝 搬時間を計測する計時手段と、 前記計時手段の値に基づいて流量を検出する流量 検出手段と、 流路内の流体変動を検出する変動検出手段と、 前記各手段を制御す る計測制御手段と、 前記計測制御手段の計測指示信号後、 前記変動検出手段の第 1出力信号時に音波の送信開始を指示する開始信号と、 前記変動検出手段の第 2 出力信号時に音波の送受信の繰返終了を指示する終了信号と、 前記開始信号と前 記終了信号の異常を監視する計測監視手段とを備えた請求項 2 6記載の流量計。 28. A pair of transmission / reception means provided in the flow path for transmitting / receiving a sound wave, a repetition means for repeating the signal transmission of the transmission / reception means, and measuring the propagation time of the sound wave during the repetition by the repetition means Time measuring means, flow rate detecting means for detecting a flow rate based on the value of the time measuring means, fluctuation detecting means for detecting fluid fluctuation in the flow path, measurement control means for controlling each of the means, and the measurement After the measurement instruction signal of the control means, a start signal instructing the start of sound wave transmission at the time of the first output signal of the fluctuation detecting means, and an end signal of instructing the end of repetition of transmission and reception of sound waves at the time of the second output signal of the fluctuation detecting means. 27. The flow meter according to claim 26, further comprising: a signal; and a measurement monitoring unit that monitors an abnormality of the start signal and the end signal.
2 9 . 計測制御手段の指示の後、 所定時間内に開始信号が発生しなかった時、 所 定時間後に音波の送信開始を指示する計測監視手段を備えた請求項 2 8項記載の 29. The measurement monitoring means according to claim 28, further comprising a measurement monitoring means for instructing a start of transmission of a sound wave after a predetermined time when no start signal is generated within a predetermined time after the instruction of the measurement control means.
3 0 . 計測制御手段の指示の後、 所定時間内に開始信号が発生しなかった時、 所 定時間後に音波の送信開始を指示し、 所定の繰返し回数で計測を行う計測監視手 段を備えた請求項 2 9記載の流量計。 30. Equipped with a measurement monitoring means for instructing the start of sound wave transmission after a predetermined time if no start signal is generated within a predetermined time after the instruction of the measurement control means, and performing measurement at a predetermined number of repetitions. 29. The flowmeter according to claim 29.
3 1 . 計測制御手段の指示の後、 所定時間内に開始信号が発生しなかった時、 次 の計測制御手段の指示まで計測を行わない計測監視手段を備えた請求項 2 8記載 の流量計。 31. The flowmeter according to claim 28, further comprising a measurement monitoring unit that does not perform measurement until the next instruction of the measurement control means when the start signal is not generated within a predetermined time after the instruction of the measurement control means. .
3 2 . 開始信号の後、 所定時間内に終了信号が発生しなかった時、 音波の受信を 終了する計測監視手段を備えた請求項 2 8記載の流量計。 32. The flowmeter according to claim 28, further comprising a measurement monitoring means for terminating the reception of the sound wave when the end signal is not generated within a predetermined time after the start signal.
3 3 . 開始信号の後、 所定時間内に終了信号が発生しなかった時、 音波の受信を 終了して、 再度開始信号を出力する計測監視手段を備えた請求項 2 8と 3 2のい ずれか 1項記載の流量計。 33. Claims 28 and 32 provided with measurement monitoring means for terminating the reception of the sound wave and outputting the start signal again when the end signal is not generated within a predetermined time after the start signal. The flow meter according to item 1.
3 4 . 繰返し回数が異常になった時、 送受信の処理を停止する計測監視手段を備 えた請求項 2 8記載の流量計。 34. The flowmeter according to claim 28, further comprising a measurement monitoring means for stopping transmission / reception processing when the number of repetitions becomes abnormal.
3 5 . 1対の送受信手段のうち、 一方の送受信手段から送信を行い他方の送受信 手段で受信する計測時の第 1繰返し回数と、 他方の送受信手段から送信を行い一 方の送受信手段で受信する計測時の第 2繰返し回数を比較し、 両繰返し回数の差 が所定回数以上の時、 再度開始信号を出力する計測監視手段を備えた請求項 2 8 記載の流量計。 3.5.1 The first number of repetitions at the time of measurement, where data is transmitted from one transmitting / receiving means and received by the other transmitting / receiving means, and the other transmitting / receiving means is transmitting and receiving by one transmitting / receiving means 29. The flowmeter according to claim 28, further comprising: a measurement monitoring unit that compares the second number of repetitions at the time of measurement, and outputs a start signal again when the difference between the two repetitions is a predetermined number or more.
