JPH062960A - Refrigerating cycle apparatus - Google Patents

Refrigerating cycle apparatus

Info

Publication number
JPH062960A
JPH062960A JP16492592A JP16492592A JPH062960A JP H062960 A JPH062960 A JP H062960A JP 16492592 A JP16492592 A JP 16492592A JP 16492592 A JP16492592 A JP 16492592A JP H062960 A JPH062960 A JP H062960A
Authority
JP
Japan
Prior art keywords
load
evaporator
condenser
refrigerant
subcool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16492592A
Other languages
Japanese (ja)
Inventor
Hisao Nagashima
久夫 永島
Hideaki Sato
英明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP16492592A priority Critical patent/JPH062960A/en
Publication of JPH062960A publication Critical patent/JPH062960A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To provide a refrigerating cycle apparatus in which excellent coefficient of performance can be realized by regulating subcooling degree to a suitable range irrespective of a load change (refrigerant flow rate change). CONSTITUTION:Load detecting means 9 detects a magnitude of a room cooling load. Subcooling degree control means 6 drives heat absorption control means (damper in this case) 8 in response to the detected magnitude of the load to control heat absorption degree of a condenser 2 to a suitable level (e.g. a range of excellent coefficient of performance or gas refrigerant input preventing range of expansion means).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍サイクル装置に関
し、受液器、またはアキュムレータタンクを持たない冷
凍サイクルに関する。(これを以下、レシーバレス型の
冷凍サイクルと称す)。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle having no liquid receiver or accumulator tank. (Hereinafter, this is referred to as a receiverless refrigeration cycle).

【0002】[0002]

【従来の技術】車両用冷凍サイクルにおいて、凝縮器と
膨張手段との間に受液器(レシーバ)を備えたレシーバ
型の冷凍サイクル装置ではレシーバ内を気液二相とし飽
和液冷媒のみを膨張手段に流しているので、膨張手段の
手前における過冷却度(サブクール)は常に0℃とな
る。
2. Description of the Related Art In a vehicle refrigeration cycle, in a receiver type refrigeration cycle apparatus having a receiver between a condenser and an expansion means, the receiver has a gas-liquid two-phase and only a saturated liquid refrigerant is expanded. Since it is flowing to the means, the degree of subcooling (subcool) before the expansion means is always 0 ° C.

【0003】一方、上記レシーバを省略したレシーバレ
ス型の冷凍サイクル装置ではサブクールは充填冷媒量、
系の冷媒流量(系の圧力状態)により変動し、このサブ
クールの変動に応じてモリエル線図上のサイクル軌跡が
変化し、成績係数COPが変動する。
On the other hand, in a receiverless type refrigeration cycle device in which the above receiver is omitted, the subcool is the amount of filled refrigerant,
The coefficient of performance COP fluctuates depending on the refrigerant flow rate of the system (pressure state of the system), the cycle locus on the Mollier diagram changes according to the fluctuation of the subcool, and the coefficient of performance COP fluctuates.

【0004】[0004]

【発明が解決しようとする課題】上記したレシーバ型の
冷凍サイクル装置では、サブクールを行わない(凝縮器
出口が飽和液線上となる)ので、冷媒流量が変動しても
サブクールによる成績係数向上を図ることができなかっ
た。レシーバレス型の冷凍サイクル装置では、冷媒流量
によりサブクールが変化するが、その結果、あるサブク
ール範囲では良好な成績係数COPが得られるが、他の
サブクール範囲では成績係数COPが低下するという問
題があることがわかった。
In the receiver type refrigeration cycle apparatus described above, since subcooling is not performed (the condenser outlet is on the saturated liquid line), the coefficient of performance is improved by the subcooling even if the refrigerant flow rate fluctuates. I couldn't. In the receiverless refrigeration cycle apparatus, the subcool changes depending on the refrigerant flow rate, and as a result, a good coefficient of performance COP is obtained in a certain subcool range, but there is a problem that the coefficient of performance COP decreases in other subcool ranges. I understood it.

【0005】本発明は、負荷変動(冷媒流量変動)に関
わらず優れた成績係数を実現可能な冷凍サイクル装置を
提供することをその目的としている。
An object of the present invention is to provide a refrigeration cycle apparatus which can realize an excellent coefficient of performance regardless of load fluctuation (refrigerant flow rate fluctuation).

【0006】[0006]

【課題を解決するための手段】本発明の冷凍サイクル装
置は、圧縮機と凝縮器と膨張手段と蒸発器とを備える冷
凍サイクル装置において、前記蒸発器の吸熱能力を制御
する吸熱制御手段と、負荷を検出する負荷検出手段と、
検出した負荷に応じて前記吸熱制御手段を駆動制御して
前記凝縮器の過冷却度を適性レベルに調節する過冷却度
制御手段とを備えることを特徴としている。
A refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus including a compressor, a condenser, an expansion means and an evaporator, and an endothermic control means for controlling the endothermic ability of the evaporator, Load detection means for detecting the load,
According to the detected load, the heat absorption control means is drive-controlled to adjust the supercooling degree of the condenser to an appropriate level.

【0007】好適な態様において、前記吸熱制御手段は
前記蒸発器の前面に配設されたダンパからなる。ここで
適性レベルとは成績係数が良好な範囲又は膨張手段への
ガス冷媒流入を防止可能な範囲をいう。
In a preferred mode, the heat absorption control means comprises a damper arranged in front of the evaporator. Here, the suitability level refers to a range in which the coefficient of performance is good or a range in which the gas refrigerant can be prevented from flowing into the expansion means.

【0008】[0008]

【作用及び発明の効果】負荷検出手段は負荷の大きさを
検出し、過冷却度制御手段は検出した負荷の大きさに応
じて吸熱制御手段を駆動して蒸発器の吸熱能力を制御
し、それにより凝縮器の過冷却度を適性レベル(例えば
成績係数良好範囲又は膨張手段ガス冷媒流入防止範囲)
に調節する。
The load detecting means detects the magnitude of the load, and the supercooling degree controlling means drives the heat absorption controlling means according to the detected load magnitude to control the heat absorbing ability of the evaporator. As a result, the degree of supercooling of the condenser can be adjusted to an appropriate level (for example, the good coefficient of performance range or the expansion means gas refrigerant inflow prevention range).
Adjust to.

【0009】本発明者らは、実験により、負荷(冷媒流
量)、サブクール(過冷却度)、成績係数COPには相
関があり、各負荷(冷媒流量)レベルにおいて、成績係
数COPが最高となるサブクールは異なることを発見し
た。本発明は、成績係数COPを常に良好レベルに維持
されるように負荷(冷媒流量)の変動に応じてサブクー
ルを変化させる。これにより負荷変動(冷媒流量変動)
に関わらず常に優れた成績係数を実現することができ
る。
The inventors of the present invention have experimentally found that the load (refrigerant flow rate), the subcool (supercooling degree), and the coefficient of performance COP are correlated with each other, and the coefficient of performance COP is highest at each load (refrigerant flow rate) level. Subcool has found different things. According to the present invention, the subcool is changed according to the fluctuation of the load (refrigerant flow rate) so that the coefficient of performance COP is always maintained at a good level. This causes load fluctuations (refrigerant flow rate fluctuations)
Regardless of which, a good coefficient of performance can always be achieved.

【0010】更に、本発明は蒸発器の吸熱能力の制御に
より上記サブクールの制御を行う。このようにすれば、
例えば凝縮器側でサブクールを調節するのに比べて構造
が簡単にできるといった利点がある。
Further, according to the present invention, the subcool is controlled by controlling the heat absorption capacity of the evaporator. If you do this,
For example, there is an advantage that the structure can be simplified as compared with adjusting the subcool on the condenser side.

【0011】[0011]

【実施例】本発明の冷凍サイクル装置の一実施例を図1
に示す。この冷凍サイクル装置はレシーバレス型であっ
て、車両用エンジン駆動の圧縮機1、コンデンサ2、膨
張弁3、エバポレ−タ4、圧縮機1を冷媒配管で連結し
てなり、車両用空調装置の一部を構成している。圧縮機
1は固定容量式であるが、可変容量式でもよい。
FIG. 1 shows an embodiment of the refrigeration cycle apparatus of the present invention.
Shown in. This refrigeration cycle apparatus is of a receiverless type, and comprises a vehicle engine driven compressor 1, a condenser 2, an expansion valve 3, an evaporator 4 and a compressor 1 which are connected by a refrigerant pipe. It constitutes a part. The compressor 1 is of fixed capacity type, but may be of variable capacity type.

【0012】エバポレ−タ4の出口には冷媒の温度を検
出する感温筒5が設けられ、この感温筒5によりエバポ
レ−タ4の出口の冷媒温度が検出される。検出されたこ
の冷媒温度の変化はチューブ51封入冷媒の圧力変化に
変換され、この圧力変化によりダイヤフラム型の膨張弁
3を制御し、エバポレ−タ4から出る冷媒の過熱度SH
を所定の設定値に制御する。過熱度SHが設定値より低
ければ、膨張弁3が絞られ、それによりエバポレ−タ4
への冷媒流入が減り、エバポレ−タ4中の液冷媒貯溜量
が減って、エバポレ−タ4の出口ではガス冷媒100%
となり、過熱度SHが所定値となる。逆に、過熱度SH
が設定値(例えば0〜数℃)より高ければ、膨張弁3を
開き、それによりエバポレ−タ4中への冷媒流入量が増
加し、エバポレ−タ4の液冷媒貯溜量が増加し、エバポ
レ−タ4の出口近傍まで液冷媒は達し、エバポレ−タ4
の出口での過熱度SHは低下する。
At the outlet of the evaporator 4, a temperature sensitive cylinder 5 for detecting the temperature of the refrigerant is provided, and the temperature sensitive cylinder 5 detects the temperature of the refrigerant at the outlet of the evaporator 4. The detected change in the refrigerant temperature is converted into a change in the pressure of the refrigerant enclosed in the tube 51, and the diaphragm type expansion valve 3 is controlled by the change in the pressure to superheat the refrigerant SH from the evaporator 4.
Is controlled to a predetermined set value. If the superheat degree SH is lower than the set value, the expansion valve 3 is throttled, whereby the evaporator 4
The amount of refrigerant flowing into the evaporator 4 is reduced, the amount of liquid refrigerant stored in the evaporator 4 is reduced, and 100% of the gas refrigerant is discharged at the outlet of the evaporator 4.
And the superheat degree SH becomes a predetermined value. On the contrary, the degree of superheat SH
Is higher than a set value (for example, 0 to several degrees Celsius), the expansion valve 3 is opened, whereby the amount of refrigerant flowing into the evaporator 4 is increased, and the amount of liquid refrigerant stored in the evaporator 4 is increased. -The liquid refrigerant reaches the vicinity of the outlet of the evaporator 4, and the evaporator 4
The degree of superheat SH at the outlet of is decreased.

【0013】このようなエバポレ−タ4の出口における
冷媒条件により膨張弁3の開度を調節してエバポレ−タ
4の出口における過熱度SHを一定に維持する技術は周
知であり、更なる追加説明は省略する。この実施例の特
徴は、空調ダクト7内においてエバポレ−タ4の前方に
ダンパ(本発明でいう負荷検出手段)8を設け、コンデ
ンサ2の出口に圧力センサからなる負荷センサ(本発明
でいう吸熱制御手段)9を設け、更にコントローラ(本
発明でいう過冷却度制御手段)6により負荷センサ9の
出力信号に応じてダンパ8の開閉を制御する点にある。
ダンパ8はモータ(図示せず)駆動の回動ダンパであ
り、ダンパ8が閉じるとエバポレ−タ4の上流側の半分
への風が遮断される。
A technique for adjusting the opening degree of the expansion valve 3 according to the refrigerant condition at the outlet of the evaporator 4 to maintain the superheat degree SH at the outlet of the evaporator 4 at a constant level is well known, and a further addition is made. The description is omitted. The feature of this embodiment is that a damper (load detecting means in the present invention) 8 is provided in front of the evaporator 4 in the air-conditioning duct 7, and a load sensor (heat absorption in the present invention) formed of a pressure sensor is provided at the outlet of the condenser 2. A control means 9 is provided, and the controller (subcooling degree control means in the present invention) 6 controls the opening and closing of the damper 8 according to the output signal of the load sensor 9.
The damper 8 is a rotary damper driven by a motor (not shown), and when the damper 8 is closed, the wind to the upstream half of the evaporator 4 is shut off.

【0014】以下、このコントローラ6の制御動作を図
2のフローチャートを参照して説明する。まず、負荷セ
ンサ9の出力信号によりコンデンサ2の出口の圧力Pc
を読み取る(100)。次に、読み取ったコンデンサ2
の出口の圧力Pcが所定値Pct以下かどうかを調べ
(104)、以下であれば低負荷(低冷媒流量)として
ダンパ8を閉じ(106)てステップ100にリターン
し、そうでなければ直接ステップ100にリターンす
る。ダンパ8が閉じられると、エバポレ−タ4の蒸発能
力が低下してエバポレ−タ4の液冷媒貯溜量が増大し、
そのためにコンデンサ2の液冷媒貯溜量が減少し、それ
によりコンデンサ2の液冷能力が減少し、その結果とし
てコンデンサ2から出る液冷媒のサブクール(過冷却
度)が減少する。
The control operation of the controller 6 will be described below with reference to the flowchart of FIG. First, the pressure Pc at the outlet of the condenser 2 is determined by the output signal of the load sensor 9.
Is read (100). Next, read capacitor 2
It is checked whether the pressure Pc at the outlet of the valve is less than or equal to a predetermined value Pct (104), and if it is less than that, the damper 8 is closed (106) as a low load (low refrigerant flow rate) and the process returns to step 100. Return to 100. When the damper 8 is closed, the evaporation capacity of the evaporator 4 is reduced and the amount of liquid refrigerant stored in the evaporator 4 is increased.
As a result, the amount of liquid refrigerant stored in the condenser 2 is reduced, which reduces the liquid cooling capacity of the condenser 2, and as a result, the subcool (degree of supercooling) of the liquid refrigerant discharged from the condenser 2 is reduced.

【0015】すなわちこの実施例では、負荷(冷媒流
量)が小さく、コンデンサ2の凝縮圧力が低くなる場合
に、ダンパ8を閉じてエバポレ−タ4の吸熱能力を削減
し、それによりエバポレ−タ4への液冷媒貯溜量を増加
し、コンデンサ2への液冷媒貯溜量を減らし、コンデン
サ2の液冷能力を削減し、その結果としてコンデンサ2
から出る液冷媒のサブクールを低減している。
That is, in this embodiment, when the load (refrigerant flow rate) is small and the condensing pressure of the condenser 2 is low, the damper 8 is closed to reduce the heat absorption capacity of the evaporator 4, and thereby the evaporator 4 is reduced. The amount of liquid refrigerant stored in the condenser 2 is reduced, the amount of liquid refrigerant stored in the condenser 2 is reduced, and the liquid cooling capacity of the condenser 2 is reduced.
The sub-cooling of the liquid refrigerant that comes out is reduced.

【0016】このようにすれば、低負荷(低冷媒流量)
時におけるサイクルの成績係数COPを向上することが
できる。次に、負荷(冷媒流量)の大きさと成績係数C
OPとサブクール(過冷却度)との関係について以下に
詳細に説明する。まず、負荷(冷房負荷)と冷媒流量と
の関係を説明する。
In this way, low load (low refrigerant flow rate)
The coefficient of performance COP of the cycle can be improved. Next, the magnitude of the load (refrigerant flow rate) and the coefficient of performance C
The relationship between OP and subcool (supercooling degree) will be described in detail below. First, the relationship between the load (cooling load) and the refrigerant flow rate will be described.

【0017】負荷が増大すればそれに応じてエバポレ−
タ4の冷媒蒸発量が増加し、エバポレ−タ4の出口圧力
が増加し、コンデンサ2の出口圧力が増加する。圧力増
加に比例して冷媒流量が増加する。したがって、コンデ
ンサ2の出口の圧力Pcを検出すれば負荷(冷媒流量)
がわかる。なお、負荷は他の部位の圧力により検出して
もよく、温度を検出しても推定できる。
If the load increases, the evaporation rate will increase accordingly.
The amount of refrigerant evaporated in the evaporator 4 increases, the outlet pressure of the evaporator 4 increases, and the outlet pressure of the condenser 2 increases. The refrigerant flow rate increases in proportion to the pressure increase. Therefore, if the pressure Pc at the outlet of the condenser 2 is detected, the load (refrigerant flow rate)
I understand. The load may be detected by the pressure of other parts, or can be estimated by detecting the temperature.

【0018】次に、サブクールとコンデンサ2及びエバ
ポレ−タ4の冷媒貯溜量との関係を説明する。サブクー
ルはコンデンサ2の下流側(又はコンデンサ2の下流側
に追設されたサブクール用コンデンサを含む)で凝縮液
冷媒が過冷却されることにより生じる。したがって、サ
ブクール(過冷却度)はコンデンサ2の下流に滞留する
液冷媒量に依存することがわかる。そして、レシーバレ
ス型の冷凍サイクル装置では、コンデンサ2の冷媒貯溜
量はエバポレ−タ4の冷媒貯溜量を調節することにより
制御することができ、エバポレ−タ4の冷媒貯溜量を調
節することによりサブクールを調節することができる。
Next, the relationship between the subcool and the amount of refrigerant stored in the condenser 2 and the evaporator 4 will be described. The subcool is generated by supercooling the condensed liquid refrigerant on the downstream side of the condenser 2 (or on the subcool condenser additionally provided on the downstream side of the condenser 2). Therefore, it is understood that the subcool (degree of subcooling) depends on the amount of liquid refrigerant that accumulates in the downstream of the condenser 2. In the receiverless type refrigeration cycle apparatus, the refrigerant storage amount of the condenser 2 can be controlled by adjusting the refrigerant storage amount of the evaporator 4, and by adjusting the refrigerant storage amount of the evaporator 4. The subcool can be adjusted.

【0019】次に、サブクールと成績係数COPと負荷
(冷媒流量)との関係を説明する。実験によれば図3に
示すように、成績係数COPの最高値におけるサブクー
ルは負荷の大きさによって変動し、成績係数COP最高
時のサブクールは低負荷で小さく、高負荷で大きい。ま
た、例えば冷媒としてR134aを用いた場合に、成績
係数COP最高時のサブクールは低負荷時にたとえば2
〜3℃、中負荷時にたとえば8℃、高負荷時にたとえば
15〜16℃となることがわかった。
Next, the relationship between the subcool, the coefficient of performance COP, and the load (refrigerant flow rate) will be described. According to the experiment, as shown in FIG. 3, the subcool at the highest value of the coefficient of performance COP varies depending on the size of the load, and the subcool at the highest coefficient of performance COP is small at low load and large at high load. Further, for example, when R134a is used as the refrigerant, the subcool at the highest coefficient of performance COP is, for example, 2 when the load is low.
It was found that the temperature was up to 3 ° C., for example, 8 ° C. under medium load, and 15 to 16 ° C. under high load.

【0020】すなわち、図4のモリエル線図に実線で示
す高負荷(大冷媒流量)時にはコンデンサ2での凝縮温
度が充分高いので、サブクールを大きく取ることによ
り、同一仕事量AL1当たりの吸熱量Q1が増大し、成
績係数が良くなる。ただ、この場合でもコンデンサ2の
出口の冷媒温度自体は冷却風温度などの伝熱条件による
限界があり、そのためにサブクールを大きくするために
はコンデンサ2の凝縮圧力を上げざるをえず、その結
果、サブクールを大きくし過ぎると圧縮機1の仕事量A
L1が増大し、成績係数COP=吸熱量Q1/AL1が
減少する。すなわち、高負荷時において、成績係数CO
Pが最大となるサブクール値が存在する。
That is, since the condensing temperature in the condenser 2 is sufficiently high at the time of high load (large refrigerant flow rate) shown by the solid line in the Mollier diagram of FIG. 4, the subcool is set to be large so that the heat absorption amount Q1 per same work amount AL1. Is increased and the coefficient of performance is improved. However, even in this case, the refrigerant temperature itself at the outlet of the condenser 2 has a limit due to heat transfer conditions such as cooling air temperature. Therefore, in order to increase the subcool, the condensing pressure of the condenser 2 must be increased. , If the subcool is made too large, the work A of the compressor 1
L1 increases, and the coefficient of performance COP = heat absorption amount Q1 / AL1 decreases. That is, when the load is high, the coefficient of performance CO
There is a subcool value that maximizes P.

