WO2000068621A1 - Method of controlling refrigerating cycle and refrigerating cycle using the method - Google Patents

Method of controlling refrigerating cycle and refrigerating cycle using the method Download PDF

Info

Publication number
WO2000068621A1
WO2000068621A1 PCT/JP2000/001266 JP0001266W WO0068621A1 WO 2000068621 A1 WO2000068621 A1 WO 2000068621A1 JP 0001266 W JP0001266 W JP 0001266W WO 0068621 A1 WO0068621 A1 WO 0068621A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
refrigeration cycle
compressor
temperature
Prior art date
Application number
PCT/JP2000/001266
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Suzuki
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Publication of WO2000068621A1 publication Critical patent/WO2000068621A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the present invention supercritical refrigerant as a refrigerant, for example, a method of controlling a refrigeration cycle using carbon dioxide (C0 2), and to a refrigeration cycle using the method.
  • C0 2 carbon dioxide
  • the former detects the refrigerant temperature at the gas cooler outlet in a supercritical vapor compression refrigeration cycle composed of a compressor, a gas cooler, a throttle valve, and a receiver, and determines the maximum COP based on the detected refrigerant temperature.
  • the throttle valve is adjusted so that it can be obtained.
  • the temperature of the outlet-side refrigerant and the outlet-side refrigerant of the radiator are controlled along the optimal control line? 7 max shown in Fig.
  • the pressure is controlled. That is, according to the latter publication, a compressor that raises the pressure of a refrigerant to a supercritical region, a radiator that cools the high-pressure refrigerant that has reached the supercritical region, and an expansion that depressurizes the refrigerant after being cooled by the radiator In a refrigeration cycle including a valve and an evaporator that evaporates the refrigerant decompressed by the expansion valve, the relationship between the refrigerant temperature and the refrigerant pressure at the expansion device inlet side is controlled by controlling the expansion valve opening.
  • the refrigeration cycle can be operated efficiently if it is set on the "max line" in Fig. 1 or Fig. 5 of the publication.
  • the former technology plans to always operate the refrigeration cycle under supercritical conditions, and is not necessarily superior in terms of efficiency. That is, for example, when the outside air temperature is low, it is more advantageous in terms of efficiency to use the high-pressure pressure under the critical pressure (about 7.38 MPa) or less in terms of efficiency. If it decreases, it will have to be a subcritical operation.
  • FIG. 2 of the publication since the characteristic line is shown over the subcritical region, if the refrigerant temperature at the outlet of the gas cooler can be reduced, the operation of the refrigeration cycle under subcritical conditions can be considered.
  • the throttle valve is controlled based on the refrigerant temperature at the outlet of the gas cooler. Therefore, regardless of the electronically controlled throttle valve, the mechanical throttle valve using heat transfer is When used for automobiles, the gas cooler and the throttle valve are located at a considerable distance from each other, so the length of the temperature-sensitive cylinder tube becomes very long, and control appropriate for the refrigerant temperature at the gas cooler outlet is performed. It is practically impossible to perform with high accuracy.
  • the ratio of the cooling capacity of the evaporator for the work of the compressor (hereinafter, referred to as COP or the coefficient of performance) and the refrigerant temperature T of the expansion valve inlet side in order to maximize the
  • COP the ratio of the cooling capacity of the evaporator for the work of the compressor
  • T the refrigerant temperature T of the expansion valve inlet side
  • a supercritical refrigerant 2 such as, in order to improve one layer of COP, providing the internal heat exchanger, for example KOKOKU 7 -Although it is a known configuration in 186002, etc.
  • the refrigerant is further cooled by the internal heat exchanger and expanded. Since the refrigerant reaches the valve, the refrigerant temperature on the inflow side of the expansion valve that maximizes the COP is further lowered, and the optimum control characteristic indicated by “max” differs from the actually required control characteristic.
  • a refrigeration cycle of a supercritical fluid such as C 0 2 refrigerant as refrigerant
  • main aims to further improve the cycle efficiency. More specifically, it is an object of the present invention to provide a refrigeration cycle that can be operated efficiently by performing supercooling degree control when operating under subcritical conditions, and a method of controlling the refrigeration cycle.
  • an object of the present invention is to provide a refrigeration cycle that can prevent a decrease in control accuracy even when an expansion valve that does not rely on electric control using a temperature sensing cylinder or the like is used.
  • the degree of supercooling is set to about 15 ° C, and the high-pressure side refrigerant is The supercooling degree is gradually reduced as the pressure becomes lower from the vicinity of the critical point.
  • the degree of supercooling when the high-pressure side refrigerant pressure is near the critical point is a value obtained as a result of simulation, and an error actually occurs between the calculation result and the actual value.
  • about 15 ° C is expected to be in the range of 10 ° C to 20 ° C.
  • the degree of supercooling is reduced by about 1 at the high-pressure refrigerant pressure (7.38 MPa) near the critical point. It is conceivable that the temperature is set to 5 ° C and the refrigerant pressure is gradually reduced by, for example, a linear change so that the refrigerant pressure is 3.5 MPa and the degree of supercooling is about 1 ° C.
  • the refrigerant enthalpy at the expansion valve inlet near the critical point greatly changes due to a change in the refrigerant temperature.Therefore, it is possible to increase the refrigeration effect by increasing the degree of subcooling.
  • the high-pressure side refrigerant pressure gradually decreases from the critical pressure, the change in refrigerant temperature and the refrigerant temperature change gradually decreases, so the required refrigeration effect even if the degree of subcooling is gradually reduced. Can be secured. For this reason, when a carbon dioxide gas cycle normally operated under supercritical conditions is operated under subcritical conditions, the size is controlled by controlling the degree of supercooling as described above. It is possible to further improve the vehicle efficiency.
  • compression that enables the change in the refrigerant discharge amount that raises the pressure of the refrigerant to the supercritical range
  • a radiator that cools the refrigerant that has reached the supercritical region; an expansion device that depressurizes the refrigerant after being cooled by the radiator; an evaporator that evaporates the refrigerant depressurized by the expansion device;
  • operating conditions including a discharge amount of the compressor are adjusted.
  • the refrigerant temperature on the inflow side of the expansion device and the refrigerant pressure on the inflow side of the expansion device are controlled by a refrigerating cycle having no internal heat exchanger, and a refrigerating cycle having a fixed discharge capacity of the compressor. Compared with the cycle, the refrigerant If the temperature is the same, the refrigerant pressure may be set higher, and if the refrigerant pressure is the same, the refrigerant temperature may be set lower.
  • T and P are expressed by T ⁇ 2.41P + 4.86, T ⁇ 2.52P-7.41
  • the internal heat exchanger only needs to have a refrigerant that exchanges heat with the refrigerant flowing out of the evaporator on a high-pressure line from the compressor to the expansion device. You may make it heat-exchange with a refrigerant
  • the refrigerant using a carbon dioxide (C 0 2) refrigerant, the compressor and capable of changing the refrigerant discharge amount, the duty ratio control the energization of the variable displacement compressor and an electromagnetic click latch having a variable displacement mechanism It is preferable to use a compressor that can be controlled, and an electric motor-driven compressor that can control the number of revolutions.
  • the high-temperature and high-pressure refrigerant which is pressurized by the compressor and becomes supercritical, is cooled by the radiator and flows out of the evaporator due to internal heat exchange
  • the refrigerant is further cooled by the refrigerant, and then decompressed by the expansion device to become low-temperature and low-pressure wet steam, which is vaporized by the evaporator and sent to the compressor after being heated by the refrigerant in the high-pressure line by internal heat exchange. It is boosted again.
  • the refrigeration cycle that implements the former control method includes a compressor that uses carbon dioxide gas as a refrigerant and pressurizes the refrigerant, a radiator that cools the pressurized refrigerant, Pressure adjusting means for reducing the pressure of the refrigerant cooled by the heater, an evaporator for evaporating the refrigerant reduced in pressure by the pressure adjusting means, and detecting means for detecting the refrigerant pressure and the refrigerant temperature upstream of the pressure adjusting means.
  • the pressure reduction amount of the pressure adjustment means is adjusted so that the degree of supercooling on the inflow side of the pressure adjustment means is about 15 ° C.
  • the refrigeration cycle that realizes the latter control method includes a compressor that boosts the refrigerant to a supercritical region, a radiator that cools the refrigerant that has reached the supercritical region, and a refrigerant that is cooled by the radiator.
  • the refrigerant discharge amount of the compressor can be changed, and operating conditions including the discharge amount of the compressor are adjusted to adjust the refrigerant temperature on the inflow side of the expansion device and the refrigerant pressure on the inflow side of the expansion device.
  • FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention.
  • FIG. 2 is a Mollier chart of a carbon dioxide gas refrigerant.
  • FIG. 3 is a diagram showing a simulation result of a target refrigerant pressure and a refrigerant temperature on the expansion valve inflow side of the refrigeration cycle according to the present invention.
  • FIG. 4 is a flowchart showing an example of a control operation by the control unit of FIG.
  • FIG. 5 is a flowchart illustrating a calculation process of the refrigerant temperature and the refrigerant pressure on the inlet side of the expansion valve for obtaining the maximum C 0 °.
  • FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention.
  • FIG. 2 is a Mollier chart of a carbon dioxide gas refrigerant.
  • FIG. 3 is a diagram showing a simulation result of a target refrigerant pressure and a refrigerant temperature on the expansion valve inflow
  • FIG. 6 is a characteristic diagram showing the relationship between the refrigerant pressure on the inlet side of the expansion valve and the refrigerant temperature.
  • the mark ⁇ x '' represents a plot of the simulation result of the refrigerant pressure and the refrigerant temperature at the expansion valve inlet at the maximum COP in the cycle using the existing components.
  • the symbol “ ⁇ ” indicates a plot of a simulation result of the refrigerant pressure and the refrigerant temperature at the inlet of the expansion valve, which is a maximum of C 0 P, in a cycle in which the component efficiency is improved.
  • FIG. 7 is a characteristic diagram showing the relationship between the expansion valve opening (or compressor discharge amount), C ⁇ ⁇ , and cooling capacity Q.
  • the broken line is a conventional refrigeration cycle using a fixed displacement compressor.
  • the solid line is the compression that can change the discharge capacity
  • FIG. 8 shows a Mollier diagram of a conventional refrigeration cycle using a fixed displacement compressor and a refrigeration cycle using a compressor capable of changing a discharge capacity.
  • a refrigeration cycle 1 includes a compressor 2 for compressing a refrigerant, a radiator 3 for cooling the refrigerant, and an internal heat exchanger 4 for exchanging heat between a refrigerant on a high pressure line and a refrigerant on a low pressure line. It comprises an expansion valve 5 for reducing the pressure of the refrigerant, an evaporator 6 for evaporating and evaporating the refrigerant, and an accumulator 7 for gas-liquid separation of the refrigerant flowing out of the evaporator 6.
  • the discharge side of the compressor 2 is connected via the radiator 3 to the high pressure passage 4 a of the internal heat exchanger 4, the outlet side of the high pressure passage 4 a is connected to the expansion valve 5, and the compressor 2
  • a high-pressure side line 8 is formed by a path from the pressure to the high-pressure side of the expansion valve 5.
  • the low pressure side of the expansion valve 5 is connected to an evaporator 6, and the outlet side of the evaporator 6 is connected to a low pressure passage 4 b of the internal heat exchanger 4 via an accumulator 7.
  • the outflow side of the low pressure passage 4 is connected to the suction side of the compressor 2, and a path from the outflow side of the expansion valve 5 to the suction side of the compressor 2 forms a low pressure side line 9.
  • the refrigeration cycle 1, C_ ⁇ 2 have been used as the refrigerant, the refrigerant compressed by the compressor 2 enters into the radiator 3 as a supercritical refrigerant of high temperature and high pressure is cooled by heat radiation here. Thereafter, the internal heat exchanger 4 exchanges heat with the low-temperature refrigerant in the low-pressure line 9 to be further cooled and sent to the expansion valve 5 without being liquefied. Then, the pressure is reduced in the expansion valve 5 to become low-temperature and low-pressure wet steam, heat exchange with the air passing therethrough in the evaporator 6 to become gaseous, and then the high-temperature side of the high-pressure side line 8 in the internal heat exchanger 4.
  • the expansion valve 5 controls the signal from the refrigerant temperature sensor 10 for detecting the refrigerant temperature on the expansion valve inlet side and the signal from the pressure sensor 12 for detecting the refrigerant pressure on the expansion valve inlet side.
