WO2000068557A1 - Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem - Google Patents

Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem Download PDF

Info

Publication number
WO2000068557A1
WO2000068557A1 PCT/DE2000/001322 DE0001322W WO0068557A1 WO 2000068557 A1 WO2000068557 A1 WO 2000068557A1 DE 0001322 W DE0001322 W DE 0001322W WO 0068557 A1 WO0068557 A1 WO 0068557A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
internal combustion
combustion engine
gas aftertreatment
size
Prior art date
Application number
PCT/DE2000/001322
Other languages
English (en)
French (fr)
Inventor
Markus Leuz
Andreas Pfaeffle
Ralf Schernewski
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26004962&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000068557(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10014224A external-priority patent/DE10014224A1/de
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2000617316A priority Critical patent/JP2002544423A/ja
Priority to EP00941887A priority patent/EP1180210B2/de
Priority to DE50006967T priority patent/DE50006967D1/de
Priority to US10/030,888 priority patent/US6968682B1/en
Publication of WO2000068557A1 publication Critical patent/WO2000068557A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine with an exhaust gas aftertreatment system.
  • a method and a device for controlling an internal combustion engine with an exhaust gas aftertreatment system are known from DE 199 06 287, which has not been previously published.
  • a particle filter is used that filters out particles contained in the exhaust gas.
  • the state of the exhaust gas aftertreatment system must be known for precise control of an internal combustion engine with an exhaust gas aftertreatment system.
  • the loading condition of the filter i.e. the amount of particles filtered out.
  • the object of the invention is to provide a method and a device for controlling an internal combustion engine with an exhaust gas aftertreatment system, with which the state of the exhaust gas aftertreatment system can be determined.
  • the loading condition should be determined even if various sensors fail or without using special sensors.
  • the procedure according to the invention a simple determination of the state of the exhaust gas aftertreatment system is possible. Because the quantity that characterizes the state of the exhaust gas aftertreatment system is simulated on the basis of at least one operating parameter of the internal combustion engine, no additional sensors are required. If additional sensors are used, they can be monitored and emergency operation can be carried out. It is particularly advantageous that only quantities that are already used to control the internal combustion engine are used for the simulation.
  • FIG. 1 shows a block diagram of the device according to the invention
  • FIG. 2 shows a detailed illustration of the simulation
  • FIG. 3 shows a characteristic curve
  • FIG. 4 shows a further embodiment of the device according to the invention.
  • the device according to the invention is shown below using the example of a self-igniting internal combustion engine in which the fuel metering is controlled by means of a so-called common rail system.
  • the procedure according to the invention is not restricted to these systems. It can also be used in other internal combustion engines.
  • the exhaust gas aftertreatment means 110 is arranged in the exhaust gas line 104, from which the cleaned exhaust gases reach the surroundings via the line 106.
  • the exhaust gas aftertreatment means 110 essentially comprises a so-called pre-catalyst 112 and a filter 114 downstream.
  • a temperature sensor 124 which provides a temperature signal T, is preferably arranged between the pre-catalyst 112 and the filter 114.
  • Sensors 120a and 120b are provided in front of the pre-catalytic converter 112 and after the filter 114. These sensors act as differential pressure sensor 120 and provide a differential pressure signal DP that characterizes the differential pressure between the inlet and outlet of the exhaust gas aftertreatment agent.
  • a sensor 125 is provided that supplies a signal that the oxygen Characterized substance concentration in the exhaust gas.
  • this variable is calculated on the basis of other measured values or is determined by means of a simulation.
  • the internal combustion engine 100 is metered fuel via a fuel metering unit 140. This measures fuel via injectors 141, 142, 143 and 144 to the individual cylinders of internal combustion engine 100.
  • the fuel metering unit is preferably a so-called common rail system.
  • a high pressure fuel pump delivers fuel to a pressure accumulator. The fuel reaches the internal combustion engine via the injectors.
  • Various sensors 151 are arranged on the fuel metering unit 140, which provide signals that characterize the state of the fuel metering unit.
  • a common rail system is, for example, the pressure P in the pressure accumulator.
  • Sensors 152 which characterize the state of the internal combustion engine, are arranged on the internal combustion engine 100. This is preferably a speed sensor that provides a speed signal N and other sensors that are not shown.
  • the output signals of these sensors go to a controller 130, which is shown as a first sub-controller 132 and a second sub-controller 134.
  • the two partial controls preferably form a structural unit.
  • the first sub-control 132 preferably controls the fuel metering unit 140 with control signals AD that influence the fuel metering.
  • the first partial control 132 includes a fuel quantity control 136.
  • the second partial control 134 preferably controls the exhaust gas aftertreatment system and detects the corresponding sensor signals for this purpose.
  • the second sub-controller 134 exchanges signals, in particular via the injected fuel quantity ME, with the first sub-controller 132.
  • the two controls mutually use the sensor signals and the internal signals.
  • the first partial control which is also referred to as engine control 132, controls depending on various signals that characterize the operating state of internal combustion engine 100, the state of fuel metering unit 140 and the ambient condition, as well as a signal that indicates the power and / or desired by the internal combustion engine Characterized torque, the control signal AD for controlling the fuel metering unit 140.
  • engine control 132 controls depending on various signals that characterize the operating state of internal combustion engine 100, the state of fuel metering unit 140 and the ambient condition, as well as a signal that indicates the power and / or desired by the internal combustion engine Characterized torque, the control signal AD for controlling the fuel metering unit 140.
  • Such devices are known and used in many ways.
  • Particle emissions can occur in the exhaust gas, particularly in diesel engines.
  • the exhaust gas aftertreatment means 110 filter them out of the exhaust gas. Through this filtering process, 114 particles collect in the filter. These particles are then burned in certain operating states and / or after certain times to clean the filter. For this purpose, it is usually provided that the temperature in the exhaust gas aftertreatment means 110 is increased so that the particles burn in order to regenerate the filter 114.
  • the precatalyst 112 is provided for increasing the temperature.
  • the temperature is increased, for example, by increasing the proportion of unburned hydrocarbons in the exhaust gas. These unburned hydrocarbons then react in the pre-catalyst 112 and thereby increase - - -
  • the expected particle emissions are determined on the basis of various variables, in particular the rotational speed N and the injected fuel quantity ME, and the load state is thereby simulated. If a corresponding loading state is reached, the regeneration of the filter 114 is carried out by activating the fuel metering unit 140.
  • Speed N and the injected fuel quantity ME can also be used for other signals that characterize this variable.
  • the control signal in particular the control duration, can be used for the injectors and / or a torque variable as the fuel quantity ME.
  • the temperature T in the exhaust gas aftertreatment system is also used to calculate the loading condition.