【0021】同様に、図4のモリエル線図に破線で示す
低負荷(小冷媒流量)時においてもサブクールを大きく
すれば仕事量AL2当たりの吸熱量Q2が向上し、成績
係数が良くなる。ただ、この場合でもコンデンサ2の出
口の冷媒温度自体は冷却風温度などの伝熱条件による限
界があり、そのためにサブクールを大きくするためには
コンデンサ2の凝縮温度(すなわち凝縮圧力)を上げざ
るえず、その結果、圧縮機1の仕事量AL2が増大し、
成績係数COP=吸熱量Q2/AL2が減少する。結
局、低負荷(小冷媒流量)時にはコンデンサ2の凝縮温
度自体が低いのでサブクールアップによる吸熱量Q2の
アップを実現するための凝縮圧力増大、圧縮機1の仕事
量AL2増大の負担が大きく、結局より低いサブクール
値において成績係数COP=吸熱量Q2/AL2は最高
となる。
Similarly, at a low load (small refrigerant flow rate) indicated by a broken line in the Mollier diagram of FIG. 4, if the subcool is increased, the heat absorption amount Q2 per work amount AL2 is improved and the coefficient of performance is improved. However, even in this case, the refrigerant temperature at the outlet of the condenser 2 itself has a limit due to heat transfer conditions such as cooling air temperature, and therefore the condensing temperature (ie, condensing pressure) of the condenser 2 must be increased in order to increase the subcool. As a result, the work amount AL2 of the compressor 1 increases,
The coefficient of performance COP = heat absorption Q2 / AL2 decreases. After all, since the condensation temperature itself of the condenser 2 is low at a low load (small refrigerant flow rate), the burden of increasing the condensation pressure and the work amount AL2 of the compressor 1 to increase the heat absorption amount Q2 by the sub-cooling is large. At a lower subcool value, the coefficient of performance COP = heat absorption amount Q2 / AL2 is the highest.

【0022】図3の実験結果を整理すると、成績係数C
OPの最大値は、負荷(冷媒流量)の増大に比例してサ
ブクールが増大する一本の特性線Lとなる(図5参
照)。ここで、サイクルへの冷媒封入量を調節すること
により、成績係数COPが最高となるように高負荷(大
冷媒流量)時のサブクール値を調節すると、レシーバレ
ス型であるために、負荷(冷媒流量)を低下してゆくに
伴いサブクールは図5に破線L’で示すように最高の成
績係数線Lから外れる。言い換えればコンデンサ2に充
分に液冷媒が貯溜されるために、サブクールが大きく、
その分だけコンデンサ2の凝縮圧力、すなわち圧縮機1
の仕事量が大きい。
When the experimental results shown in FIG. 3 are summarized, the coefficient of performance C
The maximum value of OP becomes one characteristic line L in which the subcool increases in proportion to the increase of the load (refrigerant flow rate) (see FIG. 5). Here, if the subcool value at the time of high load (large refrigerant flow rate) is adjusted so that the coefficient of performance COP becomes the highest by adjusting the amount of refrigerant charged in the cycle, the load (refrigerant is As the flow rate decreases, the subcool deviates from the maximum coefficient of performance line L as shown by the broken line L'in FIG. In other words, since the liquid refrigerant is sufficiently stored in the condenser 2, the subcool is large,
The condensation pressure of the condenser 2, that is, the compressor 1
Has a large amount of work.

【0023】本実施例はこの問題を改善するためになさ
れたものであり、所定値以下の低負荷時にはダンパ8を
閉めてエバポレ−タ4の液冷媒貯溜量を増加し、それに
よりコンデンサ2の液冷媒貯溜量を減らし、コンデンサ
2のサブクールを減少させ、コンデンサ2の凝縮圧力を
下げ、圧縮機1の仕事量を減らし、成績係数COPを最
高値に保っている。
The present embodiment has been made in order to solve this problem. When the load is lower than a predetermined value, the damper 8 is closed to increase the amount of liquid refrigerant stored in the evaporator 4, thereby increasing the amount of the condenser 2. The amount of liquid refrigerant stored is reduced, the subcool of the condenser 2 is reduced, the condensing pressure of the condenser 2 is reduced, the work of the compressor 1 is reduced, and the coefficient of performance COP is kept at the maximum value.

【0024】なお、ダンパ8によるエバポレ−タ4の遮
断による伝熱面積低減量は、低負荷時のサブクールを低
下させ過ぎて膨張弁3に泡が混入しない程度に制限され
る。図6にダンパ8の開時のエバポレ−タ4の内部状態
を示し、図7にダンパ8閉時のエバポレ−タ4の内部状
態を示す。なお、負荷(冷媒流量)の検出には、圧縮機
1の吐出もしくは吸込みなどの圧力、温度の検出でも良
く、コンデンサ2の出口温度を検出してもよい。
The amount of heat transfer area reduction by shutting off the evaporator 4 by the damper 8 is limited to such an extent that the subcool at the time of low load is excessively reduced and bubbles are not mixed in the expansion valve 3. 6 shows the internal state of the evaporator 4 when the damper 8 is open, and FIG. 7 shows the internal state of the evaporator 4 when the damper 8 is closed. The load (refrigerant flow rate) may be detected by detecting the pressure or temperature of discharge or suction of the compressor 1 or by detecting the outlet temperature of the condenser 2.

【0025】本実施例の作用を別の観点からみれば、低
負荷(小冷媒流量)時に最高の成績係数COPを実現す
る冷媒流量とすると、高負荷(大冷媒流量)時にコンデ
ンサ2中の液冷媒貯溜量が減少してサブクールが充分に
とれず、膨張弁3の手前の液冷媒温度を充分に低下でき
ないという従来技術の欠点をダンパ8を開くことにより
解決するものである。 (変形態様)他の態様を図7に示す。この態様では、ダ
ンパ8の代わりとしてフィルム式ダンパ9を用いてい
る。
From another point of view of the operation of this embodiment, assuming that the refrigerant flow rate that achieves the highest coefficient of performance COP at low load (small refrigerant flow rate), the liquid in the condenser 2 at high load (large refrigerant flow rate). By opening the damper 8, the drawback of the prior art that the amount of refrigerant storage is reduced, the subcool cannot be sufficiently taken, and the temperature of the liquid refrigerant in front of the expansion valve 3 cannot be sufficiently lowered is solved. (Modification) Another embodiment is shown in FIG. In this mode, a film damper 9 is used instead of the damper 8.

【0026】フィルム式ダンパ9は、それぞれモータ
(図示せず)駆動の巻取りローラ91、92と、両端が
これら巻取りローラ91、92に固定されたフィルム9
3とからなり、フィルム93は所定の通気用の開口窓9
4を有している。図1に示すコントローラ6により負荷
に応じて上記モータを駆動し、巻取りローラ91、92
によりフィルム93の巻取り量を調節し、開口窓94が
エバポレ−タ4と重なる面積を調節する。このようにす
ればリニアにエバポレ−タ4の伝熱面積を変えることが
でき、常に最高の成績係数COPを達成することができ
る。すなわち、負荷(冷媒流量)の減少とともにエバポ
レ−タ4と開口窓94との重なり面積を増大させればよ
い。
The film type damper 9 has winding rollers 91 and 92 driven by a motor (not shown), and a film 9 having both ends fixed to the winding rollers 91 and 92.
3 and the film 93 is an opening window 9 for predetermined ventilation.
Have four. The motor is driven according to the load by the controller 6 shown in FIG.
Thus, the winding amount of the film 93 is adjusted, and the area in which the opening window 94 overlaps the evaporator 4 is adjusted. By doing so, the heat transfer area of the evaporator 4 can be linearly changed, and the highest coefficient of performance COP can always be achieved. That is, the overlapping area between the evaporator 4 and the opening window 94 may be increased as the load (refrigerant flow rate) is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍サイクル装置の一実施例を示すブ
ロック図、
FIG. 1 is a block diagram showing an embodiment of a refrigeration cycle device of the present invention,

【図2】図1のコントローラの作動を示すフローチャー
ト、
2 is a flowchart showing the operation of the controller of FIG.

【図3】負荷と成績係数とサブクールとの関係を示す特
性図、
FIG. 3 is a characteristic diagram showing the relationship between load, coefficient of performance, and subcool,

【図4】図1の冷凍サイクル装置のモリエル線図、4 is a Mollier diagram of the refrigeration cycle apparatus of FIG. 1,

【図5】負荷と成績係数とサブクールとの関係を示す特
性図、
FIG. 5 is a characteristic diagram showing the relationship between load, coefficient of performance, and subcool,

【図6】ダンパ開時のエバポレ−タ内の状態を示す状態
図、
FIG. 6 is a state diagram showing a state inside the evaporator when the damper is opened,

【図7】ダンパ閉時のエバポレ−タ内の状態を示す状態
図、
FIG. 7 is a state diagram showing a state inside the evaporator when the damper is closed,

【図8】他の態様を示すブロック図、FIG. 8 is a block diagram showing another aspect,

【符号の説明】[Explanation of symbols]

1は圧縮機、2はコンデンサ(凝縮器)、3は膨張手段
(膨張弁)、4はエバポレ−タ(蒸発器)、5はセン
サ、6はコントローラ(過冷却度制御手段)、8はダン
パ(吸熱制御手段)、9は負荷センサ(負荷検出手段)
1 is a compressor, 2 is a condenser (condenser), 3 is expansion means (expansion valve), 4 is an evaporator (evaporator), 5 is a sensor, 6 is a controller (supercooling degree control means), and 8 is a damper. (Heat absorption control means), 9 is a load sensor (load detection means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と凝縮器と膨張手段と蒸発器とを備
える冷凍サイクル装置において、 前記蒸発器の吸熱能力を制御する吸熱制御手段と、負荷
を検出する負荷検出手段と、検出した負荷に応じて前記
吸熱制御手段を駆動制御して前記凝縮器の過冷却度を適
性レベルに調節する過冷却度制御手段とを備えることを
特徴とする冷凍サイクル装置。
1. A refrigeration cycle apparatus comprising a compressor, a condenser, an expansion means and an evaporator, an endothermic control means for controlling the endothermic ability of the evaporator, a load detecting means for detecting a load, and a detected load. And a subcooling degree control means for driving and controlling the heat absorption control means to adjust the subcooling degree of the condenser to an appropriate level.
【請求項2】前記吸熱制御手段は、前記蒸発器の前面に
配設されたダンパからなる請求項1記載の冷凍サイクル
装置。
2. The refrigeration cycle apparatus according to claim 1, wherein the heat absorption control means comprises a damper arranged on the front surface of the evaporator.
JP16492592A 1992-06-23 1992-06-23 Refrigerating cycle apparatus Pending JPH062960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16492592A JPH062960A (en) 1992-06-23 1992-06-23 Refrigerating cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16492592A JPH062960A (en) 1992-06-23 1992-06-23 Refrigerating cycle apparatus

Publications (1)

Publication Number Publication Date
JPH062960A true JPH062960A (en) 1994-01-11

Family

ID=15802454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16492592A Pending JPH062960A (en) 1992-06-23 1992-06-23 Refrigerating cycle apparatus

Country Status (1)

Country Link
JP (1) JPH062960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068621A1 (en) * 1999-05-11 2000-11-16 Zexel Valeo Climate Control Corporation Method of controlling refrigerating cycle and refrigerating cycle using the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068621A1 (en) * 1999-05-11 2000-11-16 Zexel Valeo Climate Control Corporation Method of controlling refrigerating cycle and refrigerating cycle using the method

Similar Documents

Publication Publication Date Title
US6032472A (en) Motor cooling in a refrigeration system
JP2537314B2 (en) Refrigeration cycle equipment
US5615560A (en) Automotive air conditioner system
JPH11193967A (en) Refrigerating cycle
US7536872B2 (en) High pressure control valve
US8769968B2 (en) Refrigerant system and method for controlling the same
JP2002228282A (en) Refrigerating device
JPH06207758A (en) Air conditioner
JPH062960A (en) Refrigerating cycle apparatus
JP3021987B2 (en) Refrigeration equipment
JPH04103968A (en) Freezing cycle control system for multi-air conditioner
JPH0650614A (en) Freezing device
JP2003028516A (en) Refrigerating cycle controller
JPH07294023A (en) Refrigerating cycle apparatus for automotive air conditioner
JPH0510183Y2 (en)
JPS63233251A (en) Chilling unit
JPH0972636A (en) Accumulator and air conditioner utilizing this accumulator
JPS63161359A (en) Refrigerator
JPS61262570A (en) Controller for refrigeration cycle
JPS6185218A (en) Automotive air conditioner
JPS63259353A (en) Refrigerator
JP3257201B2 (en) Refrigeration cycle
JPH05223365A (en) Cooling apparatus for automobile
JPH09152237A (en) Air conditioner
JPS6346348B2 (en)