  • the control unit 11 is input to the control unit 11 to control the opening according to a program given in advance.
  • the degree of supercooling at the inlet side of the expansion valve 5 is set to 10 to 20 ° C., preferably about 15;
  • the supercooling degree is gradually reduced as the high pressure side refrigerant pressure becomes lower than the vicinity of the critical pressure.
  • the refrigerant pressure at the inlet side of the expansion valve 5 is about 3.5 MPa ( The supercooling degree is linearly changed to about 1 ° C when the temperature of the refrigerant flowing into the evaporator 6 becomes about 0 ° C).
  • control-ray is, C 0 2 a refrigeration cycle using on to operate in a subcritical region, the present invention as the range for obtaining obtains the maximum or a state close thereto with good cycle efficiency COP Were found based on the following findings and simulations.
  • the degree of supercooling is increased when the high-pressure side refrigerant pressure is near the critical point, and the degree of subcooling is reduced as the high-pressure side refrigerant pressure decreases from near the critical point. It was discovered that it would be better to gradually reduce it.
  • the present inventor conducted intensive research based on the above-mentioned findings, and found that the critical point They found that the degree of supercooling in the vicinity should be about 15 ° C.
  • the reason why the degree of supercooling in the vicinity of the critical point was set to about 15 ° C is that, as shown in FIG. 3, when the above-described refrigeration cycle was operated in the subcritical region under predetermined conditions, The target refrigerant pressure and the refrigerant temperature on the inflow side of the expansion valve at which high efficiency is obtained are plotted by simulation, and these are approximated by a known method such as the least-squares method. Are the results of comparing. According to this approximation line, the degree of supercooling gradually decreases as the high-pressure side refrigerant pressure decreases from near the critical pressure, and when the high-pressure side refrigerant pressure reaches approximately 3.5 MPa, the degree of supercooling decreases. It has been confirmed that the temperature will be about 1 ° C.
  • Step 50 a signal from the pressure sensor 12 are input (Step 52).
  • the control unit 11 stores a map data of the control line or an arithmetic expression in advance, and based on the refrigerant temperature and the refrigerant pressure input in Steps 51 and 52, the control unit 11 detects the temperature at the expansion valve inlet side. A value such that the degree of supercooling falls on the control line is calculated (step 54), and the opening of the expansion valve 5 is electrically controlled based on the calculation result (step 56).
  • the optimal control line is obtained by the electric expansion valve.
  • the expansion valve 5 detects the refrigerant temperature and pressure upstream of the expansion valve even if the expansion valve 5 is not of the type electrically controlled by the control unit 11 as described above.
  • a type in which the expansion valve 5 is operated by a non-electrical method using a temperature-sensitive member and a pressure-sensitive member may be used. According to such a configuration, in addition to the above-described effects, the refrigerant temperature and pressure are detected in the vicinity of the expansion valve. Therefore, even when a refrigeration cycle is to be mounted on the vehicle body, the cable can be connected to the cable. This eliminates the need for routing, and can prevent a decrease in control accuracy.
  • the refrigerant pressure and the refrigerant temperature on the expansion valve inlet side where the maximum COP is obtained are found by simulation. This method will be described with reference to the flowchart shown in FIG. 5.
  • the operating conditions of the refrigeration cycle 1 are input to the simulator 1.
  • the operating conditions are, for the compressor 2, the rotation speed or discharge amount, efficiency (volume efficiency, mechanical efficiency, adiabatic compression efficiency), etc., and for the radiator 3 or the evaporator 6, the heat exchange efficiency,
  • the volume, the temperature and humidity of the air passing therethrough, the wind speed, etc., and the internal heat exchanger 4 is the heat exchange efficiency.
  • a control point at which the refrigeration cycle 1 balances under the above operating conditions is calculated.
  • the calculation of this balanced control point is as follows: (i) The refrigerant pressure initial value of the high-pressure side line 8 is set to, for example, 14 MPa, and the compressor suction refrigerant temperature is temporarily determined to be, for example, the evaporation temperature + 15 ° C. After that, ( ⁇ ) Since the capacity of each component of the refrigeration cycle 1 is determined in advance, the provisionally determined value is recalculated using this as a constraint.
  • the high pressure, the refrigerant temperature at the compressor inlet, the COP, the refrigerant temperature at the radiator outlet, and the like change due to the change in the discharge amount of the compressor 2.
  • the discharge amount of the compressor 2 is changed as a parameter, and the refrigerant pressure P and the refrigerant temperature T at the inlet of the expansion valve at which the COP is maximum are found.
  • the optimal control line is shown by broken line A in FIG.
  • the optimal control line is indicated by a broken line B in FIG.
  • a refrigeration cycle having an A or B control line can be obtained.
  • the present refrigerating cycle 1 having the compressor 2 capable of arbitrarily changing the discharge capacity is compared with the conventional cycle having the conventional fixed displacement compressor.
  • the COP that achieves the same cooling capacity can be improved except at high load.
  • the refrigerant flow rate of the refrigeration cycle can be reduced, and as a result, the refrigerant temperature at the radiator 3 outlet and the expansion valve 5 inlet can be lowered, and the refrigerant temperature can be further lowered with respect to the high-pressure side line 8
  • the discharge capacity of the compressor 2 is adjusted.
  • Equalization type expansion valve If it is, the amount of the charged gas to be equalized with the refrigerant pressure is adjusted, or if the expansion valve uses a bimetal, the characteristic is such that the refrigerant temperature and the refrigerant pressure on the inflow side are adjusted within the above range. It is preferable to use a metal material having
  • a compressor for increasing the pressure of the refrigerant a radiator for cooling the refrigerant, a pressure adjusting means for reducing the pressure of the refrigerant after being cooled by the radiator, and a pressure reducing means for reducing the pressure of the refrigerant.
  • the pressure reduction amount of the pressure adjusting means is controlled so that the supercooling degree is approximately 15 ° C, and the supercooling degree decreases as the refrigerant pressure on the high pressure side decreases from the vicinity of the critical point. If the pressure reducing amount of the pressure adjusting means is controlled so as to gradually decrease the pressure, the good cycle efficiency can be achieved by controlling the pressure adjusting means and adjusting the degree of supercooling. In addition, since the temperature and the like of the refrigerant are detected by the detecting means on the upstream side of the pressure adjusting means, a decrease in control accuracy is prevented even when an expansion valve that does not rely on electric control using a temperature-sensitive cylinder or the like is used. Can be.
  • the refrigerant temperature T [° C] and the refrigerant pressure P [MPa at the inflow side of the expansion device are set.
  • the refrigerant temperature is set to be high, and if the refrigerant pressure is the same, the refrigerant temperature is set to be low.
  • the high pressure side does not become supercritical and may become a gas-liquid two-phase as in the conventional cycle. It has been confirmed that if it is, moderate supercooling can be obtained at the expansion valve inlet, and good cycle efficiency can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A refrigerating cycle using carbon dioxide as a refrigerant, wherein, when a high-pressure side refrigerant pressure is near a critical point, the degree of undercooling is set at approx. 15°C and, as it lowers from near the critical point, the degree of undercooling is decreased gradually and, when the refrigerating cycle is provided with a variable displacement compressor, a radiator, an expansion device, an evaporator, and an inside heat exchanger, the operating conditions of the compressor including its delivery amount are adjusted so as to set a refrigerant pressure on the flow-in side of the expansion device at a high level when a refrigerant temperature is the same as that in a refrigerating cycle which has not the inside heat exchanger and a refrigerating cycle which has a fixed compressor delivery capacity and to set the refrigerant temperature at a low level when the refrigerant pressure is the same as that in these cycles, whereby the refrigerating cycle using carbon dioxide as a refrigerant can be operated efficiently.

Description

明 細 書 冷凍サイクルの制御方法及びその方法を用いた冷凍サイクル 技術分野  Description Refrigerating cycle control method and refrigerating cycle using the method
この発明は、 冷媒として超臨界冷媒、 例えば、 二酸化炭素 (C02 ) を用いた冷凍サイクルの制御方法、 及び、 その方法を用いた冷凍サイク ルに関する。 背景技術 The present invention, supercritical refrigerant as a refrigerant, for example, a method of controlling a refrigeration cycle using carbon dioxide (C0 2), and to a refrigeration cycle using the method. Background art
C 02 を冷媒として用いた冷凍サイクルとして、 特表平 6 - 5 1 0 1 1 1号公報ゃ特開平 9 - 2 646 2 2号公報などが知られている。 As refrigeration cycle using C 0 2 as the refrigerant, Hei 6 - 5 1 0 1 1 1 JP Ya Hei 9 - like 2 646 2 2 No. is known.
前者は、 コンプレッサ、 気体クーラ、 絞り弁、 レシーバを有して構成 された超臨界蒸気圧縮冷凍サイクルにおいて、 気体クーラ出口の冷媒温 度を検出し、 この検出された冷媒温度に基づいて最大 COPが得られる ように絞り弁を調節するようにしたものである。  The former detects the refrigerant temperature at the gas cooler outlet in a supercritical vapor compression refrigeration cycle composed of a compressor, a gas cooler, a throttle valve, and a receiver, and determines the maximum COP based on the detected refrigerant temperature. The throttle valve is adjusted so that it can be obtained.
また、 後者は、 超臨界域で作動する冷凍サイクルにおいて、 効率良く 運転できるように同公報の図 1で示される最適制御線 ?7max に沿って放 熱器の出口側冷媒温度と出口側冷媒圧力とを制御するようにしたもので ある。 つまり、 後者の公報によれば、 冷媒を超臨界域まで昇圧する圧縮 機と、 この超臨界域に達した高圧冷媒を冷却する放熱器と、 この放熱器 で冷却された後に冷媒を減圧する膨張弁と、 この膨張弁で減圧された冷 媒を蒸発する蒸発器とを備えた冷凍サイクルにおいて、 膨張弁開度を制 御することで膨張装置入口側の冷媒温度と冷媒圧力との関係を同公報の 図 1又は図 5の "max 線上に設定すれば、 冷凍サイクルを効率よく運転 できることが示されている。 しかしながら、 前者の技術は冷凍サイクルを常に超臨界条件で操作す ることを予定しており、 効率の面で必ずしも優れているとは言えない。 即ち、 例えば外気温が低い場合には、 高圧圧力を臨界圧 (約 7 . 3 8 M P a ) 以下とした亜臨界条件で用いる方が効率面では有利であり、 また、 気体クーラの冷却空気温度が下がれば亜臨界運転とならざるを得ない。 同公報の F i g . 2によれば、 亜臨界域にかけて特性線が示されてい るため、 気体クーラ出口の冷媒温度を下げることができれば亜臨界条件 における冷凍サイクルの運転を考えることができるが、 臨界圧以下の運 転点を同図から読み取れば、 気体クーラ出口の冷媒温度はほぼ飽和温度 と一致したものとなっており、 過冷却度 ( S C : サブクール) をほぼ o °cとして運転することとなる。 In the latter case, the temperature of the outlet-side refrigerant and the outlet-side refrigerant of the radiator are controlled along the optimal control line? 7 max shown in Fig. The pressure is controlled. That is, according to the latter publication, a compressor that raises the pressure of a refrigerant to a supercritical region, a radiator that cools the high-pressure refrigerant that has reached the supercritical region, and an expansion that depressurizes the refrigerant after being cooled by the radiator In a refrigeration cycle including a valve and an evaporator that evaporates the refrigerant decompressed by the expansion valve, the relationship between the refrigerant temperature and the refrigerant pressure at the expansion device inlet side is controlled by controlling the expansion valve opening. It is shown that the refrigeration cycle can be operated efficiently if it is set on the "max line" in Fig. 1 or Fig. 5 of the publication. However, the former technology plans to always operate the refrigeration cycle under supercritical conditions, and is not necessarily superior in terms of efficiency. That is, for example, when the outside air temperature is low, it is more advantageous in terms of efficiency to use the high-pressure pressure under the critical pressure (about 7.38 MPa) or less in terms of efficiency. If it decreases, it will have to be a subcritical operation. According to FIG. 2 of the publication, since the characteristic line is shown over the subcritical region, if the refrigerant temperature at the outlet of the gas cooler can be reduced, the operation of the refrigeration cycle under subcritical conditions can be considered. When the operating point below the critical pressure is read from the figure, the refrigerant temperature at the outlet of the gas cooler is almost equal to the saturation temperature, and the operation should be performed with the supercooling degree (SC: subcool) being almost o ° c. Becomes
さらに、 前者の技術によれば、 気体クーラ出口の冷媒温度に基づいて 絞り弁を制御するため、 電子制御される絞り弁ならばともかく、 熱伝達 を利用したメカ式の絞り弁にあっては、 自動車用として用いる場合に気 体クーラと絞り弁とは位置的にかなり離れて配置されてしまうため、 感 温筒のキヤビラリ一チューブが非常に長くなり、 気体クーラ出口の冷媒 温度に見合った制御を精度よく行うことが事実上不可能となる。  Further, according to the former technique, the throttle valve is controlled based on the refrigerant temperature at the outlet of the gas cooler. Therefore, regardless of the electronically controlled throttle valve, the mechanical throttle valve using heat transfer is When used for automobiles, the gas cooler and the throttle valve are located at a considerable distance from each other, so the length of the temperature-sensitive cylinder tube becomes very long, and control appropriate for the refrigerant temperature at the gas cooler outlet is performed. It is practically impossible to perform with high accuracy.
また、 後者の技術にあっては、 C O Pを高く維持して C 0 2 サイクル を良好に運転するには、 過冷却度を 1 °C〜 1 o °c程度とすることが望ま しいとされているが、 この過冷却度は、 同公報の図 1の最適制御線 7? m a の線図を参照しつつ解釈すると、 亜臨界条件で冷凍サイクルを操作す る場合には、 圧力に関係なく過冷却度を 1 °C;〜 1 o °cの範囲で一定にす ることを考えている。 Further, in the latter technology, the operating and maintaining a high COP C 0 to 2 cycles better is it is that the desired arbitrary to 1 o ° about c Celsius to 1 ° degree of supercooling It is, but this degree of subcooling, when interpreted with reference to the diagram of the optimal control line 7? m a in FIG. 1 of the publication, if you operate a refrigeration cycle in subcritical conditions, regardless of the pressure We plan to keep the degree of supercooling constant within the range of 1 ° C;
フ口ン等を冷媒として用いた従来の冷凍サイクルにあっては、 そもそ も臨界圧よりもかなり低い亜臨界条件で操作されるので、 過冷却度を変 化させても圧力一定の条件下でェンタルピーは大きく変化しないことか ら、 過冷却度は 0 °C〜 5 °Cと小さい範囲で制御すれば事足りるものであ るが、 C 0 2 を冷媒として用いる冷凍サイクルの場合には、 そもそも超 臨界条件での操作が普通であるものを亜臨界条件にわたって操作しょう とするものであることから、 高圧側での冷媒圧力が臨界点近傍である場 合には、 膨張弁入口の冷媒ェンタルピーは冷媒温度の変化によって大き く変化し (臨界点近傍においては等温度曲線の間隔が大きくなっている ことによる) 、 また、 高圧側での冷媒圧力が臨界点での圧力から徐々に 低くなるにつれて冷媒温度の変化に対する膨張弁流入側の冷媒ェン夕ル ピーの変化は小さくなつてくる (冷媒圧力が臨界圧より低い場合には、 等温度曲線の間隔が小さくなつてくることによる) 点を考慮すべきであ る 0 In the conventional refrigeration cycle using a nozzle or the like as a refrigerant, it is operated under subcritical conditions that are considerably lower than the critical pressure in the first place. That the enthalpy does not change much Et al., Although the degree of supercooling is Ru der what suffices is controlled at 0 ° C~ 5 ° C and a small range, in the case of a refrigeration cycle using a C 0 2 as refrigerant, the first place the operation under supercritical conditions Average When the refrigerant pressure on the high pressure side is near the critical point, the refrigerant enthalpy at the inlet of the expansion valve greatly changes due to a change in the refrigerant temperature. (Because the interval between the isothermal curves becomes larger near the critical point) Also, as the refrigerant pressure at the high pressure side gradually decreases from the pressure at the critical point, the expansion valve inlet side responds to changes in the refrigerant temperature. It should be taken into account that the change in the refrigerant rupee of the refrigerant becomes smaller (when the refrigerant pressure is lower than the critical pressure, the interval between the isothermal curves becomes smaller).
このため、 C 0 2 サイクルを亜臨界条件で操作する場合には、 従来技 術のように、 過冷却度を約 o °cとなるように制御したり、 所定温度で一 定になるように制御する上述の手法によっては、 必ずしも最適効率が得 られるとは言えないと考えられる。 Therefore, when operating the C 0 2 cycles subcritical conditions, as in the conventional technology, to control so that the degree of supercooling of about o ° c, such that a constant at a given temperature It is considered that the optimum efficiency cannot always be obtained depending on the control method described above.
また、 c o 2 を冷媒とする冷凍サイクルにおいては、 圧縮機の仕事量 に対する蒸発器の冷房能力の比 (以下、 C O P又は成績係数という) を 最大にするための膨張弁流入側の冷媒温度 Tと冷媒圧力 Pとの間に、 一 定の関係があることは前記特開平 9一 2 6 4 6 2 2号公報に開示されて いるところであるが、 ここで示される冷媒温度と冷媒圧力との関係は、 蒸発器から流出する冷媒と高圧ラインの超臨界域の冷媒とを熱交換させ る内部熱交換器を有しないサイクルを前提として膨張弁の制御のみでサ ィクル効率の向上を図ろうとしたものであり、 しかも、 圧縮機の吐出容 量が一定である冷凍サイクルについてのみ当てはまるものである。 In the refrigeration cycle for the co 2 refrigerant, the ratio of the cooling capacity of the evaporator for the work of the compressor (hereinafter, referred to as COP or the coefficient of performance) and the refrigerant temperature T of the expansion valve inlet side in order to maximize the The fact that there is a certain relationship between the refrigerant pressure P and the refrigerant pressure P is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Hei 9-246466, but the relationship between the refrigerant temperature and the refrigerant pressure shown here is shown. Is intended to improve cycle efficiency only by controlling the expansion valve, assuming a cycle without an internal heat exchanger that exchanges heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region of the high pressure line. In addition, this applies only to a refrigeration cycle in which the discharge capacity of the compressor is constant.
C 0 2 等の超臨界冷媒を用いた冷凍サイクルにおいては、 C O Pの一 層の向上を図るために、 内部熱交換器を設けることは、 例えば特公平 7 - 1 8 6 0 2号公報などにおいて公知の構成であるが、 このような内部 熱交換器を備えた冷凍サイクルを用いた場合にあっては、 内部熱交換器 によって冷媒がさらに冷却されて膨張弁に至ることから、 C O Pを最大 とする膨張弁流入側の冷媒温度は一層低くなり、 前記 " max で示される 最適制御特性と実際に要求される制御特性とが異なることとなる。 C 0 in the refrigeration cycle using a supercritical refrigerant 2 such as, in order to improve one layer of COP, providing the internal heat exchanger, for example KOKOKU 7 -Although it is a known configuration in 186002, etc., when a refrigeration cycle having such an internal heat exchanger is used, the refrigerant is further cooled by the internal heat exchanger and expanded. Since the refrigerant reaches the valve, the refrigerant temperature on the inflow side of the expansion valve that maximizes the COP is further lowered, and the optimum control characteristic indicated by “max” differs from the actually required control characteristic.
また、 本発明者の研究によれば、 内部熱交換器を有する冷凍サイクル において、 自由に吐出量を調節できる圧縮機を用いると、 最適制御点を 決定するパラメ一夕に圧縮機の吐出容量を追加することができ、 また、 単に膨張弁開度の制御のみで最適制御点を得ようとしていた従来構成か らは予想もできない制御点のずれが生じてしまうことが判明している。 つまり、 内部熱交換器と吐出容量を可変できる圧縮機とを備えた冷凍サ ィクルにおいては、 上記従来技術で用いられてきた冷媒温度と冷媒圧力 との関係を満たすように冷凍サイクルをバランスさせても、 良好な C 0 Pを得ることができないものとなる。  According to the study of the present inventor, in a refrigeration cycle having an internal heat exchanger, if a compressor capable of freely adjusting the discharge amount is used, the discharge capacity of the compressor can be reduced over the course of determining the optimum control point. In addition, it has been found that the conventional configuration that seeks to obtain the optimum control point only by controlling the opening degree of the expansion valve causes a shift of the control point which cannot be predicted. That is, in a refrigeration cycle including an internal heat exchanger and a compressor capable of changing the discharge capacity, the refrigeration cycle is balanced so as to satisfy the relationship between the refrigerant temperature and the refrigerant pressure used in the above-described conventional technology. However, good C 0 P cannot be obtained.
そこで、 この発明においては、 C 0 2 冷媒のような超臨界流体を冷媒 とする冷凍サイクルにおいて、 サイクル効率の一層の向上を図ることを 主たる課題としている。 より具体的には、 亜臨界条件で操作を行う場合 に、 過冷却度制御を行うことによって効率良く運転することができる冷 凍サイクル及びその制御方法を提供することを課題としている。 これに 併せて、 感温筒等を利用した電気制御によらない膨張弁を用いた場合に おいても制御精度の低下を防ぐことができる冷凍サイクルを提供するこ とを課題としている。 また、 特に、 内部熱交換器と吐出量を変更可能と する圧縮機とを備えた冷凍サイクルにおいて、 良好なサイクル効率を得 ることができるようにすることを課題としている。 発明の開示 上記課題を達成するために、 本発明者は鋭意研究を重ねた結果、 炭酸 ガス冷媒を用いた冷凍サイクルにおいて、 亜臨界条件で操作する場合に は、 従来の制御点では充分な効率を得ることができず、 これを解決する ためには、 過冷却度を制御することによって効率のよいサイクル運転が 可能であることを見出し、 本願発明を完成するに至った。 Therefore, in the present invention, in a refrigeration cycle of a supercritical fluid, such as C 0 2 refrigerant as refrigerant, as main aims to further improve the cycle efficiency. More specifically, it is an object of the present invention to provide a refrigeration cycle that can be operated efficiently by performing supercooling degree control when operating under subcritical conditions, and a method of controlling the refrigeration cycle. In addition, an object of the present invention is to provide a refrigeration cycle that can prevent a decrease in control accuracy even when an expansion valve that does not rely on electric control using a temperature sensing cylinder or the like is used. In particular, it is another object of the present invention to obtain good cycle efficiency in a refrigeration cycle including an internal heat exchanger and a compressor capable of changing a discharge amount. Disclosure of the invention In order to achieve the above object, the present inventors have conducted intensive studies and found that when operating under subcritical conditions in a refrigeration cycle using a carbon dioxide refrigerant, sufficient efficiency can be obtained at the conventional control point. In order to solve this, it was found that an efficient cycle operation was possible by controlling the degree of supercooling, and the present invention was completed.
即ち、 冷媒として炭酸ガスを用いた冷凍サイクルの制御においては、 亜臨界領域において操作する場合に高圧側冷媒圧力が臨界点近傍であれ ば過冷却度を約 1 5 °Cとし、 前記高圧側冷媒圧力が前記臨界点近傍から 低くなるに従って過冷却度を漸減させるようにすることを特徴的な構成 としている。  That is, in the control of the refrigeration cycle using carbon dioxide gas as the refrigerant, when operating in the subcritical region, if the high-pressure side refrigerant pressure is near the critical point, the degree of supercooling is set to about 15 ° C, and the high-pressure side refrigerant is The supercooling degree is gradually reduced as the pressure becomes lower from the vicinity of the critical point.
ここで、 高圧側冷媒圧力が臨界点近傍である場合の過冷却度は、 シミ ユレ一ションの結果得られた値であり、 実際のところ計算結果と現実の 値とでは誤差が生じることから、 ここでいう約 1 5 °Cとは、 1 0 °C〜2 0 °Cの範囲を予定している。 また、 高圧側冷媒圧力が臨界点近傍から低 くなるに従って、 過冷却度を漸減させるようにするとは、 臨界点近傍の 高圧側冷媒圧力 ( 7 . 3 8 M P a ) で過冷却度を約 1 5 °Cとし、 高圧側 冷媒圧力が 3 . 5 M P aで過冷却度がおよそ 1 °Cとなるように例えば線 形的な変化をもって漸減させるものが考えられる。  Here, the degree of supercooling when the high-pressure side refrigerant pressure is near the critical point is a value obtained as a result of simulation, and an error actually occurs between the calculation result and the actual value. Here, about 15 ° C is expected to be in the range of 10 ° C to 20 ° C. In order to gradually reduce the degree of supercooling as the pressure of the high-pressure refrigerant decreases from the vicinity of the critical point, the degree of supercooling is reduced by about 1 at the high-pressure refrigerant pressure (7.38 MPa) near the critical point. It is conceivable that the temperature is set to 5 ° C and the refrigerant pressure is gradually reduced by, for example, a linear change so that the refrigerant pressure is 3.5 MPa and the degree of supercooling is about 1 ° C.
したがって、 このような構成とすることにより、 臨界点近傍での膨張 弁入口の冷媒ェンタルピーは冷媒温度の変化によって大きく変化するこ とから、 過冷却度を大きくすることによって冷凍効果を大きくすること ができ、 高圧側冷媒圧力が臨界圧から徐々に低くなると、 冷媒温度の変 化に対する冷媒ェン夕ルビーの変化は徐々に小さくなるので、 過冷却度 を徐々に小さく しても必要とする冷凍効果を確保することができる。 こ のため、 通常において超臨界条件で操作される炭酸ガスサイクルを亜臨 界条件で操作する場合には、 上述のように過冷却度制御することでサイ クル効率の向上を一層図ることが可能となる。 Therefore, with this configuration, the refrigerant enthalpy at the expansion valve inlet near the critical point greatly changes due to a change in the refrigerant temperature.Therefore, it is possible to increase the refrigeration effect by increasing the degree of subcooling. When the high-pressure side refrigerant pressure gradually decreases from the critical pressure, the change in refrigerant temperature and the refrigerant temperature change gradually decreases, so the required refrigeration effect even if the degree of subcooling is gradually reduced. Can be secured. For this reason, when a carbon dioxide gas cycle normally operated under supercritical conditions is operated under subcritical conditions, the size is controlled by controlling the degree of supercooling as described above. It is possible to further improve the vehicle efficiency.
また、 内部熱交換器と吐出量を変更可能とする圧縮機とを備えた冷凍 サイクルでのサイクル効率の向上を図るために、 冷媒を超臨界域まで昇 圧する冷媒吐出量を変更可能とする圧縮機と、 超臨界域に達した冷媒を 冷却する放熱器と、 この放熱器により冷却された後に冷媒を減圧する膨 張装置と、 この膨張装置で減圧された冷媒を蒸発する蒸発器と、 前記蒸 発器から流出する冷媒と前記超臨界域の冷媒とを熱交換させる内部熱交 換器とを備えた冷凍サイクルの制御において、 前記圧縮器の吐出量を含 む運転条件を調節して、 前記膨張装置の流入側での冷媒温度と前記膨張 装置の流入側での冷媒圧力とを、 前記内部熱交換器を有しない冷凍サイ クル、 及び、 前記圧縮機の吐出容量が固定されている冷凍サイクルに比 ベて、 前記冷媒温度が同じであれば前記冷媒圧力を高く設定し、 且つ、 前記冷媒圧力が同じであれば前記冷媒温度を低く設定するとよい。  Also, in order to improve the cycle efficiency of a refrigeration cycle equipped with an internal heat exchanger and a compressor that allows the discharge amount to be changed, compression that enables the change in the refrigerant discharge amount that raises the pressure of the refrigerant to the supercritical range A radiator that cools the refrigerant that has reached the supercritical region; an expansion device that depressurizes the refrigerant after being cooled by the radiator; an evaporator that evaporates the refrigerant depressurized by the expansion device; In controlling a refrigeration cycle including an internal heat exchanger that exchanges heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region, operating conditions including a discharge amount of the compressor are adjusted. The refrigerant temperature on the inflow side of the expansion device and the refrigerant pressure on the inflow side of the expansion device are controlled by a refrigerating cycle having no internal heat exchanger, and a refrigerating cycle having a fixed discharge capacity of the compressor. Compared with the cycle, the refrigerant If the temperature is the same, the refrigerant pressure may be set higher, and if the refrigerant pressure is the same, the refrigerant temperature may be set lower.
より具体的には、 膨張装置の流入側での冷媒温度を T [°C ] 、 膨張装 置の流入側での冷媒圧力を P [ M P a ] とした場合に、 Tと Pとを、 T ≤ 2 . 4 1 P + 4 . 8 6、 T≥ 2 . 5 2 P - 7 . 4 1で囲まれる範囲に 設定するとよい。  More specifically, when the refrigerant temperature on the inflow side of the expansion device is T [° C] and the refrigerant pressure on the inflow side of the expansion device is P [MPa], T and P are expressed by T ≤2.41P + 4.86, T≥2.52P-7.41
ここで、 内部熱交換器は、 蒸発器から流出される冷媒と熱交換する冷 媒が圧縮機から膨張装置に至る高圧ライン上にあればよく、 例えば、 放 熱器と膨張装置との間の冷媒と熱交換させるようにしてもよい。 また、 冷媒としては、 炭酸ガス (C 0 2 ) 冷媒を用い、 冷媒吐出量を変更可能 とする圧縮機としては、 容量可変機構を備えた可変容量圧縮機や電磁ク ラツチの通電をデューティー比制御する圧縮機、 更には回転数制御が可 能な電動モー夕駆動式圧縮機などを用いるとよい。 Here, the internal heat exchanger only needs to have a refrigerant that exchanges heat with the refrigerant flowing out of the evaporator on a high-pressure line from the compressor to the expansion device. You may make it heat-exchange with a refrigerant | coolant. As the refrigerant, using a carbon dioxide (C 0 2) refrigerant, the compressor and capable of changing the refrigerant discharge amount, the duty ratio control the energization of the variable displacement compressor and an electromagnetic click latch having a variable displacement mechanism It is preferable to use a compressor that can be controlled, and an electric motor-driven compressor that can control the number of revolutions.
したがって、 圧縮機で昇圧されて超臨界状態となる高温高圧の冷媒は. 放熱器によって冷却されると共に、 内部熱交換によって蒸発器から流出 される冷媒によってさらに冷却され、 しかる後に膨張装置によって減圧 されて低温低圧の湿り蒸気となり、 蒸発器で蒸発気化すると共に、 内部 熱交換によって高圧ラインの冷媒によって加熱された後に圧縮機へ送ら れ、 再び昇圧される。 圧縮器の吐出量を含む運転条件を調節して上述し た範囲で膨張装置流入側の冷媒温度と冷媒圧力とを設定すれば、 内部熱 交換器を備え、 且つ、 吐出容量を自由に可変できる圧縮機を備えた冷凍 サイクルにおいても、 良好なサイクル効率を得ることができる。 Therefore, the high-temperature and high-pressure refrigerant, which is pressurized by the compressor and becomes supercritical, is cooled by the radiator and flows out of the evaporator due to internal heat exchange The refrigerant is further cooled by the refrigerant, and then decompressed by the expansion device to become low-temperature and low-pressure wet steam, which is vaporized by the evaporator and sent to the compressor after being heated by the refrigerant in the high-pressure line by internal heat exchange. It is boosted again. By adjusting the operating conditions including the discharge amount of the compressor and setting the refrigerant temperature and refrigerant pressure on the inflow side of the expansion device within the above-described range, an internal heat exchanger is provided, and the discharge capacity can be freely varied. Good cycle efficiency can be obtained even in a refrigeration cycle equipped with a compressor.
上述した各制御方法に対して、 前者の制御方法を実現する冷凍サイク ルとしては、 冷媒として炭酸ガスを用い、 冷媒を昇圧する圧縮機と、 昇 圧した冷媒を冷却する放熱器と、 この放熱器により冷却した冷媒を減圧 する圧力調節手段と、 この圧力調節手段で減圧された冷媒を蒸発する蒸 発器と、 前記圧力調節手段の上流側の冷媒圧力及び冷媒温度を検出する 検出手段と、 前記検出手段の検出結果に基づいて前記冷媒圧力が臨界点 近傍である場合に、 前記圧力調節手段の流入側での過冷却度を約 1 5 °C となるよう前記圧力調節手段の減圧量を制御し、 前記冷媒圧力が前記臨 界点近傍から低くなるに従って前記圧力調節手段の流入側での過冷却度 を漸減させるよう前記圧力調節手段の減圧量を制御する制御手段とを有 する構成が考えられる。  In contrast to the control methods described above, the refrigeration cycle that implements the former control method includes a compressor that uses carbon dioxide gas as a refrigerant and pressurizes the refrigerant, a radiator that cools the pressurized refrigerant, Pressure adjusting means for reducing the pressure of the refrigerant cooled by the heater, an evaporator for evaporating the refrigerant reduced in pressure by the pressure adjusting means, and detecting means for detecting the refrigerant pressure and the refrigerant temperature upstream of the pressure adjusting means. When the refrigerant pressure is near the critical point based on the detection result of the detection means, the pressure reduction amount of the pressure adjustment means is adjusted so that the degree of supercooling on the inflow side of the pressure adjustment means is about 15 ° C. And control means for controlling the pressure reduction amount of the pressure adjustment means so as to gradually reduce the degree of supercooling on the inflow side of the pressure adjustment means as the refrigerant pressure decreases from near the critical point. Thinking It is.
また、 後者の制御方法を実現する冷凍サイクルとしては、 冷媒を超臨 界域まで昇圧する圧縮機と、 超臨界域に達した冷媒を冷却する放熱器と- この放熱器により冷却された後に冷媒を減圧する膨張装置と、 この膨張 装置で減圧された冷媒を蒸発する蒸発器と、 前記蒸発器から流出する冷 媒と前記超臨界域の冷媒とを熱交換させる内部熱交換器とを備え、 前記 圧縮機の冷媒吐出量を変更可能とし、 前記圧縮器の吐出量を含む運転条 件を調節して、 前記膨張装置の流入側での冷媒温度と前記膨張装置の流 入側での冷媒圧力とを、 前記内部熱交換器を有しない冷凍サイクル、 及 び、 前記圧縮機の吐出容量が固定されている冷凍サイクルに比べて、 前 記冷媒温度が同じであれば前記冷媒圧力を高く設定し、 且つ、 前記冷媒 圧力が同じであれば前記冷媒温度を低く設定する構成が考えられる。 こ こで、 膨張装置の流入側での冷媒温度を T [°C ] 、 膨張装置の流入側で の冷媒圧力を P [ M P a ] とした場合に、 Tと Pとを、 T≤ 2 . 4 I P + 4 . 8 6、 T≥ 2 . 5 2 Ρ - 7 . 4 1で囲まれる範囲に設定するとよ い 図面の簡単な説明 The refrigeration cycle that realizes the latter control method includes a compressor that boosts the refrigerant to a supercritical region, a radiator that cools the refrigerant that has reached the supercritical region, and a refrigerant that is cooled by the radiator. An expansion device for reducing the pressure of the refrigerant, an evaporator for evaporating the refrigerant decompressed by the expansion device, and an internal heat exchanger for exchanging heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region, The refrigerant discharge amount of the compressor can be changed, and operating conditions including the discharge amount of the compressor are adjusted to adjust the refrigerant temperature on the inflow side of the expansion device and the refrigerant pressure on the inflow side of the expansion device. A refrigeration cycle without the internal heat exchanger; and And, compared to a refrigeration cycle in which the discharge capacity of the compressor is fixed, the refrigerant pressure is set higher if the refrigerant temperature is the same, and the refrigerant temperature is set if the refrigerant pressure is the same. A configuration in which the setting is low can be considered. Here, assuming that the refrigerant temperature at the inflow side of the expansion device is T [° C] and the refrigerant pressure at the inflow side of the expansion device is P [MPa], T and P are defined as T≤2. 4 IP + 4.86, T≥2.52 Ρ-7.41 It should be set within the range enclosed by 1. Brief description of drawings
第 1図は、 本発明にかかる冷凍サイクルの構成例を示す図である。 第 2図は、 炭酸ガス冷媒のモリエール線図である。 第 3図は、 本発明にか かる冷凍サイクルの膨張弁流入側の目標冷媒圧力と冷媒温度とのシミュ レーシヨン結果を示す図である。 第 4図は、 第 1図のコントロールュニ ッ トによる制御動作例を示すフローチャートである。 第 5図は、 最大 C 0 Ρを得る膨張弁入口側の冷媒温度と冷媒圧力との演算処理を説明する フローチャートである。 第 6図は、 膨張弁入口側の冷媒圧力と冷媒温度 との関係を示す特性線図である。 この第 6図において、 「x」 印は、 既 存のコンポーネントを用いたサイクルにおいて、 最大 C O Pとなる膨張 弁入口の冷媒圧力と冷媒温度とのシミュレ一シヨン結果をプロッ トした ものを表し、 「〇」 印は、 コンポーネントの効率を良くしたサイクルに おいて、 最大 C 0 Pとなる膨張弁入口の冷媒圧力と冷媒温度とのシミュ レ一シヨン結果をプロッ トしたものを表す。 また、 同図の Cは、 T = 2 4 1 P + 4 . 8 6のラインを、 Dは、 Τ = 2 . 5 2 Ρ - 7 . 4 1のライ ンをそれぞれ表す。 第 7図は、 膨張弁開度 (又は圧縮機の吐出量) と C Ο Ρ及び冷房能力 Qの関係を示す特性線図であり、 破線は固定容量型圧 縮機を用いた従来の冷凍サイクルを、 実線は吐出容量を変更できる圧縮 機を用いた本冷凍サイクルをそれそれ示す。 第 8図は、 固定容量型圧縮 機を用いた従来の冷凍サイクルと、 吐出容量を変更できる圧縮機を用い た本冷凍サイクルとのモリエール線図を示す。 発明を実施するための最良の形態 FIG. 1 is a diagram showing a configuration example of a refrigeration cycle according to the present invention. FIG. 2 is a Mollier chart of a carbon dioxide gas refrigerant. FIG. 3 is a diagram showing a simulation result of a target refrigerant pressure and a refrigerant temperature on the expansion valve inflow side of the refrigeration cycle according to the present invention. FIG. 4 is a flowchart showing an example of a control operation by the control unit of FIG. FIG. 5 is a flowchart illustrating a calculation process of the refrigerant temperature and the refrigerant pressure on the inlet side of the expansion valve for obtaining the maximum C 0 °. FIG. 6 is a characteristic diagram showing the relationship between the refrigerant pressure on the inlet side of the expansion valve and the refrigerant temperature. In FIG. 6, the mark `` x '' represents a plot of the simulation result of the refrigerant pressure and the refrigerant temperature at the expansion valve inlet at the maximum COP in the cycle using the existing components. The symbol “〇” indicates a plot of a simulation result of the refrigerant pressure and the refrigerant temperature at the inlet of the expansion valve, which is a maximum of C 0 P, in a cycle in which the component efficiency is improved. In addition, C in the figure represents a line of T = 24.1P + 4.86, and D represents a line of Τ = 2.52Ρ−7.41. Fig. 7 is a characteristic diagram showing the relationship between the expansion valve opening (or compressor discharge amount), C Ο Ρ, and cooling capacity Q. The broken line is a conventional refrigeration cycle using a fixed displacement compressor. , The solid line is the compression that can change the discharge capacity The present refrigeration cycle using the machine is shown below. FIG. 8 shows a Mollier diagram of a conventional refrigeration cycle using a fixed displacement compressor and a refrigeration cycle using a compressor capable of changing a discharge capacity. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の態様を図面に基づいて説明する。 第 1図にお いて、 冷凍サイクル 1は、 冷媒を圧縮する圧縮機 2、 冷媒を冷却する放 熱器 3、 高圧側ラインの冷媒と低圧側ラインの冷媒とを熱交換する内部 熱交換器 4、 冷媒を減圧する膨張弁 5、 冷媒を蒸発気化する蒸発器 6、 蒸発器 6から流出した冷媒を気液分離するアキュムレータ 7を有して構 成されている。 このサイクルは、 圧縮機 2の吐出側を放熱器 3を介して 内部熱交換器 4の高圧通路 4 aに接続し、 この高圧通路 4 aの流出側を 膨張弁 5に接続し、 圧縮機 2から膨張弁 5の高圧側に至る経路によって 高圧側ライン 8を構成している。 また、 膨張弁 5の低圧側は、 蒸発器 6 に接続され、 この蒸発器 6の流出側は、 アキュムレータ 7を介して内部 熱交換器 4の低圧通路 4 bに接続されている。 そして、 低圧通路 4わの 流出側を圧縮機 2の吸入側に接続し、 膨張弁 5の流出側から圧縮機 2の 吸入側に至る経路によって低圧側ライン 9を構成している。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a refrigeration cycle 1 includes a compressor 2 for compressing a refrigerant, a radiator 3 for cooling the refrigerant, and an internal heat exchanger 4 for exchanging heat between a refrigerant on a high pressure line and a refrigerant on a low pressure line. It comprises an expansion valve 5 for reducing the pressure of the refrigerant, an evaporator 6 for evaporating and evaporating the refrigerant, and an accumulator 7 for gas-liquid separation of the refrigerant flowing out of the evaporator 6. In this cycle, the discharge side of the compressor 2 is connected via the radiator 3 to the high pressure passage 4 a of the internal heat exchanger 4, the outlet side of the high pressure passage 4 a is connected to the expansion valve 5, and the compressor 2 A high-pressure side line 8 is formed by a path from the pressure to the high-pressure side of the expansion valve 5. The low pressure side of the expansion valve 5 is connected to an evaporator 6, and the outlet side of the evaporator 6 is connected to a low pressure passage 4 b of the internal heat exchanger 4 via an accumulator 7. The outflow side of the low pressure passage 4 is connected to the suction side of the compressor 2, and a path from the outflow side of the expansion valve 5 to the suction side of the compressor 2 forms a low pressure side line 9.
この冷凍サイクル 1は、 冷媒として C〇2 が用いられており、 圧縮機 2によって圧縮された冷媒は、 高温高圧の超臨界状態の冷媒として放熱 器 3に入り、 ここで放熱して冷却する。 その後、 内部熱交換器 4におい て低圧側ライン 9の低温冷媒と熱交換して更に冷やされ、 液化されるこ となく膨張弁 5に送られる。 そして、 この膨張弁 5において減圧されて 低温低圧の湿り蒸気となり、 蒸発器 6においてここを通過する空気と熱 交換してガス状となり、 しかる後に内部熱交換器 4において高圧側ライ ン 8の高温冷媒と熱交換して加熱され、 圧縮機 2に戻される。 ここで、 膨張弁 5は、 膨張弁入口側の冷媒温度を検出する冷媒温度センサ 1 0か らの信号と膨張弁入口側の冷媒圧力を検出する圧力センサ 1 2からの信 号とをコントロールュニッ ト 1 1に入力し、 このコントロールュニッ ト 1 1に予め与えられたプログラムに従って開度を制御する電気制御式が 採用されている。 The refrigeration cycle 1, C_〇 2 have been used as the refrigerant, the refrigerant compressed by the compressor 2 enters into the radiator 3 as a supercritical refrigerant of high temperature and high pressure is cooled by heat radiation here. Thereafter, the internal heat exchanger 4 exchanges heat with the low-temperature refrigerant in the low-pressure line 9 to be further cooled and sent to the expansion valve 5 without being liquefied. Then, the pressure is reduced in the expansion valve 5 to become low-temperature and low-pressure wet steam, heat exchange with the air passing therethrough in the evaporator 6 to become gaseous, and then the high-temperature side of the high-pressure side line 8 in the internal heat exchanger 4. It is heated by exchanging heat with the refrigerant and returned to the compressor 2. here, The expansion valve 5 controls the signal from the refrigerant temperature sensor 10 for detecting the refrigerant temperature on the expansion valve inlet side and the signal from the pressure sensor 12 for detecting the refrigerant pressure on the expansion valve inlet side. The control unit 11 is input to the control unit 11 to control the opening according to a program given in advance.
上述した冷凍サイクル 1を、 高圧圧力が臨界圧 ( 7 . 3 8 M P a ) 以 下となる亜臨界条件で用いられる場合を考えると、 この場合には、 第 2 図に示されるようになり、 最適効率を得るための制御線ひで示される過 冷却度となるように膨張弁 5の開度が制御される。  Considering the case where the above-described refrigeration cycle 1 is used under subcritical conditions where the high pressure is equal to or lower than the critical pressure (7.38 MPa), in this case, as shown in FIG. The opening of the expansion valve 5 is controlled so that the degree of supercooling indicated by the control line for obtaining the optimum efficiency is obtained.
即ち、 膨張弁 5の入口側での冷媒圧力が臨界圧近傍である場合には、 膨張弁 5の入口側での過冷却度を 1 0〜 2 0 °C、 好ましくは約 1 5 と し、 高圧側冷媒圧力が前記臨界圧近傍よりも低くなるにつれて過冷却度 を漸減させるようにしているもので、 この構成例では、 膨張弁 5の入口 側での冷媒圧力が約 3 . 5 M P a (蒸発器 6に流入する冷媒温度がおよ そ 0 °Cとなる圧力に相当) で過冷却度を約 1 °Cとするように線形的に変 化させている。  That is, when the refrigerant pressure at the inlet side of the expansion valve 5 is near the critical pressure, the degree of supercooling at the inlet side of the expansion valve 5 is set to 10 to 20 ° C., preferably about 15; The supercooling degree is gradually reduced as the high pressure side refrigerant pressure becomes lower than the vicinity of the critical pressure.In this configuration example, the refrigerant pressure at the inlet side of the expansion valve 5 is about 3.5 MPa ( The supercooling degree is linearly changed to about 1 ° C when the temperature of the refrigerant flowing into the evaporator 6 becomes about 0 ° C).
このような制御線ひは、 C 0 2 を用いた冷凍サイクルを亜臨界領域で 作動させる上で、 C O Pを最大又はこれに近い状態を得て良好なサイク ル効率を得るための範囲として本発明者が次のような知見とシミュレ一 シヨンとによって見出したものである。 Such control-ray is, C 0 2 a refrigeration cycle using on to operate in a subcritical region, the present invention as the range for obtaining obtains the maximum or a state close thereto with good cycle efficiency COP Were found based on the following findings and simulations.
C 0 2 を用いた冷凍サイクルの場合、 超臨界領域で操作するのが普通 であるが、 亜臨界領域で操作しょうとする場合には、 臨界圧近傍におい ては、 前述した如く膨張弁入口の冷媒ェン夕ルビーは冷媒温度の変化に よって大きく変化するので、 過冷却度を僅かに変化させても冷凍効果を 大きく変化させることができ、 最適効率を得るために過冷却度の大きさ を適切に制御することに意味がある。 これに対して、 高圧側での冷媒圧 力が臨界圧から徐々に低くなると、 冷媒温度の変化に対する膨張弁入口 の冷媒ェン夕ルビ一の変化割合は小さくなるので、 過冷却度を僅かに変 化させても冷凍効果を大きく変化させることができなくなってくる。 こ のため、 高圧側での冷媒圧力が低くなる領域においては、 過冷却度制御 をすることにさほど大きな意味がなくなることから、 過冷却度自体は従 来と同程度にすることで事足りる。 このことから、 冷媒として炭酸ガス を用いる冷凍サイクルにおいては、 高圧側冷媒圧力が臨界点近傍である 場合に過冷却度を大きく し、 高圧側冷媒圧力が臨界点近傍から低くなる に従って過冷却度を漸減させるようにすればよいとの知見が見出される に至った。 If the refrigeration cycle using C 0 2, although it is common to operate at supercritical region, if it is sought cane operate in a subcritical region Te is critical圧近near odor, as the expansion valve inlet of the above-described Since the ruby refrigerant changes greatly with changes in the refrigerant temperature, the refrigeration effect can be greatly changed even if the subcooling degree is slightly changed, and the size of the subcooling degree must be reduced in order to obtain optimum efficiency. It makes sense to control properly. In contrast, the refrigerant pressure on the high pressure side When the force gradually decreases from the critical pressure, the rate of change of the refrigerant at the inlet of the expansion valve with respect to the change of the refrigerant temperature decreases, so that even if the degree of subcooling is slightly changed, the refrigeration effect is significantly changed. I can no longer do it. For this reason, in a region where the refrigerant pressure on the high-pressure side is low, controlling the degree of supercooling does not have much significance, and it is sufficient to set the degree of supercooling to the same level as before. Therefore, in the refrigeration cycle using carbon dioxide as the refrigerant, the degree of supercooling is increased when the high-pressure side refrigerant pressure is near the critical point, and the degree of subcooling is reduced as the high-pressure side refrigerant pressure decreases from near the critical point. It was discovered that it would be better to gradually reduce it.
ところで、 高圧側冷媒圧力が臨界点近傍である場合に過冷却度をどの 程度大きくすればよいのかを見極めるために、 本発明者は、 上述の知見 に基づいて鋭意研究を重ねた結果、 臨界点近傍での過冷却度を約 1 5 °C とすればよいことを見出すに至った。  By the way, in order to determine how much the supercooling degree should be increased when the high-pressure side refrigerant pressure is near the critical point, the present inventor conducted intensive research based on the above-mentioned findings, and found that the critical point They found that the degree of supercooling in the vicinity should be about 15 ° C.
臨界点近傍での過冷却度を約 1 5 °Cとしたのは、 第 3図で示されるよ うに、 所定の条件下において、 亜臨界域で上述の冷凍サイクルを操作し た場合に、 良好な効率が得られる膨張弁流入側の目標冷媒圧力と冷媒温 度とをシミュレーションによってプロヅ トし、 これらを最小 2乗法など の公知の手法によって近似線見出し、 この近似線ひと炭酸ガスの飽和線 とを比較した結果である。 そして、 この近似線によれば、 高圧側冷媒圧 力が臨界圧近傍から低くなるに従って過冷却度が徐々に小さくなり、 高 圧側冷媒圧力がおよそ 3 . 5 M P aとなるときに過冷却度が約 1 °Cにな ることが確認されている。  The reason why the degree of supercooling in the vicinity of the critical point was set to about 15 ° C is that, as shown in FIG. 3, when the above-described refrigeration cycle was operated in the subcritical region under predetermined conditions, The target refrigerant pressure and the refrigerant temperature on the inflow side of the expansion valve at which high efficiency is obtained are plotted by simulation, and these are approximated by a known method such as the least-squares method. Are the results of comparing. According to this approximation line, the degree of supercooling gradually decreases as the high-pressure side refrigerant pressure decreases from near the critical pressure, and when the high-pressure side refrigerant pressure reaches approximately 3.5 MPa, the degree of supercooling decreases. It has been confirmed that the temperature will be about 1 ° C.
しかしながら、 シミユレーシヨンによる計算結果と現実の冷凍サイク ルで要求される最適過冷却度との間には、 当然ながら差がでてくるし、 現実の冷凍サイクルにおいてもばらつきがあることから、 シミユレ一シ ョンによって得られた過冷却度を士 5 °Cとすれば、 亜臨界域でのばらつ きも、 また、 超臨界域で各種条件を異ならせて冷凍サイクルを操作した 場合のシミュレ一ション結果のばらつきもほぼ網羅されることが本発明 者によって見出されている (制御線 5、 ァ) 。 したがって、 臨界点近傍 での過冷却度を約 1 5 °Cにするとは、 この部分での過冷却度を 1 0 °C〜 2 0 °Cの範囲にすることを意味しており、 この範囲に臨界点近傍での過 冷却度が設定された状態から高圧側冷媒圧力が低くなるにつれて過冷却 度を徐々に小さくするサイクル制御が望ましいことを見出すに至った。 第 4図において、 コントロールュニヅ ト 1 1による亜臨界域でのサイ クル制御例がフロチャートとして示され、 以下、 これに基づいて上記冷 凍サイクルの過冷却度制御を説明すると、 コン トロールュニッ ト 1 1は、 膨張弁入口側の冷媒温度を検出する冷媒温度センサ 1 0からの信号と However, there is naturally a difference between the calculation result by the simulation and the optimum degree of supercooling required in the actual refrigeration cycle, and there is a variation in the actual refrigeration cycle. Assuming that the degree of supercooling obtained by the refrigeration is 5 ° C, the simulation results when the refrigeration cycle is operated under different conditions in the subcritical region and under various conditions in the supercritical region It has been found by the present inventor that the variation of the control is almost completely covered (control line 5, a). Therefore, setting the degree of supercooling near the critical point to about 15 ° C means that the degree of supercooling in this part is in the range of 10 ° C to 20 ° C. From the state in which the degree of supercooling near the critical point is set, it has been found that cycle control in which the degree of supercooling is gradually reduced as the high-pressure refrigerant pressure decreases becomes desirable. In FIG. 4, an example of cycle control in the subcritical region by the control unit 11 is shown as a flowchart. Hereinafter, the control of the supercooling degree of the cooling cycle based on this will be described. G11 is a signal from the refrigerant temperature sensor 10 for detecting the refrigerant temperature at the inlet side of the expansion valve.
(ステップ 5 0 ) 、 圧力センサ 1 2からの信号とを入力する (ステップ 5 2 ) 。 コントロールュニッ ト 1 1には、 制御線ひのマップデ一夕又は 演算式が予め記憶されており、 ステップ 5 1及び 5 2で入力された冷媒 温度と冷媒圧力に基づいて膨張弁入口側での過冷却度が制御線ひ上にく るような値を算出し (ステップ 5 4 ) 、 この算出結果に基づいて膨張弁 5の開度を電気的に制御ようにしている (ステップ 5 6 ) 。  (Step 50), and a signal from the pressure sensor 12 are input (Step 52). The control unit 11 stores a map data of the control line or an arithmetic expression in advance, and based on the refrigerant temperature and the refrigerant pressure input in Steps 51 and 52, the control unit 11 detects the temperature at the expansion valve inlet side. A value such that the degree of supercooling falls on the control line is calculated (step 54), and the opening of the expansion valve 5 is electrically controlled based on the calculation result (step 56).
したがって、 上述の構成によれば、 亜臨界領域において、 冷凍サイク ルの効率に過冷却度の変化が大きな影響を及ぼす臨界点近傍においては. 過冷却度を約 1 5度として最適効率を得るようにし、 冷凍サイクルの効 率に過冷却度の変化が徐々に影響しにく くなってくる低圧力領域にあつ ては高圧圧力が低下するほど過冷却度を小さく して従来の過冷却度へ 徐々に近づけることで、 炭酸ガスサイクルを亜臨界領域で操作した場合 に効率面において従来よりも適したものとすることが可能となる。  Therefore, according to the configuration described above, in the subcritical region, near the critical point where the change in the degree of subcooling has a great effect on the efficiency of the refrigeration cycle. In the low pressure region where the change in the degree of supercooling gradually becomes less effective in the efficiency of the refrigeration cycle, the degree of subcooling decreases as the high-pressure pressure decreases, and the subcooling decreases to the conventional level. By gradually approaching it, it becomes possible to make the carbon dioxide cycle more suitable in terms of efficiency when operated in the subcritical region.
なお、 上述の構成例では、 電気膨張弁にて最適制御線ひを得るように しているが、 膨張弁 5は、 上述で示したようにコントロールュニヅ ト 1 1によって電気的に制御される形式のものでなくても、 膨張弁上流側の 冷媒温度と圧力を検出する感温部材と感圧部材とによつて膨張弁 5を電 気的でない手法によって動作する形式のものであっても良い。 このよう な構成によれば、 上述した作用効果が得られる他、 膨張弁の近傍で冷媒 温度と圧力が検出されるので、 車体に冷凍サイクルをレイァゥトする場 合にあっても、 キヤビラリ一チューブを引き回す必要がなくなり、 制御 精度の低下を防ぐことが可能となる。 In the configuration example described above, the optimal control line is obtained by the electric expansion valve. However, the expansion valve 5 detects the refrigerant temperature and pressure upstream of the expansion valve even if the expansion valve 5 is not of the type electrically controlled by the control unit 11 as described above. A type in which the expansion valve 5 is operated by a non-electrical method using a temperature-sensitive member and a pressure-sensitive member may be used. According to such a configuration, in addition to the above-described effects, the refrigerant temperature and pressure are detected in the vicinity of the expansion valve. Therefore, even when a refrigeration cycle is to be mounted on the vehicle body, the cable can be connected to the cable. This eliminates the need for routing, and can prevent a decrease in control accuracy.
ところで、 第 1図に示す冷凍サイクル 1において、 圧縮機 2として吐 出冷媒量が可変する容量可変型のものを用いる場合には、 膨張弁 5の流 入側での冷媒温度 T [ °C ] と冷媒圧力 P [ M P a ] とが、 通常稼動時に おいて、 第 6図の砂状で示される領域、 即ち、 T≤ 2 . 4 1 P + 4 . 8 6 ( C線) と Τ≥ 2 . 5 2 Ρ - 7 . 4 1 ( D線) とで囲まれた範囲とな るように設定することが望ましい。 この領域は、 C O Pを最大又はこれ に近い状態を得て良好なサイクル効率を得るための範囲であり、 次のよ うなシミュレ一ションと知見とによって見出されたものである。  By the way, in the refrigerating cycle 1 shown in FIG. 1, when using a variable displacement type compressor in which the amount of discharged refrigerant is variable as the compressor 2, the refrigerant temperature T [° C.] on the inlet side of the expansion valve 5 And the refrigerant pressure P [MPa] during normal operation, the area indicated by the sand in Fig. 6, that is, T≤2.41P + 4.886 (C line) and Τ≥2 5 2 Ρ-7.4 1 (D line) It is desirable to set so as to be within the range enclosed by. This region is a range for obtaining a good cycle efficiency by obtaining a state of COP at or near the maximum, and has been found by the following simulations and findings.
先ず、 各種運転条件のもとで、 最大 C O Pが得られる膨張弁流入側の 冷媒圧力と冷媒温度とをシミュレーションによって見い出す。 この方法 を第 5図に示すフローチャートに基づいて説明すると、 まずステップ 6 0において、 冷凍サイクル 1の運転条件をシミュレータ一に入力する。 この運転条件は、 圧縮機 2であれば、 回転数又は吐出量、 効率 (体積効 率、 機械効率、 断熱圧縮効率) などであり、 放熱器 3や蒸発器 6であれ ば、 熱交換効率、 容積、 ここを通過する空気の温度や湿度、 風速などで あり、 内部熱交換器 4であれば、 熱交換効率である。  First, under various operating conditions, the refrigerant pressure and the refrigerant temperature on the expansion valve inlet side where the maximum COP is obtained are found by simulation. This method will be described with reference to the flowchart shown in FIG. 5. First, in step 60, the operating conditions of the refrigeration cycle 1 are input to the simulator 1. The operating conditions are, for the compressor 2, the rotation speed or discharge amount, efficiency (volume efficiency, mechanical efficiency, adiabatic compression efficiency), etc., and for the radiator 3 or the evaporator 6, the heat exchange efficiency, The volume, the temperature and humidity of the air passing therethrough, the wind speed, etc., and the internal heat exchanger 4 is the heat exchange efficiency.
そして、 次のステップ 6 2で、 上記運転条件下で冷凍サイクル 1がバ ランスする制御点を演算する。 このバランスする制御点の算出は、 ( i ) 高圧側ライン 8の冷媒圧力初期値を、 例えば 14 MP aとし、 圧 縮機吸入冷媒温度を、 例えば、 蒸発温度 + 15°Cなどと仮決めする。 そ の後、 (ϋ) 冷凍サイクル 1の各コンポーネントの能力は予め決まって いることから、 これを拘束条件として前記仮決めした値を再計算する。 そして、 (iii) 仮決め値と再計算値との間に所定範囲以上の差がある場 合には、 この再計算値を新たな仮決め値としてさらに (ii) の計算を行 い、 上記差が所定範囲内となるまでこれを繰り返す。 Then, in the next step 62, a control point at which the refrigeration cycle 1 balances under the above operating conditions is calculated. The calculation of this balanced control point is as follows: (i) The refrigerant pressure initial value of the high-pressure side line 8 is set to, for example, 14 MPa, and the compressor suction refrigerant temperature is temporarily determined to be, for example, the evaporation temperature + 15 ° C. After that, (ϋ) Since the capacity of each component of the refrigeration cycle 1 is determined in advance, the provisionally determined value is recalculated using this as a constraint. (Iii) If there is a difference between the tentatively determined value and the recalculated value that is equal to or greater than a predetermined range, the recalculated value is used as a new tentative value, and the calculation of (ii) is further performed. This is repeated until the difference falls within the predetermined range.
このようなバランス計算が必要となるのは、 膨張弁 5入口の冷媒温度、 又は、 放熱器 3出口の冷媒温度を一定にして最適高圧圧力を演算する従 来の手法によれば、 実際には、 高圧圧力を下げて同一冷房能力を得よう とすると、 冷媒循環量が多くなり、 その結果、 膨張弁入口の冷媒温度、 又は、 放熱器出口の冷媒温度が高くなり、 実際のサイクル特性と異なつ てしまうので、 できるだけ実サイクルに合った特性を得るためである。 そこで、 上述のようにして冷凍サイクル 1がバランスする高圧圧力や、 圧縮機入口の冷媒温度などを得、 その後、 ステップ 64において、 その 時点での成績係数 (COP) を演算する。 そして、 バランスした時点で の COPが得られた後は、 高圧圧力、 圧縮機入口の冷媒温度、 COP、 放熱器出口の冷媒温度などが圧縮機 2の吐出量の変化によって変化する ことから、 ステップ 66において、 圧縮機 2の吐出量をパラメ一夕とし て変化させ、 COPが最大となる膨張弁入口の冷媒圧力 Pと冷媒温度 T とを見出す。  According to the conventional method of calculating the optimum high pressure while keeping the refrigerant temperature at the inlet of the expansion valve 5 or the refrigerant temperature at the outlet of the radiator 3 constant, such a balance calculation is required in practice. However, if the same cooling capacity is to be obtained by lowering the high pressure, the amount of circulating refrigerant increases, and as a result, the refrigerant temperature at the expansion valve inlet or the radiator outlet increases, which is different from the actual cycle characteristics. The purpose is to obtain characteristics that match the actual cycle as much as possible. Thus, as described above, the high pressure and the refrigerant temperature at the compressor inlet that balance the refrigeration cycle 1 are obtained, and then, in step 64, the coefficient of performance (COP) at that time is calculated. After the COP at the time of the balance is obtained, the high pressure, the refrigerant temperature at the compressor inlet, the COP, the refrigerant temperature at the radiator outlet, and the like change due to the change in the discharge amount of the compressor 2. At 66, the discharge amount of the compressor 2 is changed as a parameter, and the refrigerant pressure P and the refrigerant temperature T at the inlet of the expansion valve at which the COP is maximum are found.
以上の演算を条件をいろいろ変えて行い、 それそれの最大 C 0 Pとな る膨張弁入口の冷媒圧力と冷媒温度とをプロッ トした結果が第 6図の 「X」 及び 「〇」 である。 また、 それそれのシミュレーションによって 得られた最大 COPは、 圧力又は膨張弁開度が多少変動しても大きく変 化しないことから、 最大 C 0 Pが得られる各条件での膨張弁流入側の冷 媒温度 T [ °C ] と冷媒圧力 P [ M P a ] の分布範囲を上述のような範囲 に画定すれば、 最大 C 0 P若しくはこれに近い運転状態が得られること となり、 本冷凍サイクルにとって望ましいものとなる。 The results of plotting the refrigerant pressure and the refrigerant temperature at the inlet of the expansion valve, which are the maximum C 0 P for each of the above calculations under various conditions, are `` X '' and `` 〇 '' in Fig. 6. . Also, the maximum COP obtained by each simulation does not change significantly even if the pressure or the expansion valve opening slightly changes, so the cooling on the expansion valve inlet side under each condition where the maximum COP can be obtained. If the distribution range of the medium temperature T [° C] and the refrigerant pressure P [MPa] is defined as described above, it is possible to obtain an operating state of at most C0P or close to this, which is desirable for the present refrigeration cycle. It will be.
つまり、 内部熱交換器 4を有せず、 しかも、 吐出容量が一定の固定容 量型圧縮機を有する従来の冷凍サイクルでは、 最適制御線が第 6図の破 線 Aで示されるようになり、 また、 内部熱交換器 4は有するが、 圧縮機 2が固定容量型である場合には、 最適制御線が同図の破線 Bで示される ょゔになる。 これに対して、 内部熱交換器 4を備え、 且つ、 容量を任意 に可変できる圧縮機 2を用いて良好な制御線を前述のように見出すと、 A又は Bの制御線を有する冷凍サイクルに比べて、 膨張弁の流入側での 冷媒温度 Tと冷媒圧力 Pとを、 冷媒温度が同じであれば冷媒圧力を高く し、 且つ、 冷媒圧力が同じであれば冷媒温度を低く設定することが有用 となる。  In other words, in the conventional refrigeration cycle without the internal heat exchanger 4 and with a fixed displacement compressor with a fixed discharge capacity, the optimal control line is shown by broken line A in FIG. In addition, when the compressor 2 is of a fixed displacement type having the internal heat exchanger 4, the optimal control line is indicated by a broken line B in FIG. On the other hand, when a good control line is found using the compressor 2 having the internal heat exchanger 4 and having a variable capacity as described above, a refrigeration cycle having an A or B control line can be obtained. In comparison, it is possible to set the refrigerant temperature T and the refrigerant pressure P on the inflow side of the expansion valve to be higher if the refrigerant temperature is the same, and to lower the refrigerant temperature if the refrigerant pressure is the same. It will be useful.
これは、 吐出容量を任意に可変できる圧縮機 2を有する本冷凍サイク ル 1を従来の固定容量型圧縮機を有する従来サイクルと比較すると、 第 7図及び第 8図に示されるように、 本冷凍サイクル 1では、 従来サイク ルよりも吐出容量を小さく した状態で、 或いは、 膨張弁 5をより絞った 状態で、 同一冷房能力を得る C O Pを高負荷時を除いて良くすることが でき、 この場合、 本冷凍サイクルの冷媒流量をより少なくでき、 その結 果、 放熱器 3出口や膨張弁 5入口の冷媒温度を下げることができ、 高圧 側ライン 8に対して冷媒温度をより下げることが可能になるためである 尚、 膨張弁 5の流入側での冷媒温度 Tと冷媒圧力 Pとを、 第 6図のよ うな砂状範囲に設定する手段としては、 圧縮機 2の吐出容量を調節する ことによる他、 外部からの制御信号によって開度が制御できる膨張弁 5 であれば、 膨張弁 5の流入側での冷媒温度と冷媒圧力とを領域内の目標 値となるように弁閧度を調節することによって、 また、 均圧式の膨張弁 であれば、 冷媒圧力と均圧する封入ガスの封入量を調節したり、 バイメ タルを利用した膨張弁であれば、 前記範囲内に流入側の冷媒温度と冷媒 圧力とが調節されるような特性を有する金属材料を用いると良い。 This is because, as shown in FIGS. 7 and 8, the present refrigerating cycle 1 having the compressor 2 capable of arbitrarily changing the discharge capacity is compared with the conventional cycle having the conventional fixed displacement compressor. In the refrigeration cycle 1, with the discharge capacity smaller than that of the conventional cycle, or with the expansion valve 5 narrowed, the COP that achieves the same cooling capacity can be improved except at high load. In this case, the refrigerant flow rate of the refrigeration cycle can be reduced, and as a result, the refrigerant temperature at the radiator 3 outlet and the expansion valve 5 inlet can be lowered, and the refrigerant temperature can be further lowered with respect to the high-pressure side line 8 As a means for setting the refrigerant temperature T and the refrigerant pressure P on the inflow side of the expansion valve 5 to a sandy range as shown in FIG. 6, the discharge capacity of the compressor 2 is adjusted. And external control In the case of the expansion valve 5 whose opening can be controlled by a control signal, by adjusting the degree of engagement so that the refrigerant temperature and the refrigerant pressure on the inflow side of the expansion valve 5 become the target values in the region, Equalization type expansion valve If it is, the amount of the charged gas to be equalized with the refrigerant pressure is adjusted, or if the expansion valve uses a bimetal, the characteristic is such that the refrigerant temperature and the refrigerant pressure on the inflow side are adjusted within the above range. It is preferable to use a metal material having
産業上の利用可能性 Industrial applicability
以上述べたように、 この発明によれば、 冷媒として炭酸ガスを用いる 冷凍サイクルを亜臨界条件で操作する場合において、 高圧側冷媒圧力が 臨界点近傍である場合に過冷却度を約 1 5 °Cとし、 高圧側冷媒圧力が臨 界点近傍から低くなるに従って過冷却度を漸減させるように制御したの で、 良好なサイクル効率を得ることが可能となる。  As described above, according to the present invention, when a refrigeration cycle using carbon dioxide gas as a refrigerant is operated under subcritical conditions, when the high-pressure side refrigerant pressure is near the critical point, the degree of supercooling is reduced by about 15 °. C, since the supercooling degree is controlled so as to gradually decrease as the high-pressure side refrigerant pressure decreases from near the critical point, good cycle efficiency can be obtained.
また、 これを実現する冷凍サイクルとして、 冷媒を昇圧する圧縮機と、 冷媒を冷却する放熱器と、 この放熱器により冷却された後に冷媒を減圧 する圧力調節手段と、 この圧力調節手段で減圧された冷媒を蒸発する蒸 発器と、 前記圧力調節手段の上流側の冷媒圧力及び冷媒温度を検出する 検出手段とを有する構成にあっては、 検出手段の検出結果に基づいて高 圧側の冷媒圧力が臨界点近傍と判断された場合に、 過冷却度を約 1 5 °C とするように圧力調節手段の減圧量を制御し、 高圧側の冷媒圧力が臨界 点近傍から低くなるに従って過冷却度を漸減させるように圧力調節手段 の減圧量を制御する構成とすれば、 良好なサイクル効率を圧力調節手段 を制御して過冷却度を調節することによって行うことができる。 また、 圧力調節手段の上流側において冷媒の温度等が検出手段によって検出さ れることから、 感温筒等を利用した電気制御によらない膨張弁を用いた 場合においても制御精度の低下を防ぐことができる。  Further, as a refrigeration cycle for realizing this, a compressor for increasing the pressure of the refrigerant, a radiator for cooling the refrigerant, a pressure adjusting means for reducing the pressure of the refrigerant after being cooled by the radiator, and a pressure reducing means for reducing the pressure of the refrigerant. The evaporator for evaporating the heated refrigerant, and detecting means for detecting the refrigerant pressure and the refrigerant temperature on the upstream side of the pressure adjusting means, the refrigerant pressure on the high pressure side based on the detection result of the detecting means. If it is determined that the supercooling degree is near the critical point, the pressure reduction amount of the pressure adjusting means is controlled so that the supercooling degree is approximately 15 ° C, and the supercooling degree decreases as the refrigerant pressure on the high pressure side decreases from the vicinity of the critical point. If the pressure reducing amount of the pressure adjusting means is controlled so as to gradually decrease the pressure, the good cycle efficiency can be achieved by controlling the pressure adjusting means and adjusting the degree of supercooling. In addition, since the temperature and the like of the refrigerant are detected by the detecting means on the upstream side of the pressure adjusting means, a decrease in control accuracy is prevented even when an expansion valve that does not rely on electric control using a temperature-sensitive cylinder or the like is used. Can be.
また、 内部熱交換器を有し、 且つ、 吐出容量を調節できるようにした 圧縮機を備えた冷凍サイクルにおいて、 膨張装置の流入側での冷媒温度 T [ °C ] と冷媒圧力 P [ M P a ] とを、 内部熱交換器を有しない冷凍サ ィクル、 及び、 圧縮機の吐出容量が固定されている冷凍サイクルに比べ て、 冷媒温度が同じであれば冷媒圧力を高く し、 冷媒圧力が同じであれ ば冷媒温度を低く設定するようにし、 好ましくは、 T≤ 2 . 4 1 Ρ + 4 . 8 6、 且つ、 Τ≥ 2 . 5 2 Ρ - 7 . 4 1の範囲で Τと Ρとを設定するよ うにしたので、 各種運転条件の下で良好なサイクル効率を得ることが可 能となる。 また、 外気温度などの熱負荷が低い場合には、 高圧側は超臨 界とはならず従来サイクルと同様に気液二相となることがあるが、 その 場合にも本発明の設定値であれば、 膨張弁入口で適度な過冷却が得られ、 良好なサイクル効率を得られることが確認されている。 In a refrigeration cycle having an internal heat exchanger and a compressor capable of adjusting the discharge capacity, the refrigerant temperature T [° C] and the refrigerant pressure P [MPa at the inflow side of the expansion device are set. ] Compared to a refrigeration cycle without an internal heat exchanger and a refrigeration cycle with a fixed compressor discharge capacity. If the refrigerant temperature is the same, the refrigerant pressure is set to be high, and if the refrigerant pressure is the same, the refrigerant temperature is set to be low. Preferably, T ≦ 2.41Ρ + 4.886 and Τ Since Τ and Ρ are set in the range of ≥2.52Ρ-7.41, good cycle efficiency can be obtained under various operating conditions. In addition, when the heat load such as the outside air temperature is low, the high pressure side does not become supercritical and may become a gas-liquid two-phase as in the conventional cycle. It has been confirmed that if it is, moderate supercooling can be obtained at the expansion valve inlet, and good cycle efficiency can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷媒として炭酸ガスを用いる冷凍サイクルに利用される制御方法 において、 亜臨界領域において操作する場合に、 高圧側冷媒圧力が臨界 点近傍であれば過冷却度を約 1 5 °Cとし、 前記高圧側冷媒圧力が前記臨 界点近傍から低くなるに従って過冷却度を漸減させるようにしたことを 特徴とする冷凍サイクルの制御方法。 1. In a control method used in a refrigeration cycle using carbon dioxide gas as a refrigerant, when operating in a subcritical region, if the high-pressure side refrigerant pressure is near a critical point, the supercooling degree is set to about 15 ° C, A method for controlling a refrigeration cycle, wherein the degree of supercooling is gradually reduced as the high-pressure side refrigerant pressure decreases from near the critical point.
2 . 冷媒を超臨界域まで昇圧すると共に吐出量を変更することができ る圧縮機と、 超臨界域に達した冷媒を冷却する放熱器と、 この放熱器に より冷却された後に冷媒を減圧する膨張装置と、 この膨張装置で減圧さ れた冷媒を蒸発する蒸発器と、 前記蒸発器から流出する冷媒と前記超臨 界域の冷媒とを熱交換させる内部熱交換器とを備えた冷凍サイクルに利 用される制御方法において、  2. A compressor that can increase the pressure of the refrigerant to the supercritical region and change the discharge rate, a radiator that cools the refrigerant that has reached the supercritical region, and decompresses the refrigerant after being cooled by the radiator. A refrigeration system comprising: an expansion device that expands; an evaporator that evaporates the refrigerant depressurized by the expansion device; and an internal heat exchanger that exchanges heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical area. In the control method used for the cycle,
前記圧縮器の吐出量を含む運転条件を調節して、 前記膨張装置の流入 側での冷媒温度と冷媒圧力とを、 前記内部熱交換器を有しない冷凍サイ クル、 及び、 前記圧縮機の吐出容量が固定されている冷凍サイクルに比 ベて、 前記冷媒温度が同じであれば前記冷媒圧力を高く設定し、 且つ、 前記冷媒圧力が同じであれば前記冷媒温度を低く設定するようにしたこ とを特徴とする冷凍サイクルの制御方法。  The operating conditions including the discharge amount of the compressor are adjusted to control the refrigerant temperature and the refrigerant pressure on the inflow side of the expansion device, a refrigeration cycle without the internal heat exchanger, and the discharge of the compressor. Compared to a refrigeration cycle having a fixed capacity, the refrigerant pressure is set higher if the refrigerant temperature is the same, and the refrigerant temperature is set lower if the refrigerant pressure is the same. And a method for controlling a refrigeration cycle.
3 . 前記膨張装置の流入側での冷媒温度を T [°C ] 、 前記膨張装置の 流入側での冷媒圧力を P [ M P a ] とした場合に、 Tと Pとが、  3. When the refrigerant temperature at the inflow side of the expansion device is T [° C] and the refrigerant pressure at the inflow side of the expansion device is P [MPa], T and P are:
T≤ 2 . 4 1 P + 4 . 8 6  T≤ 2.4 1 P + 4.8 6
T≥ 2 . 5 2 Ρ - 7 . 4 1  T≥ 2.5 2 Ρ-7.4 1
の両関係を満たす範囲に設定されることを特徴とする請求項 2記載の冷 凍サイクルの制御方法。 3. The method for controlling a refrigeration cycle according to claim 2, wherein the range is set so as to satisfy both of the relationships.
4 . 冷媒として炭酸ガスを用い、 4. Use carbon dioxide as refrigerant
冷媒を昇圧する圧縮機と、  A compressor that pressurizes the refrigerant,
昇圧した冷媒を冷却する放熱器と、  A radiator for cooling the pressurized refrigerant,
この放熱器により冷却した冷媒を減圧する圧力調節手段と、 この圧力調節手段で減圧された冷媒を蒸発する蒸発器と、  A pressure adjusting means for reducing the pressure of the refrigerant cooled by the radiator; an evaporator for evaporating the refrigerant reduced in pressure by the pressure adjusting means;
前記圧力調節手段の上流側の冷媒圧力及び冷媒温度を検出する検出手 段と、  Detecting means for detecting the refrigerant pressure and the refrigerant temperature upstream of the pressure adjusting means;
前記検出手段の検出結果に基づいて前記冷媒圧力が臨界点近傍である 場合に、 前記圧力調節手段の流入側での過冷却度を約 1 5 °Cとなるよう 前記圧力調節手段の減圧量を制御し、 前記冷媒圧力が前記臨界点近傍か ら低くなるに従って前記圧力調節手段の流入側での過冷却度を漸減させ るよう前記圧力調節手段の減圧量を制御する制御手段とを有することを 特徴とする冷凍サイクル。  When the refrigerant pressure is near the critical point based on the detection result of the detection means, the pressure reduction amount of the pressure adjustment means is adjusted so that the degree of supercooling on the inflow side of the pressure adjustment means is about 15 ° C. Control means for controlling the pressure reduction amount of the pressure adjusting means so as to gradually reduce the degree of supercooling on the inflow side of the pressure adjusting means as the refrigerant pressure decreases from near the critical point. Characterized refrigeration cycle.
5 . 冷媒を超臨界域まで昇圧する圧縮機と、 超臨界域に達した冷媒を 冷却する放熱器と、 この放熱器により冷却された後に冷媒を減圧する膨 張装置と、 この膨張装置で減圧された冷媒を蒸発する蒸発器と、 前記蒸 発器から流出する冷媒と前記超臨界域の冷媒とを熱交換させる内部熱交 換器とを備えた冷凍サイクルにおいて、  5. A compressor that boosts the refrigerant to the supercritical region, a radiator that cools the refrigerant that has reached the supercritical region, an expansion device that depressurizes the refrigerant after being cooled by the radiator, and a decompression device that decompresses the refrigerant. A refrigerating cycle, comprising: an evaporator for evaporating the separated refrigerant; and an internal heat exchanger for exchanging heat between the refrigerant flowing out of the evaporator and the refrigerant in the supercritical region.
前記圧縮機の吐出量を変更可能とし、  The discharge amount of the compressor can be changed,
前記圧縮器の吐出量を含む運転条件を調節して、 前記膨張装置の流入 側での冷媒温度と冷媒圧力とを、 前記内部熱交換器を有しない冷凍サイ クル、 及び、 前記圧縮機の吐出容量が固定されている冷凍サイクルに比 ベて、 前記冷媒温度が同じであれば前記冷媒圧力を高く設定し、 且つ、 前記冷媒圧力が同じであれば前記冷媒温度を低く設定するようにしたこ とを特徴とする冷凍サイクル。  The operating conditions including the discharge amount of the compressor are adjusted to control the refrigerant temperature and the refrigerant pressure on the inflow side of the expansion device, a refrigeration cycle without the internal heat exchanger, and the discharge of the compressor. Compared to a refrigeration cycle having a fixed capacity, the refrigerant pressure is set higher if the refrigerant temperature is the same, and the refrigerant temperature is set lower if the refrigerant pressure is the same. And a refrigeration cycle characterized by the following.
6 . 前記膨張装置の流入側での冷媒温度を T [ °C ] 、 前記膨張装置の 流入側での冷媒圧力を P [MP a] とした場合に、 Tと Pとが、 T≤ 2. 4 1 P + 4. 8 6 6. The refrigerant temperature at the inflow side of the expansion device is T [° C], and the temperature of the expansion device is Assuming that the refrigerant pressure on the inlet side is P [MPa], T and P are T≤2.41 P + 4.86
T≥ 2. 52 P - 7. 4 1  T≥2.52 P-7.4 1
の両関係を満たす範囲に設定されることを特徴とする請求項 5記載の冷 凍サイクル。 6. The refrigeration cycle according to claim 5, wherein the refrigeration cycle is set in a range that satisfies both of the relationships.
PCT/JP2000/001266 1999-05-11 2000-03-03 Method of controlling refrigerating cycle and refrigerating cycle using the method WO2000068621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11130019A JP2000320910A (en) 1999-05-11 1999-05-11 Control method for freezing cycle and freezing cycle using this method
JP11/130019 1999-05-11

Publications (1)

Publication Number Publication Date
WO2000068621A1 true WO2000068621A1 (en) 2000-11-16

Family

ID=15024162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001266 WO2000068621A1 (en) 1999-05-11 2000-03-03 Method of controlling refrigerating cycle and refrigerating cycle using the method

Country Status (2)

Country Link
JP (1) JP2000320910A (en)
WO (1) WO2000068621A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087005A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
US7861541B2 (en) 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration
CN112728799A (en) * 2020-12-09 2021-04-30 上海交通大学 Based on CO2Flash evaporation system of mixed refrigerant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708536B1 (en) * 2004-03-31 2005-10-19 松下電器産業株式会社 Refrigeration cycle apparatus and control method thereof
JP4845606B2 (en) * 2006-06-20 2011-12-28 サンデン株式会社 refrigerator
JP2009002614A (en) * 2007-06-22 2009-01-08 Denso Corp Heat pump device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007683A1 (en) * 1989-01-09 1990-07-12 Sinvent As Trans-critical vapour compression cycle device
WO1993006423A1 (en) * 1991-09-16 1993-04-01 Sinvent A/S Method of high-side pressure regulation in transcritical vapor compression cycle device
JPH062960A (en) * 1992-06-23 1994-01-11 Nippondenso Co Ltd Refrigerating cycle apparatus
JPH07120082A (en) * 1993-10-29 1995-05-12 Nippondenso Co Ltd Refrigerating cycle apparatus
US5890370A (en) * 1996-01-25 1999-04-06 Denso Corporation Refrigerating system with pressure control valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007683A1 (en) * 1989-01-09 1990-07-12 Sinvent As Trans-critical vapour compression cycle device
WO1993006423A1 (en) * 1991-09-16 1993-04-01 Sinvent A/S Method of high-side pressure regulation in transcritical vapor compression cycle device
JPH062960A (en) * 1992-06-23 1994-01-11 Nippondenso Co Ltd Refrigerating cycle apparatus
JPH07120082A (en) * 1993-10-29 1995-05-12 Nippondenso Co Ltd Refrigerating cycle apparatus
US5890370A (en) * 1996-01-25 1999-04-06 Denso Corporation Refrigerating system with pressure control valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7861541B2 (en) 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration
WO2006087005A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
EP2273214A3 (en) * 2005-02-18 2011-11-02 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
US8186171B2 (en) 2005-02-18 2012-05-29 Carrier Corporation Method for controlling high-pressure in an intermittently supercritically operating refrigeration circuit
CN112728799A (en) * 2020-12-09 2021-04-30 上海交通大学 Based on CO2Flash evaporation system of mixed refrigerant

Also Published As

Publication number Publication date
JP2000320910A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
EP2588818B1 (en) A method for operating a vapour compression system using a subcooling value
JP4948374B2 (en) Refrigeration cycle equipment
US8353173B2 (en) Refrigerating cycle apparatus and operation control method therefor
KR100360006B1 (en) Transcritical vapor compression cycle
CN102829568B (en) Refrigerating circulatory device and the hot-water central heating device possessing this device
US20100023166A1 (en) Free-cooling limitation control for air conditioning systems
JP3708536B1 (en) Refrigeration cycle apparatus and control method thereof
WO1999034156A1 (en) Refrigerating cycle
EP1538405A2 (en) Refrigeration cycle apparatus
JP4036288B2 (en) Air conditioner
EP1869375B1 (en) Method of determining optimal coefficient of performance in a transcritical vapor compression system and a transcritical vapor compression system
US7051542B2 (en) Transcritical vapor compression optimization through maximization of heating capacity
JP4462435B2 (en) Refrigeration equipment
EP1329677B1 (en) Transcritical vapor compression system
JP4273493B2 (en) Refrigeration air conditioner
EP1684034A2 (en) Refrigeration apparatus and method for controlling the same
US6817193B2 (en) Method for operating a refrigerant circuit, method for operating a motor vehicle driving engine, and refrigerant circuit
WO2000068621A1 (en) Method of controlling refrigerating cycle and refrigerating cycle using the method
JP2003130481A (en) Vapor compression type refrigerating cycle of air conditioner for automobile
KR100845847B1 (en) Control Metheod for Airconditioner
JP2002228282A (en) Refrigerating device
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP4348572B2 (en) Refrigeration cycle
JPH08189717A (en) Heat pump type air-conditioner
JP2003121012A (en) Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase