WO2000069978A1 - Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren - Google Patents

Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren Download PDF

Info

Publication number
WO2000069978A1
WO2000069978A1 PCT/EP2000/004151 EP0004151W WO0069978A1 WO 2000069978 A1 WO2000069978 A1 WO 2000069978A1 EP 0004151 W EP0004151 W EP 0004151W WO 0069978 A1 WO0069978 A1 WO 0069978A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
acid
alkyl
olefinically unsaturated
meth
Prior art date
Application number
PCT/EP2000/004151
Other languages
English (en)
French (fr)
Inventor
Matthias Koch
Kerstin Motzkat
Karsten Hackbarth
Jörg Sander
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7908602&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000069978(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to US09/979,286 priority Critical patent/US7083831B1/en
Priority to CA002374327A priority patent/CA2374327C/en
Priority to EP00943713A priority patent/EP1187882B2/de
Priority to AU58080/00A priority patent/AU773184B2/en
Priority to DE50015200T priority patent/DE50015200D1/de
Publication of WO2000069978A1 publication Critical patent/WO2000069978A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/025Silicon compounds without C-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/095Compounds containing the structure P(=O)-O-acyl, P(=O)-O-heteroatom, P(=O)-O-CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates

Definitions

  • the present invention relates to a chromium-free organic / organometallic corrosion protection agent and a corrosion protection method for the treatment of surfaces made of steel, which are optionally provided with a metallic coating of zinc, aluminum, copper, nickel etc., or of aluminum and its alloys. It is particularly suitable for surface treatment in coil systems (coil coating) for the use of these substrates in the household and architecture sector and in the automotive industry.
  • Phosphating as an alternative measure to temporary corrosion protection has two disadvantages: First, the appearance of the metal surfaces can be changed in an undesirable manner. On the other hand, phosphating is very complex in terms of plant technology, since depending on the substrate material it requires an additional activation step and, as a rule, a passivation step after the phosphating step.
  • the inorganic coating ensures good adhesion to the primer applied to it.
  • the primer in turn not only has a favorable effect on the corrosion protection effect of the inorganic conversion layer, the primer layer in turn offers the top coat a good basis for adhesion.
  • sheet finishers are also supplying sheets with a pre-coating, which, for example, facilitates mechanical processing such as punching, drilling, folding, profiling and / or deep drawing.
  • this precoating must also give the sheet metal mechanical properties.
  • Another function of such precoatings is to provide an adhesive base for subsequent aesthetic topcoats.
  • a workpiece produced from such pre-coated sheet material by mechanical processing can then be provided with a top coat.
  • the precoating according to the invention also serves as a primer, the top coating being carried out immediately afterwards in the coil coating installation. In this case, the fully coated sheet metal material is only sent for further processing.
  • the coil coating process essentially consists of three sub-steps.
  • the metal strip is cleaned and provided with an (inorganic) pretreatment layer
  • the primer is applied
  • the top coat is applied.
  • clearcoat or protective film can also be applied.
  • a suitable organic polymer is added to the inorganic conversion treatment, which is capable of forming a surface film with the functional properties required by a precoating.
  • US Pat. No. 5,344,504 describes a coating process for galvanized steel, in which the substrate is brought into contact with a treatment solution having the following composition: 0.1 to 10 g / l of a tetra- or hexafluoro acid of boron, silicon, Titanium and zircon or hydrofluoric acid, about 0.015 to about 6 g / l cations of cobalt, copper, iron, manganese, nickel, strontium or zinc and optionally up to about 3 g / l of a polymer selected from polyacrylic acid, Polymethacrylic acid and its esters.
  • the pH of this treatment solution is in the range from about 4 to about 5.
  • WO 95/14117 also describes a method for treating surfaces made of zinc or aluminum or their alloys.
  • the surfaces are brought into contact with a treatment solution with a pH value below 3, which contains a complex between a metal oxoion and a heteroion.
  • the metal oxoion is selected from molybdate, tungstate and vanadate.
  • the heteroion is selected from phosphorus, aluminum, silicon, manganese, magnesium, zirconium, titanium, tin, cerium and nickel.
  • the treatment solution also contains an organic film former which is compatible with the other components of the solution. Examples of suitable film formers are polyacrylates, such as, in particular, polymers of methyl methacrylate, n-butyl acrylate, hydroxyethyl acrylate and glycerol propoxy triacrylate.
  • EP-A-694 593 recommends treating the metal surfaces with a treatment solution which contains the following components: an organic polymer or copolymer in which 0.5 to 8% of the monomers carry groups which can form compounds with metal ions, complex cations or Anions of aluminum, calcium, cerium, cobalt, molybdenum, silicon, vanadium, zircon, titanium, trivalent chromium and zinc, an oxidizing agent such as nitric acid, perchloric acid or hydrogen peroxide and an acid such as oxalic acid, acetic acid, boric acid, phosphoric acid, sulfuric acid, nitric acid or Hydrochloric acid.
  • an organic polymer or copolymer in which 0.5 to 8% of the monomers carry groups which can form compounds with metal ions, complex cations or Anions of aluminum, calcium, cerium, cobalt, molybdenum, silicon, vanadium, zircon, titanium, trivalent chromium and zinc
  • an oxidizing agent such as
  • WO 95/04169 teaches the treatment of metal surfaces with a treatment solution which contains at least the following components: Fluorokomp.exe from titanium, zirconium, hafnium, silicon, aluminum and boron, metal ions selected from cobalt, magnesium, manganese, zinc, nickel, tin , Copper, zircon, iron and strontium, phosphates or phosphonates and water-soluble or water-dispersible organic film formers.
  • EP-A-792 922 describes a chromium-free corrosion-inhibiting coating composition for aluminum or aluminum alloys which contains a film-forming organic polymer and (i) a salt selected from esters of rare earth metals, alkali or alkaline earth metal adadate and furthermore (ii) a borate salt of an alkaline earth metal.
  • a film-forming organic polymer and (i) a salt selected from esters of rare earth metals, alkali or alkaline earth metal adadate and furthermore (ii) a borate salt of an alkaline earth metal.
  • preferred polymers are epoxides, including polyimide-based epoxies, polyurethanes, acrylic polymers and alkyd-based systems.
  • this coating composition must therefore contain at least one borate and a further component, which can be a vanadate.
  • EP-A-685534 describes a method for protecting a steel substrate by means of a thin film of an organic-inorganic hybrid polymer based on an alkoxysilane, another condensable organometallic compound of the formula M (OR) 4 and (meth) acrylic acid, water and described a polymerization initiator.
  • the coating is effected by thermal or photopolymerization.
  • Zircon and titanium are mentioned as metals for the organometallic compound.
  • Such a film is said to protect steel substrates from corrosion and oxidation, and also to protect the substrate from shock and other mechanical effects.
  • WO 98/47631 describes a method for repairing defective pretreated metal surfaces.
  • an aqueous acidic solution containing fluorometalate anions, divalent or tetravalent cations of cobalt, magnesium, manganese, zinc, nickel, tin, copper, zirconium, iron and strontium is applied to the defective metal surfaces; Phosphorus-containing inorganic oxo anions and phosphonate anions and a water-soluble and / or water-dispersible organic polymer and / or a polymer-forming resin.
  • the document makes no statement as to whether such compositions are also suitable for the first coating of non-precoated metal strip.
  • the as yet unpublished DE-A-1 9754108.9 describes a chrome-free aqueous corrosion protection agent for the treatment of surfaces made of galvanized or Galvanized steel and aluminum.
  • it contains hexafluoro anions of titanium and / or zirconium, vanadium ions, cobalt ions, phosphoric acid and preferably also an organic film former, in particular based on polyacrylate.
  • This anti-corrosion agent is particularly suitable for the anti-corrosion treatment of metal strips.
  • the as yet unpublished DE-19751153.8 describes polymerizable chromium-free organic compositions containing titanium, manganese and / or zirconium salts of olefinically unsaturated polymerizable carboxylic acids and other olefinically unsaturated comonomers and an initiator for radical polymerization and their use for the organic coil coating of metallic materials.
  • These non-aqueous polymerizable compositions allow a chrome-free pretreatment of steel materials with anti-corrosion properties.
  • the corrosion protection properties need to be improved for many practical applications.
  • the components should preferably be homogeneously dissolved or dispersed in the composition in order to avoid segregation during manufacture, transport, storage and use.
  • the coating is intended to facilitate the punching out and reshaping of the components from the coated metal strips. Furthermore, the layers of the metal substrates should survive the further manufacturing steps up to the assembly of the products, such as cleaning, possibly phosphating, riveting, welding, and should be able to be overpainted either directly or after the mechanical processing. For environmental and occupational safety reasons, the treatment process should be without the use of chromium compounds and if possible also be feasible with the exclusion of organic solvents.
  • the main fields of application are the household appliance and architecture industries mentioned at the beginning.
  • the solution to the problem according to the invention can be found in the patent claims. It consists essentially in the provision of a chromium-free corrosion protection agent containing
  • R 1 and / or R 2 is H, d to C 12 -alkyl, aralkyl or the group -CO-OY,
  • R 3 H or d to C 12 alkyl
  • Me a titanium, silicon or zirconium ion
  • X H, Ci to C 12 alkyl, aryl or aralkyl, alkoxyl, aroxyl, sulfonyl, phosphate,
  • the anti-corrosion agent preferably contains no additional solvent. The aim is that all of the ingredients of the anti-corrosion agent react completely in the course of the process described below and remain in the coating to be produced.
  • the invention further relates to a method for the corrosion-protecting treatment of steel, which is optionally provided with a metallic coating of zinc, aluminum, copper, nickel or similar metals, or aluminum or its alloys, which includes the following essential process steps:
  • the surface of the substrate is brought into contact with a corrosion protection agent of the type mentioned above for a period of time between 0.5 and 60 seconds at a treatment temperature between 10 and 50 ° C, preferably 15 and 35 ° C; b) the excess anticorrosive agent is removed from the surface, if necessary, and c) the polymeric film is crosslinked and anchored to the metal surface by suitable energy supply for a period of 0.1 to 120 seconds.
  • the corrosion protection agent is preferably applied to the workpiece, preferably metal strip surface, by flooding / squeezing, spraying / squeezing, film application (for example in the “curtain flow method”), suitable scraper or roller applications.
  • titanium, silicon and / or zirconium compounds according to formula (I) to be used according to the invention are the following compounds: isopropydimethacrylisostearoyltitanate, isopropyltri (dodecyl) benzenesulfonyltitanate, isopropyltri (octyl) phosphatotitanate, isopropyl (4-amino) benzenesulfonate dodecyl) benzenesulfonyl titanate, alkoxyl trimethacrylate titanate, isopropyl tri (dioctyl) pyrophosphate titanate, alkoxy triacryl titanate, isopropyl tri (N-ethylenediamino) ethyl titanate, di (cumyl) phenyloxoethylene titanate, di (dioctyl) pyrophosphate oxoethylene titanate, dimethyl oxoethylene titan
  • Methacrylamidotrimethylsilane methacryloxyethoxytrimethylsilane, N- (3-methacryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, (methacryloxymethyl) bis (trimethylsiioxy) methylsilane,
  • Methacryloxypropyldimethylethoxysilane methacryloxypropyldimethylmethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, methacryloxypropylpentamethyldisiloxane, methacryloxypropylsilatrane, methacryloxypropyltriethoxysiloxysilane, methacryloxoxiloxiloxane, methacryloxoxiloxysilane, methacryloxoxiloxysilane, methacryloxoxiloxysilane, methacryloxoxysilane, methacryloxoxysilane, methacryloxoxysilane, methacryloxoxiloxane
  • Methacryloxypropyltris (trimethylsiloxy) silane methacryloxypropyltris (trimethylsiloxy) silane, methacryloxypropyltris (vinyldimethylsiloxy) silane, methacryloxytrimethylsilane, tetrakis (2-methacryloxyethoxy) silane
  • Zr-hexafluoropentanedionate Zr-isopropoxide, Zr-methacryloylethylacetoacetate-tri-n-propoxide, Zr-2-methyl-2-butoxide, Zr-2,4-pentanedionate, Zr-n-propoxide, Zr-2,2,6, 6-tetramethyl-3,5-heptanedionate, Zr-trifluoropentanedionate, Zr-trimethylsiloxide, dicyclopentadienylzirconium diethoxide, Zr-2-ethylhexanoate, Zr-methacrylate, Zr-dimethacrylate
  • a large number of comonomers are suitable as comonomers with at least 2 olefinically unsaturated double bonds per molecule, for example esterification products of alkane polyols, polyester polyols, polyether polyols or polyepoxides which may contain hydroxyl groups, with olefinically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, Maleic acid half esters, fumaric acid, fumaric acid half esters or reactive carboxyl group-containing macromonomers or mixtures thereof.
  • olefinically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, Maleic acid half esters, fumaric acid, fumaric acid half esters or reactive carboxyl group-containing macromonomers or mixtures thereof.
  • comonomers with at least 2 reactive double bonds per molecule are (meth) acrylate-functional polysiloxanes, (meth) acrylate-functional aliphatic, cycloaliphatic and / or aromatic polyepoxides and polyurethane compounds with reactive (meth) acrylate groups.
  • the above-mentioned comonomers with at least 2 olefinically unsaturated double bonds per molecule have molecular weights in the range from 600 to 50,000, preferably between 1,000 and 10,000.
  • alkane polyols are 1, 4-butanediol, 1, 6-hexanediol, 1, 8-octanediol and their higher homologues, glycerin, trimethylolpropane, pentaerythritol and their alkoxylation products.
  • the liquid polyhydroxy compounds with two or three hydroxyl groups per molecule such as e.g. di- and / or trifunctional polypropylene glycols in the molecular weight range from 200 to 6000, preferably in the range from 400 to 3000.
  • Statistical and / or block copolymers of ethylene oxide and propylene oxide can also be used.
  • Another group of preferably used polyethers are the polytetramethylene glycols, e.g. be produced by the acidic polymerization of tetrahydrofuran, the molecular weight range of the polytetramethylene glycols being between 200 and 6000, preferably in the range from 400 to 4000.
  • liquid polyesters which are obtained by condensation of di- or tricarboxylic acids, e.g. Adipic acid, sebacic acid, glutaric acid, azelaic acid, suberic acid, 3,3-dimethylglutaric acid, terephthalic acid, isophthalic acid, hexahydrophthalic acid or dimer fatty acid with low molecular weight diols or triols such as e.g.
  • Ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1, 4-butanediol, 1, 6-hexanediol, 1,10-decanediol, dimer fatty alcohol, glycerin or trimethylolpropane can be produced.
  • polyesters based on ⁇ -caprolactone also called “polycaprolactones”.
  • polyester polyols of oleochemical origin can also be used.
  • Such polyester polyols can be produced, for example, by completely ring opening epoxidized triglycerides of a fat mixture containing at least partially olefinically unsaturated fatty acids with one or more alcohols having 1 to 12 carbon atoms and then partially transesterifying the triglyceride derivatives to alkyl ester polyols having 1 to 12 carbon atoms in the alkyl radical .
  • polystyrene resin examples include polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyren
  • One or more of the free-radically polymerizable polyurethane compounds (A), (B) and / or (C) of the general formula (II) are also suitable for the present invention:
  • R a linear or branched alkyl group with 2 to 6 carbon atoms or
  • Q and Q ' are independently aromatic, aliphatic or cycloaliphatic groups containing 6 to 18 carbon atoms, which are derived from diisocyanates or diisocyanate mixtures.
  • aromatic polyisocyanates are: All isomers of tolylene diisocyanate (TDI) either in isomerically pure form or as a mixture of several isomers, naphthalene-1,5-diisocyanate, diphenylmethane-4,4'-diisocyanate (MDI), diphenylmethane-2,4 ' -Diisocyanate and mixtures of 4,4'-diphenylmethane diisocyanate with the 2,4'-isomer or their mixtures with higher-functionality oligomers (so-called raw MDI), xylylene diisocyanate (XDI), 4,4'-diphenyl-dimethylmethane diisocyanate, di- and tetraalkyl diphenylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate.
  • Suitable cycloaliphatic polyisocyanates are the hydrogenation products of the abovementioned aromatic diisocyanates, such as, for example, 4,4'-dicyclohexylmethane diisocyanate (H 12 MDI), 1-isocyanatomethyl-3-isocyanato-1, 5,5-trimethylcyclohexane (isophorone diisocyanate, IPDI ), Cyclohexane-1,4-diisocyanate, hydrogenated xylylene diisocyanate (H 6 XDI), 1-methyl-2,4-diisocyanato-cyclohexane, m- or p-tetramethylxylene diisocyanate (m-TMXDI, p-TMXDI) and dimer fatty acid Diisocyanate.
  • aromatic diisocyanates such as, for example, 4,4'-dicyclohexylmethane diisocyanate (H 12 MDI), 1-isocyan
  • aliphatic polyisocyanates are tetramethoxybutane-1,4-diisocyanate, butane-1,4-diisocyanate, hexane-1,6-diisocyanate (HDI), 1,6-diisocyanato-2,2,4-trimethylhexane, 1,6- Diisocyanato-2,4,4-trimethylhexane, butane-1, 4-diisocyanate and 1, 12-dodecane diisocyanate (C ⁇ 2 DI).
  • HDI hexane-1,6-diisocyanate
  • 1,6-diisocyanato-2,2,4-trimethylhexane 1,6- Diisocyanato-2,4,4-trimethylhexane
  • Suitable epoxy resin building blocks for the olefinically unsaturated comonomers with at least two olefinically unsaturated double bonds per molecule are a large number of polyepoxides which contain at least 2 1, 2-epoxy groups per molecule to have.
  • the epoxy equivalent of these polyepoxides can vary between 150 and 4000.
  • the polyepoxides can in principle be saturated, unsaturated, cyclic or acyclic, aliphatic, alicyclic, aromatic or heterocyclic polyepoxide compounds.
  • suitable polyepoxides include the polyglycidyl ethers which are prepared by reacting epichlorohydrin or epibromohydrin with a polyphenol in the presence of alkali.
  • Suitable polyphenols for this are, for example, resorcinol, pyrocatechol, hydroquinone, bisphenol A (bis- (4-hydroxyphenyl) -2,2-propane)), bisphenol F (bis (4-hydroxyphenyl) methane), bis (4-hydroxyphenyl) -1, 1-isobutane, 4,4'-dihydroxybenzophenone, bis (4-hydroxyphenyl) -1, 1-ethane, 1, 5-hydroxynaphthalene.
  • Other polyepoxides which are suitable in principle are the polyglycidyl ethers of polyalcohols or diamines.
  • polyglycidyl ethers are derived from polyalcohols such as ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, triethylene glycol, 1,5-pentanediol, 1,6-hexanediol or trimethylolpropane.
  • Other polyepoxides are polyglycidyl esters of polycarboxylic acids, for example reactions of glycidol or epichlorohydrin with aliphatic or aromatic polycarboxylic acids such as oxalic acid, succinic acid, glutaric acid, terephthalic acid or dimer fatty acid.
  • Further epoxides are derived from the epoxidation products of olefinically unsaturated cycloaliphatic compounds.
  • (meth) acrylate monomers can also be used: amine-modified polyether acrylate oligomers, carboxy-functionalized multifunctional (meth) acrylates, multifunctional melamine acrylates, difunctional silicone acrylates
  • the following (meth) acrylates can also be used as monofunctional comonomers: n- / iso-alkyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-tert.-butylcyclohexyl (meth) acrylate, dihydrodicyclopentadienyl (meth) acrylate, tetrahydrofurfuryl ( meth) acrylate, isobornyl (meth) acrylate (IBOA), ⁇ -carboxyethyl (meth) acrylate ( ⁇ -CEA); Mono (meth) acryloyl alkyl phthalates, succinate, maleate; 2- (2-ethoxyethoxy) ethyl (meth) acrylate, 2-phenoxyalkyl (meth) acrylate, alkanedioimono (meth) acrylate, allyl (meth) acrylate, hydroxyalkyl (meth)
  • compositions according to the invention are preferably cured by a UV or electron beam curing process.
  • this curing process can take place according to a radical or cationic polymerization process.
  • initiators are suitable as initiators for this radical or cationic polymerization: 1-hydroxycyclohexylphenyl ketone, ( ⁇ -5,2,4-cyclopentadien-1-yl) - [(1, 2,3,4,5,6- ⁇ ) - (1-methylethyl) benzene] iron (1 +) - hexafluorophosphate (1-), 2-benzyldimethyiamino-1- (4-morpholinophenyl) butanone-1, benzil dimethyl-ketal-dimethoxyphenylacetophenone, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) - bis [2,6-difluoro -3- (1H-pyrrol-1-yl) phenyl] titanium, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO2), 2-methyl-1- [4- (methylthio) phenyl] -2 -morpholino-propanone-1,
  • vinyl ethers can also be used as comonomers.
  • vinyl ethers are vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether, vinyl isobutyl ether, vinyl dodecyl ether, vinyl octadecyl ether, vinyl cyclohexyl ether, vinyl 4-hydroxybutyl ether, butanediol-1, 4-divinyl ether, 1, 4-cyclohexanedimethanol-divinyl ether, diethylene glycol viethene-vinyl ether, butene-di-diethylene-vinyl ether, as well Vinyl pyrrolidone, vinyl caprolactam, 1-vinyl imidazole, divinyl ethylene urea.
  • compositions according to the invention are used in the following quantitative ranges: a) 1 to 80% by weight, preferably 1 to 40% by weight of organotitanium, silicon and / or zirconium compound according to formula (I) b ) 20 to 95 wt.%, Preferably 40 to 90 wt.% Comonomer with at least 2 double bonds per molecule c) 0 to 40 wt.% Comonomer with 1 double bond per molecule d) 0.1 to 10 wt.% Of an initiator or one Mixture of initiators e) 0 to 30% by weight of further additives and auxiliaries.
  • the person skilled in the art is familiar with the fact that the abovementioned components, in particular the organometallic compounds, can react with one another and can contain impurities as technical products, so that they are present in the treatment composition in the form which corresponds to the thermodynamic or kinetic equilibrium under the conditions mentioned .
  • compositions according to the invention may contain, as further additives, conductivity pigments or conductive fillers, such as iron phosphide (Ferrophos), vanadium carbide, titanium nitride, carbon black, graphite, molybdenum disulfide or barium sulfate doped with tin or antimony. Iron phosphide is particularly preferred.
  • the conductivity pigments or fillers are added to improve the weldability or to improve the coating with electrocoat materials.
  • These inorganic auxiliaries should be in finely divided form, that is to say their average particle diameter is between 0.005 and 5 ⁇ m, preferably between 0.05 and 2.5 ⁇ m. The auxiliaries are used in proportions between 0 and 30% by weight.
  • the compositions can contain additives to improve the forming behavior, for example wax-based derivatives based on natural or synthetic waxes, for example polyethylene, polytetrafluoroethylene (PTFE) waxes or wax derivatives.
  • PTFE polyte
  • the composition When used in particular on metal strip surfaces, the composition is applied in a manner known per se by roller application (chem coating), stripping, film pulling (curtain flow method), dipping / squeezing or spraying / squeezing onto a steel strip or metal coating, if appropriate with a metallic coating. (Alloyed) aluminum tape applied. They are used at temperatures between 10 and 50 ° C, preferably between 15 and 35 ° C.
  • compositions according to the invention are preferably cured or crosslinked by ultraviolet (UV) radiation or by electron radiation.
  • UV radiation has wavelengths between 200 and 800 nm, preferably between 250 and 450 nm.
  • the radiation intensity depends on the desired application speed, the initiator system and the comonomer composition and can be easily determined by the person skilled in the art.
  • Any conventional electron beam source can be used for the electron beam to be used alternatively, examples being accelerators of the van de Graaff type, linear accelerators, resonance transformers or dynatron.
  • the electron radiation has an energy of about 50 to 1000 keV, preferably between 100 and about 300 keV, the resulting radiation dose is between about 0.1 and 100 Mrad.
  • the formation of the film, the crosslinking of this film and the anchoring on the metallic surface preferably take place by UV radiation or electron radiation known per se.
  • the irradiation time is between 0.1 and 120 seconds, preferably between 1 and 30 seconds.
  • the area-related mass of the coating after crosslinking is 0.1 to 10, preferably 0.5 up to 5.0 g / m 2 . Possibly. the film formation reaction can also be supported by supplying thermal energy.
  • the layers produced in this way can be coated with the liquid or powdery topcoat systems customary in the household appliance and / or architecture industry. Furthermore, the anti-corrosion layer according to the invention can be coated immediately with typical tape topcoats. The layers produced in this way protect the sheet metal and provide adequate corrosion protection in accordance with DIN 53167 and sufficient substrate adhesion in accordance with DIN 53151.
  • the corrosion resistance of materials which have been treated with the corrosion protection composition according to the invention achieves the values which can be achieved with conventional treatment.
  • the strips can be brought into contact with the treatment solution or dispersion according to the invention without prior cleaning.
  • a metallic surface refinement e.g. electrolytic galvanizing or hot-dip galvanizing of steel strips
  • the strips can be brought into contact with the treatment solution or dispersion according to the invention without prior cleaning.
  • the metal strips to be treated were stored and / or transported before the coating according to the invention, they are usually provided with anti-corrosion oils or at least so far soiled that cleaning before the coating according to the invention is necessary. This can be done with common weakly to strongly alkaline cleaners, with aluminum and its alloys also with acidic cleaners.
  • the metal sheets were cleaned (over 15 seconds) using a 2.5% Ridoline 72 solution (60 ° C) from Henkel. It was then rinsed with demineralized water and the sheets were dried.
  • the individual components listed in Table 1 were generally processed in the order mentioned by stirring at room temperature to form a homogeneous mixture.
  • UV-curable formulations produced in this way were applied by knife coating. Sheets prepared in this way were then cured by UV radiation until they were tack-free. A BASF polyester topcoat was then applied with a doctor blade and baked in accordance with the manufacturer's processing instructions.
  • Examples 2, 4, 6, 8, 10, 12, 14, 16 are according to the invention and show good corrosion protection after the salt spray test according to DIN 53167 and good substrate adhesion in cross-hatching according to DIN 53151 with and without depression, while the comparative examples 1, 3, 5, 7, 9, 13, 15 have unsatisfactory corrosion protection and substrate adhesion.
  • Compositions with titanium methacrylate triisoproxide, titanium methacryloxyethyl acetoacetate triisopropoxide, (2-methacryloxiethoxi) triisopropoxy titanate also showed good results.
  • Good curing rates can also be achieved by using the following initiators or initiator mixtures of benzil dimethyl ketal, benzophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one.

Abstract

Polymerisierbare Zusammensetzungen zur organischen Beschichtung von metallischen Werkstoffen, enthaltend: mindestens eine Titan-, Silicium- und/oder Zirconiumverbindung einer olefinisch ungesättigten polymerisierbaren Carbonsäure der allgemeinen Formel (I), worin R1 und/oder R2 H, C1 bis C12-Alkyl, Aralkyl oder die Gruppe -CO-O-Y, R3 = H oder C¿1? bis C12-Alkyl, Me = ein Titan-, Silicium- oder Zirconiumion, X = H, C1 bis C12-Alkyl, Aryl oder Aralkyl, Alkoxyl, Aroxyl, Y = H, C1 bis C12-Alkyl oder Me, und n = 0 bis 4 ist, mindestens ein weiteres olefinisch ungesättigtes Comonomer mit mindestens zwei olefinisch ungesättigten Doppelbindungen pro Molekül, ggf weitere Comonomere mit einer olefinisch ungesättigten Doppelbindung pro Molekül, mindestens einen Initiator zur radikalischen Polymerisation eignen sich als chromfreie organisch/metallorganische Korrosionsschutzmittel zur Behandlung von Oberflächen aus Stahl oder aus Aluminium und seinen Legierungen.

Description

„Chromfreies Korrosionsschutzmittel und Korrosionsschutzverfahren"
Die vorliegende Erfindung betrifft ein chromfreies organisch/metallorganisches Korrosionsschutzmittel und ein Korrosionsschutzverfahren zur Behandlung von Oberflächen aus Stahl, die ggf. mit einer metallischen Beschichtung aus Zink, Aluminium, Kupfer, Nickel usw. versehen sind, oder aus Aluminium und seinen Legierungen. Es ist insbesondere geeignet zur Oberflächenbehandlung in Bandanlagen (coil-coating) zur Anwendung dieser Substrate im Haushalts- und Architekturbereich sowie in der Automobilindustrie.
Zum temporären Korrosionsschutz von verzinkten oder legierungsverzinkten Stahlbändern werden diese entweder nur mit Korrosionsschutzölen eingeölt oder bei zu erwartenden höheren Korrosionsbeanspruchungen phosphatiert oder chromatiert. Vor der endgültigen Beschichtung mit organischen Bindemitteln (Primer, Lacken) folgt in der Regel ein mehrstufiger Prozeß. Für die Verwendung von verzinktem Metallband oder Aluminium und seinen Legierungen in der Haushaltsgeräte- und Architekturindustrie wird dabei, ggf. nach vorheriger Entfernung der Ölschicht, die Metalloberfläche zuerst mit einer Korrosionsschutzschicht versehen. Die beste im Stand der Technik bekannte Korrosionsschutzmaßnahme ist eine Chromatierung, bei der die Metalloberfläche mit einer Chrom (III)- und/oder Chrom (Vl)-haltigen Schicht mit in der Regel etwa 5 bis 15 mg/m2 Chrom überzogen wird. Eine Phosphatierung als alternative Maßnahme zum temporären Korrosionsschutz hat zweierlei Nachteile: Zum einen kann das Aussehen der Metalloberflächen in unerwünschter Weise verändert werden. Zum anderen ist eine Phosphatierung anlagentechnisch sehr aufwendig, da sie je nach Substratmaterial eine zusätzliche Aktivierungsstufe und in der Regel nach der Phosphatierung eine Passivierungsstufe erfordert. Über den eigentlichen Korrosionsschutz hinaus gewährleistet die anorganische Beschichtung eine gute Haftung zum darauf aufgetragenen Primer. Der Primer wiederum beeinflußt nicht nur die Korrosionsschutzwirkung der anorganischen Konversionsschicht günstig, die Primerschicht bietet ihrerseits wiederum dem Decklack eine gute Haftgrundlage. In zunehmendem Maße werden auch Bleche vom Bandveredler mit einer Vorbeschichtung ausgeliefert, die z.B. die mechanische Bearbeitung wie Stanzen, Bohren, Falzen, Profilieren und/oder Tiefziehen erleichtert. Diese Vorbeschichtung muß dem Blech dabei neben den korrosionshemmenden auch die mechanische Bearbeitung erleichternde Eigenschaften verleihen. Eine weitere Funktion solcher Vorbeschichtungen ist es, nachfolgenden ästhetischen Deckbeschichtungen eine Haftgrundlage zu bieten. Ein aus solchermaßen vorbeschichtetem Blechmaterial durch mechanische Bearbeitung hergestelltes Werkstück kann dann abschließend mit einem Decklack versehen werden. In bevorzugter Weise dient die erfindungsgemäße Vorbeschichtung weiterhin als Primer, wobei die Deckbeschichtung unmittelbar anschließend in der Coil-Coating-Anlage erfolgt. In diesem Falle wird erst das vollbeschichtete Blechmaterial der Weiterverarbeitung zugeführt. Nach dem Stand der Technik besteht das Coil-Coating-Verfahren im Wesentlichen aus drei Teilschritten. In einem ersten Schritt wird das Metallband gereinigt und mit einer (anorganischen) Vorbehandlungsschicht versehen, im zweiten Schritt erfolgt die Lackgrundierung (Primer), und im abschließenden dritten Verfahrensschritt die Decklackierung. In einigen Einsatzfällen können zusätzlich Klarlack- oder Schutzfolienüberzüge aufgebracht werden. Es sind Versuche bekannt, bereits mit dem Vorbehandlungsschritt solche Funktionen zur Verfügung zu stellen, die den Einsatz im Sinne der oben genannten Vorbeschichtung ermöglichen. Zu diesem Zweck wird beispielsweise der anorganischen Konversionsbehandlung ein geeignetes organisches Polymer hinzugefügt, das in der Lage ist, einen Oberflächenfilm mit den von einer Vorbeschichtung geforderten funktioneilen Eigenschaften auszubilden.
Beispielsweise beschreibt die US-A-5 344 504 ein Beschichtungsverfahren für verzinkten Stahl, bei dem das Substrat mit einer Behandlungslösung mit folgender Zusammensetzung in Kontakt gebracht wird: 0,1 bis 10 g/l einer Tetra- bzw. Hexafluorosäure von Bor, Silicium, Titan und Zirkon oder Flußsäure, etwa 0,015 bis etwa 6 g/l Kationen von Cobalt, Kupfer, Eisen, Mangan, Nickel, Strontium oder Zink und fakultativ bis zu etwa 3 g/l eines Polymers ausgewählt aus Polyacrylsäure, Polymethacrylsäure und deren Estern. Der pH-Wert dieser Behandlungslösung liegt im Bereich von etwa 4 bis etwa 5.
Die WO 95/14117 beschreibt ebenfalls ein Verfahren zum Behandeln von Oberflächen aus Zink oder Aluminium oder deren Legierungen. Hierbei werden die Oberflächen mit einer Behandlungslösung mit einem pH-Wert unterhalb von 3 in Berührung gebracht, die einen Komplex zwischen einem Metalloxoion und einem Heteroion enthält. Dabei ist das Metalloxoion ausgewählt aus Molybdat, Wolframat und Vanadat. Das Heteroion ist ausgewählt aus Phosphor, Aluminium, Silicium, Mangan, Magnesium, Zirkon, Titan, Zinn, Cer und Nickel. Weiterhin enthält die Behandlungslösung einen organischen Filmbildner, der mit den übrigen Komponenten der Lösung kompatibel ist. Als Filmbildner kommen beispielsweise Polyacrylate wie insbesondere Polymere von Methylmethacrylat, n-Butylacrylat, Hydroxyethylacrylat und Glycerinpropoxytriacrylat in Betracht.
Die EP-A-694 593 empfiehlt die Behandlung der Metalloberflächen mit einer Behandlungslösung, die folgende Komponenten enthält: ein organisches Polymer oder Copolymer, bei dem 0,5 bis 8 % der Monomere Gruppen tragen, die mit Metallionen Verbindungen bilden können, komplexe Kationen oder Anionen von Aluminium, Calcium, Cer, Cobalt, Molybdän, Silicium, Vanadium, Zirkon, Titan, dreiwertiges Chrom und Zink, ein Oxidationsmittel wie Salpetersäure, Perchlorsäure oder Wasserstoffperoxid und eine Säure wie beispielsweise Oxalsäure, Essigsäure, Borsäure, Phosphorsäure, Schwefelsäure, Salpetersäure oder Salzsäure.
Die WO 95/04169 lehrt die Behandlung von Metalloberflächen mit einer Behandlungslösung, die mindestens folgende Komponenten enthält: Fluorokomp.exe von Titan, Zirkon, Hafnium, Silicium, Aluminium und Bor, Metallionen ausgewählt aus Cobalt, Magnesium, Mangan, Zink, Nickel, Zinn, Kupfer, Zirkon, Eisen und Strontium, Phosphate oder Phosphonate sowie wasserlösliche oder wasserdispergierbare organische Filmbildner. Die EP-A-792 922 beschreibt eine chromfreie korrosionsinhibierende Beschichtungszusammensetzung für Aluminium oder Aluminiumlegierungen, die ein filmbildendes organisches Polymer sowie (i) ein Salz ausgewählt aus Estern von seltenen Erdmetallen, Alkali- oder Erdalkalivanadat und weiterhin (ii) ein Boratsalz eines Erdalkalimetalls enthält. Als bevorzugte Polymere werden beispielsweise Epoxide einschließlich Polyimid-basierte Epoxide, Polyurethane, acrylische Polymere und Alkyd-basierte Systeme genannt. Diese Beschichtungszusammensetzung muß also außer dem organischen Filmbildner zumindest ein Borat und eine weitere Komponente enthalten, die ein Vanadat sein kann.
In der EP-A-685534 wird ein Verfahren zum Schutz eines Stahlsubstrates durch einen dünnen Film eines organisch-anorganischen Hybrid-Polymers auf der Basis eines Alkoxysilans, einer weiteren kondensierbaren Organometallverbindung der Formel M(OR)4 sowie (Meth)acrylsäure, Wasser und einem Polymerisationsinitiator beschrieben. Die Beschichtung wird durch thermische oder Photopolymerisation bewirkt. Als Metalle für die Organometallverbindung werden Zircon und Titan genannt. Es wird angegeben, daß ein derartiger Film Stahlsubstrate gegen Korrosion und Oxidation schützt, außerdem soll das Substrat durch diese Beschichtung gegen Schock und andere mechanische Effekte geschützt werden.
Die WO 98/47631 beschreibt ein Verfahren zum Ausbessern defekter vorbehandelter Metalloberflächen. Dazu wird auf die defekten Metallflächen eine wässrig saure Lösung enthaltend Fluorometallat-Anionen, divalente oder tetravalente Kationen des Cobalts, Magnesiums, Mangans, Zinks, Nickels, Zinns, Kupfers, Zirconiums, Eisens und Strontium; Phosphor- enthaltende anorganische Oxoanionen und Phosphonatanionen und ein wasserlösliches und/oder wasserdispergierbares organisches Polymer und/oder ein polymerbildendes Harz. Die Schrift macht keine Angaben darüber, ob derartige Zusammensetzungen auch für die erstmalige Beschichtung von nicht vorbeschichtetem Metallband geeignet sind.
Die noch unveröffentlichte DE-A-1 9754108.9 beschreibt ein chromfreies wäßriges Korrosionsschutzmittel zur Behandlung von Oberflächen aus verzinktem oder iegierungsverzinktem Stahl sowie aus Aluminium. Es enthält als wesentliche Komponenten Hexafluoro-Anionen des Titans und/oder Zircons, Vanadiumionen, Cobaltionen, Phosphorsäure sowie vorzugsweise zusätzlich einen organischen Filmbildner, insbesondere auf Polyacrylat-Basis. Dieses Korrosionsschutzmittel ist insbesondere zur Korrosionsschutzbehandlung von Metallbändern geeignet.
Die noch unveröffentlichte DE-19751153.8 beschreibt polymerisierbare chromfreie organische Zusammensetzungen enthaltend Titan-, Mangan- und/oder Zirconiumsalze von olefmisch ungesättigten polymerisierbaren Carbonsäuren und weiteren olefinisch ungesättigten Comonomeren sowie einen Initiator zur radikalischen Polymerisation und deren Verwendung zur organischen Coilbeschichtung von metallischen Werkstoffen. Diese nicht wäßrigen polymerisierbaren Zusammensetzungen erlauben zwar eine chromfreie Vorbehandlung von Stahlwerkstoffen mit Korrosionsschutzeigenschaften. Die Korrosionsschutzeigenschaften bedürfen jedoch für viele Praxisanwendungen der Verbesserung.
Trotz des umfangreichen Standes der Technik besteht weiterhin Bedarf an verbesserten Korrosionsschutzmitteln und Beschichtungsverfahren für Metalloberflächen, die eine chromfreie Vorbehandlung der metallischen Substrate bei gutem Korrosionsschutz unter Vermeidung starker Säuren und hoher Fluoridkonzentrationen ermöglichen. Dabei sollen die Bestandteile vorzugsweise homogen in der Zusammensetzung gelöst oder dispergiert sein, um Entmischungen während der Herstellung, des Transports, der Lagerung und der Anwendung zu vermeiden.
Die Beschichtung soll das Ausstanzen und Umformen der Bauteile aus den beschichteten Metallbändern erleichtern. Weiterhin sollen die Schichten der Metallsubstrate die weiteren Fertigungsschritte bis zum Zusammenbau der Produkte wie beispielsweise Reinigen, ggf. Phosphatieren, Nieten, Schweißen überstehen und entweder direkt oder nach der mechanischen Bearbeitung mit einem Decklack überlackierbar sein. Aus Gründen des Umwelt- und Arbeitsschutzes soll das Behandlungsverfahren ohne den Einsatz von Chromverbindungen und möglichst auch unter Ausschluß von organischen Lösungsmitteln durchführbar sein. Hauptanwendungsfelder sind die eingangs erwähnte Haushaltsgeräte- und Architekturindustrie. Die erfindungsgemäße Lösung der Aufgabe ist den Patentansprüchen zu entnehmen. Sie besteht im wesentlichen in der Bereitstellung eines chromfreien Korrosionsschutzmittels, enthaltend
- mindestens eine Titan-, Silicium- und/oder Zirconiumverbindung der allgemeinen Formel (I)
Rl R3 O
I
= C C O ]n- Me-0-X4-n (I)
R2
worin R1 und/oder R2 H, d bis C12-Alkyl, Aralkyl oder die Gruppe -CO-O-Y,
R3=H oder d bis C12-Alkyl,
Me = ein Titan-, Silicium- oder Zirconiumion,
X = H, Ci bis C12-Alkyl, Aryl oder Aralkyl, Alkoxyl, Aroxyl, Sulfonyl, Phosphat,
Pyrophosphat,
Y = H, Ci bis C12-Alkyl oder Me, und n = 0 bis 4 ist, mindestens ein weiteres olefinisch ungesättigtes Comonomer mit mindestens zwei olefinisch ungesättigten Doppelbindungen pro Molekül, ggf weitere Comonomere mit einer olefinisch ungesättigten Doppelbindung pro Molekül,
mindestens einen Initiator zur radikalischen und/oder kationischen Polymerisation. In bevorzugter Weise enthält das Korrosionsschutzmittel kein zusätzliches Lösungsmittel. Es wird angestrebt, daß alle Inhaltsstoffe des Korrosionsschutzmittels im Verlauf des unten beschriebenen Verfahrens vollständig abreagieren und in der zu erzeugenden Beschichtung verbleiben.
Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur korrosionsschützenden Behandlung von Stahl, der ggf. mit einer metallischen Beschichtung aus Zink, Aluminium, Kupfer, Nickel oder ähnlichen Metallen versehen ist, oder Aluminium oder dessen Legierungen, das die folgenden wesentlichen Verfahrensschritte beinhaltet:
a) die Oberfläche des Substrats wird für eine Zeitdauer zwischen 0,5 und 60 Sekunden bei einer Behandlungstemperatur zwischen 10 und 50°C, vorzugsweise 15 und 35°C mit einem Korrosionsschutzmittel der oben genannten Art in Kontakt gebracht; b) das überschüssige Korrosionsschutzmittel wird ggf. von der Oberfläche entfernt und c) durch geeignete Energiezufuhr für einen Zeitraum von 0,1 bis 120 Sekunden wird eine Vernetzung des polymeren Films und seine Verankerung auf der Metalloberfläche bewirkt.
In bevorzugter Weise wird das Korrosionsschutzmittel durch Fluten/Abquetschen, Spritzen/Abquetschen, Filmapplikation (z.B. im „Curtain-flow-Verfahren"), geeignete Abstreifer- oder Walzapplikationen auf die Werkstück-, bevorzugt Metallbandoberfläche, aufgebracht.
Konkrete Beispiele für die erfindungsgemäß einzusetzenden Titan-, Silicium- und/oder Zirconiumverbindungen gemäß Formel (I) sind die folgenden Verbindungen: Isopropydimethacrylisostearoyltitanat, lsopropyltri(dodecyl)benzolsulfonyltitanat, lsopropyltri(octyl)phosphatotitanat, lsopropyl(4-amino)benzolsulfonyl-di- (dodecyl)benzolsulfonyltitanat, Alkoxyltrimethacryltitanat, lsopropyltri(dioctyl)pyrophosphatotitanat, Alkoxytriacryltitanat, lsopropyltri(N- ethylendiamino)ethyltitanat, Di(cumyl)phenyloxoethylentitanat, Di(dioctyl)pyrophosphat- oxoethylentitanat, Dimethyl-oxoethylentitanat, Di(butylmethyl)pyrophosphat-oxoethylen- di(dioctyl)phosphitotitanat, Di(dioctyl)phosphato-ethylentitanat, Di(butylmethyl)pyrophosphato-ethylentitanat, Tetraethyltitanat, Tetraisopropyltitanat, Tetra-n-propyltitanat, Tetra-n-butyltitanat, n-Butylpolytitanat, Tetra-2-ethylhexyltitanat, Tetraisooctyltitanat, Isostearoyltitanat, monomeres Cresyltitanat, polymeres Cresyltitanat, Octylenglykoltitanat, Titanylacetylacetonate, Diisopropoxy-bis- ethylacetoacetatotitanat, Di-n-butoxy-bis-ethylacetoacetatotitanat, Diisobutoxy-bis- ethylacetoacetatotitanat, Triethanolamintitanat, Isopropyltriisostearoyltitanat, Addukte von 2-(N,N-dimethylamino)isobutanol, Triethylamin, (meth)acrylatfunktionalisiertem Aminderivat, methacrylamidfunktionalisiertem Aminderivat mit Di(dioctyl)phosphato- ethylentitanat, Tetraisopropyl-di(dioctyl)phosphitotitanat, Tetraoctyl- di(ditridecyl)phosphitotitanat, Tetra-(2,2-diallyloxymethyl)butyl- di(ditridecyl)phosphitotitanat, Neopentyl-(diallyl)oxy-trineodecanoyltitanat, Neopentyl- (diallyl)oxy-tri(dodecyl)benzolsulfonyltitanat, Neopentyl-(diallyl)oxy- tri(dioctyl)phosphatotitanat, Neopentyl-(diallyl)oxy-tri(dioctyl)pyrophosphatotitanat, Neopentyl-(diallyl)oxy-tri(N-ethylendiamino)ethyltitanat, Neopentyl-(diallyl)oxy-tri(m- amino)phenyltitanat, Neopentyl-(diallyl)oxy-trihydroxycaproyltitanat, Cyclo(dioctyl)pyrophosphatodioctyltitanat, Dicyclo(dioctyl)pyrophosphatotitanat, 2-(Acryloxyethoxy)trimethylsilan, N-(3-acryloxy-2-hydroxypropyl)-3- aminopropyltriethoxysilan, (3-Acryloxypropyl)dimethylmethoxysilan, (3- Acryloxypropyl)methylbis-(trimethylsiloxy)silan, (3-
Acryloxypropyl)methyldimethoxysilan, (3-Acryloxypropyl)trimethoxysilan, (3- Acryloxypropyl)tris(trimethylsiloxy)silan, Acryloxytrimethylsilan, 1 ,3- Bis((acryloxymethyl)phenethyl)-tetramethyldisiloxan, Bis(methacryloxy)diphenylsilan, 1 ,3-Bis(3-methacryloxypropyl)tetrakis(trimethylsiloxy)disiloxan, 1 ,3-Bis(3- methacryloxypropyl)tetramethyldisiloxan, 1 ,3-Bis(methacryloxy)-2- trimethylsiloxypropan, Methacrylamidopropyltriethoxysilan,
Methacrylamidotrimethylsilan, Methacryloxyethoxytrimethylsilan, N-(3-Methacryloxy-2- hydroxypropyl)-3-aminopropyltriethoxysilan, (Methacryloxymethyl)bis(trimethylsiioxy)methylsilan,
(Methacryloxymethyl)dimethylethoxysilan, (Methacryloxymethyl)phenyldimethylsilan, Methacryloxymethyltriethoxysilan, Methacryloxymethyltrimethoxysilan, Methacryloxymethyltrimethylsilan, Methacryloxymethyltris(trimethylsiloxy)silan, O- Methacryloxy(polyethyleneoxy)trimethylsilan, 3- Methacryloxypropylbis(trimethylsiloxy)methylsilan, 3-
Methacryloxypropyldimethylethoxysilan, Methacryloxypropyldimethylmethoxysilan, Methacryloxypropylmethyldiethoxysilan, Methacryloxypropylmethyldimethoxysilan, Methacryloxypropylpentamethyldisiloxan, Methacryloxypropylsilatran, Methacryloxypropyltriethoxysilan, Methacryloxypropyltrimethoxysilan, Methacryloxypropyltris(methoxyethoxy)silan,
Methacryloxypropyltris(trimethylsiloxy)silan, Methacryloxypropyltris(trimethylsiloxy)silan, Methacryloxypropyltris(vinyldimethylsiloxy)silan, Methacryloxytrimethylsilan, Tetrakis(2- methacryloxyethoxy)silan
Zr-hexafluoropentandionat, Zr-isopropoxid, Zr-methacryloylethylacetoacetat-tri-n- propoxid, Zr-2-methyl-2-butoxid, Zr-2,4-pentandionat, Zr-n-propoxid, Zr-2,2,6,6- tetramethyl-3,5-heptandionat, Zr-trifluorpentandionat, Zr-trimethylsiloxid, Dicyclopentadienylzirkoniumdiethoxid, Zr-2-ethylhexanoat, Zr-methacrylat, Zr- dimethacrylat
Als Comonomere mit mindestens 2 olefinisch ungesättigten Doppelbindungen pro Molekül eignen sich eine Vielzahl von Comonomeren, z.B. Veresterungsprodukte von Alkanpolyolen, Polyesterpolyolen, Polyetherpolyolen oder Polyepoxiden, die ggf. Hydroxylgruppen enthalten, mit olefinisch ungesättigten Carbonsäuren wie z.B. Acrylsäure, Methacrylsäure, Itaconsäure, Crotonsäure, Maleinsäure, Maleinsäurehalbester, Fumarsäure, Fumarsäurehalbester oder reaktive carboxylgruppenhaltige Makromonomere oder deren Mischungen. Weiterhin eignen sich als Comonomere mit mindestens 2 reaktiven Doppelbindungen pro Molekül (Meth)acrylat-funktionelle Polysiloxane, (Meth)acrylat-funktionelle aliphatische, cycloaliphatische und/oder aromatische Polyepoxide sowie Polyurethan-Verbindungen mit reaktiven (Meth)acrylatgruppen. Typischenweise haben die vorgenannten Comonomeren mit mindestens 2 olefinisch ungesättigten Doppelbindungen pro Molekül Molekulargewichte im Bereich von 600 bis 50000, vorzugsweise zwischen 1000 und 10000. Konkrete Beispiele für Alkan-Polyole sind 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,8-Oktandiol sowie deren höhere Homologe, Glyzerin, Trimethylolpropan, Pentaerythrit sowie deren Alkoxylierungsprodukte.
Neben den vorgenannten Alkanpolyolen eignen sich als Polyole die flüssigen Polyhydroxyverbindungen mit zwei bzw. drei Hydroxylgruppen pro Molekül, wie z.B. di- und/oder trifunktionelle Polypropylenglykole im Molekulargewichtsbereich von 200 bis 6000, vorzugsweise im Bereich von 400 bis 3000. Es können auch statistische und/oder Blockcopolymere des Ethylenoxids und Propylenoxids einge-setzt werden. Eine weitere Gruppe von vorzugsweise einzu-setzenden Polyethern sind die Polytetramethylenglykole, die z.B. durch die saure Polymerisation von Tetrahydrofuran hergestellt werden, dabei liegt der Molekulargewichtsbereich der Polytetramethylenglykole zwischen 200 und 6000, vorzugsweise im Bereich von 400 bis 4000.
Weiterhin sind als Polyole die flüssigen Polyester geeignet, die durch Kondensation von Di- bzw. Tricarbonsäuren, wie z.B. Adipinsäure, Sebacinsäure, Glutarsäure, Azelainsäure, Korksäure, 3,3-Dimethylglutarsäure,Terephthalsäure, Isophthalsäure, Hexahydrophthalsäure oder Dimerfettsäure mit niedermolekularen Diolen bzw. Triolen wie z.B. Ethylenglykol, Propylenglykol, Diethylenglykol, Triethylenglykol, Dipropylenglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol, 1,10-Decandiol, Dimerfettalkohol, Glyzerin oder Trimethylolpropan hergestellt werden können.
Eine weitere Gruppe der erfindungsgemäß einzusetzenden Polyol-Bausteine sind die Polyester auf der Basis von ε-Caprolacton, auch "Polycaprolactone" genannt. Es können aber auch Polyesterpolyole oleochemischer Herkunft verwendet werden. Derartige Polyesterpolyole können beispielsweise durch vollständige Ringöffnung von epoxidierten Triglyzeriden eines wenigstens teilweise olefinisch ungesättigte Fettsäureenthaltenden Fettgemisches mit einem oder mehreren Alkoholen mit 1 bis 12 C- Atomen und anschließender partieller Umesterung der Triglyzerid-Derivate zu Alkylesterpolyolen mit 1 bis 12 C-Atomen im Alkylrest hergestellt werden. Weitere geeignete Polyole sind Polycarbonat-polyole und Dimerdiole (Fa. Henkel) sowie Rizinusöl und dessen Derivate. Auch die Hydroxy-funktionellen Polybutadiene, wie sie z.B. unter dem Handelsnamen "Poly-bd" erhältlich sind, können für die erfindungsgemäßen Zusammensetzungen als Polyole eingesetzt werden.
Für die vorliegende Erfindung eignen sich auch eine oder mehrere der radikalisch polymerisierbaren Polyurethan-Verbindungen (A), (B) und/oder (C) der allgemeinen Formel (II):
(H C=CR -C(=O)-O-R2-O-C(=O)-NH-) R2 (II)
worin
1 R = Wasserstoff oder eine Methylgruppe,
2
R = eine lineare oder verzweigte Alkylgruppe mit 2 bis 6 Kohlenstoffatomen oder
Alkylenoxide mit 4 bis 21 Kohlenstoffatomen und n = 1 , 2 oder 3 ist,
3
(A) wobei R für n = 1 ist:
- eine Arylgruppe mit 6 bis 18 Kohlenstoffatomen,
- eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 18 Kohlenstoffatomen oder
- eine Cycloalkylgruppe mit 3 bis 12 Kohlenstoffatomen;
(B) R für n = 2 ist:
[-Q-NH-C(=O)] l(-O-R4-O-C(=O)-NH-Q'-NH-C(=O)) -0-R4-O-]
wobei m = 0 bis 10 ist und
4
R a) ein Polycaprolactondiol-Rest b) ein Polytetrahydrofurfuryldiol-Rest oder c) ein Diol-Rest ist, der sich von einem Polyesterdiol ableitet, und ein Molekulargewicht von 1000 bis 20000 hat oder
(C) R für n = 3 ist: [-Q-NH-C(=O)-O-((CH2)5-C(=O))p-]3 R5,
5 wobei R ein Triol-Rest eines 3 bis 6 Kohlenstoffatome enthaltenden, linearen oder verzweigten dreiwertigen Alkohols und p = 1 bis 10 ist und
Q und Q' unabhängig voneinander 6 bis 18 Kohlenstoffatome enthaltende aromatische, aliphatische oder cycloaliphatische Gruppen sind, die sich von Diisocyanaten oder Diisocyanatgemischen ableiten.
Beispiele für geeignete aromatische Polyisocyanate sind: Alle Isomeren des Toluylendiisocyanats (TDI) entweder in isomerenreiner Form oder als Mischung mehrerer Isomerer, Naphthalin-1 ,5-Diisocyanat, Diphenylmethan-4,4'-Diisocyanat (MDI), Diphenylmethan-2,4'-Diisocyanat sowie Mischungen des 4,4'- Diphenylmethandiisocyanats mit dem 2,4'-lsomeren oder deren Mischungen mit höherfunktionellen Oligomeren (sogenanntes Roh-MDI), Xylylen-diisocyanat (XDI), 4,4'-Diphenyl-dimethylmethandiisocyanat, Di- und Tetraalkyl- diphenylmethandiisocyanat, 4,4'-Dibenzyldiisocyanat, 1 ,3-Phenylendiisocyanat, 1 ,4- Phenylendiisocyanat. Beispiele für geeignete cycloaliphatische Polyisocyanate sind die Hydrierungsprodukte der vorgenannten aromatischen Diisocyanate wie z.B. das 4,4'- Dicyclohexylmethandiisocyanat (H12MDI), 1-lsocyanatomethyl-3-lsocyanato-1 ,5,5- Trimethyl-cyclohexan (Isophoron-Diisocyanat, IPDI), Cyclohexan-1 ,4-Diisocyanat, hydriertes Xylylen-Diisocyanat (H6XDI), 1-Methyl-2,4-diisocyanato-cyclohexan, m- oder p-Tetramethylxylendiisocyanat (m-TMXDI, p-TMXDI) und Dimerfettsäure-Diisocyanat. Beispiele für aliphatische Polyisocyanate sind Tetramethoxybutan-1 ,4-diisocyanat, Butan-1 ,4-diisocyanat, Hexan-1 ,6-Diisocyanat (HDI), 1 ,6-Diisocyanato-2,2,4- Trimethylhexan, 1 ,6-Diisocyanato-2,4,4-Trimethylhexan, Butan-1 ,4-Diisocyanat sowie 1 ,12-Dodecandiisocyanat (Cι2DI).
Als Epoxidharz-Bausteine für die olefinisch ungesättigten Comonomeren mit mindestens zwei olefinisch ungesättigten Doppelbindungen pro Molekül eignen sich eine Vielzahl von Polyepoxiden, die mindestens 2 1 ,2-Epoxigruppen pro Molekül haben. Das Epoxid-Äquivalent dieser Polyepoxide kann zwischen 150 und 4000 variieren. Die Polyepoxide können grundsätzlich gesättigte, ungesättigte, cyclische oder acyclische, aliphatische, alicyclische, aromatische oder heterocyclische Polyepoxidverbindungen sein. Beispiele für geeignete Polyepoxide schließen die Polyglycidylether ein, die durch Reaktion von Epichlorhydrin oder Epibromhydrin mit einem Polyphenol in Gegenwart von Alkali hergestellt werden. Hierfür geeignete Polyphenole sind beispielsweise Resorcin, Brenzkatechin, Hydrochinon, Bisphenol A (Bis-(4-Hydroxy-phenyl)-2,2-propan)), Bisphenol F (Bis(4-hydroxyphenyl)methan), Bis(4-hydroxyphenyl)-1 ,1-isobutan, 4,4'-Dihydroxybenzophenon, Bis(4-hydroxyphenyl)- 1 ,1-ethan, 1 ,5-Hydroxynaphthalin. Weitere prinzipiell geeignete Polyepoxide sind die Polyglycidylether von Poiyalkoholen oder Diaminen. Diese Polyglycidylether leiten sich von Poiyalkoholen wie Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,2- Propylenglykol, 1 ,4-Butylenglykol, Triethylenglykol, 1 ,5-Pentandiol, 1 ,6-Hexandiol oder Trimethylolpropan ab. Weitere Polyepoxide sind Poiyglycidylester von Polycarbonsäuren, beispielsweise Umsetzungen von Glycidol oder Epichlorhydrin mit aliphatischen oder aromatischen Polycarbonsäuren wie Oxalsäure, Bernsteinsäure, Glutarsäure, Terephthalsäure oder Dimerfettsäure. Weitere Epoxide leiten sich von den Epoxidierungsprodukten olefinisch ungesättigter cycloaliphatischer Verbindungen ab.
Konkrete Beispiele für erfindungsgemäß einzusetzende di-, tri- oder polyfunktionelle (Meth)acrylate sind die folgenden Verbindungen:
1 ,3-Butylenglykoldi(meth)acrylat, 1 ,4-Butandioldi(meth)acrylat, 1 ,6-Hexandiol di(meth)acrylat, Bisphenol-A-Epoxid-Di(meth)acrylat, alkoxyliertes Bisphenol-A- Di(meth)acryiat, Polyalkylenglykoldi(meth)acrylat, Trialkylenglycoldiacrylat, Tetraalkylenglycoldi(meth)acrylat, Neopentylglycoldi(meth)acryiat, alkoxyliertes Neopentylglykoldi(meth)acrylat, Trialkylolalkantri(meth)acrylat, alkoxyliertes Trialkylolalkantri(meth)acrylat, Glycerinalkoxytri(meth)acrylat) Pentaerythritoltri(meth)acrylat, Tris-(2-hydroxyalkyl)isocyanurat-tri(meth)acrylat, säuregruppenhaltige Tri(meth)acrylatverbindungen, Trimethylolpropantri(meth)acrylat, Trisalkoxy-Trimethylolpropantri(meth)acrylat, Ditrimethylolpropan-tetra(meth)acrylat, Pentaerythritoltetra(meth)acrylat, alkoxyliertes Pentaerythritoltetra(meth)acrylat, Dipentaerythritolpenta(meth)acrylat, Dipentaerythritolhexa(meth)acrylat, wobei „alkylen" ethylen, propylen oder butylen und „alkoxy" ethoxy, 1 ,2- oder 1 ,3-propoxy oder 1 ,4-butoxy bedeuten.
Zusätzlich können noch die folgenden (Meth)acrylat-Monomeren mitverwendet werden: Aminmodifizierte Polyetheracrylat-Oligomere, Carboxy-funktionalisierte multifunktionelle (Meth)acrylate, multifunktionelle Melaminacrylate, difunktionelle Siliconacrylate
Als monofuntionelle Comonomere können die folgenden (Meth)acrylate mit verwendet werden: n-/iso-Alkyl(meth)acrylat, Cyclohexyl(meth)acrylat, 4-tert.- Butylcyclohexyl(meth)acrylat, Dihydrodicyclopentadienyl(meth)acrylat, Tetrahydrofurfuryl(meth)acrylat, lsobornyl(meth)acrylat (IBOA), ß-Carboxyethyl- (meth)acrylat (ß-CEA); Mono(meth)acryloylalkylphthalate, -succinat, -maleinat; 2-(2- Ethoxyethoxy)-ethyl(meth)acrylat, 2-Phenoxyalkyl(meth)acrylat, Alkandioimono(meth)acrylat, Allyl(meth)acrylat, Hydroxyalkyl(meth)acrylat, 2,3- Epoxyalkyl(meth)acrylat, N,N-Dialkylaminoalkyl(meth)acrylat, N,N- Dialkyl(meth)acrylamid, Monoalkoxytrialkylenglycol(meth)acrylat, Monoalkoxyneopentylglycol-alkyloxylat(meth)acrylat, Polyalkylenglycol(meth)acrylat, alkoxyliertes Nonylphenol(meth)acrylat, wobei die Alkylgruppen 1 bis 12 C-Atome aufweisen können und „alkoxy" ethoxy, 1 ,2- oder 1 ,3-propoxy oder 1 ,4-butoxy bedeuten.
Vorzugweise werden die erfindungsgemäßen Zusammensetzungen durch einen UV- oder Elektronenstrahl-Härtungsprozeß ausgehärtet. Je nach eingesetzten Initiatoren und Monomeren kann dieser Aushärtungsprozeß nach einem radikalischen oder kationischen Polymerisations-Prozeß ablaufen.
Als Initiatoren für diese radikalische bzw. kationische Polymerisation eignen sich beispielsweise die folgenden Initiatoren: 1-Hydroxycyclohexylphenylketon, (η-5,2,4- Cyclopentadien-1-yl)-[(1 ,2,3,4,5,6-η)-(1-methylethyl)-benzol]eisen(1+)- hexafluorphosphat(l-), 2-Benzyldimethyiamino-1-(4-morpholinophenyl)-butanon-1 , Benzildimethyl-ketal-dimethoxyphenylacetophenon, Bis(η5-2,4-cyclopentadien-1-yl)- bis[2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl]-titan, Bis(2,4,6-trimethylbenzoyl)- phenylphosphinoxid (BAPO2), 2-Methyl-1-[4-(methylthio)-phenyl]-2-morpholino- propanon-1 , 1-(4-(1-Methylethyl)-phenyl)-2-hydroxy-2-methyl-1-propan-1-on, 2- Hydroxy-2-methyl-1-phenylpropan-1-on, 1 ,2-Diphenylethan-1 ,2-dion, 1-[4-(2- Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-on, (2,4,6-Trimethylbenzoyl)- diphenylphosphinoxid, α-Hydroxybenzylphenylketon, Triarylsulfoniumhexafluoro- antimonat-salze, Triaryisulfoniumhexafluorophosphat-salze, Oligo-(2-hydroxy-2-methyl- 1-[4-(1-methylvinyl)phenyl]propanon), 1-Propanon,2-hydroxy-2-methyl-1-[4-(1- methylethenyl)phenyl]-,homopolymer, Phosphonsäure-benzoyl-bis(2,6- dimethylphenyl)ester, Benzophenon, Methyl-ortho-benzoylbenzoat, Methylbenzoylformat, 2,2-Diethoxyacetophenon, 2,2-Di-sec-butoxyacetophenon, [4-(4- methylphenylthio)phenyl]phenylmethanon-4-benzoyl-4N-methyldiphenylsulfid, p- Phenylbenzophenon, 2-lsopropylthioxanthon, 2-Methylanthrachinon, 2- Ethylanthrachinon, 2-Chloroanthrachinon, 1 ,2-Benzanthrachinon, 2-t- Butylanthrachinon, 1 ,2 Benzo-9,10-anthrachinon, Benzil, Benzoin, Benzoin methylether, Benzoinethylether, Benzoinisopropylether, alpha-Methylbenzoin, alpha- Phenylbenzoin, Michle s Keton, Benzophenon, 4,4'-Bis-(diethylamino)benzophenon, Acetophenon, Diethoxyphenylacetophenon, Thioxanthon, Diethylthioxanthon, 1 ,5- Acetonaphtalin, Ethyl-p-dimethylaminobenzoat, Benzilketone, 2,4,6- Trimethylbenzoyldiphenyl-phosphinoxide, Benzilketal-(2,2-dimethoxy-1 ,2- diphenylethanon), 1-Hydroxycyclohexylphenylketon, 2-Methyl-1[4-(methylthio)phenyl]- 2-morpholinopropanon-1 und/oder 2-Hydroxy-2-methyl-1-phenyl-propan-1 und/oder deren Mischungen. Diese können ggf. mit weiteren Radikalinitiatoren von Peroxid- oder Azotyp und/oder mit aminischen Beschleunigern kombiniert werden.
Wenn vorzugsweise die kationische Polymerisation Verwendung finden soll, können auch Vinylether als Comonomere eingesetzt werden. Beispiele für derartige Vinylether sind Vinylmethylether, Vinylethylether, Vinylpropylether, Vinylisobutylether, Vinyldodecylether, Vinyloctadecylether, Vinylcyclohexylether, Vinyl-4-hydroxybutylether, Butandiol-1 ,4-divinylether, 1 ,4- Cyclohexandimethanoldivinylether, Diethylenglykoldivinylether, Triethylenglykoldivinylether, aber auch die folgenden Vinyiverbindungen N- Vinylpyrrolidon, Vinylcaprolactam, 1-Vinylimidazol, Divinylethylenharnstoff.
Die Hauptkomponenten der erfindungsgemäßen Zusammensetzungen werden dabei in den folgenden Mengenbereichen verwendet: a) 1 bis 80 Gew.%, vorzugsweise 1 bis 40 Gew.% Organo-Titan-, -Silicium- und/oder - Zirconium-Verbindung gemäß Formel (I) b) 20 bis 95 Gew.%, vorzugsweise 40 bis 90 Gew.% Comonomer mit mindestens 2 Doppelbindungen pro Molekül c) 0 bis 40 Gew.% Comonomer mit 1 Doppelbindung pro Molekül d) 0,1 bis 10 Gew.% eines Initiators oder einer Mischung von Initiatoren e) 0 bis 30 Gew.% weitere Additive und Hilfsstoffe.
Dem Fachmann ist geläufig, daß die vorstehend genannten Komponenten, insbesondere die metallorganischen Verbindungen, Reaktionen miteinander eingehen können und als technische Produkte Verunreinigungen enthalten können, so daß sie in der Behandlungszusammensetzung in der Form vorliegen, die unter den genannten Bedingungen dem thermodynamischen oder kinetischen Gleichgewicht entsprechen.
Als weitere Additive können die erfindungsgemäßen Zusammensetzungen Leitfähigkeitspigmente oder leitfähige Füllstoffe enthalten wie z.B. Eisenphosphid (Ferrophos), Vanadiumcarbid, Titannitrid, Ruß, Graphit, Molybdändisulfid oder mit Zinn oder Antimon dotiertes Bariumsulfat. Eisenphosphid ist dabei besonders bevorzugt. Die Leitfähigkeitspigmente oder Füllstoffe werden zur Verbesserung der Schweißbarkeit oder zur Verbesserung der Beschichtung mit Elektrotauchlacken zugesetzt. Diese anorganischen Hilfsstoffe sollen in feinverteilter Form vorliegen, das heißt ihre mittleren Teilchendurchmesser betragen zwischen 0,005 und 5 μm, vorzugsweise zwischen 0,05 und 2,5 μm. Die Hilfsstoffe werden in Anteilen zwischen 0 und 30 Gew.% verwendet. Weiterhin können die Zusammensetzungen Additive zur Verbesserung des Umformverhaltens enthalten, dies sind beispielsweise wachsbasierte Derivate auf Basis von natürlichen oder synthetischen Wachsen, z.B. Polyethylen-, Polytetrafluorethylen (PTFE)-Wachse oder Wachsderivate.
Bei Anwendung insbesondere auf Metallbandoberflächen wird die Zusammensetzung in an sich bekannter Weise durch Walzenapplikation (Chem-Coating), Abstreifen, Filmziehen (Curtain-flow-Verfahren), Tauchen/Abquetschen oder Spritzen/Abquetschen auf ein - ggf. metallisch beschichtetes - Stahlband bzw. (legiertes) Aluminiumband aufgebracht. Die Anwendung erfolgt bei Temperaturen zwischen 10 und 50°C, vorzugsweise zwischen 15 und 35 °C.
Vorzugsweise werden die erfindungsgemäßen Zusammensetzungen durch ultraviolette (UV) Strahlung oder durch Elektronenstrahlung gehärtet bzw. vernetzt. Geeignete UV- Strahlung hat Wellenlängen zwischen 200 und 800 nm, vorzugsweise zwischen 250 und 450 nm. Die Strahlungsintensität richtet sich dabei nach der gewünschten Applikationsgeschwindigkeit, dem Initiatorsystem und der Comonomerzusammensetzung und kann durch den Fachmann leicht bestimmt werden.
Für die alternativ zu verwendende Elektronenstrahlung kann jede konventionell Elektronenstrahlquelle eingesetzt werden, beispielhaft genannt seien Beschleuniger vom Typ des van de Graaff-Generators, Linearbeschleunigers, Resonanztransformators, oder Dynatrons. Die Elektronenstrahlung hat dabei eine Energie von etwa 50 bis 1000 keV, vorzugsweise zwischen 100 und etwa 300 keV, die resultierend Strahlendosis liegt zwischen etwa 0,1 und 100 Mrad.
Die Bildung des Films, die Vernetzung dieses Films sowie die Verankerung auf der metallischen Oberfläche findet bevorzugt durch an sich bekannte UV-Bestrahlung oder Elektronen-Bestrahlung statt. Die Bestrahlungsdauer liegt dabei zwischen 0,1 und 120 Sekunden, vorzugsweise zwischen 1 und 30 Sekunden. Die flächenbezogene Masse der Beschichtung nach erfolgter Vernetzung beträgt dabei 0,1 bis 10, vorzugsweise 0,5 bis 5,0 g/m2 . Ggf. kann die Filmbildungsreaktion auch durch Zufuhr thermischer Energie unterstützt werden.
Die so erzeugten Schichten können dabei mit den in der Haushaltsgeräte- und/oder Architekturindustrie üblichen flüssigen oder pulverförmigen Decklacksystemen beschichtet werden. Weiterhin kann die erfindungsgemäße Korrorionsschutzschicht sofort mit typischen Band-Decklackierungen beschichtet werden. Die so erzeugten Schichten schützen das Blech und geben ausreichenden Korrosionsschutz gemäß DIN 53167 und ausreichende Substrathaftung gemäß DIN 53151. Die Korrosionsbeständigkeit von Materialien, die mit der erfindungsgemäßen Korrosionsschutzzusammensetzung behandelt wurden, erreicht die mit einer konventionellen Behandlung erzielbaren Werte.
Erfolgt die erfindungsgemäße Behandlung unmittelbar nach einer metallischen Oberflächenveredlung, z.B. einer elektrolytischen Verzinkung oder einer Schmelztauchverzinkung von Stahlbändern, so können die Bänder ohne vorherige Reinigung mit der erfindungsgemäßen Behandlungslösung bzw.- dispersion in Kontakt gebracht werden. Wurden die zu behandelnden Metallbänder vor der erfindungsgemäßen Beschichtung jedoch gelagert und/oder transportiert, so sind sie in der Regel mit Korrosionsschutzölen versehen oder zumindest so weitgehend verschmutzt, daß eine Reinigung vor der erfindungsgemäßen Beschichtung erforderlich ist. Dies kann mit gebräuchlichen schwach bis stark alkalischen Reinigern, bei Aluminium und seinen Legierungen auch mit sauren Reinigern erfolgen.
Nachfolgend soll die Erfindung anhand einiger Ausführungsbeispiele näher erläutert werden. Bei den Zusammensetzungen sind dabei alle Mengenangaben Gewichtsteile, wenn nicht anders angegeben.
Die Reinigung der Metallbleche erfolgte (über 15 sec.) mit einer 60 °C warmen 2.5 %igen Ridoline 72-Lösung (Fa. Henkel). Anschließend wurde mit vollentsalztem Wasser nachgespült und die Bleche getrocknet. Die in der Tabelle 1 aufgeführten einzelnen Komponenten wurden in der Regel in der genannten Reihenfolge durch Rühren bei Raumtemperatur zu einer homogenen Mischung verarbeitet.
Durch Aufrakeln wurden die so hergestellten UV-härtenden Formulierungen appliziert. Derart präparierte Bleche wurden danach durch UV-Strahlung ausgehärtet, bis sie klebfrei waren. Anschließend wurde ein BASF-Polyesterdecklack mit einem Rakel aufgetragen und gemäß Verarbeitungsvorschrift des Herstellers eingebrannt.
Figure imgf000022_0001
Anmerkungen zu den Ergebnissen der Tabelle: Als Ti-Organylverbindung wurde handelsübliches Ti-trimethacrylat- methoxyethoxyethoxid verwendet, als Initiatorgemisch wurde eine Mischung aus 2,4,6- Trimethylbenzoyldiphenylphosphinoxid und 1 -Hydroxycyclohexylphenylketon verwendet.
Die Beispiele 2, 4, 6, 8, 10, 12, 14, 16 sind erfindungsgemäß und zeigen gute Korrosionsschutzwirkung nach Salzsprühtest gemäß DIN 53167 und gute Substrathaftung im Gitterschnitt nach DIN 53151 mit und ohne Tiefung, während die Vergleichsbeispiele 1 , 3, 5, 7, 9, 13, 15 unbefriedigende Korrosionsschutzwirkung und Substrathaftung aufweisen. Zusammensetzungen mit Titanmethacrylat-triisoproxid, Titanmethacryloxyethyl-acetoacetattriisopropoxid, (2-methacryloxiethoxi)- triisopropoxititanat zeigten ebenfalls gute Ergebnisse. Durch Verwendung der folgenden Initiatoren bzw. Initiatorgemische von Benzildimethylketal, Benzophenon, 2- Hydroxi-2-methyl-1-phenylpropan-1-on leßen sich ebenfalls gute Aushärtungsgeschwindigkeiten erzielen.

Claims

Pa t e n t a n s p r ü c h e
1.) Polymerisierbare Zusammensetzung zur organischen Beschichtung von metallischen Werkstoffen enthaltend
- mindestens ein Titan-, Silicium- und/oder Zirconiumverbindungen der allgemeinen Formel (I)
Figure imgf000024_0001
R2
worin R1 und/oder R2 H, Ci bis Cι2-Alkyl, Aralkyl oder die Gruppe -CO-O-Y,
R3=H oder d bis C12-Alkyl,
Me = ein Titan-, Silicium- oder Zirconiumion,
X = H, Ci bis C12-Alkyl, Aryl oder Aralkyl, Alkoxyl, Aroxyl, Sulfonyl, Phospat,
Pyrophosphat
Y = H, Ci bis Cι2-Alkyl oder Me, und n = 0 bis 4 ist, mindestens ein weiteres olefinisch ungesättigtes Comonomer mit mindestens zwei olefinisch ungesättigten
Doppelbindungen pro Molekül, - ggf weitere Comonomere mit einer olefinisch ungesättigten Doppelbindung pro Molekül,
- mindestens einen Initiator zur radikalischen und/oder kationischen Polymerisation.
2.) Zusammensetzung nach Anspruch 1 dadurch gekennzeichnet, daß die olefinisch ungesättigte Carbonsäure ausgewählt wird aus Acrylsäure, Methacrylsäure, Itaconsäure, Crotonsäure, Maleinsäure, Maleinsäurehalbester, Fumarsäure, Fumarsäurehalbester, reaktive carboxylgruppenhaltige Makromonomere oder deren Mischungen.
3.) Zusammensetzung nach Anspruch 1 dadurch gekennzeichnet, daß das oder die Comonomer(en) ausgewählt wird/werden aus Veresterungsprodukten von C2- bis C36- Diolen, Polyalkylenglycol-Diolen, C3- bis Cι2-Trioien, Tris-alkoxylaten von C3- bis Cι2-Triolen, Polyesterpolyolen oder Polyepoxiden mit den olefinisch ungesättigten Carbonsäuren gemäß Anspruch 2 oder Umsetzungsprodukten aus Polyurethanen mit freien Isocyanatgruppen mit OH-funktionellen Alkyl(meth)acrylaten oder deren Mischungen.
4.) Zusammensetzung nach einem der vorgehenden Ansprüche dadurch gekennzeichnet, daß mindestens ein Initiator durch Strahlung aktivierbar ist.
5.) Zusammensetzung nach einem der vorhergehenden Ansprüche enthaltend a) 1 bis 80 Gew.% vorzugsweise 1 bis 40 Gew.% Organo-Titan-, -Silicium- und/oder - Zirconium-Verbindung gemäß Formel (I) b) 20 bis 95 Gew.% vorzugsweise 40 bis 90 Gew.% Comonomer mit mindestens 2 Doppelbindungen pro Molekül c) 0 bis 40 Gew.% Comonomer mit 1 Doppelbindung pro Molekül d) 0,1 bis 10 Gew.% eines Initiators oder einer Mischung von Initiatoren e) 0 bis 30 Gew.% weitere Additive und Hilfsstoffe.
6.) Verfahren zur Herstellung der Zusammensetzungen gemäß einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß die Monomeren ggf. unter Zusatz von Stabilisatoren unter Rühren miteinander bis zur Homogenität gemischt werden und anschließend der/die lnitiator(en) zugefügt wird/werden.
7.) Verfahren zur korrosionsschützenden Behandlung von Stahl, der ggf. mit einer metallischen Beschichtung aus Zink, Aluminium, Kupfer, Nickel oder ähnlichen Metallen versehen ist, oder Aluminium oder dessen Legierungen, das die folgenden wesentlichen Verfahrensschritte beinhaltet:
a) die Oberfläche des Substrats wird für eine Zeitdauer zwischen 0,5 und 60 Sekunden bei einer Behandlungstemperatur zwischen 10 und 50°C, vorzugsweise 15 und 35°C mit einem Korrosionsschutzmittel der oben genannten Art in Kontakt gebracht; b) das überschüssige Korrosionsschutzmittel wird ggf. von der Oberfläche entfernt und c) durch geeignete Energiezufuhr für einen Zeitraum von 0,1 bis 120 Sekunden wird eine Vernetzung des polymeren Films und seine Verankerung auf der Metalloberfläche bewirkt.
8.) Verfahren zur Beschichtung von metallischen Werkstoffen, gekennzeichnet durch die folgenden wesentlichen Schritte
- ggf. Reinigen und Entfetten des metallischen Werkstoffs
- ggf. Spülen der Oberfläche
- ggf. Trocknen der Oberfläche
- Beschichten der Oberfläche mit einer Zusammensetzung gemäß mindestens einem der vorhergehenden Ansprüche so daß nach der Aushärtung eine Beschichtung mit einer flächenbezogenen Masse von 0,1 bis 20 g/m2, vorzugsweise 0,5 bis 5 g/ m2 erhalten wird,
- Aushärtung der Beschichtung durch Photo- und/oder Elektronenstrahl- Polymerisation, die ggf. durch Zufuhr thermischer Energie unterstützt werden kann. Verfahren zur Beschichtung von ggf. metallisch beschichtetem Bandstahl, Aluminium oder dessen Legierungen, gekennzeichnet durch die folgenden wesentlichen Schritte
- ggf. Reinigen und Entfetten des metallischen Bandes
- ggf. Spülen der Oberfläche
- ggf. Trocknen der Oberfläche
- Beschichten der Oberfläche mit einer Zusammensetzung gemäß mindestens einem der vorhergehenden Ansprüche so daß nach der Aushärtung eine Beschichtung mit einer flächenbezogenen Masse von 0,1 bis 20 g/m2, vorzugsweise 0,5 bis 5 g/ m2 erhalten wird,
- Aushärtung der Beschichtung durch Photo- und/oder Elektronenstrahl- Polymerisation, die ggf. durch Zufuhr thermischer Energie unterstützt werden kann.
PCT/EP2000/004151 1999-05-19 2000-05-10 Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren WO2000069978A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/979,286 US7083831B1 (en) 1999-05-19 2000-05-10 Chromium-free corrosion preventive and corrosion prevention method
CA002374327A CA2374327C (en) 1999-05-19 2000-05-10 Chromium-free corrosion preventive and corrosion prevention method
EP00943713A EP1187882B2 (de) 1999-05-19 2000-05-10 Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren
AU58080/00A AU773184B2 (en) 1999-05-19 2000-05-10 Chromium-free corrosion preventive and corrosion prevention method
DE50015200T DE50015200D1 (de) 1999-05-19 2000-05-10 Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19923118A DE19923118A1 (de) 1999-05-19 1999-05-19 Chromfreies Korrosionsschutzmittel und Korrosionsschutzverfahren
DE19923118.4 1999-05-19

Publications (1)

Publication Number Publication Date
WO2000069978A1 true WO2000069978A1 (de) 2000-11-23

Family

ID=7908602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004151 WO2000069978A1 (de) 1999-05-19 2000-05-10 Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren

Country Status (9)

Country Link
US (1) US7083831B1 (de)
EP (1) EP1187882B2 (de)
CN (1) CN1227302C (de)
AT (1) ATE398156T1 (de)
AU (1) AU773184B2 (de)
CA (1) CA2374327C (de)
DE (2) DE19923118A1 (de)
ES (1) ES2307518T5 (de)
WO (1) WO2000069978A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336360A1 (de) * 2003-08-08 2005-03-03 Sika Deutschland Gmbh (Meth)acrylate enthaltendes Beschichtungssystem
DE102007015161A1 (de) 2007-03-27 2008-10-02 Henkel Ag & Co. Kgaa Polymerisierbare Zusammensetzung zum Beschichten von Metallen
US7879458B2 (en) 2005-12-21 2011-02-01 United Steel Products Company Construction hardware and method of reducing corrosion thereof
US20110092653A1 (en) * 2004-12-13 2011-04-21 Schwab Joseph J Metal-Containing Compositions
US20120315451A1 (en) * 2004-12-13 2012-12-13 Mangala Malik Metal-Containing Compositions and Method of Making Same
WO2013064442A1 (de) * 2011-11-03 2013-05-10 Basf Se Zubereitung zur passivierung von metallischen oberflächen enthaltend säuregruppenhaltige polymere und ti- oder zr-verbindungen

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838536B2 (en) * 2002-08-30 2005-01-04 Ucb, S.A. Reactive and gel-free compositions for making hybrid composites
DE10258291A1 (de) 2002-12-13 2004-07-08 Henkel Kgaa Verfahren zur Beschichtung von Metallsubstraten mit einem radikalisch polymerisierbaren Überzugsmittel und beschichtete Substrate
KR102212329B1 (ko) 2005-07-26 2021-02-08 크나우프 인설레이션, 인크. 접착제 및 이들로 만들어진 물질
DE102005045441A1 (de) * 2005-09-22 2007-05-03 Henkel Kgaa Beschichtungsmittel für Metalloberflächen mit antiadhäsiven Eigenschaften
EP2450493A3 (de) 2007-01-25 2015-07-29 Knauf Insulation SPRL Mineralfaserplatte
US8501838B2 (en) 2007-01-25 2013-08-06 Knauf Insulation Sprl Composite wood board
ES2834151T3 (es) 2007-01-25 2021-06-16 Knauf Insulation Gmbh Aglutinantes y materiales elaborados con los mismos
TW200837156A (en) * 2007-02-22 2008-09-16 Kansai Paint Co Ltd Coating agent for forming titanium/zirconium film, method for forming titanium/zirconium film and metal substrate coated with titanium/zirconium film
CA2683706A1 (en) 2007-04-13 2008-10-23 Knauf Insulation Gmbh Composite maillard-resole binders
GB0715100D0 (en) 2007-08-03 2007-09-12 Knauf Insulation Ltd Binders
US8802346B2 (en) * 2008-08-07 2014-08-12 Pryog, Llc Metal compositions and methods of making same
CN101412791B (zh) * 2008-12-01 2010-06-09 中国海洋石油总公司 环氧有机硅磷酸酯复合改性丙烯酸树脂
KR101077303B1 (ko) * 2009-05-06 2011-10-26 삼성전기주식회사 기판 형성용 조성물, 및 이를 이용한 프리프레그 및 기판
CA2770396A1 (en) 2009-08-07 2011-02-10 Knauf Insulation Molasses binder
US8222145B2 (en) * 2009-09-24 2012-07-17 Dupont Air Products Nanomaterials, Llc Method and composition for chemical mechanical planarization of a metal-containing substrate
AU2011249760B2 (en) 2010-05-07 2015-01-15 Knauf Insulation Carbohydrate binders and materials made therewith
US20130059075A1 (en) 2010-05-07 2013-03-07 Knauf Insulation Carbohydrate polyamine binders and materials made therewith
CA2801546C (en) 2010-06-07 2018-07-10 Knauf Insulation Fiber products having temperature control additives
CA2834816C (en) 2011-05-07 2020-05-12 Knauf Insulation Liquid high solids binder composition
US20130034741A1 (en) * 2011-08-04 2013-02-07 Ppg Industries Ohio, Inc. Branched polyester polymers comprising isophthalic acid and coatings comprising the same
GB201206193D0 (en) 2012-04-05 2012-05-23 Knauf Insulation Ltd Binders and associated products
GB201214734D0 (en) 2012-08-17 2012-10-03 Knauf Insulation Ltd Wood board and process for its production
US20150315339A1 (en) 2012-12-05 2015-11-05 Knauf Insulation Sprl Binder
WO2015029156A1 (ja) * 2013-08-28 2015-03-05 本田技研工業株式会社 黒色皮膜形成車両部品および/または締結用部品およびその製造方法
JP6196897B2 (ja) 2013-12-05 2017-09-13 東京応化工業株式会社 ネガ型レジスト組成物、レジストパターン形成方法及び錯体
CA2938154C (en) 2014-02-07 2022-11-01 Knauf Insulation, Inc. Uncured articles with improved shelf-life
GB201408909D0 (en) 2014-05-20 2014-07-02 Knauf Insulation Ltd Binders
JP6242010B2 (ja) * 2014-07-14 2017-12-06 関西ペイント株式会社 水性金属表面処理組成物
US9475746B2 (en) 2014-09-22 2016-10-25 Lyondellbasell Acetyls, Llc Catalyst stability and corrosion prevention in acetic acid production process
KR102465065B1 (ko) 2015-09-29 2022-11-09 프라이요그, 엘엘씨 금속 조성물 및 이의 제조 방법
GB201517867D0 (en) 2015-10-09 2015-11-25 Knauf Insulation Ltd Wood particle boards
DE102016203771A1 (de) * 2016-03-08 2017-09-14 Henkel Ag & Co. Kgaa Fluorid-freie Zirkonium-basierte Metallvorbehandlung zur Passivierung
GB201610063D0 (en) 2016-06-09 2016-07-27 Knauf Insulation Ltd Binders
CN106639768A (zh) * 2016-10-11 2017-05-10 安徽卡塔门窗有限公司 耐磨铝合金门窗及其制备方法
CN106479308B (zh) * 2016-10-11 2019-07-09 安徽卡塔门窗有限公司 耐刮铝合金门窗及其制备方法
GB201701569D0 (en) 2017-01-31 2017-03-15 Knauf Insulation Ltd Improved binder compositions and uses thereof
CN111886312B (zh) * 2017-09-12 2023-07-14 Ddp特种电子材料美国有限责任公司 胶粘剂配制品
EP4234647A3 (de) * 2017-10-11 2023-09-06 Yuken Industry Co., Ltd. Metallteilchen-dispersionszusammensetzung und wässrige beschichtungszusammensetzung
EP3486290A1 (de) 2017-11-21 2019-05-22 Allnex Belgium, S.A. Adhäsionsfördernde verbindungen für apolare substrate
GB201804907D0 (en) 2018-03-27 2018-05-09 Knauf Insulation Ltd Composite products
GB201804908D0 (en) 2018-03-27 2018-05-09 Knauf Insulation Ltd Binder compositions and uses thereof
EP3828306A1 (de) * 2019-11-26 2021-06-02 Henkel AG & Co. KGaA Ressourcenschonendes verfahren zur aktivierung einer metalloberfläche vor einer phosphatierung
CN115401411B (zh) * 2022-08-20 2023-08-08 常州振瑞机械制造有限公司 一种不锈钢焊接钢管的生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748087A (en) * 1984-06-08 1988-05-31 The Wiggins Teape Group Limited Plastic laminate of furniture foil and method of making
DE3728720A1 (de) * 1987-08-28 1989-03-09 Schott Glaswerke Farbloses, transparentes polymermaterial
DE4122743C1 (de) * 1991-07-10 1992-11-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
EP0685534A1 (de) * 1994-05-30 1995-12-06 Sollac Verfahren zum Schutz eines Stahlsubstrates durch einen dünnen Film eines anorganisch-organischen Hybrid-Polymer
FR2752577A1 (fr) * 1996-08-22 1998-02-27 Atochem Elf Sa Nouveaux copolymeres methacryliques et leur application comme liants dans des compositions de peintures marines antisalissures
DE19751153A1 (de) * 1997-11-19 1999-05-20 Henkel Kgaa Polymerisierbare chromfreie organische Coilbeschichtungen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495908B1 (de) * 1969-03-11 1974-02-09
US4548963A (en) * 1984-08-03 1985-10-22 E. I. Du Pont De Nemours And Company Internally crosslinkable acrylic polymers and diglycidyl esters of dibasic acids
US5344504A (en) 1993-06-22 1994-09-06 Betz Laboratories, Inc. Treatment for galvanized metal
US5427632A (en) 1993-07-30 1995-06-27 Henkel Corporation Composition and process for treating metals
NZ276028A (en) 1993-11-16 1997-03-24 Ici Australia Operations Anticorrosion treatment of zinc or aluminium coated steel sheets
ES2102313B1 (es) 1994-07-29 1998-04-01 Procoat S L Composicion anticorrosiva exenta de cromo hexavalente.
US5866652A (en) 1996-02-27 1999-02-02 The Boeing Company Chromate-free protective coatings
US5958511A (en) 1997-04-18 1999-09-28 Henkel Corporation Process for touching up pretreated metal surfaces
DE19754108A1 (de) 1997-12-05 1999-06-10 Henkel Kgaa Chromfreies Korrosionsschutzmittel und Korrosionsschutzverfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748087A (en) * 1984-06-08 1988-05-31 The Wiggins Teape Group Limited Plastic laminate of furniture foil and method of making
DE3728720A1 (de) * 1987-08-28 1989-03-09 Schott Glaswerke Farbloses, transparentes polymermaterial
DE4122743C1 (de) * 1991-07-10 1992-11-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
EP0685534A1 (de) * 1994-05-30 1995-12-06 Sollac Verfahren zum Schutz eines Stahlsubstrates durch einen dünnen Film eines anorganisch-organischen Hybrid-Polymer
FR2752577A1 (fr) * 1996-08-22 1998-02-27 Atochem Elf Sa Nouveaux copolymeres methacryliques et leur application comme liants dans des compositions de peintures marines antisalissures
DE19751153A1 (de) * 1997-11-19 1999-05-20 Henkel Kgaa Polymerisierbare chromfreie organische Coilbeschichtungen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336360A1 (de) * 2003-08-08 2005-03-03 Sika Deutschland Gmbh (Meth)acrylate enthaltendes Beschichtungssystem
US20110092653A1 (en) * 2004-12-13 2011-04-21 Schwab Joseph J Metal-Containing Compositions
US20120315451A1 (en) * 2004-12-13 2012-12-13 Mangala Malik Metal-Containing Compositions and Method of Making Same
US8648157B2 (en) * 2004-12-13 2014-02-11 Pryog, Llc Metal-containing compositions
US8709705B2 (en) * 2004-12-13 2014-04-29 Pryog, Llc Metal-containing compositions and method of making same
US7879458B2 (en) 2005-12-21 2011-02-01 United Steel Products Company Construction hardware and method of reducing corrosion thereof
DE102007015161A1 (de) 2007-03-27 2008-10-02 Henkel Ag & Co. Kgaa Polymerisierbare Zusammensetzung zum Beschichten von Metallen
US8637158B2 (en) 2007-03-27 2014-01-28 Henkel Ag & Co. Kgaa Polymerizable composition for coating metals
WO2013064442A1 (de) * 2011-11-03 2013-05-10 Basf Se Zubereitung zur passivierung von metallischen oberflächen enthaltend säuregruppenhaltige polymere und ti- oder zr-verbindungen
CN103906859A (zh) * 2011-11-03 2014-07-02 巴斯夫欧洲公司 用于钝化金属表面的包含具有酸基的聚合物且包含Ti或Zr化合物的制剂

Also Published As

Publication number Publication date
ES2307518T3 (es) 2008-12-01
CN1227302C (zh) 2005-11-16
AU5808000A (en) 2000-12-05
EP1187882A1 (de) 2002-03-20
EP1187882B2 (de) 2011-06-15
CA2374327C (en) 2008-12-23
CN1352671A (zh) 2002-06-05
DE19923118A1 (de) 2000-11-23
ATE398156T1 (de) 2008-07-15
EP1187882B1 (de) 2008-06-11
DE50015200D1 (de) 2008-07-24
US7083831B1 (en) 2006-08-01
CA2374327A1 (en) 2000-11-23
AU773184B2 (en) 2004-05-20
ES2307518T5 (es) 2011-10-25

Similar Documents

Publication Publication Date Title
EP1187882B2 (de) Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren
EP1756236B1 (de) Strahlungshärtbares elektrisch leitfähiges beschichtungsgemisch
WO2008116511A1 (de) Polymerisierbare zusammensetzung zum beschichten von metallen
EP2013297B1 (de) Verfahren zum aufbringen korrosionsschutzschichten auf metallische oberflächen
EP1919970A1 (de) Polymerzusammensetzung für den korrosionsschutz
JP5512981B2 (ja) 水性塗料組成物、及びこの組成物を用いた塗装方法
EP1926782B1 (de) Beschichtungsmittel für metalloberflächen mit antiadhäsiven eigenschaften
EP1851276B1 (de) Verfahren zum aufbringen chromfreier korrosionsschutzschichten enthaltend dithiophosphinsäuren und/oder deren salzen
EP1187885B1 (de) Mit nanopartikeln modifizierte bindemittel für überzugsmittel und deren verwendung
EP2254921A1 (de) Strahlenhärtbare formulierungen
EP2125972B1 (de) Polymerisierbare zusammensetzung zum beschichten von metallen
WO2008017647A1 (de) Formkörper mit metallischer oberfläche und einer darauf aufgebrachten vorbehandlungsschicht umfassend ein phosphinsäurederivat
DE102006027762A1 (de) Seitenständige saure Phosphonsäureestergruppen enthaltende Copolymerisate olefinisch ungesättigter Monomere, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0582188B1 (de) Überzugsmittel und dessen Verwendung bei der Herstellung von Überzügen mit rasch bearbeitbarer Oberfläche
EP2203527B1 (de) Verfahren zur korrosionsschutzbehandlung und zum fügen von metallteilen
WO2007101491A2 (de) Direktauftrag eines strahlungshärtbaren schweissprimers auf zink oder verzinkten stahl
DE102009002718A1 (de) Silikatisierende Vorbehandlung für metallhaltige härtbare Beschichtungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00807712.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR RU US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000943713

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2374327

Country of ref document: CA

Ref document number: 2374327

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09979286

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 58080/00

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2000943713

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 58080/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2000943713

Country of ref document: EP