3 6 . 1対の送受信手段のうち、 一方の送受信手段から送信を行い他方の送受信 手段で受信する計測時の第 1繰返し回数と、 他方の送受信手段から送信を行い一 方の送受信手段で受信する計測時の第 2繰返し回数は同じ回数になるように設定 する繰返手段を備えた請求項 2 8記載の流量計。 36. Among the pair of transmission / reception means, the first number of repetitions at the time of measurement transmitted from one transmission / reception means and received by the other transmission / reception means, and transmitted from the other transmission / reception means and received by one transmission / reception means 29. The flow meter according to claim 28, further comprising a repetition means for setting the second number of repetitions at the time of measurement to be performed to be the same.
3 7 . 再度開始信号を出力する回数は所定回数までとし、 永久に繰返すことがな いように監視する計測監視手段を備えた請求項 2 8記載の流量計。 37. The flowmeter according to claim 28, further comprising a measurement monitoring means for monitoring the number of times to output the start signal again up to a predetermined number of times and for preventing the repetition forever.
3 8 . 超音波の送受信を複数回繰返して計測した伝搬時間の逆数差から流量を計 測する請求項 2 8から 3 7のいずれか 1項の流量計。 38. The flowmeter according to any one of claims 28 to 37, wherein a flow rate is measured from a reciprocal difference of a propagation time measured by repeating transmission and reception of ultrasonic waves a plurality of times.
3 9 . 瞬時流量を検出する瞬時流量検出手段と、 流量値が脈動しているか否か判 別する脈動判別手段と、 前記脈動判別手段の判定結果によって異なった手段を用 いて流量値を算出する少なくとも 1つ以上の安定流量算出手段を備えた流量計。 39. Calculate the flow value using the instantaneous flow rate detecting means for detecting the instantaneous flow rate, the pulsation determining means for determining whether or not the flow rate value is pulsating, and means different depending on the determination result of the pulsation determining means. A flow meter provided with at least one or more stable flow rate calculating means.
4 0 . 瞬時流量を検出する瞬時流量検出手段と、 流量値をデジタルフィルター処 理するフィルター処理手段と、 前記フィルター処理手段によつて流量値を算出す る安定流量算出手段を備えた流量計。 40. A flowmeter comprising: an instantaneous flow rate detecting means for detecting an instantaneous flow rate; a filter processing means for digitally filtering a flow rate value; and a stable flow rate calculating means for calculating a flow rate value by the filter processing means.
4 1 . 脈動判別手段が脈動と判別した時に、 流量値をデジタルフィルター処理手 段によって安定値を算出する安定流量算出手段を備えた請求項 3 9と 4 0のいず れか 1項記載の流量計。 41. The method according to any one of claims 39 and 40, further comprising a stable flow rate calculating means for calculating a stable value of the flow rate value by a digital filter processing means when the pulsation determining means determines that there is a pulsation. Flowmeter.
4 2 . 脈動判別手段は、 流量値の変動幅が所定値以上か否かを判別する請求項 3 8力 ら 4 1のいずれか 1項記載の流量計。 42. The flowmeter according to any one of claims 38 to 41, wherein the pulsation determination means determines whether or not the fluctuation range of the flow value is equal to or greater than a predetermined value.
4 3 . フィルター処理手段は、 流量値の変動幅によってフィルター特性を変更す る請求項 3 9から 4 2のいずれか 1項記載の流量計。 43. The flowmeter according to any one of claims 39 to 42, wherein the filter processing means changes a filter characteristic according to a fluctuation range of the flow value.
4 4 . 瞬時流量検出手段が検出した流量値が、 低流量時にのみフィルター処理を 行う請求項 3 9から 4 3のいずれか 1項記載の流量計。 44. The flowmeter according to any one of claims 39 to 43, wherein filtering is performed only when the flow rate value detected by the instantaneous flow rate detection means is low.
4 5 . フィルター処理手段は、 流量値によってフィルタ一特性を変更する請求項45. The filter processing means changes a filter characteristic according to a flow rate value.
3 9から 4 4いずれか 1項記載の流量計。 39. The flow meter according to any one of items 9 to 4.
4 6 . フィルタ一処理手段は、 瞬時流量検出手段の計測時間の間隔によってフィ ルター特性を変更する請求項 3 9から 4 5いずれか 1項記載の流量計。 46. The flowmeter according to any one of claims 39 to 45, wherein the filter processing means changes the filter characteristics according to a measurement time interval of the instantaneous flow rate detection means.
4 7 . 大流量値の時には、 フィルタ一特性のカットオフ周波数が高くなるように 変更し、 低流量時には、 カットオフ周波数が低いフィルター特性を持つように変 更するフィルター処理手段を備えた請求項 4 6記載の流量計。 47. A filter processing means for changing the cutoff frequency of one filter characteristic to be higher when the flow rate is large, and changing the cutoff frequency to have a lower filter characteristic when the flow rate is low. 4 6 Flowmeter described.