  • Sensor 124 is preferably used for this purpose.
  • the quantity for the state of loading calculated in this way is then used to control the exhaust gas aftertreatment system, ie, depending on the state of the load, the regeneration is then initiated by increasing the temperature.
  • the load state is also measured via the differential pressure sensor 120. In this case, error monitoring of the system is possible.
  • the simulated size B and the measured size BI of the loading condition are used to detect errors in the exhaust gas aftertreatment system. If a fault is detected in the differential pressure sensor 120, an emergency operation for controlling the exhaust gas aftertreatment system can then be carried out using the simulated variable that characterizes the loading state.
  • FIG. 2 A method and a device for determining the loading state or the size B, which characterizes the state of the exhaust gas aftertreatment system, is shown in FIG. 2 as a block diagram. Elements already described in FIG. 1 are identified by corresponding reference symbols.
  • Speed sensor 152 a quantity ME of the fuel metering control 136, which characterizes the amount of fuel injected, and / or a quantity, which characterizes the oxygen concentration.
  • the variable which characterizes the oxygen concentration is preferably predetermined by means of a sensor or a calculation 125.
  • the basic characteristic map 200 applies a first connection point 205 with a quantity GR, which characterizes the basic value of the particle emission.
  • the first connection point 205 applies a signal to a second connection point 210, which in turn applies an integrator 220 with a size KR, which characterize the particle increase in the filter 114.
  • the integrator 220 provides a size B that represents the state of the exhaust aftertreatment system characterized. This size B corresponds to the loading state of the filter 114. This size B is made available to the controller 130.
  • Output signal of a first correction 230 to which the output signal of various sensors 235 is fed.
  • the sensors 235 provide signals which in particular characterize the environmental condition. These are e.g. the cooling water temperature TW, the air temperature and the air pressure PL.
  • the output of a second correction 240 is fed to the second input of the node 210 via a switching means 245.
  • the output signal T of the sensor 124 is fed to the second correction 240.
  • the output of a substitute value specification 249 can also be supplied to the second input of the second node 210 via the circuit diagram 245.
  • the switching means 245 is controlled by an error detection 248.
  • the basic value GR of the particle emission is stored in the basic characteristic diagram 200 as a function of the operating state of the internal combustion engine, in particular the rotational speed N, the injected quantity ME and / or the size that characterizes the oxygen concentration. It is particularly advantageous if the rotational speed N and the quantity which characterizes the oxygen concentration are taken into account. It is also advantageous if the speed N and the injected quantity ME are taken into account.
  • a size can also be that characterizes the amount of fuel injected.
  • this value is corrected as a function of the temperature of the cooling water and the ambient air and the atmospheric pressure. This correction takes into account their influence on the particle emission of the internal combustion engine 100.
  • the influence of the temperature of the catalytic converter is taken into account in the second connection point 210.
  • the correction takes into account the fact that from a certain temperature Tl the particles are not deposited in the filter but are immediately converted into harmless components. No conversion takes place below this temperature Tl and the particles are all deposited in the filter.
  • the second correction 240 specifies a factor F by which the basic emission GR is preferably multiplied.
  • the relationship between the factor F and the temperature T is shown in FIG. 3.
  • the factor F assumes the value 1 up to the temperature T1. This means below the temperature T1 in node 210 the basic value
  • the factor F decreases from the temperature T1 and reaches zero at a certain temperature T2, ie the entire emission of particles is converted directly into harmless components, ie no more particles are fed to the filter 114. If the temperature exceeds the value T3, the factor takes on the negative value -x. This means that although particles are fed to the filter 114, the load on the filter 114 is reduced. If a faulty temperature sensor T24 is recognized by error detection 248, a substitute value of substitute value specification 249 is used instead of temperature value T. This substitute value is preferably also specified as a function of various operating parameters, such as the injected fuel quantity ME.
  • This corrected value KR which characterizes the particle value that leads to the loading of the filter 114, is fed to the integrator 220.
  • This integrator 220 sums up the quantity over time and emits a signal B which characterizes the loading state of the filter 114.
  • the corrected output signal of the basic characteristic map is integrated in order to determine the loading state B of the filter 114.
  • Signal B which characterizes the loading state of filter 114, is usually used directly to control the exhaust gas aftertreatment system.
  • different sensors in particular differential pressure sensor 120, can be saved.
  • the loading state is read from a map based on at least the speed and / or the amount of fuel to be injected, or corresponding signals.
  • This basic value determined in this way is then corrected.
  • a correction depending on the temperature of the exhaust gas aftertreatment agent, in particular of the particle filter is provided. This correction takes into account the temperature-dependent constant regeneration of the filter.
  • FIG. 4 A further particularly advantageous embodiment is shown in FIG. 4.
  • the simulation shown in FIG. 2 for calculating the loading condition B is designated 400.
  • This simulation 400 delivers a signal B with respect to the Load state of the filter 114.
  • a calculation 420 is provided, to which the output signal DP of the differential pressure sensor 120 is fed.
  • Both the simulation 400 and the calculation 420 supply signals to a switching means 410 which selectively selects one of the signals and provides them to the controller 130.
  • the switching means 410 is controlled by an error detection 415.
  • the air throughput V can be calculated according to the following formula.
  • the size MH corresponds to the amount of air measured by a sensor, the size R is a constant. Based on this air throughput calculated in this way, the loading state BI can then preferably be calculated by means of a map.
  • the exhaust gas aftertreatment system is controlled in normal operation.
  • the error detection 415 controls the switching means 410 in such a way that the signal B from the simulation 400 is used to control the exhaust gas aftertreatment.
  • size (B) is used to control the exhaust gas aftertreatment system.
  • the control depends on the size (B), which characterizes the loading condition and / or other signals.
  • a very precise emergency operation can be realized by means of the simulated size. It is particularly advantageous that when using only a simple simulation with only a few signals is used in emergency operation.
  • Plausibility are checked, and that in the event of an implausibility, an error of the exhaust gas aftertreatment system is recognized.
  • An implausibility is recognized, for example, if the difference between the two variables is greater than a threshold value. This means that the size (B) of the loading condition is used to detect the fault. This measure enables simple and accurate error detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Es werden ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystem beschrieben. Eine den Zustand des Abgasnachbehandlungssystems charakterisierende Größe (B) wird ausgehend von wenigstens einer Betriebskenngröße der Brennkraftmaschine bestimmt.

