WO2000065326A1 - Verfahren zur automatisierten untersuchung katalytischer und spektroskopischer eigenschaften der komponenten kombinatorischer bibliotheken - Google Patents

Verfahren zur automatisierten untersuchung katalytischer und spektroskopischer eigenschaften der komponenten kombinatorischer bibliotheken Download PDF

Info

Publication number
WO2000065326A1
WO2000065326A1 PCT/EP2000/003592 EP0003592W WO0065326A1 WO 2000065326 A1 WO2000065326 A1 WO 2000065326A1 EP 0003592 W EP0003592 W EP 0003592W WO 0065326 A1 WO0065326 A1 WO 0065326A1
Authority
WO
WIPO (PCT)
Prior art keywords
components
library
capillary
robot
reactions
Prior art date
Application number
PCT/EP2000/003592
Other languages
English (en)
French (fr)
Inventor
Wilhelm F. Maier
Matthias Orschel
Jens Klein
Christian Lettmann
Hans Werner Schmidt
Original Assignee
Studiengesellschaft Kohle Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle Mbh filed Critical Studiengesellschaft Kohle Mbh
Priority to EP00929399A priority Critical patent/EP1175608B1/de
Priority to DE50014036T priority patent/DE50014036D1/de
Publication of WO2000065326A1 publication Critical patent/WO2000065326A1/de
Priority to US09/984,299 priority patent/US7052914B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00707Processes involving means for analysing and characterising the products separated from the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • B01J2219/00747Catalysts
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/08Methods of screening libraries by measuring catalytic activity
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/18Libraries containing only inorganic compounds or inorganic materials
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/119163Automated chemical analysis with aspirator of claimed structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/21Hydrocarbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/21Hydrocarbon
    • Y10T436/212Aromatic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/21Hydrocarbon
    • Y10T436/214Acyclic [e.g., methane, octane, isoparaffin, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/21Hydrocarbon
    • Y10T436/214Acyclic [e.g., methane, octane, isoparaffin, etc.]
    • Y10T436/216Unsaturated [e.g., ethylene, diene, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry

Definitions

  • the present invention describes an automatic method for the spatially resolved implementation of reactions to material libraries and analysis of the resulting products with the aid of a simple robot system and an analysis device, e.g. B. a mass spectrometer.
  • the method relates in particular to the determination of the activity and selectivity of solids or molecules as catalysts for gas phase reactions. Due to the special design, a commercial pipetting or synthesis robot is used to position the measuring lines in order to investigate reactions on a combinatorial library with local resolution. The peculiarity of the process lies in the simplicity of the structure, which does not require a special reactor, and the easy change between synthesis and screening.
  • the state of the art is the production of material libraries by physical vapor deposition methods by combining them with masking techniques, or wet-chemical by the use of ink et techniques or the use of synthesis robots.
  • Library sizes vary here from less than 100 Components up to 25,000 components per library. The analysis or characterization of certain properties is essential for the evaluation of such libraries. Due to the miniaturized dimensions required to create large material libraries, only minimal sample quantities are available.
  • the heat of reaction released on the components of a catalyst library can be localized using emission-corrected IR thermography and with high sensitivity in gas-phase reactions with heterogeneous (A. Holzwarth, H.-W. Schmidt, WF Maier, Angew. Chem. 1998, 110, 2788) and in the liquid phase with homogeneous and enzyme catalysts (MT Reetz, MH Becker, KMdeing, A. Holzwarth, Angew. Chem. 1998, 110, 2792).
  • IR thermography only allows statements about the relative activity of the components of a library.
  • the main advantage of the present invention lies in the simplicity of the structure and the examination conditions.
  • the components we use are standard laboratory equipment (pipetting robot and mass spectrometer).
  • the Robots are used to control the individual library components, to supply reaction gases via supply lines in the form of capillaries, to carry out measurements via signal lines or to record reaction products. All these inlets and outlets are combined in a bundle of capillaries.
  • the capillary bundle consists only of a gas supply capillary and a fine glass capillary, through which the product mixture is drawn in and which is long enough to ensure the necessary pressure difference between the vacuum of the mass spectrometer and the normal pressure of the library. It was found that it was not necessary to use a separate closed reactor for the study of the library.
  • the library is heated from below to the reaction temperature. It is sufficient to cover the library with a perforated disk and to insert the capillary bundle into the upwardly open holes with the aid of the synthesis robot or a suitable mechanism and to measure the library successively while it is being filled with the reaction gases.
  • FIG. 1 shows the schematic structure of our method.