4 8 . 安定流量算出手段により算出した流量値の変動幅が所定値以内になるよう にフィルター特性を変更する請求項 3 9から 4 7のいずれか 1項記載の流量計。 48. The flowmeter according to any one of claims 39 to 47, wherein the filter characteristic is changed so that a fluctuation range of the flow rate value calculated by the stable flow rate calculation means is within a predetermined value.
4 9 . 超音波により流量を検出する超音波流量計を瞬時流量検出手段とした請求 項 3 8から 4 8のいずれか 1項記載の流量計。 49. The flowmeter according to any one of claims 38 to 48, wherein an ultrasonic flowmeter that detects a flow rate by ultrasonic waves is used as instantaneous flow rate detection means.
5 0 . 熱式流量計を瞬時流量検出手段とした請求項 3 8から 4 8のいずれか 1項 記載の流量計。 50. The flowmeter according to any one of claims 38 to 48, wherein a thermal flowmeter is used as instantaneous flow rate detection means.
5 1 . 被測定流体が流れる流量測定部と、 この流量測定部に設けられ超音波を送 受信する一対の超音波振動子と、 一方の前記超音波振動子を駆動する駆動回路と、 他方の前記超音波振動子に接続され超音波パルスを検知する受信検知回路と、 前 記超音波パルスの伝搬時間を測定する夕イマと、 前記駆動回路を制御する制御部 と、 前記タイマの出力より流量を演算によって求める演算部と、 駆動回路の駆動 方法を順次変更する周期性変更手段とを備え、 前記制御部は流量計測における周 期を順次変更するよう前記周期性変更手段を制御する流量計。 51. A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, a drive circuit for driving one ultrasonic transducer, and the other A reception detection circuit connected to the ultrasonic vibrator and detecting an ultrasonic pulse; a timer for measuring a propagation time of the ultrasonic pulse; a control unit for controlling the drive circuit; and a flow rate based on an output of the timer. And a periodicity changing means for sequentially changing the driving method of the drive circuit. A flow meter for controlling the periodicity changing means so as to sequentially change periods.
5 2 . 被測定流体が流れる流量測定部と、 この流量測定部に設けられ超音波を送 受信する一対の超音波振動子と、 一方の前記超音波振動子を駆動する駆動回路と、 他方の前記超音波振動子に接続され超音波パルスを検知する受信検知回路と、 受 信検知回路の出力をうけ再度超音波振動子を駆動するよう前記駆動回路を所定回 数制御する制御部と、 前記所定回数の経過時間を測定するタイマと、 前記タイマ の出力より流量を演算によって求める演算部と、 駆動回路の駆動方法を順次変更 する周期性変更手段とを備え、 制御部は前記受信検知回路の出力を受けると前記 受信検知回路の受信検知ごとに周期性変更手段を変更する流量計。 5 2. A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, a drive circuit for driving one ultrasonic transducer, and the other A reception detection circuit that is connected to the ultrasonic transducer and detects an ultrasonic pulse; a control unit that receives the output of the reception detection circuit and controls the drive circuit a predetermined number of times to drive the ultrasonic transducer again; A timer for measuring an elapsed time of a predetermined number of times, a calculation unit for calculating a flow rate from an output of the timer, and a periodicity change unit for sequentially changing a driving method of a drive circuit, wherein a control unit of the reception detection circuit A flowmeter which changes the periodicity changing means every time a reception is detected by the reception detection circuit upon receiving an output.
5 3 . 周期性変更手段は複数の周波数の出力信号を切り替え出力する構成とし、 制御部は計測ごとに前記周期性変更手段の周波数設定を変更し駆動回路の駆動周 波数を変更するよう制御する請求項 5 1及び 5 2記載の流量計。 5 3. The periodicity changing means is configured to switch and output the output signals of a plurality of frequencies, and the control section controls the frequency setting of the periodicity changing means to change the driving frequency of the driving circuit for each measurement. The flowmeter according to claim 51 or 52.
5 4 . 周期性変更手段は同じ周波数で複数の位相を持った出力信号を出力する構 成とし、 制御部は計測ごとに前記周期性変更手段の出力信号の位相設定を変更し 駆動回路の駆動位相を変更するよう制御する請求項 5 1及び 5 2記載の流量計。 5 4. The periodicity changing means is configured to output an output signal having a plurality of phases at the same frequency, and the control unit changes the phase setting of the output signal of the periodicity changing means for each measurement to drive the driving circuit. The flowmeter according to claim 51, wherein the flowmeter is controlled to change the phase.
5 5 . 周波数変更手段は超音波振動子の使用周波数である第 1周波数と前記第 1 周波数とは異なる第 2周波数の信号を重ね合わせて出力する構成とし、 制御部は 計測毎に前記周期性変更手段の第 2周波数の設定を変更した出力信号を前記駆動 回路を介して出力する請求項 5 1及び 5 2記載の流量計。 55. The frequency changing means is configured to superimpose and output a signal of a first frequency, which is a frequency used by the ultrasonic vibrator, and a second frequency different from the first frequency. The flowmeter according to claim 51, wherein an output signal obtained by changing the setting of the second frequency of the changing means is output through the drive circuit.
5 6 . 周期性変更手段は第 2周波数がある場合と無い場合の設定を切り替えるよ うにした請求項 5 5記載の流量計。 56. The flowmeter according to claim 55, wherein the periodicity changing means switches between a setting with and without a second frequency.
5 7 . 周期性変更手段は第 2周波数の位相設定を変更する請求項 5 5記載の流量 計。 57. The flowmeter according to claim 55, wherein the periodicity changing means changes the phase setting of the second frequency.
5 8 . 周期性変更手段は第 2周波数の周波数設定を変更する請求項 5 5記載の流 量計。 58. The flowmeter according to claim 55, wherein the periodicity changing means changes the frequency setting of the second frequency.
5 9 . 周期性変更手段は異なる遅延時間が設定可能なディレイ部を備え、 制御部 は超音波の送信または超音波の受信検知ごとに前記ディレイの設定を変更する請 求項 5 2記載の流量計。 59. The flow rate according to claim 52, wherein the periodicity changing means includes a delay unit capable of setting different delay times, and the control unit changes the delay setting every time ultrasonic waves are transmitted or ultrasonic waves are detected. Total.
6 0 . 周期変更手段が変更する周期の幅が測定誤差による伝搬時間変動に相当す る値の整数倍とする請求項 5 1及び 5 2記載の流量計。 60. The flowmeter according to claim 51, wherein the width of the cycle changed by the cycle changing means is an integral multiple of a value corresponding to a propagation time variation due to a measurement error.
6 1 . 周期変更手段が変更する周期の幅が超音波振動子の共振周波数の周期とす る請求項 5 1及び 5 2記載の流量計。 61. The flowmeter according to claim 51, wherein the width of the cycle changed by the cycle changing means is a cycle of a resonance frequency of the ultrasonic transducer.
6 2 . 周期性を変更するパターンの順番を上流方向への測定と下流方向への測定 とを同じとする請求項 5 1及び 5 2記載の流量計。 62. The flowmeter according to claim 51, wherein the order of the pattern for changing the periodicity is the same for the measurement in the upstream direction and the measurement in the downstream direction.
6 3 . 所定回数が周期性変更手段の変更数の整数倍である請求項 5 2記載の流量 計。 63. The flowmeter according to claim 52, wherein the predetermined number is an integral multiple of the number of changes of the periodicity changing means.
6 4 . 被測定流体が流れる流量測定部と、 この流量測定部に設けられ超音波を送 受信する一対の超音波振動子と、 一方の前記超音波振動子を駆動する駆動回路と、 他方の前記超音波振動子に接続され超音波パルスを検知する受信検知回路と、 前 記超音波パルスの伝搬時間を測定する第 1のタイマと、 前記受信検知回路が受信 検知してから前記第 1の夕イマの値が変化するまでの時間を測定する第 2のタイ マと、 前記駆動回路を制御する制御部と、 前記第 1のタイマ及び前記第 2のタイ マの出力より流量を演算によって求める演算部を備え、 第 2の夕イマを第 1の夕 ィマで補正する構成とした流量計。 6 4. A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, a drive circuit for driving one ultrasonic transducer, and the other A reception detection circuit connected to the ultrasonic transducer for detecting an ultrasonic pulse; A first timer for measuring the propagation time of the ultrasonic pulse, and a second timer for measuring the time from when the reception detection circuit detects the reception to when the value of the first image changes. A control unit that controls the drive circuit; and a calculation unit that obtains a flow rate by calculation from outputs of the first timer and the second timer, and corrects the second timer with the first timer. Flow meter with configuration.
6 5 . 温度センサを設け、 温度センサの出力が設定値以上変化した時に第 2の夕 イマを第 1の夕イマで補正する構成とした請求項 6 4記載の流量計。 65. The flowmeter according to claim 64, further comprising a temperature sensor, wherein the second evening image is corrected by the first evening image when the output of the temperature sensor changes by a set value or more.
6 6 . 電圧センサを設け、 電圧センサの出力が設定値以上変化した時に第 2の夕 イマを第 1の夕イマで補正する構成とした請求項 6 4記載の流量計。 66. The flowmeter according to claim 64, further comprising a voltage sensor, wherein the second evening time is corrected by the first evening time when the output of the voltage sensor changes by a set value or more.
6 7 . 被測定流体が流れる流量測定部と、 この流量測定部に設けられ超音波を送 受信する一対の超音波振動子と、 一方の前記超音波振動子を駆動する駆動回路と、 他方の前記超音波振動子に接続され超音波パルスを検知する受信検知回路と、 受 信検知回路の出力をうけ再度超音波振動子を駆動するよう前記駆動回路を所定回 数制御する制御部と、 前記所定回数の経過時間を測定するタイマと、 前記夕イマ の出力より流量を演算によって求める演算部と、 駆動回路の駆動方法を順次変更 する周期性安定化手段とを備え、 制御部は測定周期が常に一定となるように周期 性安定化手段を制御する流量計。 6 7. A flow rate measurement unit through which the fluid to be measured flows, a pair of ultrasonic transducers provided in the flow rate measurement unit for transmitting and receiving ultrasonic waves, a drive circuit for driving one ultrasonic transducer, and the other A reception detection circuit that is connected to the ultrasonic vibrator and detects an ultrasonic pulse; a control unit that receives the output of the reception detection circuit and controls the drive circuit a predetermined number of times to drive the ultrasonic vibrator again; A timer for measuring a predetermined number of elapsed times, an arithmetic unit for calculating the flow rate from the output of the timer, and periodicity stabilizing means for sequentially changing a driving method of the drive circuit; A flow meter that controls the periodic stabilization means so that it is always constant.
6 8 . 制御部は異なる遅延時間が設定可能なディレイ部からなる周期性安定化手 段を有し、 前記制御部は遅延時間を切り替えて駆動回路の出力タイミングを変更 する請求項 6 7記載の流量計。 68. The control device according to claim 67, wherein the control unit has a periodicity stabilizing means including a delay unit that can set a different delay time, and the control unit changes the output time of the drive circuit by switching the delay time. Flowmeter.
6 9 . 制御部は測定時間を一定とするよう駆動回路を制御する請求項 6 7記載の 流量計。 69. The control device according to claim 67, wherein the control unit controls the drive circuit so that the measurement time is constant. Flowmeter.
PCT/JP2000/004165 1999-06-24 2000-06-23 Flowmeter WO2001001081A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU55693/00A AU5569300A (en) 1999-06-24 2000-06-23 Flowmeter
US10/019,418 US6796189B1 (en) 1999-06-24 2000-06-23 Ultrasonic flowmeter having sequentially changed driving method
EP00940829A EP1243901A4 (en) 1999-06-24 2000-06-23 Flowmeter
US10/711,053 US6915704B2 (en) 1999-06-24 2004-08-19 Ultrasonic flowmeter including stable flow rate calculation means based on instantaneous flow rate
US10/711,055 US7082841B2 (en) 1999-06-24 2004-08-19 Ultrasonic flowmeter
US10/711,054 US6941821B2 (en) 1999-06-24 2004-08-19 Ultrasonic flowmeter including stable flow rate calculation means based on instantaneous flow rate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11/177952 1999-06-24
JP17795299A JP4556253B2 (en) 1999-06-24 1999-06-24 Flowmeter
JP11182995A JP2001012981A (en) 1999-06-29 1999-06-29 Flowmeter
JP11/182995 1999-06-29
JP2000034677A JP2001228002A (en) 2000-02-14 2000-02-14 Flowmeter
JP2000/34677 2000-02-14

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US10/019,418 A-371-Of-International US6796189B1 (en) 1999-06-24 2000-06-23 Ultrasonic flowmeter having sequentially changed driving method
US10019418 A-371-Of-International 2000-06-23
US10/711,054 Division US6941821B2 (en) 1999-06-24 2004-08-19 Ultrasonic flowmeter including stable flow rate calculation means based on instantaneous flow rate
US10/711,053 Division US6915704B2 (en) 1999-06-24 2004-08-19 Ultrasonic flowmeter including stable flow rate calculation means based on instantaneous flow rate
US10/711,055 Division US7082841B2 (en) 1999-06-24 2004-08-19 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
WO2001001081A1 true WO2001001081A1 (en) 2001-01-04

Family

ID=27324500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004165 WO2001001081A1 (en) 1999-06-24 2000-06-23 Flowmeter

Country Status (6)

Country Link
US (4) US6796189B1 (en)
EP (1) EP1243901A4 (en)
KR (1) KR100487690B1 (en)
CN (1) CN1293369C (en)
AU (1) AU5569300A (en)
WO (1) WO2001001081A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808380A (en) * 2013-12-23 2014-05-21 浙江先芯科技有限公司 Flow rapid tracking method for ultrasonic flow metering device
CN105067056A (en) * 2014-05-07 2015-11-18 阿自倍尔株式会社 Ultrasonic flow meter and ultrasound absorbing body fault evaluating method
CN117783571A (en) * 2024-02-27 2024-03-29 山西阳光三极科技股份有限公司 Working circuit of ultrasonic anemometer
CN117783571B (en) * 2024-02-27 2024-06-04 山西阳光三极科技股份有限公司 Working circuit of ultrasonic anemometer

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669580B2 (en) * 2002-05-24 2005-07-06 学校法人慶應義塾 Ultrasonic flow velocity distribution and flow meter
DE10227918A1 (en) * 2002-06-21 2004-01-15 Bühler AG Method for determining rheological parameters of a fluid
CN100449276C (en) * 2002-08-05 2009-01-07 松下电器产业株式会社 Flow rate measuring apparatus
PT1565708E (en) * 2002-11-25 2007-04-30 Elster Instromet Ultrasonics B Ultrasonic signal processing method and applications thereof
JP4788235B2 (en) * 2005-08-16 2011-10-05 パナソニック株式会社 Fluid flow measuring device
JP4952164B2 (en) * 2006-09-20 2012-06-13 株式会社デンソー Flow measuring element, mass flow meter
US7366625B1 (en) * 2006-10-04 2008-04-29 Cameron International Corporation Method, apparatus and computer medium for correcting transient flow errors in flowmeter proving data
WO2008054333A1 (en) * 2006-11-01 2008-05-08 Cihat Celik Basar Sonic state control sensor
JP5177890B2 (en) * 2006-12-27 2013-04-10 パナソニック株式会社 Ultrasonic flow meter
US20080236481A1 (en) * 2007-03-29 2008-10-02 Intevac Corporation Method of and apparatus for monitoring mass flow rate of lubricant vapor forming lubricant coatings of magnetic disks
US20090047417A1 (en) * 2007-03-30 2009-02-19 Barnes Michael S Method and system for vapor phase application of lubricant in disk media manufacturing process
EP2706425B1 (en) * 2008-06-26 2020-09-23 Belparts Flow control system
WO2010079568A1 (en) * 2009-01-06 2010-07-15 パナソニック株式会社 Flow rate measurement device
US7966893B2 (en) * 2009-06-16 2011-06-28 Daniel Measurement And Control, Inc. Adjusting transducer frequency without ceasing fluid flow through a meter
JP5524972B2 (en) * 2009-09-30 2014-06-18 パナソニック株式会社 Flow measuring device
JP2011158470A (en) * 2010-01-07 2011-08-18 Panasonic Corp Ultrasonic flowmeter
JP5470186B2 (en) * 2010-07-30 2014-04-16 日本発條株式会社 Inspection device cleanliness inspection device and cleanliness inspection method
TW201219780A (en) * 2010-11-12 2012-05-16 Tatung Co Ultrasonic gas flow measurement device
FR2968084B1 (en) * 2010-11-25 2013-11-15 Pulsonic SPEED ACOUSTIC MEASUREMENT METHOD AND DEVICE FOR FLOW CHARACTERIZATION
JP2012127663A (en) * 2010-12-13 2012-07-05 Panasonic Corp Flow rate measuring device
CN103459988B (en) * 2011-04-05 2016-08-17 松下电器产业株式会社 Ultrasonic flow rate measurement device
KR101142897B1 (en) * 2011-10-06 2012-05-10 웨스글로벌 주식회사 Ultrasonic measure system for both flow and concentration
DE102011115708A1 (en) 2011-10-12 2013-04-18 Systec Controls Mess- Und Regelungstechnik Gmbh Method for determining an absolute flow velocity of a volume or mass flow
JP2013148523A (en) * 2012-01-23 2013-08-01 Panasonic Corp Flow rate measuring instrument
JP5906388B2 (en) * 2012-05-17 2016-04-20 パナソニックIpマネジメント株式会社 Flow measuring device
CN103541716A (en) * 2012-07-12 2014-01-29 成都科盛石油科技有限公司 Oil field oil flow measuring system with pre-processing function
JP6095096B2 (en) * 2012-10-01 2017-03-15 愛知時計電機株式会社 Ultrasonic flow meter
DE102012112516A1 (en) 2012-12-18 2014-06-18 Endress + Hauser Flowtec Ag Method for verifying the reliability of measured data measured by an ultrasonic flow measurement according to the transit time difference method and ultrasonic flowmeter
DE102012112522A1 (en) * 2012-12-18 2014-06-18 Endress + Hauser Flowtec Ag Method for determining a flow velocity or a flow of a measuring medium through an ultrasonic flowmeter
JP6273487B2 (en) 2013-07-12 2018-02-07 国立研究開発法人宇宙航空研究開発機構 Method and apparatus for measuring pulsating flow rate
CN104864923A (en) * 2014-02-24 2015-08-26 通用电气公司 Circuit assemblies for transmitting and receiving ultrasonic signals as well as system and method adopting circuit assemblies
US11699196B2 (en) * 2014-06-09 2023-07-11 Sicpa Holding Sa Creating secure data in an oil and gas supply chain
GB2531882B (en) * 2014-08-22 2019-05-08 Schlumberger Holdings Methodologies and apparatus for the recognition of production tests stability
US10309816B2 (en) 2014-08-22 2019-06-04 Schlumberger Technology Corporation Methodologies and apparatus for the recognition of production tests stability
CN105629243A (en) * 2014-11-04 2016-06-01 环创(厦门)科技股份有限公司 Online monitoring sonar device for solid waste in sewage pipe duct
CN105629246A (en) * 2014-11-04 2016-06-01 环创(厦门)科技股份有限公司 Section scanning and imaging sonar device of pipe duct sewage
US9714855B2 (en) 2015-01-26 2017-07-25 Arad Ltd. Ultrasonic water meter
CA2895361C (en) * 2015-06-19 2023-08-01 Accutron Instruments Inc. Method and system for ultrasonic airflow measurements
DK3317658T3 (en) * 2015-07-03 2020-11-30 Kamstrup As TURBIDITY SENSOR BASED ON ULTRASOUND MEASUREMENTS
CN105403266B (en) * 2015-12-16 2019-03-01 宁波水表股份有限公司 A kind of heavy caliber Ultrasonic water meter automatically corrected and its bearing calibration
EP3244171A4 (en) * 2016-02-05 2018-03-14 Fuji Electric Co., Ltd. Measuring device, measuring method, and program
DE102016103260B3 (en) * 2016-02-24 2017-01-12 Sick Engineering Gmbh Ultrasonic flowmeter
GB2549717B (en) 2016-04-25 2018-09-05 Sentronics Ltd Flow meter
DE102016113200B4 (en) * 2016-07-18 2022-05-25 Krohne Ag Method of operating a flow meter and flow meter
JP6696458B2 (en) * 2017-02-23 2020-05-20 株式会社島津製作所 Optical emission spectrometer
KR102042926B1 (en) * 2017-06-13 2019-12-05 (주)씨엠엔텍 Method for treating signal of sound wave
USD851524S1 (en) 2018-01-18 2019-06-18 Norgas Metering Technologies, Inc. Ultrasonic flow meter
CA3090082A1 (en) 2018-02-01 2019-08-08 Reliance Worldwide Corporation Sensor mount
CA3089956A1 (en) * 2018-02-01 2018-02-01 Reliance Worldwide Corporation Flow tube for hosting a flow meter and a shut-off valve
KR102026362B1 (en) 2018-08-01 2019-09-27 서울대학교산학협력단 Ultrasonic transducers for flow velocity measurement with meta slab
EP4043838A4 (en) * 2019-11-15 2022-11-02 Shenzhen Goodix Technology Co., Ltd. Flow velocity measurement circuit, related chip, and flow meter
JP7488710B2 (en) * 2020-07-21 2024-05-22 富士フイルムヘルスケア株式会社 Ultrasound Imaging Device
KR102325575B1 (en) 2021-05-06 2021-11-12 주소희 Apparatus for measuring volumetric flow using weight sensor
CN113155214B (en) * 2021-05-12 2023-04-07 郑州安然测控技术股份有限公司 Ultrasonic gas meter metering data sampling method and device
US20220022847A1 (en) * 2021-06-21 2022-01-27 Hitachi, Ltd. Ultrasound imaging apparatus
DE102021129096A1 (en) * 2021-11-09 2023-05-11 Diehl Metering Gmbh Method for operating an ultrasonic fluid meter and ultrasonic fluid meter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635217A (en) * 1986-06-25 1988-01-11 Tokyo Keiki Co Ltd Ultrasonic current meter
US5513535A (en) * 1991-12-23 1996-05-07 Instrumenttitehdas Kytola Oy Method and device for measurement of the flow velocities of gases and/or of quantities that can be derived from same
JPH08271313A (en) * 1995-03-30 1996-10-18 Tokyo Gas Co Ltd Gas flow meter
JPH08304135A (en) * 1995-04-28 1996-11-22 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
EP0806635A1 (en) 1994-10-19 1997-11-12 Matsushita Electric Industrial Co., Ltd Flow rate measurement method and ultrasonic flow meter
JPH09304139A (en) 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd Measuring apparatus for flow rate
JPH1144563A (en) 1997-07-29 1999-02-16 Matsushita Electric Ind Co Ltd Apparatus for measuring flow rate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709034A (en) * 1971-02-02 1973-01-09 Fischer & Porter Co Signal conditioner for recovering dominant signals from swirl-type meters
DE3132526C2 (en) * 1981-08-18 1984-11-15 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Method and device for measuring transit time differences of ultrasonic pulses for determining flow fields, in particular of velocity components in gaseous media
NO831718L (en) * 1983-05-13 1984-11-14 Vingmed As PROCEDURE AND APPARATUS AT BLOOD STREET SPEED MEASUREMENT WITH ULTRO SOUND FOR BODY-TIME DIMENSIONAL IMAGE OF BLOOD SPEED
US5040415A (en) * 1990-06-15 1991-08-20 Rockwell International Corporation Nonintrusive flow sensing system
DE69222401T2 (en) * 1991-12-11 1998-04-02 Koninkl Philips Electronics Nv Ultrasonic echograph for measuring high speeds of blood flows
GB2279146B (en) * 1993-06-19 1996-07-03 British Aerospace Method and assembly for measuring mass flow or velocity flow of a fluid
WO1995002169A2 (en) * 1993-07-06 1995-01-19 Daniel Industries, Inc. Measuring the time of flight of a signal
US5918281A (en) * 1996-05-28 1999-06-29 Nabulsi; Haz Personal speedometer
US5831175A (en) * 1996-06-12 1998-11-03 Welch Allyn, Inc. Method and apparatus for correcting temperature variations in ultrasonic flowmeters
JP3695031B2 (en) * 1997-01-16 2005-09-14 松下電器産業株式会社 Flow measuring device
JPH1111563A (en) * 1997-06-24 1999-01-19 Daiken Trade & Ind Co Ltd Packaging material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635217A (en) * 1986-06-25 1988-01-11 Tokyo Keiki Co Ltd Ultrasonic current meter
US5513535A (en) * 1991-12-23 1996-05-07 Instrumenttitehdas Kytola Oy Method and device for measurement of the flow velocities of gases and/or of quantities that can be derived from same
EP0806635A1 (en) 1994-10-19 1997-11-12 Matsushita Electric Industrial Co., Ltd Flow rate measurement method and ultrasonic flow meter
JPH08271313A (en) * 1995-03-30 1996-10-18 Tokyo Gas Co Ltd Gas flow meter
JPH08304135A (en) * 1995-04-28 1996-11-22 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
JPH09304139A (en) 1996-05-16 1997-11-28 Matsushita Electric Ind Co Ltd Measuring apparatus for flow rate
JPH1144563A (en) 1997-07-29 1999-02-16 Matsushita Electric Ind Co Ltd Apparatus for measuring flow rate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808380A (en) * 2013-12-23 2014-05-21 浙江先芯科技有限公司 Flow rapid tracking method for ultrasonic flow metering device
CN105067056A (en) * 2014-05-07 2015-11-18 阿自倍尔株式会社 Ultrasonic flow meter and ultrasound absorbing body fault evaluating method
CN117783571A (en) * 2024-02-27 2024-03-29 山西阳光三极科技股份有限公司 Working circuit of ultrasonic anemometer
CN117783571B (en) * 2024-02-27 2024-06-04 山西阳光三极科技股份有限公司 Working circuit of ultrasonic anemometer

Also Published As

Publication number Publication date
US6915704B2 (en) 2005-07-12
EP1243901A4 (en) 2006-07-05
US6796189B1 (en) 2004-09-28
US20050000301A1 (en) 2005-01-06
KR100487690B1 (en) 2005-05-06
US7082841B2 (en) 2006-08-01
US20040261539A1 (en) 2004-12-30
CN1293369C (en) 2007-01-03
AU5569300A (en) 2001-01-31
EP1243901A1 (en) 2002-09-25
US20040267464A1 (en) 2004-12-30
CN1358270A (en) 2002-07-10
US6941821B2 (en) 2005-09-13
KR20020019929A (en) 2002-03-13

Similar Documents

Publication Publication Date Title
WO2001001081A1 (en) Flowmeter
EP2631610B1 (en) Flow-rate measurement device
JP5402620B2 (en) Flow measuring device
KR100440759B1 (en) Flow rate measuring device
JP4556253B2 (en) Flowmeter
JP2014224684A (en) Flow rate measuring device
JP2007187506A (en) Ultrasonic flowmeter
JP4271979B2 (en) Ultrasonic gas concentration flow measurement method and apparatus
JP2006343292A (en) Ultrasonic flowmeter
JPH1144563A (en) Apparatus for measuring flow rate
JP2004144744A (en) Ultrasonic flowmeter
JP4861465B2 (en) Ultrasonic flow meter
JP3695031B2 (en) Flow measuring device
JP3427839B1 (en) Flow measurement device
JP4759835B2 (en) Flow measuring device
JP3651110B2 (en) Ultrasonic current meter
JP6767628B2 (en) Flow measuring device
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP2000035353A (en) Method and apparatus for measurement of propagation time as well as ultrasonic flowmeter
JP3624901B2 (en) Flow measuring device
JP4007114B2 (en) Flow measuring device
JP5092413B2 (en) Flow velocity or flow rate measuring device
JP2011064517A (en) Flow measuring device of fluid
JP2001228002A (en) Flowmeter
JP2012007974A (en) Flow rate measuring device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00809439.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020017016609

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000940829

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10019418

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000940829

Country of ref document: EP