Description

Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystem
Stand der Technik
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystem.
Aus der nicht vorveröffentlichten DE 199 06 287 sind ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem AbgasnachbehandlungsSystem bekannt. Bei dem dort beschriebenen System wird ein Partikelfilter eingesetzt, der im Abgas enthaltene Partikel ausfiltert. Zur genauen Steuerung einer Brennkraftmaschine mit einem Abgas- nachbehandlungssystem muß der Zustand des Abgasnachbehandlungssystems bekannt sein. Insbesondere muß der Beladungszustand des Filters, d.h. die Menge an ausgefilterten Partikeln bekannt sein.
Aufgabe der Erfindung
Der Erfindung liegt die Aufgabe zugrunde bei einem Verfahren und einer Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystem ein Verfahren und eine Vorrichtung bereitzustellen, mit der der Zustand des Abgas- nachbehandlungssystems ermittelt werden kann. Insbesondere soll der Beladungszustand auch bei Ausfall verschiedener Sensoren bzw. ohne Verwendung spezieller Sensoren bestimmt werden .
Diese Aufgabe wird durch die in den unabhängigen Ansprüchen gekennzeichneten Merkmale gelöst.
Vorteile der Erfindung
Mit der erfindungsgemäßen Vorgehensweise ist eine einfache Ermittlung des Zustandes des Abgasnachbehandlungssystems möglich. Dadurch, daß die Größe, die den Zustand des Abgas- nachbehandlungssystems charakterisiert ausgehend von wenig- stens einer Betriebskenngröße der Brennkraftmaschine simuliert wird, werden keine zusätzlichen Sensoren benötigt. Bei der Verwendung von zusätzlichen Sensoren können diese überwacht und ein Notfahrbetrieb durchgeführt werden. Besonders vorteilhaft ist es, daß lediglich Größen zur Simulation ver- wendet werden, die bereits zur Steuerung der Brennkraftmaschine verwendet werden.
Besonders vorteilhaft ist es, wenn eine Größe berücksichtigt wird, die die Sauerstoffkonzentration im Abgas charakteri- siert. Dadurch kann die Simulation des Zustandes des Abgas- nachbehandlungssystems deutlich verbessert werden, dies gilt insbesondere in dynamischen Zuständen, das heißt insbesondere beim Beschleunigen können genauerer Werte erzielt werden.
Weitere besonders vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.
Zeichnung Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung, Figur 2 eine detaillierte Darstellung der Simulation, Figur 3 eine Kennlinie und Figur 4 eine weitere Ausgestaltung der erfindungsgemäßen Vorrichtung.
Beschreibung von Ausführungsbeispielen
Im folgenden wird die erfindungsgemäße Vorrichtung am Beispiel einer selbstzündenden Brennkraftmaschine dargestellt, bei der die Kraftstoffzumessung mittels eines sogenannten Common-Rail -Systems gesteuert wird. Die erfindungsgemäße Vorgehensweise ist aber nicht auf diese Systeme beschränkt. Sie kann auch bei anderen Brennkraftmaschinen eingesetzt werden.
Mit 100 ist eine Brennkraftmaschine bezeichnet, die über eine Ansaugleitung 102 Frischluft zugeführt bekommt und über eine Abgasleitung 104 Abgase abgibt. In der Abgasleitung 104 ist ein Abgasnachbehandlungsmittel 110 angeordnet, von dem die gereinigten Abgase über die Leitung 106 in die Umgebung gelangen. Das Abgasnachbehandlungsmittel 110 umfaßt im wesentlichen einen sogenannten Vorkatalysator 112 und stromab- wärts einen Filter 114. Vorzugsweise zwischen dem Vorkatalysator 112 und dem Filter 114 ist ein Temperatursensor 124 angeordnet, der ein Temperatursignal T bereitstellt. Vor dem Vorkatalysator 112 und nach dem Filter 114 sind jeweils Sensoren 120a und 120b vorgesehen. Diese Sensoren wirken als Differenzdrucksensor 120 und stellen ein Differenzdrucksignal DP bereit, daß den Differenzdruck zwischen Eingang und Ausgang des Abgasnachbehandlungsmittel charakterisiert.
Bei einer besonders vorteilhaften Ausgestaltung ist ein Sen- sor 125 vorgesehen, der ein Signal liefert, das die Sauer- Stoffkonzentration im Abgas charakterisiert. Alternativ oder ergänzend kann vorgesehen sein, daß diese Größe ausgehend von anderen Messwerten berechnet oder mittels einer Simulation bestimmt wird.
Der Brennkraftmaschine 100 wird über eine Kraftstoffzu- meßeinheit 140 Kraftstoff zugemessen. Diese mißt über Injektoren 141, 142, 143 und 144 den einzelnen Zylindern der Brennkraftmaschine 100 Kraftstoff zu. Vorzugsweise handelt es sich bei der Kraftstoffzumeßeinheit um ein sogenanntes Common-Rail -System. Eine Hochdruckpumpe Kraftstoff fördert Kraftstoff in einen Druckspeicher. Vom Speicher gelangt der Kraftstoff über die Injektoren in die Brennkraftmaschine.
An der Kraftstoffzumeßeinheit 140 sind verschiedene Sensoren 151 angeordnet, die Signale bereitstellen, die den Zustand der Kraftstoffzumeßeinheit charakterisieren. Hierbei handelt es sich bei einem Common-Rail-System beispielsweise um den Druck P im Druckspeicher. An der Brennkraftmaschine 100 sind Sensoren 152 angeordnet, die den Zustand der Brennkraftmaschine charakterisieren. Hierbei handelt es sich vorzugsweise um einen Drehzahlsensor, der ein Drehzahlsignal N bereitstellt und um weitere Sensoren, die nicht dargestellt sind.
Die Ausgangssignale dieser Sensoren gelangen zu einer Steuerung 130, die als einer erste Teilsteuerung 132 und einer zweiten Teilsteuerung 134 dargestellt ist. Vorzugsweise bilden die beiden Teilsteuerungen eine bauliche Einheit. Die erste Teilsteuerung 132 steuert vorzugsweise die Kraftstoff- zumeßeinheit 140 mit Ansteuersignalen AD, die die Kraftstoffzumessung beeinflussen, an. Hierzu beinhaltet die erste Teilsteuerung 132 eine Kraftstoffmengensteuerung 136. Diese liefert ein Signal ME, daß die einzuspritzende Menge charakterisiert, an die zweite Teilsteuerung 134. Die zweite Teilsteuerung 134 steuert vorzugsweise das Abgas- nachbehandlungssystem und erfaßt hierzu die entsprechenden Sensorsignale. Desweiteren tauscht die zweite Teilsteuerung 134 Signale, insbesondere über die eingespritzte Kraftstoff- menge ME, mit der ersten Teilsteuerung 132 aus. Vorzugsweise nutzen die beiden Steuerungen gegenseitig die Sensorsignale und die internen Signale.
Die erste Teilsteuerung, die auch als Motorsteuerung 132 be- zeichnet wird, steuert abhängig von verschiedenen Signalen, die den Betriebszustand der Brennkraftmaschine 100, den Zustand der Kraftstoffzumeßeinheit 140 und die Umgebungsbedingung charakterisieren sowie einem Signal, das die von der Brennkraftmaschine gewünschte Leistung und/oder Drehmoment charakterisiert, das Ansteuersignal AD zur Ansteuerung der Kraftstoffzumeßeinheit 140. Solche Einrichtungen sind bekannt und vielfältig eingesetzt.
Insbesondere bei Dieselbrennkraftmaschinen können Partikele- missionen im Abgas auftreten. Hierzu ist es vorgesehen, daß die Abgasnachbehandlungsmittel 110 diese aus dem Abgas herausfiltern. Durch diesen Filtervorgang sammeln sich in dem Filter 114 Partikel an. Diese Partikel werden dann in bestimmten Betriebszuständen und/oder nach Ablauf bestimmter Zeiten verbrannt, um den Filter zu reinigen. Hierzu ist üblicherweise vorgesehen, daß zur Regeneration des Filters 114 die Temperatur im Abgasnachbehandlungsmittel 110 soweit erhöht wird, daß die Partikel verbrennen.
Zur Temperaturerhöhung ist der Vorkatalysator 112 vorgesehen. Die Temperaturerhöhung erfolgt beispielsweise dadurch, daß der Anteil an unverbrannten Kohlenwasserstoffen im Abgas erhöht wird. Diese unverbrannten Kohlenwasserstoffe reagieren dann in dem Vorkatalysator 112 und erhöhen dadurch des- - - -
sen Temperatur und damit auch die Temperatur des Abgases, das in den Filter 114 gelangt.
Diese Temperaturerhöhung des Vorkatalysators und der Abga- stemperatur erfordert einen erhöhten Kraftstoffverbrauch und soll daher nur dann durchgeführt werden, wenn dies erforderlich ist, d.h. der Filter 114 mit einem gewissen Anteil von Partikeln beladen ist. Eine Möglichkeit den Beladungszustand zu erkennen besteht darin, den Differenzdruck DP zwischen Eingang und Ausgang des Abgasnachbehandlungsmittel zu erfassen und ausgehend von diesem den Beladungszustand zu ermitteln. Dies erfordert einen Differenzdrucksensor 120.
Erfindungsgemäß ist vorgesehen, daß ausgehend von verschie- denen Größen, insbesondere der Drehzahl N und der eingespritzten Kraftstoffmenge ME die erwartete Partikelemissionen bestimmt und dadurch der Beladungszustand simuliert wird. Wird ein entsprechender Beladungszustand erreicht, wird durch Ansteuerung der Kraftstoffzumeßeinheit 140 die Regeneration des Filters 114 durchgeführt. Anstelle der
Drehzahl N und der eingespritzten Kraftstoffmenge ME können auch andere Signale, die diese Größe charakterisieren verwendet werden. So kann beispielsweise das Ansteuersignal, insbesondere die Ansteuerdauer, für die Injektoren und/oder eine Momentengröße als Kraftstoffmenge ME verwendet werden.
Bei einer erfindungsgemäßen Ausgestaltung wird neben der eingespritzten Kraftstoffmenge ME und der Drehzahl N auch die Temperatur T im Abgasnachbehandlungssystem zur Berech- nung des Beladungszustandes verwendet. Hierzu wird vorzugsweise der Sensor 124 eingesetzt. Die so berechnete Größe für den Beladungszustand wird dann zur Steuerung des Abgasnachbehandlungssystems verwendet, d.h. abhängig von dem Beladungszustand wird dann die Regeneration über die Tempera- turerhöhung eingeleitet. Besonders vorteilhaft ist es, wenn neben der Berechnung auch eine Messung des Beladungszustands über den Differnzdruck- sensor 120 erfolgt. In diesem Fall ist eine Fehlerüberwa- chung des Systems möglich. Dies heißt die simulierte Größe B und die gemessen Größe BI des Beladungszustandes werden zur Erkennung von Fehlern im AbgasnachbehandlungsSystem verwendet. Bei einem erkannten Fehler des Differenzdrucksensors 120 kann dann ein Notlaufbetrieb zur Steuerung des Abgas- nachbehandlungssystems mittels der simulierten Größe, die den Beladungszustand charakterisiert, durchgeführt werden.
Ein Verfahren und eine Vorrichtung zur Ermittlung des Beladungszustandes bzw. der Größe B, die den Zustand des Abgas- nachbehandlungssystems charakterisiert, ist in der Figur 2 als Blockdiagramm dargestellt. Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet .
Einem Grundkennfeld 200 werden die Ausgangssignale N eines
Drehzahlsensors 152, eine Größe ME der Kraftstoffzumeßsteue- rung 136, die die eingespritzte Kraftstoffmenge kennzeichnet, und/oder eine Größe, die die Sauerstoffkonzentration charaktersiert, zugeleitet. Vorzugsweise wird die Größe, die die Sauerstoffkonzentration charaktersiert, mittels eines Sensors oder einer Berechnung 125 vorgegeben.
Das Grundkennfeld 200 beaufschlagt einen ersten Verknüpfungspunkt 205 mit einer Größe GR, die den Grundwert des Partikelausstoßes charakterisiert. Der erste Verknüpfungspunkt 205 beaufschlagt einen zweiten Verknüpfungspunkt 210 mit einem Signal, der wiederum einen Integrator 220 mit einer Größe KR, die den PartikelZuwachs im Filter 114 charakterisieren, beaufschlagt. Der Integrator 220 liefert eine Größe B, die den Zustand des Abgasnachbehandlungssystems charakterisiert. Diese Größe B entspricht dem Beladungszustand des Filters 114. Diese Größe B wird der Steuerung 130 zur Verfügung gestellt.
Am zweiten Eingang des Verknüpfungspunktes 205 liegt das
AusgangsSignal einer erste Korrektur 230, der das Ausgangssignal verschiedener Sensoren 235 zugeleitet wird. Die Sensoren 235 liefern Signale, die insbesondere die Umgebungsbedingung charakterisieren. Dies sind z.B. die Kühlwassertem- peratur TW, die Lufttemperatur und der Luftdruck PL. Dem zweiten Eingang des Verknüpfungspunktes 210 wird über ein Schaltmittel 245 das Ausgangssignal einer zweiten Korrektur 240 zugeleitet. Der zweiten Korrektur 240 wird das Ausgangssignal T des Sensors 124 zugeleitet. Alternativ kann über das Schaltbild 245 dem zweiten Eingang des zweiten Verknüpfungspunktes 210 auch das Ausgangssignal einer Ersatzwertvorgabe 249 zugeleitet werden. Das Schaltmittel 245 wird von einer Fehlererkennung 248 angesteuert.
Besonders vorteilhaft ist es, wenn der Einfluss der Sauerstoffkonzentration im Abgas mittels einer weiteren Korrektur, entsprechend der Korrektur 230, erfolgt.
In dem Grundkennfeld 200 sind abhängig vom Betriebszustand der Brennkraftmaschine, insbesondere der Drehzahl N, der eingespritzte Menge ME und/oder der Größe, die die Sauerstoffkonzentration charaktersiert, der Grundwert GR der Partikelemission abgelegt. Besonders vorteilhaft ist es, wenn die Drehzahl N und die Größe, die die Sauerstoffkonzentrati- on charaktersiert, berücksichtigt wird. Ferner ist vorteilhaft , wenn die Drehzahl N und die eingespritzte Menge ME berücksichtigt wird.
Neben diesen Größen können noch weitere Größen berücksich- tigt werden. Anstelle der Menge ME kann auch eine Größe ver- wendet werden, die die Menge an eingespritztem Kraftstoff charakterisiert .
In dem ersten Verknüpfungspunkt 205 wird dieser Wert abhän- gig von der Temperatur des Kühlwassers und der Umgebungsluft sowie dem Atmosphärendruck korrigiert. Diese Korrektur berücksichtigt deren Einfluß auf den Partikelausstoß der Brennkraftmaschine 100.
In dem zweiten Verknüpfungspunkt 210 wird der Einfluß der Temperatur des Katalysators berücksichtigt. Die Korrektur berücksichtigt, daß ab einer bestimmten Temperatur Tl die Partikel in dem Filter nicht abgelagert, sondern unmittelbar in unschädliche Bestandteile umgesetzt werden. Unterhalb dieser Temperatur Tl erfolgt keine Umsetzung und die Partikel werden alle im Filter abgelagert.
Die zweite Korrektur 240 gibt abhängig von der Temperatur T des Abgasnachbehandlungsmittels 110 einen Faktor F vor, mit dem die Grundemission GR vorzugsweise multipliziert wird.
Der Zusammenhang zwischen dem Faktor F und der Temperatur T ist in Figur 3 dargestellt. Bis zu der Temperatur Tl nimmt der Faktor F den Wert 1 an. Dies bedeutet unterhalb der Tem- peratur Tl wird in dem Verknüpfungspunkt 210 der Grundwert
GR derart mit dem Faktor F verknüpft, daß der Wert KR gleich dem Wert GR ist. Ab der Temperatur Tl nimmt der Faktor F ab und erreicht bei einer bestimmten Temperatur T2 den Wert Null, d.h. die gesamte Emission an Partikeln wird unmittel- bar in unschädliche Bestandteile umgesetzt, d.h. dem Filter 114 werden keine Partikel mehr zugeführt. Übersteigt die Temperatur den Wert T3 , so nimmt der Faktor den negativen Wert -x an. Dies bedeutet, obwohl dem Filter 114 Partikel zugeführt werden, verringert sich die Beladung des Filters 114. Wird von der Fehlererkennung 248 ein defektes Temperatursensor T24 erkannt, so wird anstelle des Temperaturwerts T ein Ersatzwert der Ersatzwertvorgabe 249 verwendet. Vorzugsweise wird dieser Ersatzwert ebenfalls abhängig von verschiedenen Betriebskenngrößen, wie beispielsweise der eingespritzten Kraftstoffmenge ME vorgegeben.
Dieser so korrigierte Wert KR, der den Partikelwert charak- terisiert, der zur Beladung des Filters 114 führt, wird dem Integrator 220 zugeleitet. Dieser Integrator 220 summiert die Größe über der Zeit auf und gibt ein Signal B ab, daß den Beladungszustand des Filters 114 charakterisiert. Das korrigierte Ausgangssignal des Grundkennfeldes wird zur Er- mittlung des Beladungszustandes B des Filter 114 aufintegriert .
Üblicherweise wird das Signal B, daß den Beladungszustand des Filters 114 charakterisiert, unmittelbar zur Steuerung des Abgasnachbehandlungssystems verwendet. Durch die Verwendung einer simulierten Größe können verschiedene Sensoren, insbesondere der Differenzdrucksensor 120 eingespart werden.
Erfindungsgemäß wird der Beladungszustand ausgehend von we- nigstens der Drehzahl und/oder der einzuspritzenden Kraftstoffmenge, bzw. entsprechender Signale, aus einem Kennfeld ausgelesen. Dieser so ermittelte Grundwert wird anschließend korrigiert. Insbesondere ist ein Korrektur abhängig von der Temperatur des Abgasnachbehandlungsmittels, insbesondere des Partikelfilters, vorgesehen. Diese Korrektur berücksichtigt die temperaturabhängige ständige Regeneration des Filters Eine weitere besonders vorteilhafte Ausgestaltung ist in Figur 4 dargestellt. Die in Figur 2 dargestellte Simulation zur Berechnung des Beladungszustandes B ist mit 400 bezeich- net. Diese Simulation 400 liefert ein Signal B bezüglich des Beladungszustandes des Filters 114. Desweiteren ist eine Berechnung 420 vorgesehen, der das Ausgangssignal DP des Differenzdrucksensors 120 zugeleitet wird. Sowohl die Simulation 400 als auch die Berechnung 420 liefern Signale an ein Schaltmittel 410, daß wahlweise eines der Signale auswählt und der Steuerung 130 bereitstellt. Das Schaltmittel 410 wird von einer Fehlererkennung 415 angesteuert.
Ausgehend von dem Differenzdruck DP, der mittels des Diffe- renzdrucksensors 120 gemessen wird, kann der Luftdurchsatz V gemäß der nachfolgenden Formel berechnet werden.
MH * R * T P + DP
Dabei entspricht die Größe MH der mittels eines Sensors gemessenen Luftmenge, bei der Größe R handelt es sich um eine Konstante. Ausgehend von diesem so berechneten Luftdurchsatz kann dann vorzugsweise mittels eines Kennfeldes der Beladungszustand BI berechnet werden.
Ausgehend von diesem Beladungszustand BI erfolgt im Normalbetrieb die Steuerung des Abgasnachbehandlungssystems . Bei einem Fehler des Abgasnachbehandlungssystems, insbesondere im Bereich der Ermittlung oder der Erfassung des Differenz- druckes DP, steuert die Fehlererkennung 415 das Schaltmittel 410 derart an, daß das Signal B der Simulation 400 zur Steuerung der Abgasnachbehandlung verwendet wird.
Im Notlauf wird die Größe (B) zur Steuerung des Abgasnachbe- handlungssystems verwendet wird. Die Steuerung erfolgt abhängig von der Größe (B) , die den Beladungszustand charakterisiert und/oder weiteren Signalen. Mittels der simulierten Größe kann ein sehr genauer Notlaufbetrieb realisiert werden. Besonders vorteilhaft ist, daß bei der Verwendung nur im Notlaufbetrieb eine einfache Simulation mit nur wenigen Signalen zum Einsatz gelangt.
Besonders vorteilhaft ist es, wenn die berechnete Größe (BI) und die simulierte Größe (B) des Beladungszustandes auf
Plausibilität geprüft werden, und daß bei einer Unplausibilität ein Fehler des AbgasnachbehandlungsSystems erkannt wird. Eine Unplausibilität wird beispielsweise erkannt, wenn die Differenz der beiden Größen größer als ein Schwellenwert ist. Dies bedeute, daß die Größe (B) des Beladungszustandes zur Erkennung des Fehlers verwendet wird. Durch diese Maßnahme ist eine einfache und genaue Fehlererkennung möglich.

Claims

Ansprüche
1. Verfahren zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystem, dadurch gekennzeichnet, daß eine den Zustand des Abgasnachbehandlungssystems cha- rakterisierende Größe (B) ausgehend von wenigstens einer
Betriebskenngröße der Brennkraftmaschine simuliert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Größe (B) ausgehend von wenigstens der Drehzahl (N) und/oder einem die eingespritzte Kraftstoffmenge charakterisierenden Signal (ME) simuliert wird.
3. Verfahren nach Anspruch dadurch gekennzeichnet, daß zusätzlich eine Größe berücksichtigt wird, die die Sauer- stoffkonzentration im Abgas charakterisiert.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß daß die Größe, die die Sauerstoffkonzentration im Abgas charaktersiert, ausgehend von Betriebskenngrößen bestimmt wird.
5. Verfahren nach Anspruch dadurch gekennzeichnet, daß zusätzlich die Temperatur (T) im Abgasnachbehandlungssystem zur Simulation der Größe (B) verwendet wird.
6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Größe (B) im Normalbetrieb zur Steuerung des Abgasnachbehandlungssystems verwendet wird.
7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Größe (B) zur Erkennung eines Fehlers verwendet wird.
8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Größe (B) im Notlauf zur Steuerung des AbgasnachbehandlungsSystems verwendet wird.
9. Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystem, dadurch gekennzeichnet, daß Mittel vorgesehen sind, die eine den Zustand des Abgasnachbehandlungssystems charakterisierende Größe (B) ausgehend von wenigstens einer Betriebskenngröße der Brennkraftmaschine bestimmen.
PCT/DE2000/001322 1999-05-07 2000-04-27 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem WO2000068557A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000617316A JP2002544423A (ja) 1999-05-07 2000-04-27 排ガス後処理システムを備えた内燃機関の制御のための方法及び装置
EP00941887A EP1180210B2 (de) 1999-05-07 2000-04-27 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem
DE50006967T DE50006967D1 (de) 1999-05-07 2000-04-27 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem
US10/030,888 US6968682B1 (en) 1999-05-07 2000-04-27 Method and device for controlling an internal combustion engine with an exhaust treatment system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19921299 1999-05-07
DE19921299.6 1999-05-07
DE10014224.9 2000-03-22
DE10014224A DE10014224A1 (de) 1999-05-07 2000-03-22 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssytem

Publications (1)

Publication Number Publication Date
WO2000068557A1 true WO2000068557A1 (de) 2000-11-16

Family

ID=26004962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/001322 WO2000068557A1 (de) 1999-05-07 2000-04-27 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem

Country Status (4)

Country Link
US (1) US6968682B1 (de)
EP (1) EP1180210B2 (de)
JP (1) JP2002544423A (de)
WO (1) WO2000068557A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1529929A1 (de) * 2001-02-28 2005-05-11 Bosch Automotive Systems Corporation Filtersteuerung
EP2031370A1 (de) 2007-08-30 2009-03-04 Robert Bosch Gmbh Abgassensor
US7568376B2 (en) 2006-04-24 2009-08-04 Robert Bosch Gmbh Exhaust gas sensor
EP2106577A1 (de) * 2006-12-29 2009-10-07 Robert Bosch GmbH Verfahren und system zur simulation des betriebs einer brennkraftmaschine
EP1626166A3 (de) * 2004-08-10 2010-08-18 Nissan Motor Co., Ltd. Schätzung der Partikelmenge in Dieselpartikelfilter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004026589A1 (de) * 2004-06-01 2006-01-19 Siemens Ag Verfahren zur Überwachung eines Partikelfilters
JP4470593B2 (ja) * 2004-06-03 2010-06-02 株式会社デンソー 内燃機関の排気浄化装置
DE102007009841A1 (de) 2007-03-01 2008-09-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung eines Beladungszustandes eines Partikelfilters
US8418441B2 (en) 2009-05-29 2013-04-16 Corning Incorporated Systems and methods for controlling temperature and total hydrocarbon slip
CN114033532B (zh) * 2021-11-08 2022-12-30 凯龙高科技股份有限公司 Dpf主动再生周期确定方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734924A (ja) * 1993-07-16 1995-02-03 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JPH0835418A (ja) * 1994-07-25 1996-02-06 Nippondenso Co Ltd 排出ガス浄化装置の温度制御装置
US5647669A (en) * 1994-07-14 1997-07-15 Robert Bosch Gmbh Method for generating a simulated signal relating to a temperature in the exhaust system of an internal combustion engine
DE19714293C1 (de) * 1997-04-07 1998-09-03 Siemens Ag Verfahren zum Überprüfen der Konvertierungsfähigkeit eines Katalysators
DE19744067A1 (de) * 1997-10-06 1999-04-08 Bosch Gmbh Robert Temperaturmodellbildung für den Abgasbereich eines Verbrennungsmotors
JPH11117786A (ja) * 1997-10-17 1999-04-27 Mitsubishi Motors Corp 内燃機関の排気浄化装置
DE19906287A1 (de) 1999-02-15 2000-08-17 Bosch Gmbh Robert Verfahren und Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystems

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56510A (en) * 1979-06-14 1981-01-07 Nissan Motor Co Ltd Exhaust gas purifying system for internal-combustion engine
JPS578311A (en) * 1980-06-19 1982-01-16 Toyota Motor Corp Method and device for decreasing discharged quantity of diesel particulates
US4462208A (en) * 1982-09-23 1984-07-31 General Motors Corporation Regeneration control system for a diesel engine exhaust particulate filter
JPS59100917U (ja) * 1982-12-24 1984-07-07 日産自動車株式会社 内燃機関の排気微粒子処理装置
EP0152870A3 (de) * 1984-02-21 1985-10-09 Comprex Ag Verfahren zur Regenerierung des Abgaspartikelfilters bei Verbrennungsmotoren
US4835963A (en) * 1986-08-28 1989-06-06 Allied-Signal Inc. Diesel engine particulate trap regeneration system
US5121601A (en) * 1986-10-21 1992-06-16 Kammel Refaat A Diesel engine exhaust oxidizer
US4969328A (en) * 1986-10-21 1990-11-13 Kammel Refaat A Diesel engine exhaust oxidizer
DE3723470C2 (de) 1987-07-16 1997-04-24 Kloeckner Humboldt Deutz Ag Verfahren zur Steuerung der Regenerierung eines Rußfilters
JPH0713452B2 (ja) * 1987-09-17 1995-02-15 トヨタ自動車株式会社 内燃機関の排気粒子捕集器の粒子捕集量検出装置
DE3832790C2 (de) 1988-09-27 1997-12-11 Pattas Konstantin N Verfahren und Einrichtung zum Regenerieren eines Rußfilters
GB2239407B (en) * 1989-12-27 1994-10-12 Nissan Motor Exhaust gas purifying device for an internal combustion engine
JPH03202609A (ja) * 1989-12-28 1991-09-04 Nissan Motor Co Ltd エンジンの排気浄化装置
JPH0544439A (ja) * 1991-08-20 1993-02-23 Nissan Motor Co Ltd デイーゼル機関の排気浄化装置
JPH0569312U (ja) * 1992-02-28 1993-09-21 三菱自動車工業株式会社 パティキュレート補集量測定装置
JPH05312020A (ja) * 1992-05-01 1993-11-22 Toyota Motor Corp 内燃機関の排気浄化装置
JP3116549B2 (ja) * 1992-05-27 2000-12-11 日産自動車株式会社 エンジンの排気浄化装置
DE4230180A1 (de) 1992-09-09 1994-03-10 Eberspaecher J Verfahren und Vorrichtung zur Ermittlung des Beladungszustands von Partikelfiltern
US5458673A (en) * 1992-11-26 1995-10-17 Nippon Soken, Inc. Exhaust gas particulate purifying process for internal combustion engine
JPH0734851A (ja) * 1993-07-22 1995-02-03 Nissan Motor Co Ltd ディーゼル機関の排気浄化装置
JPH0734858A (ja) * 1993-07-26 1995-02-03 Nissan Motor Co Ltd ディーゼル機関の排気浄化装置
JP3899534B2 (ja) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
US5850735A (en) * 1995-09-11 1998-12-22 Toyota Jidosha Kabushiki Kaisha Method for purifying exhaust gas of an internal combustion engine
JPH10184343A (ja) * 1996-12-24 1998-07-14 Toyota Autom Loom Works Ltd ディーゼルエンジンの排気ガス浄化装置
AT2410U1 (de) * 1997-09-16 1998-10-27 Avl List Gmbh Verfahren zur regeneration eines partikelfilters
JP2000170521A (ja) * 1998-12-08 2000-06-20 Toyota Motor Corp パティキュレートフィルタの捕集量算出方法及び再生方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734924A (ja) * 1993-07-16 1995-02-03 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
US5647669A (en) * 1994-07-14 1997-07-15 Robert Bosch Gmbh Method for generating a simulated signal relating to a temperature in the exhaust system of an internal combustion engine
JPH0835418A (ja) * 1994-07-25 1996-02-06 Nippondenso Co Ltd 排出ガス浄化装置の温度制御装置
DE19714293C1 (de) * 1997-04-07 1998-09-03 Siemens Ag Verfahren zum Überprüfen der Konvertierungsfähigkeit eines Katalysators
DE19744067A1 (de) * 1997-10-06 1999-04-08 Bosch Gmbh Robert Temperaturmodellbildung für den Abgasbereich eines Verbrennungsmotors
JPH11117786A (ja) * 1997-10-17 1999-04-27 Mitsubishi Motors Corp 内燃機関の排気浄化装置
DE19906287A1 (de) 1999-02-15 2000-08-17 Bosch Gmbh Robert Verfahren und Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssystems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 05 30 June 1995 (1995-06-30) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 06 28 June 1996 (1996-06-28) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 09 30 July 1999 (1999-07-30) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1529929A1 (de) * 2001-02-28 2005-05-11 Bosch Automotive Systems Corporation Filtersteuerung
EP1529929A4 (de) * 2001-02-28 2009-11-11 Bosch Automotive Systems Corp Filtersteuerung
EP1626166A3 (de) * 2004-08-10 2010-08-18 Nissan Motor Co., Ltd. Schätzung der Partikelmenge in Dieselpartikelfilter
US7568376B2 (en) 2006-04-24 2009-08-04 Robert Bosch Gmbh Exhaust gas sensor
EP2106577A1 (de) * 2006-12-29 2009-10-07 Robert Bosch GmbH Verfahren und system zur simulation des betriebs einer brennkraftmaschine
EP2031370A1 (de) 2007-08-30 2009-03-04 Robert Bosch Gmbh Abgassensor

Also Published As

Publication number Publication date
JP2002544423A (ja) 2002-12-24
EP1180210B1 (de) 2004-06-30
US6968682B1 (en) 2005-11-29
EP1180210A1 (de) 2002-02-20
EP1180210B2 (de) 2006-11-22

Similar Documents

Publication Publication Date Title
DE112014007113B4 (de) System, Verfahren und nicht-flüchtiges computerlesbares Medium zur Diagnose eines SCR-Umwandlungswirkungsgrads
EP1336039B1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
WO2002053891A1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
EP1373693B1 (de) Verfahren und vorrichtung zur überwachung eines abgasnachbehandlungssystems
EP1370840A1 (de) Verfahren und vorrichtung zur überwachung eines sensors
DE102013203495A1 (de) Verfahren und Vorrichtung zur Überwachung eines Stickoxid-Speicherkatalysators
DE602004001471T2 (de) Motorabgasreinigungsvorrichtung
DE60025636T2 (de) Diagnoseverfahren des abgassystems einer brennkraftmaschine
DE69627100T2 (de) Feststellungsvorrichtung der Katalysatorverschlechterung einer Brennkraftmaschine
DE102008000691A1 (de) Verfahren und Vorrichtung zur Überwachung eines Zuluftsystems einer Brennkraftmaschine
WO2018177897A1 (de) Verfahren und computerprogrammprodukt zur diagnose eines partikelfilters
DE10014224A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Abgasnachbehandlungssytem
DE102004022115A1 (de) Verfahren zum Einbringen eines Reagenzmittels in einen Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102009055082A1 (de) Verfahren zur Überwachung einer Schadstoff-Konvertierungsfähigkeit in einem Abgasnachbehandlungssystem
DE102011086118B4 (de) Verfahren und System für einen Abgaspartikelfilter
EP1180210B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem
WO2000071879A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102010028852B4 (de) Verfahren und Vorrichtung zur Diagnose eines Abgasreinigungssystems für eine Brennkraftmaschine
DE10145863A1 (de) Verfahren/Vorrichtung zur Überwachung eines Drucksignals
EP1364111A1 (de) Verfahren und vorrichtung zur ermittlung einer temperaturgrösse
DE10252732B4 (de) Verfahren und Vorrichtung zum Betrieb einer Abgasnachbehandlungseinrichtung einer Brennkraftmaschine
WO2004016339A2 (de) Verfahren zur reinigung eines partikelfilters
DE102014202035A1 (de) Verfahren und Vorrichtung zur Überwachung eines Stickoxid-Speicher-Katalysators
EP1296032B1 (de) Verfahren und Vorrichtung zur Steuerung eines Abgasnachbehandlungssystems
DE102007009841A1 (de) Verfahren und Vorrichtung zur Ermittlung eines Beladungszustandes eines Partikelfilters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000941887

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 617316

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000941887

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10030888

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000941887

Country of ref document: EP