  • the pipetting needle of the robot is exchanged for the modified capillary bundle on the right side of FIG. 1.
  • This capillary bundle consists of an outer, surrounding steel capillary with the same outer diameter as the original robot capillary, which enables easy mutual exchange.
  • the supply and discharge lines to signal-carrying lines required for supplying, monitoring and measuring the reaction.
  • These are in the form of Capillaries, light conductors or electrical conductors can be freely selected depending on the type of reaction.
  • one of the internal capillaries is used as a guide for the MS capillary and another as a feed line.
  • a light guide can be built into the bundle for irradiation for photoreactions as well as for spectroscopic analysis (IR, VIS, UV, Raman). All other analysis methods that can be controlled via capillaries, such as gas chromatography, HPLC, GC-MS and capillary electrophoresis, can also be used to evaluate material libraries by installing suitable capillaries in the capillary bundle.
  • the system is designed in such a way that it can be built into the robot guide and moved to the library components fully automatically.
  • the material library can be tempered on a hot plate in the range from 20 ° C to 1000 ° C.
  • the temperature radiation above the library support is minimized by a ceramic mask with holes. This is on the library, but leaves the individual library points free due to the identical perforated mask arrangement.
  • the holes in the library in the ceramic mask allow the capillary bundle to be precisely positioned in the library, just above the individual components.
  • the exact metering of the reactants takes place through the gas supply capillary (right side of FIG. 1).
  • Flexible supply lines are used as supply capillaries in order not to impair the mobility of the robot during xyz movements.
  • the composition of the product mixture can be determined via the MS capillary and identified using suitable m / z signals.
  • the material library can be tested completely point by point or only a specific selection of the library. This enables, for example, a sensible combination with emission-corrected IR thermography, since then only the library components that are definitely catalytically active need to be examined for their catalytic selectivity.
  • AMM amorphous microporous mixed oxide
  • the change between fully automatic material synthesis and fully automatic reaction screening is achieved by simply replacing the pipette capillary with the capillary bundle.
  • the system is also suitable for measuring more than one component at the same time. For this only the one capillary bundle has to be exchanged for a capillary bundle array.
  • the system can also be combined with spectroscopic analysis methods. This makes it possible to track UV, Vis, Raman and IR spectra of products as well as of the individual component surface in the library in situ, i.e. during the reactions, in a spatially and time-resolved manner.
  • Photocatalysis can also be carried out in a combinatorial manner if a light guide is added to the capillary bundle for examination. Irradiation with lasers for reaction activation, material change and for spectroscopic characterization can also be implemented very easily in this way. The procedure is limited in that it does not allow pressure testing. With absolute exclusion of atmospheric oxygen or under protective gas, you can work by using the relatively small synthesis robot with a suitable gas-tight envelope, such as a glove box or a plexiglass housing.
  • Example 1 Library production to catalyze the combustion of methane
  • a slate plate (10 cm in diameter) with 2 mm deep holes (2 mm in diameter) was positioned in the pipetting robot as the carrier plate and filled with the solutions required for catalyst synthesis.
  • the catalyst synthesis was based on the sol-gel process.
  • the slate plate was covered with appropriately drilled Teflon, Viton and steel washers which were pressed on with appropriate screw connections.
  • SiO 2 , TiO 2 , ZrO 2 and Al 2 O 3 in varying compositions (A X B) were chosen as base materials for the library.
  • the alkoxide precursors Si (OEt) 4 , Ti (O n Pr) 4 , Zr (O n Pr) 4 and Al (O sec Bu) 3 were initially introduced in alcoholic solution.
  • Example 2 Examination of the combustion of methane
  • the catalyst library was fixed on the heating block and arranged appropriately in the pipetting robot.
  • the library was covered with perforated ceramic and brass masks (see Figure 3).
  • the pipetting robot was provided with the required capillary bundle and the positions to be examined were called up in the control computer from the synthesis program.
  • a mass flow controller set a methane / synthetic air ratio of 0.02 with a total flow of 7 ml / min in the supplying capillary.
  • FIG. 4 shows typical results at the library point in the 2nd row and 2nd column in system 7. It is a tertiary mixture (20 mol% ZrO 2 , 79 mol% Al 2 O 3 , 1 mol% SiO 2 ) , which contains 3 mol% Pt as the catalytically active component.
  • the CO 2 peak (m / z 44) clearly shows the catalytic combustion from 300 ° C, at 320 ° C the carbon dioxide formation is constant.
  • Example 3 Oxidation of propene
  • a propene / synthetic air ratio of 0.4 with a total flow of 7 ml / min in the supplying capillary was set via mass flow controller.
  • the reaction was examined at 450, 500 and 550 ° C. A selection of typical results is shown in Figure 5 (500 ° C). The different selectivity of the different catalyst materials is clearly visible.
  • Example 2 Analogously to Example 1, a library of TiO 2 photocatalysts was streamed with air containing acetone and water at a temperature of 30 ° C.
  • the capillary bundle also contained a light guide with which the component surface was intensively irradiated with light (light source: 50 W halogen incandescent lamp with focusing device, light guide inner diameter 1 mm).
  • light source 50 W halogen incandescent lamp with focusing device, light guide inner diameter 1 mm.
  • Example 6 Oxidation of propene investigated with a double focusing mass spectrometer
  • Example 6 makes the advantages of using mass spectrometers with higher ones Sensitivity and better resolution clearly.
  • a simple mass spectrometer instead of a simple mass spectrometer, a double-focusing sector field device or an ion cyclotron resonance mass spectrometer (ICR-MS) can be used via the capillary coupled to the analysis robot.
  • ICR-MS ion cyclotron resonance mass spectrometer
  • Example 3 The procedure was generally as in Example 3, but a double-focusing mass spectrometer (resolution up to 10,000) was used instead of the gas analyzer used in Examples 1-5.
  • An AMM library produced by robot synthesis was used as the library, comparable to that in Example 2, but with smaller amounts of catalyst.
  • the catalysts were no longer in powder form, as in Examples 1-5 (2.5 mg each), but as a glass-like layer in amounts of 0.2-1 mg.
  • the capillary between the robot and the mass spectrometer was connected to a 2m thermocouple (1mm diameter) in a shrink tube and heated to temperatures up to 250 ° C by applying a voltage. Heating the capillary can also make it more volatile Products are analyzed.

Abstract

Die vorliegende Erfindung beschreibt ein automatisches Verfahren zur ortsaufgelösten Durchführung von Reaktionen auf Materialbibliotheken und Analyse der entstehenden Produkte mit Hilfe eines einfachen Robotersystems und eines Analysegeräts, z.B. eines Massenspektrometers.

Description

Verfahren zur automatisierten Untersuchung katalytischer und spektroskopischer Eigenschaften der Komponenten kombinatorischer
Bibliotheken
Die vorliegende Erfindung beschreibt ein automatisches Verfahren zur ortsaufgelösten Durchführung von Reaktionen auf Materialbibliotheken und Analyse der entstehenden Produkte mit Hilfe eines einfachen Robotersystems und eines Analysegeräts, z. B. eines Massenspektrometers.
Das Verfahren bezieht sich im besonderen auf die Bestimmung der Aktivität und Selektivität von Feststoffen oder Molekülen als Katalysatoren für Gasphasenreaktionen. Durch den speziellen Aufbau wird ein kommerzieller Pipettier- oder Syntheseroboter zur Positionierung der Meßleitungen eingesetzt, um Reaktionen auf einer kombinatorischen Bibliothek ortsaufgelöst zu untersuchen. Die Besonderheit des Verfahrens liegt in der Einfachheit des Aufbaus, das keinen speziellen Reaktor benötigt, sowie des problemlosen Wechsels zwischen Synthese und Screening.
Während sich die kombinatorische Chemie in Bereichen der organischen, biochemischen und pharmazeutischen Chemie als ein wichtiges Werkzeug zur Entwicklung neuer Verbindungen etabliert hat (z.B. Special issue: Combinatorial Chemistry, Acc. Chem. Res., 1996, 29; G. Löwe, Chemical Society Reviews, 1995, 24 (5), 309; S. R. Wilson, A. W. Czarnik, Combinatorial Chemistry - Synthesis and Applikation, John Wiley & Sons, 1997), sind auf dem Gebiet der anorganischen Festkörpersynthese und Materialforschung sowie der Katalysatorentwicklung nur wenige Beispiele bekannt, bei denen kombinatorische Methoden zum Einsatz kommen. Stand der Technik ist die Herstellung von Materialbibliotheken durch physikalische Aufdampfmethoden durch die Kombination mit Maskierangstechniken, oder naßchemisch durch den Einsatz von Ink- et-Techniken oder die Verwendung von Syntheserobotern. Bibliotheksgößen variieren hier von unter 100 Komponenten bis 25.000 Komponenten je Bibliothek. Essentiell für die Auswertung solcher Bibliotheken ist die Analyse bzw. Charakterisierung bestimmter Eigenschaften. Aufgrund der miniaturisierten Dimensionen, die zur Erstellung großer Materialbibliotheken notwendig sind, stehen nur minimale Probenmengen zur Verfügung.
Bei dem Bestreben, das katalytische Verhalten von Materialien innerhalb kombinatorischer Bibliotheken zu erfassen, stechen bis zum jetzigen Zeitpunkt nur wenige Beispiele heraus. So läßt sich die freiwerdende Reaktionswärme auf den Komponenten einer Katalysatorbibliothek mit Hilfe der emissionskorrigierten IR-Thermographie orstaufgelöst und mit hoher Empfindlichkeit in Gasphasen-Reaktionen mit heterogenen (A. Holzwarth, H.-W. Schmidt, W.F. Maier, Angew. Chem. 1998, 110, 2788) und in flüssiger Phase mit homogenen und Enzymkataysatoren (M.T. Reetz, M.H. Becker, K.M. Kühling, A. Holzwarth, Angew. Chem. 1998, 110, 2792) abbilden. Die Verwendung der IR-Thermographie erlaubt jedoch nur Aussagen über die relative Aktivität der Komponenten einer Bibliothek. Dies ist immer ungenügend, wenn mit Folge- oder Parallelreaktionen gerechnet werden muß, wie z.B. der Totaloxidation bei der Suche nach selektiven Oxidationskatalysatoren. Es ist daher wünschenswert, neben der IR- Thermographie über Analysenverfahren zu verfügen, die es erlauben, auch chemische Selektivitäten ortsaufgelöst direkt auf der Bibliothek möglichst automatisiert zu erfassen.
Die aktuellen Arbeiten von Weinberg et al. zeigen die Anwendung massen- spektrometrischer Methoden zur Hochgeschwindigkeitsrasterung von Katalysator-Bibliotheken (P. Cong, R.D. Doolen, Q. Fan, D.M. Giaquinta, S. Guan, E.W. McFarland, D.M. Poojary, K. Seif, H.W: Turner, W.H. Weinberg, Angew. Chem. 1999, 111, 508, W.H. Weinberg, E.W. McFarland, P. Cong, S. Guan (Symyx Technologies), WO-A 98/15969 A2, 1998). Wein- berg und Mitarbeiter wiesen bei der CO-Oxidation mit O2 oder NO an Metallegierungen aus Rh, Pd, Pt und Cu das gebildete CO2 sowie die Eduktgase massenspektrometrisch nach. Das in obiger Patentanmeldung ausführlicher beschriebene System zur örtlich separierten Eduktzuführung und Produktabführung direkt via Bohrung in das Massenspektrometer ist in der Ausführung aufwendig und teuer. Es ist darauf ausgelegt, auch bei kleinsten Katalysatormengen von 2-4μg auf einem Katalysatorelement noch Aussagen zuzulassen. Damit ist eine aufwendige Modifizierung des Massen- spektrometers um eine zweite Quadrupolblende (Jon guide") und die Konstruktion eines Vakuumkammersystems zur getrennten Synthese, Probenvorbehandlung und dem eigentlichen Testen nötig, um so einen direkten Transfer der Bibliothek aus der Präparation zum Massenspektrometer zu ermöglichen. Dadurch wird sowohl die Handhabung der Probe von außen als auch die Erzeugung praxisnaher Reaktionsbedingungen sehr erschwert. Das publizierte Beispiel (CO-Oxidation mit O2 oder NO zu CO2) unterscheidet nur Katalysatoraktivitäten und läßt keine Aussagen über Selektivitätsunterschiede der einzelnen Bibliotheksmitglieder zu. Bei komplexeren Reaktionen mit mehreren möglichen Produkten, die mit stark unterschiedlichen oder auch sehr ähnlichen Selektivitäten bei oft geringen Ausbeuten gebildet werden, versagt diese Methode bisher aufgrund der zu kleinen Produktmengen.
Wir haben nun überraschenderweise gefunden, daß mit einem einfachen Analysegerät, z. B. einem Massenspektrometer, in Kombination mit einem Syntheseroboter die unterschiedliche katalytische Selektivität von Materialien auf einer Bibliothek für Oxidationsreaktionen zuverlässig und vollautomatisch erfasst werden kann. Der wesentliche Vorteil der vorliegenden Erfindung liegt in der Einfachheit des Aufbaus und der Untersuchungsbedingungen. Die von uns verwendeten Komponenten sind laborübliche Gerätschaften (Pipettierroboter und Massenspektrometer). Der Roboter wird eingesetzt, um die einzelnen Bibliothekskomponenten anzusteuern, über Versorgungsleitungen in Form von Kapillaren Reaktionsgase zuzuführen, über Signalleitungen Messungen durchzuführen oder Reaktionsprodukte aufzunehmen. Alle diese Zu- und Abführungen sind in einem Bündel von Kapillaren zusammengefaßt. Für massenspektrometrische Untersuchungen besteht das Kapillarbündel lediglich aus einer Gasversorgungskapillare und einer feinen Glaskapillare, über die das Produktgemisch angesaugt wird und das lang genug ist, um den nötigen Druckunterschied zwischen dem Vakuum des Massenspektrometers und dem Normaldruck der Bibliothek zu gewährleisten. Es wurde gefunden, daß es nicht nötig ist, einen eigenen geschlossenen Reaktor für die Untersuchung der Bibliothek einzusetzen. Während der Messungen wird die Bibliothek von unten auf Reaktionstemperatur beheizt. Es genügt, die Bibliothek mit einer durchbohrten Scheibe abzudecken und in die nach oben offenen Bohrungen das Kapillarbündel mit Hilfe des Syntheseroboters oder einer geeigneten Mechanik einzuführen und die Bibliothek während des Beströmens mit den Reaktionsgasen sukzessive zu vermessen. Mit diesem einfachen Aufbau ist es bereits gelungen, sowohl Oxidations-, als auch Reduktionsreaktionen auf Bibliotheken zu vermessen und Selektivitätsunterschiede der einzelnen Bibliothekskomponenten zuverlässig zu dokumentieren.
Beispiel einer erfindungsgemäßen Meßanordnung: Figur 1 zeigt den schematischen Aufbau unserer Methode. In einem kommerziellen Pipettierroboter ist die Pipettiernadel des Roboters gegen das modifizierte Kapillarbündel auf der rechten Seite von Figur 1 ausgetauscht. Dieses Kapillarbündel besteht aus einer äußeren, umgebenden Stahlkapillare mit dem gleichen Außendurchmesser wie die Originalroboterkapillare, was den problemlosen gegenseitigen Wechsel ermöglicht. Im Inneren befinden sich die zur Versorgung, Überwachung und Messung der Reaktion nötigen Zu- und Ableitungen auf signalführende Leitungen. Diese sind in Form von Kapillaren, Lichtleitern oder elektrischen Leitern je nach Reaktionsführung frei wählbar. In den Beispielen wird eine der innenliegenden Kapillaren als Führung für die MS-Kapillare und eine andere als Eduktzuleitung genutzt. Zur Bestrahlung für Photoreaktionen ebenso wie zur spektroskopischen Analyse (IR, VIS, UV, Raman) kann ein Lichtleiter in das Bündel eingebaut werden. Auch alle anderen über Kapillaren ansteuerbaren Analysenmethoden, wie Gaschromatographie, HPLC, GC-MS und Kapillarelektrophorese, lassen sich durch den Einbau geeigneter Kapillaren in das Kapillarbündel zur Auswertung von Materialbibliotheken nutzen.
Das System ist so ausgelegt, daß es in die Roboterführung eingebaut werden und vollautomatisch zu den Bibliothekskomponenten bewegt werden kann. Die Materialbibliothek kann über eine Heizplatte im Bereich von 20°C bis 1000°C temperiert werden. Die Temperaturabstrahlung über dem Trägermaterial der Bibliothek wird durch eine mit Bohrungen versehene Keramikabdeckmaske minimiert. Diese liegt auf der Bibliothek, läßt aber die einzelnen Bibliothekspunkte infolge der identischen Lochmaskenanordnung frei. Die Bohrungen auf der Bibliothek in der Keramikmaske erlauben eine präzise Positionierung des Kapillarbündels in der Bibliothek dicht über den einzelnen Komponenten. Die genaue Dosierung der Reaktanden erfolgt durch die Gaszuführungskapillare (rechte Seite von Figur 1). Als zuführende Kapillaren werden flexible Zuleitungen benutzt, um die Beweglichkeit des Roboters bei xyz-Bewegungen nicht zu beeinträchtigen. Über die MS-Kapillare kann die Zusammensetzung des Produktgemisches bestimmt und anhand geeigneter m/z-Signale identifiziert werden. Wahlweise kann die Materialbibliothek komplett Punkt für Punkt oder nur eine bestimmte Auswahl der Bibliothek abgetestet werden. Dies ermöglicht z.B. die sinnvolle Kombination mit emissionskorrigierter IR-Thermographie, da dann nur noch die mit Sicherheit katalytisch aktiven Bibliothekskomponenten auf ihre katalytische Selektivität untersucht werden müssen. In der im Beispiel 2 aufgeführten Untersuchung der selektiven Oxidation von Propen mit Luft an unterschiedlichen amorphen mikroporösen Mischoxid-(AMM)-Katalysatoren konnte die literaturbekannte Selektivität der unterschiedlichen Aktivkomponenten eindeutig und reproduzierbar nachgewiesen werden. Dieses Beispiel, dessen konventionelle Durchführung während einer Doktorarbeit [H. Orzesek, Univ. GH Essen, 1998] mehrere Monate in Anspruch nahm, konnte kombinatorisch innerhalb weniger Stunden durchgeführt werden. Dies dokumentiert eindrucksvoll die mögliche Zeitersparnis durch kombinatorisches Arbeiten.
Ein weiterer Vorteil der Meßanordnung kommt insbesondere dann zum Tragen, wenn auch zur Herstellung der Bibliothek der Pipetierroboter eingesetzt wurde, da dann die ortspezifischen Teile des Syntheses-Programms auch für die Analyse genutzt werden können (siehe Beispiel 1). Der Wechsel zwischen vollautomatischer Materialsynthese und vollautomatischem Reak- tionsscreening gelingt durch den simplen Austausch von Pipettenkapillare durch das Kapillarbündel. Das System ist auch geeignet, um mehr als eine Komponente gleichzeitig zu vermessen. Hierzu muß nur das eine Kapillarbündel gegen ein Kapillarbündel- Array ausgetauscht werden. Das System läßt sich auch mit spektroskopischen Analysenverfahren kombinieren. Es wird damit möglich, UV-, Vis-, Raman- und IR-Spektren von Produkten als auch von der Einzelkomponentenoberfläche in der Bibliothek in situ, also während der Reaktionen, orts- und zeitaufgelöst zu verfolgen. Auch Photokatalyse ist so kombinatorisch durchführbar, wenn dem Kapillarbündel zur Untersuchung ein Lichtleiter beigefügt wird. Auch die Bestrahlung mit Lasern zur Reaktionsaktivierung, Materialsveränderung und zur spektroskopischen Charakterisierung läßt sich auf diese Weise sehr einfach realisieren. Das Verfahren ist insofern beschränkt, als es keine Untersuchungen unter Druck zuläßt. Unter absolutem Ausschluß von Luftsauerstoff oder unter Schutzgas kann gearbeitet werden, indem der relative kleine Synthese- roboter mit einer geeignete gasdichten Umhüllung zugeben wird, wie z.B. einer Glove-Box oder einem Plexiglasgehäuse.
Ausführungsbeispiele
Beispiel 1: Bibliotheksherstellung zur Katalyse der Verbrennung von Methan
Als Trägerplatte wurde eine Schieferplatte (10 cm Durchmesser) mit 2 mm tiefen Bohrungen (Durchmesser 2 mm) im Pipettierroboter positioniert und mit den, für Katalysatorsynthese nötigen Lösungen befüllt. Die Katalysatorsynthese basierte auf dem Sol-Gel- Verfahren. Zum Schutz der Bohrungen in der Platte während der Befüllung wurde die Schief erplatte mit entsprechend durchbohrten Teflon-, Viton- und Stahlscheiben abgedeckt die durch entsprechende Verschraubungen angepreßt wurden. Als Basismaterialien für die Bibliothek wurden SiO2, TiO2, ZrO2 und Al2O3 in variierender Zusammensetzung (AXB) gewählt. Die Alkoxidvorstufen Si(OEt)4, Ti(OnPr)4, Zr(OnPr)4 und Al(OsecBu)3 wurden in alkoholischer Lösung vorgelegt. Als katalytisch aktive Zentren wurden dann Pt, Pd, Ru und Rh in Form von alkoholischen Metallsalzlösungen verwendet. Per Computerprogramm wurden mit dem Syntheseroboter aus diesen alkoholischen Lösungen 585 Sol-Gel-Mischungen in den einzelnen Bibliothekslöchern vorgelegt. Der Belegungsplan ist in Figur 2 dargestellt. Der tiefgestellte Index in Figur 2 gibt das molare Verhältniss der Basisoxide wieder. Der Aktivmetallgehalt, angedeutet durch die Edelmetallsalze in Figur 3, betrug in allen Materialien 3 mol%. Nach vollautomatischer Addition aller Sol-Gel-Komponenten wurde die Bibliothek 1 Tag bei Raumtemperatur und 2h bei 65°C vorgetrocknet. Nach Abnahme der Masken erfolgte die endgültige Kalzinierung der Bibliothek (Schieferplatte) bei 250°C für 3h. Beispiel 2: Untersuchung der Verbrennung von Methan Die Katalysatorbibliothek wurde auf dem Heizblock fixiert und im Pipettierroboter passend angeordnet. Die Bibliothek wurde mit entsprechend durchbohrten Keramik- und Messingmasken abgedeckt (siehe Figur 3). Der Pipettierroboter wurde mit dem benötigten Kapillarbündel versehen und die zu untersuchenden Positionen im Steuercomputer aus dem Syntheseprogramm abgerufen.
Über Massendurchflussregler wurde ein Methan / synthetische Luft- Verhältniss von 0,02 bei einem Gesamtfluß von 7ml/min in der zuführenden Kapillare eingestellt. Die Produktbildung wurde massenspektrometrisch anhand des Massensignals für CO2 (m/z = 44) registriert.
Die Materialien wurden in Schritten von 10 bzw. 50 °C über einen Temperaturbereich von 250°C bis 600 °C untersucht. Während bei vielen Komponenten eine deutliche Aktivität erst bei höheren Temperaturen über 300 °C erkennbar war, zeigten andere Komponenten über den gesamten Temperaturbereich keine Aktivität.
Figur 4 zeigt typische Ergebnisse an dem Bibliothekspunkt in der 2. Zeile und 2.Spalte in System 7. Es handelt sich dabei um eine tertiäre Mischung (20mol-% ZrO2, 79mol-%Al2O3, lmol-% SiO2), die als katalytisch aktive Komponente 3mol-% Pt enthält. Deutlich zu sehen am CO2-Peak (m/z 44) ist die katalytische Verbrennung ab 300°C, bei 320°C ist die Kohlendioxidbildung konstant. Beispiel 3: Oxidation von Propen
Allgemein wurde wie in Beipiel 2 beschrieben verfahren. Neben Produkten der Totaloxidation (CO und CO2) können bei dieser Reaktion unterschiedliche Hauptprodukte in unterschiedlichem Ausmaß auftreten, die aufgrund typischer Massensignale identifizierbar sind: Acrolein (m/z = 56), 1,5- Hexadien (m/z = 67), Benzol (m/z = 78) und AUylalkohol oder Propenoxid (m/z = 58). Als Bibliothek wurde eine Schieferplatte mit 33 verschiedenen AMM-Katalysatoren (je 2,5 mg) eingesetzt (Tabelle 1).
Tabelle 1: AMM-Katalysatorbibliothek*
Figure imgf000011_0001
* amorphe, mikroporöse Mischoxide; die tiefgestellte Zahl gibt den molaren %-Anteil des katalytisch aktiven Metalloxids an, der %-Gehalt des Matrixoxids ergibt sich aus der Differenz zu 100% (z.B. Fe3Zr = 3% FeOx in 97% ZrO2)
Über Massendurchflussregler wurde ein Propen / synthetische Luft- Verhältniss von 0,4 bei einem Gesamtfluß von 7ml/min in der zuführenden Kapillare eingestellt. Die Reaktion wurde bei 450, 500 und 550 °C untersucht. Eine Auswahl typischer Ergebnisse ist in Figur 5 (500 °C) dargestellt. Deutlich sichtbar ist die unterschiedliche Selektivität der verschiedenen Katalysatormaterialien. Die in Figur 6 dargestellten Ergebnisse reproduzieren in nahezu perfekter Weise die bereits bekannte Ergebnisse derselben Reaktion im konventionellen Strömungsrohrreaktor im Labor-maßstab (ca. 500mg Katalysatormasse, V/t = 200ml/min) (Orzesek, Dissertation Universität GH Essen, 1998; Orzesek et al, Chem. Eng. Technol. im Druck).
Beispiel 4: Hydrierreaktion
Analog Beispiel 1 wurden Komponenten auf einer Bibliothek von amorphen mikroporösen Mischoxiden (je 2,5 mg) mit einer Mischung von 1 ml/min Propen und 2,5 ml/min H2 beströmt (Temp. 70 °C). Im MS zeigten sich bei den Mischungen AMM-PdiSi und AMM-Pt2Si ein intensives Signal bei m/z = 29 (signifikant für die Bildung von n-Propan). Bei AMM-PtiTi und AMM- PdiTi war nur ein schwaches, bei allen anderen vermessenen Komponenten war kein signifikantes m/z =29 Signal detektierbar.
Beispiel 5: Photokatalyse
Analog Beispiel 1 wurde eine Bibliothek mit TiO2-Photokatalysatoren bei einer Temperatur von 30 °C mit aceton- und wsserhaltiger Luft beströmt. Zusätzlich zur MS-Kapillare und der Gaszuführung enthielt das Kapillarbündel noch einen Lichtleiter, mit dem die Komponentenoberfläche intensiv mit Licht bestrahlt wurde (Lichtquelle: 50 W Halogenglühlampe mit Fokus- siereinrichtung, Lichtleiterinnendurchmesser 1 mm). Im Massenspektrometer zeigte sich ein Abfall der Acetonkonzentration (m/e = 58) reproduzierbar mit Einschalten der Beleuchtungsquelle.
Beispiel 6: Oxidation von Propen untersucht mit doppelt fokussierendem Massenpektrometer
Während in den Beispielen 2-5 die entstehenden gasförmigen Produkte mit Hilfe eines einfachen Massenspektrometers analysiert wurden, macht Beispiel 6 die Vorteile des Einsatzes von Massenspektrometern mit höherer Empfindlichkeit und besserer Auflösung deutlich. So kann z.B. an Stelle eines einfachen Massenspektrometers auch ein doppelt fokussierendes Sektorfeldgerät oder ein Ionen-Cyclotron-Resonanz-Massenspektrometer (ICR-MS) über die Kapillare gekoppelt mit dem Analyseroboter eingesetzt werden. Der Einsatz solcher Geräte hat den Vorteil drastisch erhöhter Empfindlichkeit und analytischer Auflösung. Dies bedeutet, daß mit wesentlich kleineren Katalysatormengen oder geringerer Gesamtoberfläche gearbeitet werden kann und daß MS-Fragmente gleicher Masse, aber unterschiedlicher chemischer Zusammensetzung, wie z.B. Kohlenmonoxid, Ethylen und Stickstoff (alle m/z = 28) grandlinienaufgelöst in kombinatorischen Experimenten erfasst werden können. Die Empfindlichkeit der Messungen wird so groß, daß auch glasartige Katalysatoren, wie sie häufig in robotergesteuerten Synthesen erzeugt werden, in Mengen < OJ mg noch zuverlässig MS-meßbare Produkt-Intensitäten ergeben. Während in den Beispielen 2-5 mit einer unbeheizten Kapillare nur gasförmige Produkte analysiert wurden, wird in Beispiel 6 eine beheizte Kapillare eingesetzt, die es erlaubt auch schwerer flüchtige Verbindungen zu detektieren.
Allgemein wurde wie in Beispiel 3 verfahren, allerdings wurde ein doppelt fokussierendes Massenspektrometer (Auflösung bis 10.000) an Stelle des in Beispielen 1-5 eingesetzen Gasanalysengerätes verwendet. Als Bibliothek diente eine, durch Robotersynthesen hergestellte AMM-Bibliothek, vergleichbar der in Beispiel 2, aber mit geringeren Katalysatormengen. Die Katalysatoren lagen nicht mehr pulverförmig, wie in den Beispielen 1-5 vor (je 2,5 mg), sondern als glasartige Schicht in Mengen von 0,2-1 mg. Die Kapillare zwischen dem Roboter und dem Massenspektrometer wurde mit einem 2m Thermoelement (1mm Durchmesser) in einem Schrumpfschlauch verbunden und durch Anlegen einer Spannung auf Temperaturen bis 250 °C beheizt. Durch die Beheizung der Kapillare können auch schwerer flüchtige Produkte analysiert werden. In einfachen Tests wurde gefunden, daß mit dieser beheizten Kapillare z.B. Phenol in der Luft über einer Phenol-haltigen Flasche oder Glykol über einer Glykol-haltigen Flasche im MS nachweisbar werden. Versuche mit dem in Beispielen 1 -5 eingesetzen Quadrupol- Massenspektrometer zeigten keine meßbaren Intensitäten (zu schlechtes Signal-Rausch- Verhältnis). Figur 6 zeigt anhand ausgewählter Produktspektren, die nun mit dem Sektorfeld-Massenspektrometer erhalten wurden, daß Acrolein (m/z = 56) bzw. Benzol (m/z = 78) selektiv auf den einzelnen Katalysatoren gebildet werden. Die Abbildung zeigt, daß katalytische Aktivität und Selektivität auch auf kleinsten Katalysatormengen zuverlässig erkennbar ist.

Claims

Patentansprüche
1. Verfahren zur automatisierten Durchführung von Reaktionen auf Materialbibliotheken und zur Analyse der bei diesen Reaktionen entstehenden Produkte mit Hilfe eines Robotersystems, dadurch gekennzeichnet, daß ein Satz von Zuführungsleitungen für Reaktionssubstanzen, