WO2000073651A1 - Pala para aerogenerador - Google Patents

Pala para aerogenerador Download PDF

Info

Publication number
WO2000073651A1
WO2000073651A1 PCT/ES2000/000187 ES0000187W WO0073651A1 WO 2000073651 A1 WO2000073651 A1 WO 2000073651A1 ES 0000187 W ES0000187 W ES 0000187W WO 0073651 A1 WO0073651 A1 WO 0073651A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
blade
wind turbine
ribs
sections
Prior art date
Application number
PCT/ES2000/000187
Other languages
English (en)
French (fr)
Inventor
Manuel Torres Martinez
Original Assignee
Torres Martinez M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torres Martinez M filed Critical Torres Martinez M
Priority to EP00929568A priority Critical patent/EP1184566A1/en
Publication of WO2000073651A1 publication Critical patent/WO2000073651A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/302Segmented or sectional blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2006Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6013Fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0865Oxide ceramics
    • F05C2203/0882Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the energy obtained is a function of the scanning surface of the blades of the rotor that receives the action of the wind, so that until now the largest wind turbines made are 800 to 1,000 Kilo years, which is achieved with shovels of approximately 30 meters in length, that is to say with a surface swept against the wind of the order of 60 meters in diameter.
  • the largest wind turbines made are 800 to 1,000 Kilo years, which is achieved with shovels of approximately 30 meters in length, that is to say with a surface swept against the wind of the order of 60 meters in diameter.
  • Wind turbines are usually mounted in mountain areas, where the difficulty of access further aggravates the transport problem.
  • a wind turbine blade is proposed, whose constructive embodiment satisfactorily solves the aforementioned problems, allowing the construction of large length blades with adequate resistance for the stresses that must be supported and also with a composition that It allows the division into parts for normal road transport.
  • This blade object of the invention is constituted by a set of attachable longitudinal sections, each of which comprises a core formed by a carbon fiber tube, with steel bushings inserted at the ends for the couplings, integrally incorporated over said tube a series of transverse ribs of carbon fiber or fiberglass, while on the set there are covers of fiberglass or carbon fiber, which are joined by gluing together, on the ribs and on the tube, forming a unitary structural assembly.
  • shovels can be formed of any longitudinal dimension.
  • the composition of the end zone adjacent to the base with an independent lateral bevel is provided, which can be decoupled from the rest for transport.
  • the shape of the ribs is according to the aerodynamic profile that corresponds to the cross section of the blades, establishing the union of said ribs with the longitudinal tube at a point that corresponds to 25% of their length, that is, at the point which coincides with the center of gravity of the aerodynamic profile of the aforementioned ribs, so that they do not create torsion on the tube in the work behavior of the blades.
  • this blade object of the invention is certainly very advantageous features, which give it a life of its own and preferred character with respect to conventional blades used so far in wind turbines.
  • Figure 1 represents in perspective a wind turbine blade according to the object of the invention.
  • Figure 2 is an exploded perspective of The same front shovel.
  • Figure 3 is a perspective of the longitudinal tube of the blade structure with two enlarged details in section corresponding to the base end and to the attachable ends of the component sections.
  • Figure 4 is a perspective of the aforementioned longitudinal tube of the blade with the transverse ribs incorporated, the configuration of a rib having been extracted in greater detail.
  • Figure 5 is a side view of a two-section blade according to the object of the invention, an enlarged detail having been extracted in section of the coupling area of the sections.
  • Figure 6 is a side view of the same front blade with the sections joined, with an enlarged sectional detail of the junction area of the sections and in turn a more enlarged detail of the correlative joint part of the covers.
  • Figure 7 is an enlarged view of the cross section of the blade according to section VII-VII indicated in the previous figure.
  • Figure 8 shows in perspective a three-section blade according to the object of the invention.
  • Figure 9 is a perspective view of the same blade as in the previous figure, with the separate component sections.
  • Figure 10 shows in perspective a shovel of three longitudinal sections and a fourth lateral section in the part corresponding to the widest end zone.
  • Figure 11 is a perspective of the same blade of the previous figure, with the component sections separated.
  • the object of the invention relates to a shovel for wind turbine, which is formed by composition by one, two or more sections (1) successively attachable.
  • Each of said sections (1) components are structured with a soul formed by a longitudinal tube
  • transverse ribs (5) made of carbon fiber or glass fiber, which are correlative to the aerodynamic profile of the blade.
  • Said ribs (5) are arranged with respect to the tube (2) in such a way that it passes through them through a point corresponding to 25% of their length, whereby these ribs (5) are mounted precisely in subjection by the point that coincides with the center of gravity of the aerodynamic profile that they configure.
  • housings (6) made of fiberglass or carbon fiber, which are bonded together, establishing themselves glued to the ribs (5) and the tube (2), as seen in Figure 7.
  • the housings (6) corresponding to the sides determine a conformation (7) correspondingly with the curvature of the tube contour (2), being defined in said conformation (7) grooves (8) of according to the position and the thickness of the ribs (5), so that in the assembly said lateral housings (6) fit being attached to the tube (2), at the same time as they are supported on the ribs (5).
  • each section (1) result according to a unitary structural assembly.
  • the sections thus formed are joined for the composition of the blade, by means of moorings (9) between the droppers (3) included in the tube sections (2), establishing in turn the connection between the respective housings (6) by means of corresponding ones moorings (10) with respect to a metal rib (11) that is included in the coupling, bolting between the bushings (3), as seen in figures 5 and 6.
  • the blade assembly thus results in a large soul rigidity, formed by the tube (2) of carbon fiber and with an elastic cover, formed by the housings (6) of fiberglass, whose constructive embodiment is also provided by means of a curb at + 45 °, which is obtained a maximum stretch capacity of the formed material.
  • the composition in sections (1) also allows a division of the blade into parts dimensionally suitable for normal road transport, so that, for example, for lengths between 35 and 50 meters the composition is made in two sections (1), as the embodiment of figures 1 to 6, while for lengths between 50 and 65 meters the composition is made in at least three sections (1), as the embodiment of figures 8 and 9.
  • the width of the construction dimension is the blade results in the extreme area of the base of a dimension that exceeds the permissible measures for normal road transport, said wider part is in turn provided with an independent lateral section (12), according to figures 10 and 11 , so that for the transport said section (12) can also be decoupled, so that all the parts are within the transport measures under normal conditions.
  • the blade is topped at the end with a metal tip (13), attached to which a conductive cable (14) is included inside the tube (2), so that the metal tip (13) acts as a lightning sensor , which are discharged through the cable (14) to a ground discharge manifold.
  • a metal profile (15) which is attached to the metal tip (13), so that said profile (15) serves to discharge static electricity, in turn lightning collector, through the shed through the metal tip (13) and the cable (14) to the ground discharge manifold.

Abstract

Pala para aerogenerador, que se forma por composición de uno, dos o más tramos longitudinales, cada uno de los cuales comprende un alma formada por un tubo longitudinal (2) de fibra de carbono, sobre el cual se incorporan solidariamente una serie de costillas transversales (5) de fibra de carbono o fibra de vidrio, en tanto que sobre el conjunto se dispone una cubierta formada por carcasas (6) de fibra de vidrio o fibra de carbono, las cuales se unen por pegado entre sí y con respecto a las costillas (5) y al tubo (2).

Description

"PALA PARA AEROGENERADOR"
En un aerogenerador , la energía que se obtiene es función de la superficie de barrido de las palas del rotor que recibe la acción del viento, de tal forma que hasta ahora los mayores aerogeneradores realizados son de 800 a 1.000 Kilo atios, lo cual se consigue con unas palas de aproximadamente 30 metros de longitud, es decir con una superficie de barrido frente al viento del orden de 60 metros de di metro. Superar esas medidas resulta cuando menos muy problemático con las realizaciones constructivas de las palas utilizadas hasta ahora por los motivos siguientes :
1. - Las palas convencionales son de una construcción monocasco, lo que implica serias dificultades para el transporte, ya que cualquier longitud mayor de 30 metros obliga a transportes de tipo especial por carretera.
2. - Los aerogeneradores se montan generalmente en zonas de montaña, en donde la dificultad de los accesos agrava aún más el problema del transporte.
3. - Las palas convencionales se vienen haciendo en fibra de vidrio, material éste que tiene una restringida resistencia a la fatiga y rigidez, condicionando a unas determinadas limitaciones las posibilidades de su aplicación.
Todo ello da lugar a un condicionamiento que se puede denominar "EFECTO TAMAÑO", debido al cual las palas monocasco de fibra de vidrio no pueden alcanzar dimensiones mayores de las que ya existen, lo que determina una barrera prácticamente infranqueable para conseguir con esa forma de realización constructiva aerogeneradores de mayor potencia que los existentes .
En un intento de hacer factible la utilización de aerogeneradores de hasta 5 Mega atios , científicos alemanes estudian la posibilidad de instalación de los grandes aerogeneradores necesarios en el mar, lo cual elimina el problema del transporte por carretera, siempre y cuando la construcción se lleve a cabo en lugares directamente accesibles al mar; pero sigue persistiendo el inconveniente de las limitaciones dimensionales de las palas en función de la forma constructiva y del material empleado .
De acuerdo con la presente invención se propone una pala para aerogenerador , cuya realización constructiva soluciona de un modo satisfactorio los problemas mencionados, permitiendo la construcción de palas de gran longitud con una adecuada resistencia para los esfuerzos que han de soportar y además con una composición que permite la división en partes para el transporte normal por carretera.
Esta pala objeto de la invención se constituye por un conjunto de tramos longitudinales acoplables, cada uno de los cuales comprende un alma formada por un tubo de fibra de carbono, con casquillos de acero insertados en los extremos para los acoplamientos , incorporándose de manera solidaria sobre dicho tubo una serie de costillas transversales de fibra de carbono o fibra de vidrio, en tanto que sobre el conjunto se disponen unas cubiertas de fibra de vidrio o fibra de carbono, las cuales se unen por pegado entre si, sobre las costillas y sobre el tubo, formando un conjunto estructural unitario.
Se obtiene asi una pala multicasco, formada por tramos de una longitud que no requiere instalaciones sobredimensionadas para la construcción, resultando dicha longitud además adecuada a efectos de la posibilidad de un transporte normal por carretera, en tanto que mediante la composición correspondiente se pueden formar palas de cualquier dimensión longitudinal .
Cuando la dimensión de las palas determina una anchura en la base que supera las medidas admisibles para el transporte normal , se prevé la composición a su vez de la zona extrema adyacente a la base con un traino lateral independiente, que puede ser desacoplado del resto para el transporte . La forma de las costillas es según el perfil aerodinámico que corresponde a la sección transversal de las palas , estableciéndose la unión de dichas costillas con el tubo longitudinal en un punto que corresponde al 25% de la longitud de las mismas, es decir en el punto que coincide con el centro de gravedad del perfil aerodinámico de las mencionadas costillas , por lo que éstas no crean torsión sobre el tubo en el comportamiento del trabajo de las palas.
Al no haber torsión, la disposición constructiva del conjunto con las cubiertas exteriores adosadas al tubo longitudinal, hace que dicho tubo longitudinal, de fibra de carbono y por lo tanto muy rígido, asuma toda la responsabilidad de los esfuerzos de carga; en tanto que las cubiertas de fibra de vidrio y en consecuencia muy elásticas , solo asumen el esfuerzo de la función aerodinámica, resultando por consiguiente las palas de una gran resistencia a los esfuerzos que han de soportar en el trabajo de aplicación. La elasticidad de las cubiertas se consigue en su mayor grado mediante el encintado constructivo de las mismas a + 45°, con lo cual la capacidad de estiramiento del material construido es máxima.
Por todo ello, esta pala objeto de la invención resulta ciertamente de unas características muy ventajosas, que la confieren vida propia de por si y carácter preferente respecto de las palas convencionales utilizadas hasta ahora en los aerogeneradores .
La figura 1 representa en perspectiva una pala de aerogenerador según el objeto de la invención. La figura 2 es una perspectiva explosionada de la misma pala anterior.
La figura 3 es una perspectiva del tubo longitudinal de la estructura de la pala con sendos detalles ampliados en sección correspondientes al extremo de base y a los extremos acoplables de los tramos componentes .
La figura 4 es una perspectiva del mencionado tubo longitudinal de la pala con las costillas transversales incorporadas , habiéndose extraído en detalle ampliado la configuración de una costilla.
La figura 5 es una vista lateral de una pala de dos tramos según el objeto de la invención, habiéndose extraído un detalle ampliado en sección de la zona de acoplamiento de los tramos. La figura 6 es una vista lateral de la misma pala anterior con los tramos unidos, habiéndose extraído un detalle ampliado en sección de la zona de unión de los tramos y a su vez un detalle más ampliado de la parte de unión correlativa de las cubiertas. La figura 7 es una vista en representación ampliada de la sección transversal de la pala según el corte VII-VII indicado en la figura anterior.
La figura 8 muestra en perspectiva una pala de tres tramos según el objeto de la invención. La figura 9 es una perspectiva de la misma pala de la figura anterior, con los tramos componentes separados .
La figura 10 muestra en perspectiva una pala de tres tramos longitudinales y un cuarto tramo lateral en la parte que corresponde a la zona extrema de mayor anchura.
La figura 11 es una perspectiva de la misma pala de la figura anterior, con los tramos componentes separados . El objeto de la invención se refiere a una pala para aerogenerador, la cual se forma por composición mediante uno, dos o más tramos (1) sucesivamente acoplables .
Cada uno de dichos tramos (1) componentes se estructuran con un alma formada por un tubo longitudinal
(2) realizado en fibra de carbono, con inclusión de unos caequillos de acero (3) y (3.1) solidariamente insertados por dentro y por fuera en los extremos de acoplamiento, para establecer a través de los caequillos interiores (3) el amarre de unión entre los mencionados tramos (1) , mientras que en el extremo que corresponde a la base de la pala el tubo (2) respectivo incluye otros casquillos
(4) y (4.1) para la sujeción de amarre sobre el soporte respectivo en el aerogenerador mediante el casquillo (4.1) exterior .
En incorporación solidaria sobre el tubo (2) se disponen además unas costillas transversales (5) , realizadas en fibra de carbono o fibra de vidrio, las cuales son de una forma correlativa al perfil aerodinámico de la pala.
Dichas costillas (5) se disponen con respecto al tubo (2) de tal forma que éste pasa por ellas a través de un punto que corresponde al 25% de la longitud de las mismas, con lo cual esas costillas (5) quedan montadas precisamente en sujeción por el punto que coincide con el centro de gravedad del perfil aerodinámico que configuran.
De esta forma las mencionadas costillas (5) no crean torsión sobre el tubo (2) por el esfuerzo que origina el trabajo de la pala, a diferencia de lo que ocurre en las palas utilizadas hasta ahora, en las que se producen esfuerzos de torsión que afectan a la estructura de la pala.
Sobre el conjunto del tubo (2) , y de las costillas (5) se dispone un cubrimiento formado por carcasas (6) , realizadas en fibra de vidrio o fibra de carbono , las cuales se unen por pegado entre si , estableciéndose a su vez pegadas a las costillas (5) y al tubo (2) , según se observa en la figura 7. Como representa la figura 2, las carcasas (6) que corresponden a los laterales determinan una conformación (7) de manera correspondiente con la curvatura del contorno del tubo (2) , quedando definidas en dicha conformación (7) unas ranuras (8) de acuerdo con la posición y el grosor de las costillas (5) , de forma que en el montaje dichas carcasas laterales (6) encajan quedando adosadas al tubo (2) , a la vez que quedan apoyadas sobre las costillas (5) .
Dicha disposición y el pegado de unión entre todas las partes, hace que cada tramo (1) resulte según un conjunto estructural unitario. Los tramos asi formados se unen para la composición de la pala, mediante amarres (9) entre los caequillos (3) incluidos en los tramos de tubo (2) , estableciéndose a su vez la unión entre las carcasas (6) respectivas mediante unos correspondientes amarres (10) respecto de un una costilla metálica (11) que se incluye en el acoplamiento, atornillándose entre los casquillos (3) , conforme se observa en las figuras 5 y 6. El conjunto de la pala resulta asi con un alma de gran rigidez, formada por el tubo (2) de fibra de carbono y con una cubierta elástica, formada por las carcasas (6) de fibra de vidrio, cuya realización constructiva se halla prevista además mediante un encintado a + 45° con lo cual se obtiene una capacidad máxima de estiramiento del material formado .
Dichas características de los materiales, junto con la disposición de las carcasas (6) apoyadas sobre las costillas (5) y adosadas al tubo (2) , asi como la disposición de las costillas (5) en el montaje, de tal forma que no provocan torsión sobre el tubo (2) , hace que el conjunto de la pala se comporte en la función del trabajo asumiendo el tubo (2) toda la responsabilidad de los esfuerzos de carga, en tanto que las carcasas (6) de la cubierta sólo resultan sometidas al esfuerzo de la función aerodinámica, resultando en consecuencia la pala de una gran resistencia a los esfuerzos que ha de soportar en el trabajo de aplicación, con posibilidad de longitudes que rebasan las posibilidades de las palas convencionales.
La composición en tramos (1) permite además un divisionamiento de la pala en partes dimensionalmente adecuadas para el transporte normal por carretera, de forma que, por ejemplo, para longitudes entre 35 y 50 metros la composición se realiza en dos tramos (1) , como la realización de las figuras 1 a 6 , mientras que para longitudes entre 50 y 65 metros la composición se realiza al menos en tres tramos (1) , como la realización de las figuras 8 y 9. Cuando por la dimensión constructiva la anchura de la pala resulta en la zona extrema de la base de una dimensión que sobrepasa las medidas admisibles para el transporte normal por carretera, dicha parte más ancha se prevé a su vez compuesta con un tramo lateral (12) independiente, según las figuras 10 y 11, de forma que para el transporte dicho tramo (12) puede igualmente ir desacoplado, para que todas las partes resulten dentro de las medidas de transporte en condiciones normales .
La pala se remata en el extremo con una punta metálica (13) , unida a la cual se incluye por el interior del tubo (2) un cable conductor (14) , de forma que la punta metálica (13) hace de captador de rayos, los cuales se descargan a través del cable (14) hasta un colector de descarga a tierra. En el borde estrecho de la pala las carcasas laterales (6) se unen mediante apresado con un perfil metálico (15) , el cual queda unido a la punta metáñica (13) , de forma que dicho perfil (15) sirve para la descarga de la electricidad estática, haciendo a su vez de captador de rayos , por la descara a través de la punta metálica (13) y del cable (14) hacia el colector de descarga a tierra.

Claims

R E I V I N D I C A C I O N E S 1.- Pala para aerogenerador, caracterizada porque se constituye por composición mediante uno, dos o más tramos longitudinales (1) sucesivamente acoplables, cada uno de los cuales comprende un alma formada por un tubo longitudinal (2) de fibra de carbono, sobre el cual se incorporan solidariamente una serie de costillas transversales (5) de fibra de carbono o de fibra de vidrio, en tanto que sobre el conjunto se dispone una cubierta formada por carcasas (6) de fibra de vidrio o ibra de carbono , las cuales se unen por pegado entre si y con respecto a las costillas (5) y al tubo (2) .
2. - Pala para aerogenerador, en todo de acuerdo con la primera reivindicación, caracterizada porque las costillas (5) van dispuestas en el montaje quedando atravesadas por el tubo (2) en un punto que corresponde al 25% de la longitud de dichas costillas (5) , coincidiendo con el centro de gravedad del perfil aerodinámico de las mismas .
3. - Pala para aerogenerador, en todo de acuerdo con la primera reivindicación, caracterizada porque las carcasas laterales (6) de la cubierta exterior determinan una conformación (7) en correspondencia con la curvatura periférica del tubo (2) , quedando definidas en dicha conformación (7) unas ranuras (8) en correspondencia con la posición y el grosor de las costillas (5) , de forma que en el montaje dichas carcasas laterales (6) quedan encajadas adosándose al tubo (2) .
4. - Pala para aerogenerador , en todo de acuerdo con la primera reivindicación, caracterizada porque los tramos del tubo (2) incluyen solidariamente insertados unos caequillos (3) de acero, los cuales sirven de medio para establecer el amarre en la unión del montaje entre los tramos (1) de la pala.
5.- Pala para aerogenerador, en todo de acuerdo con la primera reivindicación , caracterizada porgue entre los tramos (1) componentes de la pala se incluye una costilla metálica (11) , sobre la cual se establece la sujeción de las respectivas carcasas (6) de los tramos (1) en la correspondiente unión del montaje.
6.- Pala para aerogenerador, en todo de acuerdo con la primera a quinta reivindicaciones , caracterizada porque cuando la parte más ancha de la pala sobrepasa una dimensión determinada, dicha parte se constituye incluyendo un tramo lateral (12) independiente, que puede ser desacoplado para la realización del transporte.
7.- Pala para aerogenerador, en todo de acuerdo con la primera a sexta reivindicaciones , caracterizada porque en el borde estrecho del perfil aerodinámico de la pala las carcasas laterales (6) se unen mediante apresado con un perfil metálico (15) , el cual sirve a la vez para la descarga de la electricidad estática y como captador de rayos .
PCT/ES2000/000187 1999-05-31 2000-05-26 Pala para aerogenerador WO2000073651A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00929568A EP1184566A1 (en) 1999-05-31 2000-05-26 Aerogenerator blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9901177 1999-05-31
ES009901177A ES2178903B1 (es) 1999-05-31 1999-05-31 Pala para aerogenerador.

Publications (1)

Publication Number Publication Date
WO2000073651A1 true WO2000073651A1 (es) 2000-12-07

Family

ID=8308628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2000/000187 WO2000073651A1 (es) 1999-05-31 2000-05-26 Pala para aerogenerador

Country Status (3)

Country Link
EP (1) EP1184566A1 (es)
ES (1) ES2178903B1 (es)
WO (1) WO2000073651A1 (es)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151458B (zh) * 2005-03-31 2010-04-21 歌美飒创新技术公司 用于风力发电机的叶片
ES2342998A1 (es) * 2009-01-19 2010-07-20 Manuel Torres Martinez Pala de aerogenerador.
DE102006034831B4 (de) * 2005-07-29 2011-03-31 General Electric Co. Verfahren und Vorrichtung zum Erzeugen von Windenergie mit vermindertem Geräusch der Windenergieanlage
US7946803B2 (en) 2003-04-28 2011-05-24 Aloys Wobben Rotor blade for a wind power system
CN102146880A (zh) * 2010-02-08 2011-08-10 国能风力发电有限公司 垂直轴风力发电机风轮的叶片结构
KR101204212B1 (ko) 2008-09-04 2012-11-26 미츠비시 쥬고교 가부시키가이샤 풍차 날개
CN102797645A (zh) * 2012-09-04 2012-11-28 河海大学常州校区 一种具有龙骨结构的风力机叶片
CN103119289A (zh) * 2010-09-10 2013-05-22 乌本产权有限公司 可拆卸的转子叶片尖端
CN106270077A (zh) * 2016-08-31 2017-01-04 三重型能源装备有限公司 蒙皮及风机叶片的制造方法、风机叶片
US11428204B2 (en) 2017-10-24 2022-08-30 Wobben Properties Gmbh Rotor blade of a wind turbine and method for designing same

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003237707B2 (en) 2002-06-05 2008-01-10 Aloys Wobben Rotor blade for a wind power plant
DE10307682A1 (de) * 2002-06-05 2004-01-08 Aloys Wobben Rotorblatt einer Windenergieanlage
DE10235496B4 (de) * 2002-08-02 2015-07-30 General Electric Co. Verfahren zum Herstellen eines Rotorblattes, Rotorblatt und Windenergieanlage
AU2004245778B2 (en) * 2003-06-09 2010-11-11 Shinko Electric Co., Ltd. Wind power generation device
DK1668246T3 (en) * 2003-09-29 2015-01-19 Vestas Wind Sys As WINDOW LOCK PROTECTION SYSTEM FOR A WIND MILL
JP2005147086A (ja) * 2003-11-19 2005-06-09 Fuji Heavy Ind Ltd 水平軸風車のブレード
FR2863319B1 (fr) * 2003-12-09 2006-03-31 Ocea Sa Pale d'aerogenerateur a liaisons semi-rigides et aerogenerateur correspondant
JP4580169B2 (ja) * 2004-02-05 2010-11-10 富士重工業株式会社 風車用分割型ブレード及び風車の耐雷装置
EP1584817A1 (en) * 2004-04-07 2005-10-12 Gamesa Eolica, S.A. (Sociedad Unipersonal) Wind turbine blade
WO2006002621A1 (en) * 2004-06-30 2006-01-12 Vestas Wind Systems A/S Wind turbine blades made of two separate sections, and method of assembly
GB0415545D0 (en) * 2004-07-12 2004-08-11 Peace Steven Wind turbine
US7381029B2 (en) * 2004-09-30 2008-06-03 General Electric Company Multi-piece wind turbine rotor blades and wind turbines incorporating same
DE102004049098A1 (de) * 2004-10-08 2006-04-13 Eew Maschinenbau Gmbh Rotorblatt für eine Windenergieanlage
DK176176B1 (da) 2004-11-24 2006-11-27 Siemens Wind Power As Fremgangsmåde og samlestykke til samling af en vinge, fortrinsvis vindmöllevinge, i sektioner
US7517198B2 (en) * 2006-03-20 2009-04-14 Modular Wind Energy, Inc. Lightweight composite truss wind turbine blade
DE102006022279B4 (de) * 2006-05-11 2016-05-12 Aloys Wobben Rotorblatt für eine Windenergieanlage
CN101646865B (zh) 2006-12-15 2013-01-09 布拉德纳公司 加强的空气动力学型材
ES2319599B1 (es) * 2007-01-08 2010-01-26 Guillermo Petri Larrea Sistema reversible de seccionamiento en varias piezas de palas de aerogeneradores.
DK2104785T3 (da) * 2007-01-16 2014-10-13 Bladena Aps Forstærket vindturbineblad
EP2108083B1 (en) 2007-01-25 2012-11-07 Bladena ApS Reinforced blade for wind turbine
ES2342638B1 (es) 2007-02-28 2011-05-13 GAMESA INNOVATION & TECHNOLOGY, S.L. Una pala de aerogenerador multi-panel.
ES2333499B1 (es) * 2007-09-11 2010-10-15 Manuel Torres Martinez Pala para aerogenerador.
GB0717690D0 (en) 2007-09-11 2007-10-17 Blade Dynamics Ltd Wind turbine blade
US8123488B2 (en) 2007-09-17 2012-02-28 General Electric Company System and method for joining turbine blades
GB0807515D0 (en) 2008-04-24 2008-06-04 Blade Dynamics Ltd A wind turbine blade
ES2383061T3 (es) 2008-06-24 2012-06-18 Bladena Aps Paleta de turnina eólica reforzada
DE102008038620A1 (de) * 2008-06-27 2009-12-31 Powerblades Gmbh Verfahren und Fertigungsform zur Fertigung eines Rotorblattes für eine Windenergieanlage
GB2462307A (en) 2008-08-01 2010-02-03 Vestas Wind Sys As Extension portion for wind turbine blade
US8510947B2 (en) * 2008-11-14 2013-08-20 General Electric Company Turbine blade fabrication
JP5656861B2 (ja) 2008-12-05 2015-01-21 モジュラー ウィンド エナジー インコーポレイテッド 効率が良い風力タービンブレード、風力タービンブレードの構造、ならびに、関連したシステム、および、製造、組み立て、および、使用の方法
US8079820B2 (en) * 2008-12-18 2011-12-20 General Electric Company Blade module, a modular rotor blade and a method for assembling a modular rotor blade
DK3070326T3 (en) * 2009-04-13 2018-03-19 Maxiflow Mfg Inc Wind turbine blade and method of construction thereof
CN101943106A (zh) * 2009-07-05 2011-01-12 宿迁雅臣工程尼龙有限公司 一种适用于500kw以下三叶片风力机高分子复合材料叶片
FR2948154B1 (fr) * 2009-07-16 2011-09-16 Astrium Sas Dispositif d'assemblage de troncons de pales d'eoliennes et procede de liaison de troncons de pales d'eoliennes
AU2010324909A1 (en) * 2009-11-24 2012-06-07 David E. Ronner Wind turbine blade and methods, apparatus and materials for fabrication in the field
EP2330294B1 (en) 2009-12-02 2013-01-16 Bladena ApS Reinforced airfoil shaped body
US8167570B2 (en) * 2009-12-14 2012-05-01 General Electric Company Fluid turbine blade and method of providing the same
US8142164B2 (en) * 2009-12-31 2012-03-27 General Electric Company Rotor blade for use with a wind turbine and method for assembling rotor blade
CN101718250B (zh) * 2010-01-11 2011-11-09 华锐风电科技(集团)股份有限公司 风力发电机组分段式风轮叶片及其装配方法
WO2011098506A1 (en) * 2010-02-10 2011-08-18 Vestas Wind Systems A/S A sectional blade
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
KR20130121000A (ko) 2010-05-24 2013-11-05 모듈러 윈드 에너지, 인크. 트러스 연결 영역을 구비한 분절식 윈드 터빈 블레이드 및 관련 시스템과 방법
ES2398553B1 (es) 2011-02-24 2014-02-06 Gamesa Innovation & Technology S.L. Una pala de aerogenerador multi-panel mejorada.
ES2392523B2 (es) 2011-05-13 2013-05-16 Investigaciones Y Desarrollos Eólicos, S.L. Sistema de unión de tramos componentes de palas de aerogenerador.
ES2399259B1 (es) 2011-05-24 2014-02-28 Gamesa Innovation & Technology, S.L. Un método de unión para una pala de aerogenerador multi-panel.
US8360732B2 (en) * 2011-05-25 2013-01-29 General Electric Company Rotor blade section and method for assembling a rotor blade for a wind turbine
CN102606420B (zh) * 2012-04-16 2014-12-10 国电联合动力技术有限公司 一种大型风力发电机及其分段式叶片
US9470205B2 (en) 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
GB201311008D0 (en) * 2013-06-20 2013-08-07 Lm Wp Patent Holding As A tribrid wind turbine blade
US20150003991A1 (en) * 2013-06-28 2015-01-01 General Electric Company Modular extensions for wind turbine rotor blades
DE202016103595U1 (de) * 2016-07-05 2017-10-06 Peter Lutz Rotorblatt und Rotor für Windkraftanlagen im Megawatt-Bereich
DE102016113574A1 (de) * 2016-07-22 2018-01-25 Wobben Properties Gmbh Windenergieanlagen-Rotorblatt und Windenergieanlagen-Rotorblattspitze
DK3578807T3 (da) * 2018-06-08 2024-01-02 Siemens Gamesa Renewable Energy As Fremgangsmåde til fremstilling af vindmøllerotorblade
CN115163555B (zh) * 2022-07-18 2024-02-13 江苏航宇航空装备制造有限公司 一种低温下使用的碳纤维叶片

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB707620A (en) * 1952-02-06 1954-04-21 Ernst Einar Forsman Improvements in or relating to wings for wind motors
US3400904A (en) * 1966-12-19 1968-09-10 James R. Bede Airfoil construction
DE1406443A1 (de) * 1963-12-31 1969-05-14 Grigorjew Wladimir W Tragschraubenschaufel des Hubschraubers
DE3037677A1 (de) * 1980-10-04 1982-05-19 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Windradfluegel
FR2588822A1 (fr) * 1985-10-22 1987-04-24 Courthieu Sa Georges Aile pour aeronefs legers
EP0258926A1 (en) * 1986-08-18 1988-03-09 Strijense Kunststof Technieken B.V. Wind turbine rotor with two rotor blades
US4739954A (en) * 1986-12-29 1988-04-26 Hamilton Terry W Over-lap rib joint
US4976587A (en) * 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
WO1996007825A1 (en) * 1994-09-07 1996-03-14 Bonus Energy A/S Lightning arrester for windmill blades
ES2144336A1 (es) * 1996-11-15 2000-06-01 Torres Martinez M Pala para aerogenerador.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB707620A (en) * 1952-02-06 1954-04-21 Ernst Einar Forsman Improvements in or relating to wings for wind motors
DE1406443A1 (de) * 1963-12-31 1969-05-14 Grigorjew Wladimir W Tragschraubenschaufel des Hubschraubers
US3400904A (en) * 1966-12-19 1968-09-10 James R. Bede Airfoil construction
DE3037677A1 (de) * 1980-10-04 1982-05-19 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Windradfluegel
FR2588822A1 (fr) * 1985-10-22 1987-04-24 Courthieu Sa Georges Aile pour aeronefs legers
EP0258926A1 (en) * 1986-08-18 1988-03-09 Strijense Kunststof Technieken B.V. Wind turbine rotor with two rotor blades
US4739954A (en) * 1986-12-29 1988-04-26 Hamilton Terry W Over-lap rib joint
US4976587A (en) * 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
WO1996007825A1 (en) * 1994-09-07 1996-03-14 Bonus Energy A/S Lightning arrester for windmill blades
ES2144336A1 (es) * 1996-11-15 2000-06-01 Torres Martinez M Pala para aerogenerador.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946803B2 (en) 2003-04-28 2011-05-24 Aloys Wobben Rotor blade for a wind power system
CN101151458B (zh) * 2005-03-31 2010-04-21 歌美飒创新技术公司 用于风力发电机的叶片
DE102006034831B4 (de) * 2005-07-29 2011-03-31 General Electric Co. Verfahren und Vorrichtung zum Erzeugen von Windenergie mit vermindertem Geräusch der Windenergieanlage
KR101204212B1 (ko) 2008-09-04 2012-11-26 미츠비시 쥬고교 가부시키가이샤 풍차 날개
ES2342998A1 (es) * 2009-01-19 2010-07-20 Manuel Torres Martinez Pala de aerogenerador.
WO2010081921A1 (es) * 2009-01-19 2010-07-22 Torres Martinez M Pala de aerogenerador
CN102146880A (zh) * 2010-02-08 2011-08-10 国能风力发电有限公司 垂直轴风力发电机风轮的叶片结构
CN103119289A (zh) * 2010-09-10 2013-05-22 乌本产权有限公司 可拆卸的转子叶片尖端
CN103119289B (zh) * 2010-09-10 2016-02-10 乌本产权有限公司 可拆卸的转子叶片尖端
CN102797645A (zh) * 2012-09-04 2012-11-28 河海大学常州校区 一种具有龙骨结构的风力机叶片
CN106270077A (zh) * 2016-08-31 2017-01-04 三重型能源装备有限公司 蒙皮及风机叶片的制造方法、风机叶片
US11428204B2 (en) 2017-10-24 2022-08-30 Wobben Properties Gmbh Rotor blade of a wind turbine and method for designing same

Also Published As

Publication number Publication date
EP1184566A1 (en) 2002-03-06
ES2178903A1 (es) 2003-01-01
ES2178903B1 (es) 2004-03-16

Similar Documents

Publication Publication Date Title
WO2000073651A1 (es) Pala para aerogenerador
ES2527319T3 (es) Sistema de protección frente a rayos para pala de turbina eólica
US4969500A (en) Wind screen apparatus
US6345637B1 (en) Automatic opening wind resistant umbrella structure made of fiberglass reinforced plastics (FRP)
KR101204212B1 (ko) 풍차 날개
EP1561947B1 (en) Wind turbine blade transportable in sections
ES2583406T3 (es) Procedimiento de instalación de un inserto de la banda de cortadura dentro de un conjunto de la pala del rotor segmentada
KR101141845B1 (ko) 윈드밀 블레이드의 낙뢰 보호 장치
ES2716309T3 (es) Punta de pala de rotor y procedimiento de fabricación
ES2343712B1 (es) Pala de aerogenerador dividida en tramos y proceso de fabricacion de la misma.
ES2583140T3 (es) Una pala de aerogenerador que tiene un casquillo de raíz conductor
JP7427656B2 (ja) ジョイント風力タービンロータブレード用のスパー構成
WO2007051879A1 (es) Pala partida para aerogeneradores
ES2584036T3 (es) Pala de rotor de una instalación de energía eólica con un borde trasero de perfil grueso
RU2014117535A (ru) Лопасть для ветряной турбины и способ сборки лопасти
BR0008079B1 (pt) dirigÍvel e mÉtodo para coleta de radiaÇço solar incidente sobre conjunto de cÉlulas solares
ES2864002T3 (es) Pala de turbina eólica y turbina eólica
US11506182B2 (en) Wind turbine blade assembly
ES2321025T3 (es) Sistema de soporte de motor auxiliar.
ES2333499B1 (es) Pala para aerogenerador.
ES2694429T3 (es) Pala de rotor de turbina eólica con un elemento de compensación del potencial
ES2775057T3 (es) Un soporte de montaje para la instalación de una ventana en una estructura de tejado
ES2863426T3 (es) Estructura de montaje de actuador de cambio de paso de pala de aerogenerador
ES2227393T3 (es) Conjunto de montaje para calentador solar montado en una arista.
KR101105942B1 (ko) 팝업 텐트

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000929568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09979642

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000929568

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000929568

Country of ref document: EP