WO2000078980A1 - Verfahren zur herstellung von pflanzen mit erhöhtem gehalt an flavonoiden und phenolischen verbindungen - Google Patents

Verfahren zur herstellung von pflanzen mit erhöhtem gehalt an flavonoiden und phenolischen verbindungen Download PDF

Info

Publication number
WO2000078980A1
WO2000078980A1 PCT/EP2000/005257 EP0005257W WO0078980A1 WO 2000078980 A1 WO2000078980 A1 WO 2000078980A1 EP 0005257 W EP0005257 W EP 0005257W WO 0078980 A1 WO0078980 A1 WO 0078980A1
Authority
WO
WIPO (PCT)
Prior art keywords
plants
plant
flavonoids
activity
hydroxylase
Prior art date
Application number
PCT/EP2000/005257
Other languages
English (en)
French (fr)
Inventor
Wilhelm Rademacher
Klaus Krämer
Jürgen Schweden
Karin Herbers
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to PL00346059A priority Critical patent/PL346059A1/xx
Priority to HU0103307A priority patent/HUP0103307A2/hu
Priority to EP00945714A priority patent/EP1102855A1/de
Priority to KR1020017002018A priority patent/KR20020068256A/ko
Priority to AU59704/00A priority patent/AU5970400A/en
Priority to IL14117300A priority patent/IL141173A0/xx
Priority to JP2001505720A priority patent/JP2003503032A/ja
Priority to CA002340319A priority patent/CA2340319A1/en
Priority to BR0006869-1A priority patent/BR0006869A/pt
Publication of WO2000078980A1 publication Critical patent/WO2000078980A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9771Ginkgophyta, e.g. Ginkgoaceae [Ginkgo family]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/522Antioxidants; Radical scavengers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/74Biological properties of particular ingredients
    • A61K2800/78Enzyme modulators, e.g. Enzyme agonists
    • A61K2800/782Enzyme inhibitors; Enzyme antagonists
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/86Products or compounds obtained by genetic engineering

Definitions

  • the present invention relates to a process for increasing the content of flavonoids and phenolic constituents in plants, characterized in that a plant is produced using molecular genetic methods in which the activity of the enzyme flavanon-3-hydroxylase is reduced.
  • the method according to the invention is characterized in that the enzyme flavanone-3-hydroxylase by molecular biological methods (eg anti-sense construct, co-suppression, the expression of specific antibodies or the expression of specific inhibitors) in whole or in part, continuously or temporarily activity in the entire plant or in parts of the plant is reduced.
  • molecular biological methods eg anti-sense construct, co-suppression, the expression of specific antibodies or the expression of specific inhibitors
  • the invention furthermore relates to plants with an increased content of flavonoids and phenolic ingredients, characterized in that their enzymatic activity of the enzyme flavonon-3-hydoxylase is reduced.
  • the invention relates to the use of plants - produced by the process according to the invention - or parts of these plants as foods, food supplements or for the preparation of curative, health-promoting or strengthening agents (juices, teas, extracts, fermentation products) for humans and animals and for the manufacture of cosmetics.
  • curative, health-promoting or strengthening agents juices, teas, extracts, fermentation products
  • phenolic substances are found in plants, eg caffeic acid, ferulic acid, chlorogenic acid, gallic acid, eugenol, lignans, coumarins, lignin, stilbenes (polydatin, resveratrol), flavonoids (flavones, catechins, flavanones, anthocyanidins, isoflavones), polymethoxylated flavones. Accordingly, phenols are also a general component of many plant-based foods and stimulants. Certain phenolic substances are of particular importance because they can exert an antioxidative effect in human or animal metabolism after ingestion with food (Baum, B. 0 .; Perun, AL Antioxidant efficiency versus structure.
  • polyphenols have various effects on cell metabolism.
  • signal transduction enzymes such as protein kinase C, tyrosine protein kinase and phosphatidylinositol-3-kinase are modulated
  • a number of healing, health-promoting or strengthening agents are therefore already obtained from suitable plants, the effect of which is based on their content of phenolic substances (Gerritsen, ME; Carley, WW; Ranges, GE; Shen, CP; Phan, SA; Ligon, GF ; Perry, CA Flavonoids inhibit cyto-kine-induced endothelial cell adhesion protein gene expression.
  • the resveratrol (along with other components) contained in white wine, but especially in red wine, is effective, for example, against heart attacks, cardiovascular diseases and cancer (Gehm, BD; McAndrews, JM; Chien, P.-Y .; Jameson, JL Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for estrogen reeeptor.
  • polymethoxylated flavones from citrus fruits also have a potential antitumor effect (Chem, J.; Montanari, AM; Widmer, WW Two new polymethoxylated flavones, a class of compounds with potential anticancer activity, isolated from cold pressed dancy tangerine peel oil solids, J Agric Food Chem 45: 364-368, (1997)).
  • the object of the present invention was to find a simple and inexpensive method for increasing the content of flavonoids and phenolic constituents in crop plants.
  • Acylcyclohexadiones such as Prohexadione-Ca and Trinexapac-ethyl (older name: Cimectacarb) are used as bioregulators to inhibit plant growth. Their bioregulatory effect is due to the fact that they block the bio-synthesis of gibberellins that promote growth. Because of their structural relationship to 2-oxoglutaric acid, they inhibit certain dioxygenases that require 2-0xoglutaric acid as a co-substrate (Rademacher, W, Biochemical effects of plant growth retardants, in: Plant Biochemical Regulators, Gausman, HW (ed.) , Marcel Dekker, Inc., New York, pp. 169-200
  • Luteoliflavan is not normally found in apple tissue and eriodyctiol occurs only in small quantities as an intermediate in flavonoid metabolism.
  • the expected flavonoids catechin and cyanidine were not detectable in the treated tissue or only occurred in significant amounts.
  • PAL phenylalanine ammonium lyase
  • the flavonoids eriodictyol, proanthocyanidins which are substituted on the C atom 3 with hydrogen, eg luteoforol, luteoliflavan, apigeniflavan and tricetiflavan, as well as homogeneous and heterogeneous oligomers and polymers increasingly formed from the mentioned and structurally related substances.
  • the concentration of the glycosides of the flovonoids, the phenolic compounds, the chalcones and the stilbene is also increased.
  • genetically modified crop plants were generated in which the activity of F3H was reduced in whole or in part, permanently or temporarily, by anti-sense constructs, in the entire plant or in individual plant organs or tissues , so that the content of healing, health-promoting or strengthening ingredients was quantitatively and qualitatively improved.
  • the process according to the invention for increasing the content of flavonoids and phenolic compounds by expression of the flavonon-3-hydroxylase in an antisense orientation can be carried out successfully in the following crop plants, the process not being limited to the plants mentioned: grapevine, cherry , Tomato, plum, sloe, blueberry, strawberry, citrus (such as orange, grapefruit), papaya, red cabbage, broccoli, Brussels sprouts, cocoa, kale, carrot, parsley, celery, onions, garlic, tea, coffee, hops, soy , Rapeseed, oats, wheat, rye, Aronia melanocarpa, Ginko biloba.
  • the invention furthermore relates to plants with an increased content of flavonoids and phenolic constituents produced by the process according to the invention, characterized in that their enzymatic activity of the enzyme flavanon-3-hydroxylase is reduced.
  • flavonoids and phenolic constituents produced by the process according to the invention, characterized in that their enzymatic activity of the enzyme flavanon-3-hydroxylase is reduced.
  • other molecular genetic methods known from the literature such as co-suppression or the expression of specific antibodies, can also be used to achieve this effect .
  • the invention relates to the use of plants - produced by the process according to the invention - or parts of these plants as food, food supplements or for the production of curative, health-promoting or strengthening agents (juices, teas, extracts, fermentation products) for humans and animals and for Manufacture of cosmetics.
  • NF-kB redox-sensitive transcription factors
  • Ripe tomato fruits from Lycopersicon esculentum Mill.cv. Moneymakers were washed, dried and the pericarp was freed from seeds, middle columnella and wooden parts using a sterile blade.
  • the pericarp (approx. 50 g) was frozen in liquid nitrogen. The material was then crushed in a mixer. The comminuted material was mixed with 100 ml homogenizing medium in a pre-cooled mortar. The suspension was then transferred to centrifuge cups by pressing through sterile gauze cloths. Then 1/10 vol 10% SDS was added and mixed well. After 10 minutes on ice, 1 volume of phenol / chloroform was added, the centrifuge cup closed and mixed well.
  • the supernatant was transferred to a new reaction vessel. This was followed by three further phenol / chloroform extractions and one chloroform extraction. In the following, 1 vol 3 M NaAC and 2.5 vol ethanol were added. The nucleic acids were precipitated overnight at -20 ° C. The next morning, the nucleic acids were pelleted for 15 minutes at 10,000 rpm in the refrigerated centrifuge (4 ° C). The supernatant was discarded and the pellet resuspended in 5 ml of cold 3 M NaAc. This washing step was repeated twice. The pellet was washed with 80% ethanol. The completely dried pellet was taken up in about 0.5 ml of sterile DEPC water and the RNA concentration was determined photometrically.
  • RNA 20 ⁇ g of total RNA were first mixed with 3.3 ⁇ l of 3M sodium acetate solution, 2 ⁇ l of IM magnesium sulfate solution and made up to 100 ⁇ l of final volume with DEPC water.
  • a microliter RNase-free DNase (Boehringer Mannheim) was added and incubated at 37 ° for 45 min. After removing the enzyme by shaking with phenol / chloroform / isoamyl alcohol, the RNA was precipitated with ethanol and the pellet was taken up in 100 ⁇ l DEPC water. 2.5 ⁇ g RNA from this solution were transcribed into cDNA using a cDNA kit (Gibco BRL).
  • sequence of the oligonucleotide derived using the peptide sequence DHQAW was as follows: 5'-CTT CAC ACA (C / G / T) GC (C / T) TG (A / G) TG (A / G) TC-3.
  • the PCR reaction was carried out using the Perkin-Elmer tTth polymerase according to the manufacturer's instructions. 1/8 of the cDNA was used as template (corresponds to 0.3 ⁇ g RNA).
  • the PCR program was:
  • the fragment was cloned into Promega's vector pGEM-T according to the manufacturer's instructions.
  • the correctness of the fragment was checked by sequencing.
  • the PCR fragment was isolated using the restriction sites Ncol and Pstl present in the polylinker of the vector pGEM-T and the protruding ends were blunt-ended using the T4 polymerase. This fragment
  • Fragment A (529 bp) contains the 35S promoter of the CaMV (nucleotides 6909 to 7437 of the cauliflower mosaic virus).
  • Fragment B the fragment of the F3H gene in antisense orientation.
  • Fragment C (192 bp) contains the termination signal of the octopine synthase gene. Cloning of a larger cDNA fragment of Flavanone-3-hydroxylase from Lycopersicon esculentum Mill.cv. Moneymaker using the 5'RACE system.
  • a second antisense construct should be generated using a larger F3H fragment.
  • the 5'RACE method (System for Rapid amplification of cDNA ends) was used to clone a larger fragment of the F3H.
  • the cDNA first strand synthesis was carried out according to the manufacturer's instructions using the GSP-1 (gene-specific primer) 5'-TTCAC-CACTGCCTGGTGGTCC-3 '. Following an RNase digest, the cDNA was purified using the GlassMAX spin system from Life Tecgnologies TM in accordance with the manufacturer's instructions.
  • a cytosine homopolymer was added to the 3 'end of the purified single-stranded F3H cDNA using the terminal deoxynucleotydil transferase according to the manufacturer's instructions.
  • the 5 'extended F3H cDNA was amplified using a second gene-specific primer (GSP-2) which binds in the region 3' before the GSP-1 recognition sequence and thus enables a "nested” PCR.
  • GSP-2 second gene-specific primer
  • the 5 'primer was that of Manufacturer supplied "5 'RACE abrided anchor primer", which is complementary to the homopolymeric dC tail of the cDNA.
  • the cDNA fragment amplified in this way and designated as FSH extended was cloned into the vector pGEM-T from Promega according to the manufacturer's instructions.
  • the identity of the cDNA was confirmed by sequencing.
  • the FSHextended cDNA fragment was isolated using the restriction sites Ncol and Pstl present in the polylinker of the vector pGEM-T and the protruding ends under Conversion using T4 polymerase and blunt ends.
  • This fragment was cloned into a Smal (blunt) cut vector pBinAR (Höfgen and Willmitzer, 1990) (see Figure 3).
  • This vector mediates resistance to the antibiotic kanamycin in plants.
  • the DNA constructs obtained contained the PCR fragment in sense and antisense orientation. The antisense construct was used to generate transgenic plants.
  • Fragment A (529 bp) contains the 35S promoter of the CaMV (nucleotides 6909 to 7437 of the cauliflower mosaic virus).
  • Fragment B the fragment of the F3H gene in antisense orientation.
  • Fragment C (192 bp) contains the termination signal of the octopine synthesis gene.
  • Tomato seeds (Lycopersicon esculentum Mill. Cv. Moneymaker) were incubated by 10 minutes incubation in 4% sodium hypochlorite solution, then washed 3-4 times with sterile distilled water and placed on MS medium with 3% sucrose, pH 6, 1 for germination . After a germination period of 7-10 d, the cotyledons could be used for the transformation.
  • Day 2 Sterile filter paper was placed on the plates coated with the tobacco suspension culture without air bubbles. The cross-cut cotyledons were placed on top with the top down. The petri dishes were incubated for 3 days in the culture room.
  • Day 5 The agrobacterial culture (LBA4404) was sedimented by centrifugation at approx. 3000 g for 10 min and resuspended in MS medium so that the OD was 0.3. The cotyledon fragments were added to this suspension, which were incubated with gentle shaking for 30 minutes at room temperature. The cotyledon fragments were then dried off somewhat on sterile filter paper and placed back on their starting plates for the continued cultivation for 3 days in the culture room.
  • Example 2 in addition a partial fragment of flavanone-3-hydroxylase in antisense orientation, an amount between 10 and 20 mg was weighed exactly and so much DMSO was added that a stock solution of 10 mM total flavonoids was formed. Dilutions of these stock solutions were made in the culture medium immediately before the start of the test. The dilutions were made in 10 steps between 10 -4 and 10 " 8 M.
  • the hepatocyte cultures were held for a total of 22 h to demonstrate that cholesterol biosynthesis was influenced by test substances A and B. It was then incubated with serum-free Williams Medium E with the addition of 14 C acetate (only tracer amounts) with the test substances in the stated concentrations for 2 h. A control was carried out for each test series. The methodology is described in detail in Gebhardt (1991) and Gebhardt, Lipids 28: 613 -619 (1993). The tracer amounts of 14 C-acetate quickly exchange with the intracellular acetyl-CoA pool and therefore enable a trouble-free determination of the incorporation of 1 C-acetate in the sterol fraction, which consists of> 90% cholesterol (Gebhardt, 1993).
  • Samples A) from the non-genetically modified tomatoes showed no effects on cholesterol biosynthesis.
  • cholesterol synthesis was significantly inhibited by samples B from the tomatoes containing a partial fragment of flavanone 3-hydroxylase in the antisense orientation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Birds (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Toxicology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)

Abstract

Verfahren zur Erhöhung des Flavonoid-Gehalts in Pflanzen, dadurch gekennzeichnet, dass mit molekulargenetischen Methoden eine Pflanze hergestellt wird, in der die Aktivität des Enzyms Flavanon-3-hydroxylase reduziert ist.

Description

Verfahren zur Herstellung von Pflanzen mit erhöhtem Gehalt an Flavonoiden und phenolischen Verbindungen
Beschreibung
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Erhöhung des Gehalts an Flavonoiden und phenolischen Inhaltsstoffen in Pflanzen dadurch gekennzeichnet, daß mit molekulargenetischen Methoden eine Pflanze hergestellt wird in der die Aktivität des Enzyms Flavanon-3-hydroxylase reduziert ist.
Desweiteren ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, daß das Enzym Flavanon-3-hydroxylase durch molekular- biologische Verfahren (z.B. Anti-Sense-Konstrukt, Co-Suppression, der Expression spezifischer Antikörper oder der Expression spezifischer Inhibitoren) ganz oder teilweise, andauernd oder vorübergehend, in der gesamten Pflanze oder in Teilen der Pflanze in seiner Aktivität reduziert ist.
Weiterer Gegenstand der Erfindung sind Pflanzen mit erhöhtem Gehalt an Flavonoiden und phenolischen Inhaltsstoffen dadurch gekennzeichnet, daß deren enzymatische Aktivität des Enzyms Flava- non-3-hydoxylase reduziert ist.
Darüberhinaus ist Gegenstand der Erfindung die Verwendung von Pflanzen - hergestellt nach dem erfindungsgemäßen Verfahren - oder von Teilen dieser Pflanzen als Nahrungsmittel, Nahrungser- gänzungsmittel oder zur Herstellung von heilenden, gesundheits- fördernden oder stärkenden Mitteln (Säfte, Tees, Extrakte, Fermentationsprodukte) für Mensch und Tier sowie zur Herstellung von Kosmetika.
Verschiedene phenolische Substanzen kommen in Pflanzen vor, z.B. Kaffeesäure, Ferulasäure, Chlorogensäure, Gallussäure, Eugenol , Lignane, Cumarine, Lignin, Stilbene (Polydatin, Resveratrol) , Flavonoide (Flavone, Catechine, Flavanone, Anthocyanidine, Iso- flavone) , polymethoxylierte Flavone. Demgemäß sind Phenole auch genereller Bestandteil vieler pflanzlicher Nahrungs- und Genuß - mittel. Bestimmte phenolische Substanzen sind von besonderer Bedeutung, da sie nach Aufnahme mit der Nahrung im menschlichen oder tierischen Stoffwechsel eine antioxidative Wirkung ausüben können (Baum, B. 0.; Perun, A. L. Antioxidant efficiency versus structure. Soc. Plast . Engrs Trans 2: 250-257, (1962); Gardner, P.T.; McPhail, D.B. ; Duthie, G.G. Electron spin resonance spectroscopic assessment of the antioxidant potential of teas in aqueous and organic media . J. Sei . Food Agric. 76: 257-262, (1997); Rice-Evans, C. A. ; Miller, N. J. ; Pananga, G. Structure- antioxidant activity relationship of flavonoids and phenolic acids. Free Radio . Biol . Med. 20: 933-956, (1996); Salah, N. ; Miller, N. J.; Paganga, G.; Tijburg, L. ; Bolwell, G. P. ; Rice- Evans, C. Polyphenolic flavonoids as scavenger of aqueous phase radicals and as chain-breaking antioxidants . Arch Biochem Biophys 322: 339-346, (1995); Stryer, L. Biochemis try S . Francisco: Free- man, (1975); Vieira, 0.; Escargueil-Blanc, I.; Meilhac, 0.; Ba- sile, J. P.; Laranjinha, J.; Almeida, L.; Salvayre, R. ; Negre- Salvayre, A. Effect of dietary phenolic compounds on apoptosis of human cultured endothelial cells induced by oxidized LDL. Br J Pharmacol 123: 565-573, (1998)). Darüber hinaus haben Polyphenole vielfältige Wirkungen auf den Zellstoffwechsel. Unter anderem werden Enzyme der Signaltransduction wie Proteinkinase C, Tyro- sin-Proteinkinase und Phosphatidylinositol-3-kinase moduliert
(Agullo, G. ; Gamet-payrastre, L.,- Manenti, S.; Viala, C; Remesy, C.; Chap, H.; Payrastre, B. Relationship between flavonoid struc- ture and inhibition of phosphatidylinositol 3-kinase: a compari- son with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol 53 :1649-1657, (1997); Ferriola, P. C; Cody, V.; Mid- dleton, E. Protein kinase C inhibition by plant flavonoids. Kine- tic mechanisms and structure activity relationship. Biochem Pharmacol 38: 1617-1624, (1989); Cushman, M. ; Nagarathman, D.; Burg, D. L.; Geahlen, R. L. Synthesis and protein-tyrosine kinase inhibitory activity of flavonoids analogues. J Λfeed Chem 34:
798-806, (1991); Hagiwara, M. ; Inoue, S.; Tanaka, T.; Nunoki, K. ; Ito, M. ; Hidaka, H. Differential effects of flavonoids as inhibitors of tyrosine protein kinases and serine/threonin protein kinases. Biochem Pharmacol 37: 2987-2992, (1988)), die in- duzierbare NO-Synthase downreguliert (Kobuchi, H.; Droy- efaix, M. T. ,- Christen, Y. ; Packer, L. Ginkgo biloba extract (EGb761) : inhibitory effect on nitric oxide production in the macrophage cell line RAW 264.7. Biochem Pharmacol 53: 897-903, (1997)) und die Genexpression von z. B. Interleukinen und Adhäsionsmolekülen (ICAM-1, VCAM-1) reguliert (Kobuchi, H. ; Droy-Lefaix, M. T.;
Christen, Y.,- Packer, L. Ginkgo biloba extract (EGb761) : inhibitory effect on nitric oxide production in the macrophage cell line RAW 264.7. Biochem Pharmacol 53:897-903, (1997); Wolle, J.; Hill, R. R.; Ferguson, E. ; Devall, L. J.; Trivedi, B. K. ; Newton, R. S. ; Saxena, U. Selective inhibition of Tumor necrosis Factor- induced vascular cell adhesion molecule-1 gene expression by a novel flavonoid. Lack of effect on trascriptional factor NF-kB. Atherioscler Thromb Vase Biol 16: 1501-1508, (1996)). Es gilt als gesichert, daß diese Wirkungen positiv sind zur Vorbeugung und Prävention von Infarkten, Herz-Kreislauferkrankungen, Diabetes, bestimmter verschiedener Krebsarten, Tumorarten und weiterer chronischer Krankheiten (Bertuglia, S.; Malandrino, S.; Colan- tuoni, A. Effects of the natural flavonoid delphinidin on diabe- tic microangiopathy. Arznei -Forsch/Drug Res 45 : 481 -485, (1995); Griffiths, K. ; Adlercreutz, H.; Boyle, P.; Denis, L.; Nicholson, R.I.; Morton, M.S. Nutri tion and Cancer Oxford: Isis Medical Media, (1996); Hertog, M. G. L.; Fesrens, E. J. M.; Hollman, P. C. K. ; Katan, M. B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen eiderly study. The Lance t 342: 1007-1011, (1993); Kapiotis, S.; Hermann, M. ; Held, I.; Seelos, C. ; Ehringer, H. ,- Gmeiner, B. M. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vase Biol 17: 2868-74, (1997); Stampfer, M. J.; Hennekens, C. H. ; Manson, J. E.; Colditz, G. A. ; Rosner, B.; Willet, W. C. Vitamin E consumption and the risk of coronary di- sease in women. New Engl J Med 328 :1444-1449, (1993); Tijburg, L. B. M.; Mattern, T.; Folts, J. D. ; Weisgerber, U. M.; Katan, M. B. Tea flavonoids and cardiovascular diseases: a review. Crit Rev Food Sei Nutr 37: 771-785, (1997); Kirk, E. A.; Sutherland, P.; Wang, S. A.; Chait, A. ; LeBoeuf, R. C. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL reeeptor-deficient mice. J Nutr 128: 954-9, (1998) - Zitate - ) . Aus geeigneten Pflanzen wird daher bereits eine Reihe von heilenden, gesundheitsfördernden oder stärkenden Mitteln gewonnen, deren Wirkung auf ihrem Gehalt an phenolischen Substanzen beruht (Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A. ; Ligon, G. F.; Perry, C. A. Flavonoids inhibit cyto- kine-induced endothelial cell adhesion protein gene expression. Am J Pathol 147: 278-292, (1995); Lin, J. K. ; Chen, Y. C. ; Huang, Y. T. ; Lin-Shiau, S. Y. Suppression of protein kinase C and nu- clear oncogene expression as possible molecular mechanisms of cancer chemoprevention by apigenin and curcumin. J Cell Biochem Suppl 28-29:39-48, 1997; Zi, X.; Mukhtar, H. ; Agarval, R. Novel cancer chemoprevenetive effects of a flavonoid antioxidant silymarin: inhibition of mRNA expression of an endogenous tumor promoter TNF alpha. Bioche-τι Biophys Res Comm 239:334-339, 1997. Bekannt ist weiterhin, daß bestimmte pflanzliche Nahrungsmittel oder aus ihnen hergestellte Genußmittel eine positive Wirkung gegen verschiedene Krankheiten ausüben. Das in Weißwein, besonders aber in Rotwein, enthaltene Resveratrol (nebst weiterer Komponen- ten) wirkt beispielsweise gegen Infarkte kardiovasculäre Erkrankungen und Krebs (Gehm, B.D.; McAndrews, J.M.; Chien, P.-Y.; Ja- meson, J.L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for estrogen reeeptor. Proc Natl Acad Sei USA 94: 14138-14143, (1997),- Jang, M.; Cai , L.; Udeani, G.O.; Slowing, K.V. ; Thomas, C.F.; Beecher, C.W.W. ; Fong, H.H.S; Farns - worth, N.R.; Kinghorn, A.D.; Mehtha, R.G.; Moon, R.C., Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Sci ence 275: 218-220, (1997). Eine ähnliche Wirkung weisen auch Substanzen wie Catechin, Epicatec- hin-3-gallat, Epigallocatechin und Epigallocatechin-3-gallat auf, die in Blättern von Tee ( Camellia sinensis) vorkommen. Ins- besondere aus nicht-fermentierten Teeblättern (Grüner Tee) hergestellte Getränke sind von positiver gesundheitlicher Relevanz (Hu, G. ; Han, C. ; Chen, J. Inhibition of oncogene expression by green tea and (-) -epigallocatechin gallate in mice. JVutr Cancer 24: 203-209; (1995); Scholz, E; Bertram, B. Camellia sinensis (L.) 0. Kuntze. Der Teestrauch. Z. Phytotherapie 17: 235-250 ,
(1995); Yu, R. ; Jiao, J. J. ; Duh, J. L.; Gudehithlu, K.; Tan, T. H. ; Kong, A. N. Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the re- gulation of antioxidant responsive elements-mediated phase II en- zyme gene expression. Carcinigenesis 18: 451-456, (1997); Jankun, J. ; Selman, S.H.; Swiercz, R. Why drinking green tea could pre- vent cancer. iVature 387: 561, (1997). Darüber hinaus weisen auch polymethoxylierte Flavone aus Zitrusfrüchten eine potentielle an- titumorale Wirkung auf (Chem, J. ; Montanari, A.M. ; Widmer, W.W. Two new polymethoxylierte flavone, a class of compounds with potential anticancer activity, isolated from cold pressed dancy tangerine peel oil solids. J Agric Food Chem 45: 364-368, (1997) ) .
Aufgabe der vorliegenden Erfindung war es, ein einfaches und kostengünstiges Verfahren zur Erhöhung des Gehaltes an Flavonoiden und phenolischen Inhaltsstoffen in Kulturpflanzen zu finden.
Ausgehend von physiologischen Untersuchungen mit Wachstums - regulatoren aus der Gruppe der Acylcyclohexadione wurden nun überraschend gentechnologische Verfahren verfügbar, mit deren Hilfe sich Pflanzen erzeugen lassen, die sich durch einen erhöhten Gehalt an heilenden, gesundheitsfördernden oder stärkenden Inhaltsstoffen ausweisen.
Acylcyclohexadione wie Prohexadion-Ca und Trinexapac-ethyl (ältere Bezeichnung: Cimectacarb) werden als Bioregulatoren zur Hemmung des pflanzlichen Längenwachstums eingesetzt. Ihre bioregu- latorische Wirkung kommt dadurch zustande, daß sie die Bio- Synthese von längenwachstumsfördernden Gibberellinen blockieren. Dabei hemmen sie aufgrund ihrer strukturellen Verwandtschaft zu 2-Oxoglutarsäure bestimmte Dioxygenasen, die 2-0xoglutarsäure als Co-Substrat benötigen (Rademacher, W, Biochemical effects of plant growth retardants, in: Plant Biochemical Regulators, Gaus- man, HW (ed.), Marcel Dekker, Inc., New York, pp. 169-200
(1991) ) . Es ist bekannt, daß derartige Verbindungen auch in den Stoffwechsel von Phenolen eingreifen und so bei mehreren Pflan- zenarten eine Hemmung der Anthocyanbildung bewirken können (Rade- macher, W et al . , The mode of action of acylcyclohexanediones - a new type of growth retardant, in: Progress in Plant Growth Regulation, Karssen, CM, van Loon, LC, Vreugdenhil, D (eds.), Kluwer 5 Academic Publishers, Dordrecht (1992)). Derartige Effekte auf den Haushalt phenolischer Inhaltsstoffe werden als ursächlich für die Nebenwirkung von Prohexadion-Ca gegen Feuerbrand angegeben (Rade- macher, W et al., Prohexadione-Ca - a new plant growth regulator for apple with interesting biochemical features, Poster auf dem
10 25th Annual Meeting of the Plant Growth Regulation Society of America, 7.-10. Juli 1998, Chicago). A. Lux-Endrich (Dissertation Technische Universität München in Weihenstephan, 1998) findet im Verlauf ihrer Untersuchungen zum Wirkmechanismus von Prohexadion- Ca gegen Feuerbrand, daß es in Zellkulturen von Apfel durch Pro-
15 hexadion-Ca zu einer mehrfachen Erhöhung des Gehaltes an phenolischen Substanzen kommt und daß dabei eine Reihe von sonst nicht .vorhandenen Phenolen auftritt. Im Rahmen dieser Untersuchungen wurde weiterhin gefunden, daß unter dem Einfluß von Prohexadion-Ca relativ hohe Mengen von Luteoliflavan und Eriodyctiol
20 in Sproßgewebe von Apfel auftreten. Luteoliflavan kommt in Apfel - gewebe normalerweise nicht vor und Eriodyctiol tritt als Inter- mediat des Flavonoidstoffwechsels nur in geringen Mengen auf. Die zu erwartenden Flavonoide Catechin und Cyanidin waren im behandelten Gewebe jedoch nicht nachweisbar oder traten nur in deut-
25 lieh reduzierten Mengen auf (S. Römmelt et al, Vortrag 8th International Work- Shop on Fire Blight, Kusadasi, Türkei, 12.-15. Oktober 1998) .
Es kann als gesichert gelten, daß Prohexadion-Ca, Trinexapac-
30 ethyl und andere Acylcyclohexadione 2-Oxoglutarsäure-abhängige Hydroxylasen inhibieren, die im Stoffwechsel phenolischer Substanzen von Bedeutung sind. Dabei handelt es sich primär um Chal - consynthetase (CHS) und um Flavanon-3-hydroxylase (F3H) (W. Heller und G. Forkmann, Biosynthesis, in: The Flavonoids, Har-
35 borne, JB (ed.), Chapman and Hall, New York, 1988). Es kann jedoch nicht ausgeschlossen werden, daß Acylcyclohexadione auch weitere, bislang unbekannte, 2-Oxoglutarsäure-abhängige Hydroxylasen hemmen. Es dürfte ferner naheliegend sein, daß ein Mangel an Catechin, Cyanidin oder anderen Endprodukten der Flavonoid- 0 synthese von der Pflanze registriert wird und daß über einen
Feedback-Mechanismus die Aktivität des Schlüsselenzyms Phenylala- ninammoniumlyase (PAL) erhöht wird. Durch die weiterhin existierende Hemmung von CHS und F3H können diese Flavonoid-Endprodukte jedoch nicht gebildet werden, und es kommt zu einer vermehrten 5 Bildung von Luteoliflavan, Eriodyctiol und anderer Phenole (Abb .1 ) . Durch die Reduktion der Enzymaktivität des Enzyms Flavanon-3-hy- droxylase (F3H) werden die Flavonoide Eriodictyol, Proanthocyani - dine, die am C-Atom 3 mit Wasserstoff substituiert sind, z.B. Lu- teoforol, Luteoliflavan, Apigeniflavan und Tricetiflavan, sowie homogene und heterogene Oligomere und Polymere aus den genannten und strukturell verwandten Substanzen vermehrt gebildet.
Erhöhte Konzentratonen der Phenole Hydroxyzimtsäure (p-Cumar- säure, Ferulasäure, Sinapinsäure) , Salicylsäure oder Umbellife- ron, einschließlich der aus ihnen gebildeten homogenen und heterogenen Oligomere und Polymere werden nach Reduktion der Enzymaktivität des Enzyms Flavanon-3-hydroxylase (F3H) in Pflanzen festgestellt. Ebenso erhöht sich die Konzentration der Chalcone, wie z.B. Phloretin, und der Stilbene, wie z.B. Resveratrol.
Durch Reduktion der Enzymaktivität des Enzyms Flavanon-3 -hydroxylase wird auch die Konzentration der Glykoside der Flovonoide, der phenolischen Verbindungen, der Chalcone und der Stilbene erhöht.
Ausgehend von diesen Befunden und den daraus abgeleiteten Hypothesen wurden gentechnisch veränderte Kulturpflanzen erzeugt, in denen F3H durch Anti-Sense-Konstrukte ganz oder teilweise, dauerhaft oder vorübergehend, in der gesamten Pflanze oder in einzel- nen Pflanzenorganen oder -geweben in ihren Aktivitäten reduziert war, so daß hier der Gehalt an heilenden, gesundheitsfördernden oder stärkenden Inhaltsstoffen quantitativ und qualitativ verbessert war.
Das erfindungsgemäße Verfahren zur Erhöhung des Gehalts an Flavonoiden und phenolischen Verbindungen durch Expression der Flava- non-3-hydroxylase in Antisens -Orientierung kann erfolgreich bei folgenden Kulturpflanzen ausgeübt werden, wobei das Verfahren nicht auf die genannten Pflanzen beschränkt ist: Weinrebe, Kir- sehe, Tomate, Pflaume, Schlehe, Blaubeere, Erdbeere, Zitrus- früchte (wie Orange, Grapefruit), Papaya, Rotkohl, Broccoli, Rosenkohl, Kakao, Grünkohl, Karotte, Petersilie, Sellerie, Zwiebeln, Knoblauch, Tee, Kaffee, Hopfen, Soja, Raps, Hafer, Weizen, Roggen, Aronia melanocarpa, Ginko biloba.
Gegenstand der Erfindung sind darüberhinaus Pflanzen mit erhöhtem Gehalt an Flavonoiden und phenolischen Inhaltsstoffen hergestellt nach dem erfindungsgemäßen Verfahren dadurch gekennzeichnet, daß deren enzymatische Aktivität des Enzyms Flavanon-3 -hydroxylase reduziert ist. Alternativ zur Herstellung von Pflanzen, die mit Hilfe der Anti- sense- Technologie in ihrer Flavanon-3 -hydroxylase Aktivität reduziert sind, lassen sich auch andere literaturbekannte molekulargenetische Methoden wie Co-Suppression oder die Expression von spezifischen Antikörpern verwenden, um diesen Effekt zu erreichen.
Darüberhinaus ist Gegenstand der Erfindung die Verwendung von Pflanzen - hergestellt nach dem erfindungsgemäßen Verfahren - oder von Teilen dieser Pflanzen als Nahrungsmittel, Nahrungsmittelergänzungsmittel oder zur Herstellung von heilenden, gesundheitsfördernden oder stärkenden Mitteln (Säfte, Tees, Extrakte, Fermentationsprodukte) für Mensch und Tier sowie zur Herstellung von Kosmetika.
Es wurde nun überraschend gefunden, daß unter dem Einfluß von erfindungsgemäß produzierten Pflanzen oder von Teilen dieser Pflanzen oder aus ihnen hergestellter Produkte (Tees, Extrakte, Fermentationsprodukte, Säfte etc.)
(1) die Antioxidative Kapazität in vi tro (Electron Spin Resonance (ESR) , LDL-Oxidation, Total Antioxidant Capacity, NO-Scaven- ging) verbessert wird;
(2) eine modulierende Wirkung auf Enzyme, vor allem Enzyme der Signal transduktion (Proteinkinase C, Tyrosin-Proteinkinase, Phosphatidylinositoi-3-Kinase) auftritt;
(3) eine Modulation redoxsensitiver Transkriptionsfaktoren (NF- kB, AP-1) in Endothelzellen, Lymphocyten und glatten Muskel - zellen induziert wird;
(4) die Regulation der Genexpression von Targetgenen involviert in die Pathogenese inflammatorischer Erkrankungen (Cytokine IL-1 und IL-8, macrophage chemoattractant protein 1 (MCP-1) , Adhesionsfaktoren ICAM-1 und VCAM-1) moduliert wird;
(5) eine antiaggregatorische Wirkung induziert wird;
(6) die Cholesterinsynthese in Hepatocyten gehemmt wird;
(7) antiproliferative/antineoplastische Effekte bestehen. Beispi el 1
Klonierung des Gens einer Flavanone-3-Hydroxylase aus Lycopersicon esculentum Mill.cv. Moneymaker.
Reife Tomatenfrüchte von Lycopersicon esculentum Mill.cv. Moneymaker wurden gewaschen, getrocknet und mittels einer sterilen Klinge das Perikarp von Samen, mittlere Kolumnella und Holzteilen befreit. Das Perikarp (ca. 50 g) wurde in fluessigem Stickstoff eingefroren. Das Material wurde anschliessend in einem Mixer zerkleinert. Das zerkleinerte Material wurde in einem vorgekühlten Mörser mit 100 ml Homogenisierungs-Medium versetzt und gemischt. Die Suspension wurde dann in Zentrifugenbecher überführt, indem sie durch sterile Mulltücher gepreßt wurde. Anschließend wurde 1/10 Vol 10% SDS hinzugefügt und gut gemischt. Nach 10 Minuten auf Eis, wurde 1 Vol Phenol/Chloroform zugegeben, der Zentrifugenbecher verschlossen und gut gemischt. Nach 15 inütiger Zentrifugation bei 4000 rpm wurde der Überstand in ein neues Reaktionsgefäß überführt. Es schlössen sich drei weitere Phenol/ Chloroform Extraktionen und eine Chloroform Extraktion an. Im folgenden wurde 1 Vol 3 M NaAC und 2.5 Vol Ethanol zugegeben. Die Fällung der Nukleinsäuren erfolgte über Nacht bei -20°C. Am nächsten Morgen wurden die Nukleinsäuren für 15 Minuten bei 10000 rpm in der Kühlzentrifuge (4°C) pelletiert. Der Überstand wurde ver- worfen und das Pellet in 5-lo ml kaltem 3 M NaAc resuspendiert. Dieser Waschschritt wurde zweimal wiederholt. Das Pellet wurde mit 80%igem Ethanol gewaschen. Das vollständig getrocknet Pellet wurde in ca. 0,5 ml sterilem DEPC Wasser aufgenommen und die RNA- Konzentration photometrisch bestimmt.
20 μg gesamt RNA wurden zunächst mit 3,3 μl 3M Natriumacetat-Lö- sung, 2 μl IM Magnesiumsulfat-Lösung versetzt und auf 100 μl Endvolumen mit DEPC Wasser aufgefüllt. Dazu wurde ein Microliter Rnase freie Dnase (Boehringer Mannheim) gegeben und 45 min bei 37° Grad inkubiert. Nach Entfernen des Enzyms durch ausschütteln mit Phenol/Chloroform/Isoamylalkohol wurde die RNA mit Ethanol gefällt und das Pellet in 100 μl DEPC Wasser aufgenommen. 2 , 5 μg RNA aus dieser Lösung wurden mittels eines cDNA-Kits (Gibco BRL) in cDNA umgeschrieben.
Unter Verwendung von Aminosäuresequenzen die aus für Flava- none-3-Hydroxylase kodierenden cDNA Klonen abgeleitet wurden, konnten konservierte Bereiche in der Primärsequenz identifiziert werden (Britsch et al., Eur. J. Biochem. 217, 745 -754 (1993), die als Grundlage für das Design von degenerierten PCR Oligo- nukleotiden dienten. Das 5' Oligonukleotid wurde unter Verwendung der Peptidsequenz SRWPDK (Aminosäure 147-152 in der Sequenz FL3H PETHY aus Petunia ybrida ermittelt und hatte f olgende Se quenz :
5 ' -TCI (A/C) G (A/G) TGG CC (A/C/G) GA (C/T) AA (A/G) CC-3 .
Die Sequenz des unter Verwendung der Peptidsequenz DHQAW (Aminosäure 276281 in der Sequenz FL3H PETHY aus Petunia hybridaj abgeleiteten Oligonukleotides lautete wie folgt: 5'-CTT CAC ACA (C/ G/T) GC (C/T) TG (A/G) TG (A/G)TC-3.
10
Die PCR-Reaktion wurde unter Verwendung der tTth-Polymerase von Perkin-Elmer nach Herstellerangaben durchgeführt. Als Template wurden 1/8 der cDNA eingesetzt (entspricht 0,3 μg RNA). Das PCR- Programm lautete:
15
30 Zyklen
94 Grad 4 sec
40 Grad 30 sec
72 Grad 2 min
20 72 Grad 10 min
Das Fragment wurde nach Herstellerangaben in den Vektor pGEM-T von Promega kloniert.
25 Die Richtigkeit des Fragmentes wurde durch Sequenzierung überprüft. Das PCR Fragment wurde unter Verwendung der im Polylinker des Vektors pGEM-T vorhandenen Restriktionsschnittstellen Ncol und Pstl isoliert und die überstehenden Enden unter Verwendung der T4-Polymerase in glatte Enden überführt. Dieses Fragment
30 wurde in einen Smal (blunt) geschnittenen Vektor pBinAR (Höfgen und Willmitzer, Plant Sei. 66: 221 -230 (1990)) kloniert (siehe Abbildung 2). Dieser enthält den 35S-Promotor des CaMV (Blumen- kohlmosaikvirus) (Franck et al . , Cell 21: 285 - 294 (1980)) und das Terminationssignal des Octopin-Synthase Gens (Gielen et al . ,
35 EMBO J. 3: 835 - 846 ( 1984)). Dieser Vector vermittelt in Pflanzen Resistenz gegen das Antibiotikum Kanamycin. Die erhaltenen DNA Konstrukte enthielten das PCR Fragment in Sense und Antisense Orientierung. Das Antisensekonstrukt wurde zur Erzeugung transgener Pflanzen eingesetzt. 0
Abbildung 2: Fragment A (529 bp) beinhaltet den 35S-Promotor des CaMV (Nukleotide 6909 bis 7437 des Blumenkohlmosaikvirus) . Fragment B das Fragment des F3H Gens in Antisense-Orientierung. Fragment C (192 Bp) enthält das Terminationssignal des Octopin-Syn- 5 thase Gens. Klonierung eines größeren cDNA Fragmentes der Flavanone-3-Hydro- xylase aus Lycopersicon esculentum Mill.cv. Moneymaker unter Verwendung des 5'RACESystems.
i Um auszuschließen, dass die Erzeugung von Pflanzen mit reduzierter mRNA Fließgleichgewichtsmenge der F3H aufgrund der geringen Größe des im Antisensekonstrukt verwendeten F3H PCR Fragmentes nicht erfolgreich ist, sollte ein zweites Antisense-Konstrukt unter Verwendung eines größeren F3H Fragmentes erzeugt werden.
Zum Zweck der Klonierung eines größeren Fragmentes der F3H wurde die 5'RACE Methode (System for Rapid amplification of cDNA ends) angewendet .
Verlängerung des F3H PCR Fragmentes durch die 5 'RACE-Methode unter Verwendung des 5 'RACE System for rapid amplification of cDNA ends, Version 2-0 von Life Tecgnologies™.
Aus reifen Tomatenfrüchten von Lycopersicon esculentum Mill.cv. Moneymaker wurde gesamt RNA isoliert (siehe oben) .
Die cDNA Erststrang-Synthese wurde nach Herstellerangaben unter Verwendung des GSP-1 (Gen spezifischer Primer) 5'-TTCAC- CACTGCCTGGTGGTCC-3 ' durchgeführt. Im Anschluß an einen Rnase Ver- dau, wurde die cDNA unter Anwendung des GlassMAX spin Systems von Life Tecgnologies™ gemäß den Herstellerangaben aufgereinigt.
An das 3 'Ende der gereinigten einzelsträngigen F3H cDNA wurde unter Verwendung der terminalen deoxynukleotydil-Transferase ge- maß den Herstellerangaben ein Cytosin Homopolymer addiert.
Die Amplifikation der 5' verlängerten F3H cDNA erfolgte unter Verwendung eines zweiten Gen spezifischen Primers (GSP-2) der im Bereich 3' vor der GSP-1 Erkennungsequenz bindet und somit eine , ,nested" PCR ermöglichte. Als 5 'Primer wurde der vom Hersteller gelieferte "5' RACE abrided anchor primer" verwendet, der komplementär zum homopolymeren dC-Schwanz der cDNA ist.
Das so amplifizierte und als FSHextended bezeichnete cDNA Fragment wurde nach Herstellerangaben in den Vektor pGEM-T von Promega kloniert.
Die Identität der cDNA wurde durch Sequenzierung bestätigt.
Das FSHextended cDNA Fragment wurde unter Verwendung der im Polylinker des Vektors pGEM-T vorhandenen Restriktionsschnittstellen Ncol und Pstl isoliert und die überstehenden Enden unter Verwendung der T4-Polymerase und glatter Enden überführt. Dieses Fragment wurde in einen Smal (blunt) geschnittenen Vektor pBinAR (Höfgen und Willmitzer, 1990) kloniert (siehe Abbildung 3). Dieser enthält den 35S-Promotor des CaMV (Blumenkohlmosaikvirus) (Franck et al . , 1980) und das Terminationssignal des Octopin-Syn- thase Gens (Gielen et al., 1984). Dieser Vektor vermittelt in Pflanzen Resistenz gegen das Antibiotikum Kanamycin. Die erhaltenen DNA Konstrukte enthielten das PCR Fragment in Sense und Antisense Orientierung. Das Antisensekonstrukt wurde zur Er- zeugung transgener Pflanzen eingesetzt.
Abbildung 3: Fragment A (529 bp) beinhaltet den 35S-Promotor des CaMV (Nukleotide 6909 bis 7437 des Blumenkohlmosaikvirus) . Fragment B das Fragment des F3H Gens in Antisense-Orientierung. Frag- ment C (192 Bp) enthält das Terminationssignal des Octopin-Syn- thase Gens .
Beispiel 2
Herstellung transgener Lycopersicon esculentum Mill.cv. Moneymaker die ein Teilfragment der Flavanone-3-Hydroxylase in Antisense Orientierung exprimieren.
Es wurde die Methode nach Ling et al.. Plant Cell Report 17, 843 - 847 ( 1998 ) genutzt. Die Kultivierung erfolgt bei ca. 22°C unter einem 16 h - Licht / 8 h - Dunkel - Regime.
Tomatensamen (Lycopersicon esculentum Mill. cv. Moneymaker) wurden durch 10 minütige Inkubation in 4%iger Natriumhypochlorit - lösung inkubiert, anschließend 3 - 4 mal mit sterilem destilliertem Wasser gewaschen und auf MS Medium mit 3 % Saccharose, pH 6 , 1 zur Keimung ausgelegt. Nach einer Keimdauer von 7 - 10 d konnten die Kotyledonen für die Transformation eingesetzt werden.
Tag 1: Petrischalen mit dem Medium "MSBN" wurden mit 1,5 ml einer ca. 10 d alten Tabaksuspensionskultur überschichtet. Die Platten wurden mit Folie abgedeckt und bis zum nächsten Tag bei Raumtemperatur inkubiert.
Tag 2: Auf die mit der Tabaksuspensionskultur beschichteten Platten wurde steriles Filterpapier luftblasenfrei aufgelegt. Darauf wurden die quer geschnittenen Keimblätter mit der Oberseite nach unten aufgelegt. Die Petrischalen wurden für 3 Tage im Kulturenraum inkubiert. Tag 5: Die Agrobakterienkultur (LBA4404) wurde durch Zentri- fugation bei ca. 3000g für 10 min sedimentiert und in MS-Mediu resuspendiert, so daß die OD 0,3 beträgt. In diese Suspension wurden die Keimblattstückchen gegeben, die unter leichtem Schüt- teln für 30 Minuten bei Raumtemperatur inkubiert wurden. Anschließend wurden die Keimblattstückchen auf sterilem Filterpapier etwas abgetrocknet und wieder zurück auf ihre Ausgangsplatten für die Fortsetzung der Cocultivierung für 3 Tage im Kulturenraum gelegt.
Tag 8: Die cocultivierten Keimblattstückchen wurden auf MSZ2K50+ß gelegt und für die nächsten 4 Wochen im Kulturenraum inkubiert. Danach erfolgte die Subkultivierung.
Sich bildende Sprosse wurden auf Wurzelinduktionsmedium gebracht.
Nach erfolgreicher Bewurzelung konnten die Pflanzen getestet und ins Gewächshaus überführt werden.
Beispiel 3
Hemmung der Cholesteri biosynthese in Kulturen primärer Rattenhe- patocyten
Herstellung der Stammlösungen
Vom Lyophilisat reifer Tomaten der Sorte "Moneymaker" enthaltend
A) allein das native Flavanon- 3 -hydroxylase Gen (Kontrolle) sowie
B) wie in Beispiel 2 beschrieben zusätzlich ein Teilfragment der Flavanon-3 -hydroxylase in Antisens Orientierung wurde eine Menge zwischen 10 und 20 mg exakt abgewogen und mit soviel DMSO versetzt, daß eine Stammlösung von 10 mM Gesamtflavonoide entstand. Von diesen Stammlösungen wurden unmittelbar vor Testbeginn Verdünnungen im Kulturmedium hergestellt. Die Verdünnungen er- folgten in 10er Schritten zwischen 10-4 und 10"8 M.
Herstellung der Hepatocytenkulturen
Primäre Hepatocyten wurden aus den Lebern von männlichen Spraque- Dawley Ratten (240-290 g) mittels Collagenase-Perfusion gewonnen (Gebhardt et al., Arzneimittel-Forschung/Drug Res. 41: 800 -804 (1991) 1990) . Die Kultivierung erfolgte in Collagen-beschichteten Petrischalen (6-well Plates, Greiner, Nürtingen) mit einer Zelldichte von 125.000 Zellen/cm2 in Williams Medium E mit 10 % Kälberserum. Nähere Angaben insbesondere zum Kulturmedium finden sich bei Gebhardt et al., Cell Biol. Toxicol. 6: 369 - 372 (1990) und Mewes et al . , Cancer Res. 53: 5135 - 5142 (1993). Die Kulturen wurden nach 2 h auf serum-freies Medium mit Zusatz von 0,1 μM Insulin gewechselt. Sie wurden nach weiteren 20 h für die Versuche eingesetzt. Die Testsubstanzen wurden in je drei unabhängigen Kulturen von 2-3 Ratten getestet.
Inkubation der Leberzellkulturen mit den Testsubstanzen A und B
Für den Nachweis einer Beeinflussung der Cholesterin-Biosynthese durch die Testsubstanzen A und B wurden die Hepatocytenkuturen insgesamt für 22 h gehalten. Anschließend wurde mit serum-freiem Williams Medium E unter Zusatz von 14C-Acetat (nur Tracermengen) für 2 h mit den Testsubstanzen in den angegebenen Konzentrationen inkubiert. Bei jeder Testserie wurde eine Kontrolle mitgeführt. Die Methodik ist bei Gebhardt (1991) und Gebhardt, Lipids 28: 613 -619 (1993) detailliert beschrieben. Die Tracermengen von 14C-Ace- tat tauschen schnell mit dem intrazellulären Acetyl-CoA Pool aus und ermöglichen deshalb eine störungsfreie Bestimmung des Einbaus von 1C-Acetat in die Sterolfraktion, die zu >90 % aus Cholesterin besteht (Gebhardt, 1993).
Analytik zur Beeinflussung der Cholesterin-Biosynthese
Der Einbau von 1C-Acetat in die Sterolfraktion (nicht-verseifbare Lipide) wurde nach Gebhardt (1991) gemessen. Bei der verwendeten Extraktion mittels Extrelut®-Säulen (Merck, Darmstadt) wird das 14C-Acetat (und daraus in geringer Menge entstehende andere niedermolekulare Metabolite) zu mehr als 95 % abgetrennt. Dieser Test kann vergleichende Angaben über die relative Syntheserate von Cholesterin und Vorlaufer-Sterolen unter dem Einfluss von Testsubstanzen machen (Gebhardt, 1993) .
Visuelle und mikrobielle Überprüfung der Qualität der Hepatocy- tenkul uren
Alle verwendeten Kulturen wurden vor und nach der Testinkubation visuell am Mikroskop auf Kontamination mit Mikroorganismen und auf die Integrität der Zellmonolayer überprüft. Bei keiner der Proben wurde eine erkennbare Veränderung der Zellmorphologie (insbesondere bei den höheren Konzentrationen) beobachtet. Dies schließt eine Beeinflussung der Testergebnisse durch zytotoxische Wirkungen der Testsubstanzen weitgehend aus.
Die bei allen Kulturen routinemäßig durchgeführten Sterilitätstests ergaben keinerlei Hinweise auf eine Kontamination mit Mi- kroorganismen. Ergebnisse
Proben A) aus den nicht genetisch modifizierten Tomaten (Kontrolle) zeigte keinerlei Wirkungen auf die Cholesterinbio- synthese. Dagegen wurde die Cholesterinsynthese durch Proben B aus den ein Teilfragment der Flavanon-3 -hydroxylase in Antisens- Orientierung enthaltenden Tomaten signifikant inhibiert.

Claims

Patentansprüche
1. Verfahren zur Erhöhung des Gehalts an Flavonoiden und phenolischen Inhaltsstoffen in Pflanzen dadurch gekennzeichnet, daß mit molekulargenetischen Methoden eine Pflanze hergestellt wird in der die Aktivität des Enzyms Flavanon-3-hydroxylase reduziert ist.
2. Verfahren gemäß Anspruch 1 zur Erhöhung des Gehalts an Flavonoiden und phenolischen Inhaltsstoffen in Pflanzen dadurch gekennzeichnet, daß das Enzym Flavanon-3-hydroxylase durch molekularbiologische Verfahren (z.B. Anti-Sense-Konstrukt, Co-Suppression, der Expression spezifischer Antikörper oder der Expression spezifischer Inhibitoren) ganz oder teilweise, andauernd oder vorübergehend, in der gesamten Pflanze oder in Teilen der Pflanze in seiner Aktivität reduziert ist.
3. Verfahren gemäß den Ansprüchen 1 und 2, dadurch gekennzeich- net, daß es sich bei den Pflanzen um Weinrebe, Kirsche, Tomate, Pflaume, Schlehe, Blaubeere, Erdbeere, Zitrusfrüchte
(wie Orange, Grapefruit), Papaya, Rotkohl, Broccoli, Rosenkohl, Kakao, Grünkohl, Karotte, Petersilie, Sellerie, Zwiebeln, Knoblauch, Tee, Kaffee, Hopfen, Soja, Raps, Hafer, Wei- zen, Roggen, Aronia melanocarpa, Ginkgo biloba handelt.
4. Pflanze mit erhöhtem Gehalt an Flavonoiden und phenolischen Inhaltsstoffen hergestellt nach einem Verfahren gemäß den Ansprüchen 1 - 3 dadurch gekennzeichnet, daß die enzymatische Aktivität des Enzyms Flavanon-3-hydoxylase reduziert ist.
5. Verwendung von Pflanzen oder von Teilen dieser Pflanzen hergestellt nach einem Verfahren gemäß den Ansprüchen 1 - 3 als Nahrungsmittel, Nahrungsergänzungsmittel oder zur Herstellung von heilenden, gesundheitsfördernden oder stärkenden Mitteln (Säfte, Tees, Extrakte, Fermentationsprodukte) für Mensch und Tier sowie zur Herstellung von Kosmetika.
PCT/EP2000/005257 1999-06-17 2000-06-07 Verfahren zur herstellung von pflanzen mit erhöhtem gehalt an flavonoiden und phenolischen verbindungen WO2000078980A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL00346059A PL346059A1 (en) 1999-06-17 2000-06-07 Method for producing plants with increased flavonoid and phenolic compound content
HU0103307A HUP0103307A2 (hu) 1999-06-17 2000-06-07 Eljárás növelt flavonoid- és fenolos komponenstartalmú növények előállítására
EP00945714A EP1102855A1 (de) 1999-06-17 2000-06-07 Verfahren zur herstellung von pflanzen mit erhöhtem gehalt an flavonoiden und phenolischen verbindungen
KR1020017002018A KR20020068256A (ko) 1999-06-17 2000-06-07 플라보노이드 및 페놀 성분 함량이 증가된 식물 생산 방법
AU59704/00A AU5970400A (en) 1999-06-17 2000-06-07 Method for producing plants with increased flavonoid and phenolic compound content
IL14117300A IL141173A0 (en) 1999-06-17 2000-06-07 Method for producing plants with increased flavonoid and phenolic compound content
JP2001505720A JP2003503032A (ja) 1999-06-17 2000-06-07 フラボノイドおよびフェノール化合物の含有量が増大している植物の作製方法
CA002340319A CA2340319A1 (en) 1999-06-17 2000-06-07 Method for producing plants with increased flavonoid and phenolic compound content
BR0006869-1A BR0006869A (pt) 1999-06-17 2000-06-07 Processo de aumentar o teor de flavonóides e constituintes fenólicos em plantas, planta com um elevado teor de flavonóides e constituintes fenólicos, e, uso de plantas ou de partes destas plantas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19927574A DE19927574A1 (de) 1999-06-17 1999-06-17 Verfahren zur Herstellung von Pflanzen mit erhöhtem Gehalt an Flavonoiden und phenolischen Verbindungen
DE19927574.2 1999-06-17

Publications (1)

Publication Number Publication Date
WO2000078980A1 true WO2000078980A1 (de) 2000-12-28

Family

ID=7911499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/005257 WO2000078980A1 (de) 1999-06-17 2000-06-07 Verfahren zur herstellung von pflanzen mit erhöhtem gehalt an flavonoiden und phenolischen verbindungen

Country Status (16)

Country Link
EP (1) EP1102855A1 (de)
JP (1) JP2003503032A (de)
KR (1) KR20020068256A (de)
CN (1) CN1314943A (de)
AR (1) AR024381A1 (de)
AU (1) AU5970400A (de)
BG (1) BG105246A (de)
BR (1) BR0006869A (de)
CA (1) CA2340319A1 (de)
CO (1) CO5280139A1 (de)
DE (1) DE19927574A1 (de)
HU (1) HUP0103307A2 (de)
IL (1) IL141173A0 (de)
PL (1) PL346059A1 (de)
WO (1) WO2000078980A1 (de)
ZA (1) ZA200101328B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074710A1 (en) * 2004-02-06 2005-08-18 Konkuk University Industrial Coorperation Corp Sprouted bean containing high concentration of isoflavone and the preparing method thereof
KR100553522B1 (ko) * 2004-02-06 2006-02-20 학교법인 건국대학교 이소플라본 강화 발아 녹두 및 그 제조방법
CN111875689A (zh) * 2020-08-07 2020-11-03 潍坊兴旺生物种业有限公司 一种利用番茄绿茎紧密连锁标记创制雄性不育系的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642939B1 (ko) * 2003-02-11 2006-11-10 학교법인 신천학원 자두추출물을 함유하는 화장비누 및 그 추출방법
KR100663669B1 (ko) * 2005-05-18 2007-01-02 금호석유화학 주식회사 배유 내에 높은 농도의 플라보노이드를 생산하는 형질전환쌀
MX2011011051A (es) * 2009-04-21 2012-06-01 Haas Inc John I Composiciones de alimentos para animales y metodos de alimentacion.
EP2286669A1 (de) * 2009-07-29 2011-02-23 Nestec S.A. Flavanonhaltige Lebensmittelzusammensetzungen
WO2013183177A1 (ja) * 2012-06-07 2013-12-12 株式会社燦樹 ニンニク卵黄組成物及びその製造方法
KR101415687B1 (ko) * 2012-09-19 2014-07-10 농업회사법인 호트팜 주식회사 조직배양기술을 이용한 아로니아의 줄기마디배양으로부터 유식물체의 대량 증식방법
WO2015140589A1 (en) * 2014-03-20 2015-09-24 Hongkong Chuanghui International Limited Method for preparation multifunctional liquid medicament from vegetable feedstock, and the product produced by the method
CN105985936A (zh) * 2015-02-02 2016-10-05 中国人民解放军第二军医大学 灯盏花黄烷酮-3-羟化酶及其编码基因与应用
WO2022045091A1 (ja) 2020-08-25 2022-03-03 大塚製薬株式会社 ケンペロールアグリコン含有抽出物
CN112391362B (zh) * 2020-11-04 2022-07-05 江南大学 催化活性提高的黄酮3β-羟化酶突变体及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018171A1 (en) * 1992-03-09 1993-09-16 Pioneer Hi-Bred International, Inc. Control of male fertility using externally inducible promoter sequences
WO1993018142A1 (en) * 1992-03-09 1993-09-16 Washington State University Research Foundation Methods for the regulation of plant fertility
WO1997021816A1 (en) * 1995-12-13 1997-06-19 Zeneca Limited Genetic control of fruit ripening
WO1999043825A1 (en) * 1998-02-25 1999-09-02 E.I. Du Pont De Nemours And Company Plant flavanone-3-hydroxylase
WO2000050613A2 (en) * 1999-02-22 2000-08-31 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Transgenic plants and method for transforming carnations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018171A1 (en) * 1992-03-09 1993-09-16 Pioneer Hi-Bred International, Inc. Control of male fertility using externally inducible promoter sequences
WO1993018142A1 (en) * 1992-03-09 1993-09-16 Washington State University Research Foundation Methods for the regulation of plant fertility
WO1997021816A1 (en) * 1995-12-13 1997-06-19 Zeneca Limited Genetic control of fruit ripening
WO1999043825A1 (en) * 1998-02-25 1999-09-02 E.I. Du Pont De Nemours And Company Plant flavanone-3-hydroxylase
WO2000050613A2 (en) * 1999-02-22 2000-08-31 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Transgenic plants and method for transforming carnations

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DEDIO J ET AL: "MOLECULAR CLONING OF THE FLAVANONE 3SS-HYDROXYLASE GENE (FHT) FROM CARNATION (DIANTHUS CARYOPHYLLUS) AND ANALYSIS OF STABLE AND UNSTABLE FHT MUTANTS", THEORETICAL AND APPLIED GENETICS,DE,SPRINGER, BERLIN, vol. 90, no. 5, 1995, pages 611 - 617, XP000915009, ISSN: 0040-5752 *
OVADIS ET AL: "A highly efficient procedure for generating carnation plants with novel traits", ACTA HORTICULTURAE,INTERNATIONAL SOCIETY FOR HORTICULTURAL SCIENCE,,NL, 27 July 1998 (1998-07-27), pages 49 - 51, XP000946845, ISSN: 0567-7572 *
TANAKA Y ET AL: "METABOLIC ENGINEERINGTO MODIFY FLOWER COLOR", PLANT AND CELL PHYSIOLOGY,JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS,XX, vol. 39, November 1998 (1998-11-01), pages 1119 - 1126, XP000922977, ISSN: 0032-0781 *
ZORNOZA ET AL: "Flavonoids content of tomato plants for the study of nutritional status", PLANT AND SOIL,KLUWER ACADEMIC PUBLISHERS, DORDRECHT,NL, vol. 82, 1984, pages 269 - 271, XP002106593 *
ZUKER, A., ET AL., ABST. IX. INTERNATIONAL CONGRESS ON PLANT TISSUE AND CELL CULTURE, 1998, pages 35 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074710A1 (en) * 2004-02-06 2005-08-18 Konkuk University Industrial Coorperation Corp Sprouted bean containing high concentration of isoflavone and the preparing method thereof
KR100553522B1 (ko) * 2004-02-06 2006-02-20 학교법인 건국대학교 이소플라본 강화 발아 녹두 및 그 제조방법
CN111875689A (zh) * 2020-08-07 2020-11-03 潍坊兴旺生物种业有限公司 一种利用番茄绿茎紧密连锁标记创制雄性不育系的方法

Also Published As

Publication number Publication date
IL141173A0 (en) 2002-02-10
CO5280139A1 (es) 2003-05-30
AU5970400A (en) 2001-01-09
PL346059A1 (en) 2002-01-14
EP1102855A1 (de) 2001-05-30
KR20020068256A (ko) 2002-08-27
CN1314943A (zh) 2001-09-26
AR024381A1 (es) 2002-10-02
HUP0103307A2 (hu) 2001-12-28
ZA200101328B (en) 2002-02-18
BR0006869A (pt) 2001-08-07
CA2340319A1 (en) 2000-12-28
JP2003503032A (ja) 2003-01-28
BG105246A (bg) 2001-10-31
DE19927574A1 (de) 2000-12-21

Similar Documents

Publication Publication Date Title
Singh Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique
Karppinen et al. Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.)
Yang et al. Effects of latitude and weather conditions on phenolic compounds in currant (Ribes spp.) cultivars
EP1185175B1 (de) Verfahren zur erhöhung vom gehalt an flavonoiden und phenolischen inhaltsstoffen in pflanzen
Gagné et al. Leucoanthocyanidin reductase and anthocyanidin reductase gene expression and activity in flowers, young berries and skins of Vitis vinifera L. cv. Cabernet-Sauvignon during development
Kim et al. Analysis of eight phytohormone concentrations, expression levels of ABA biosynthesis genes, and ripening-related transcription factors during fruit development in strawberry
Wang et al. Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in ‘Beihong’(V. vinifera× V. amurensis)
EP1102855A1 (de) Verfahren zur herstellung von pflanzen mit erhöhtem gehalt an flavonoiden und phenolischen verbindungen
Gutierrez et al. Transcriptomics, targeted metabolomics and gene expression of blackberry leaves and fruits indicate flavonoid metabolic flux from leaf to red fruit
Li et al. Nutritional and composition of fruit cultivars: Loquat (Eriobotrya japonica Lindl.)
Karlińska et al. Ellagitannins in roots, leaves, and fruits of strawberry (Fragaria× ananassa Duch.) vary with developmental stage and cultivar
Ghimire et al. Assessment of the phenolic profile, antimicrobial activity and oxidative stability of transgenic Perilla frutescens L. overexpressing tocopherol methyltransferase (γ-tmt) gene
Wang et al. Chemical composition, crystal morphology, and key gene expression of the cuticular waxes of goji (Lycium barbarum L.) berries
Suvanto et al. Changes in the proanthocyanidin composition and related gene expression in bilberry (Vaccinium myrtillus L.) tissues
Guo et al. ABA signaling plays a key role in regulated deficit irrigation-driven anthocyanins accumulation in ‘Cabernet Sauvignon’grape berries
Hata et al. Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.)
Attanayake et al. Biochemical composition and expression of anthocyanin biosynthetic genes of a yellow peeled and pinkish ariled pomegranate (Punica granatum L.) cultivar are differentially regulated in response to agro-climatic conditions
Chen et al. Pigments in citrus
Kambiranda et al. In depth proteome analysis of ripening muscadine grape berry cv. Carlos reveals proteins associated with flavor and aroma compounds
Li et al. Accumulation of flavonoids and expression of flavonoid biosynthetic genes in tartary and rice-tartary buckwheat
Hohtola Bioactive compounds from northern plants
Kim et al. Biochemical and molecular analysis of ginsenoside biosynthesis in Panax ginseng during flower and berry development
Grujić et al. Glandular trichomes, essential oil composition, anti-Aspergillus and antioxidative activities of Lamium purpureum L. ethanolic extracts
Liu et al. Changes in the expression of genes related to the biosynthesis of catechins in tea (Camellia sinensis L.) under greenhouse conditions
Shi et al. Metabolite Profiling and Transcriptome Analyses Provide Insight Into Phenolic and Flavonoid Biosynthesis in the Nutshell of Macadamia Ternifolia

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801147.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 141173

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 509747

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2000945714

Country of ref document: EP

Ref document number: 09762328

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 105246

Country of ref document: BG

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/001609

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2340319

Country of ref document: CA

Ref document number: 2340319

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001/01328

Country of ref document: ZA

Ref document number: 59704/00

Country of ref document: AU

Ref document number: 1020017002018

Country of ref document: KR

Ref document number: 2001/00562

Country of ref document: TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: P20010196A

Country of ref document: HR

WWP Wipo information: published in national office

Ref document number: 2000945714

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017002018

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000945714

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017002018

Country of ref document: KR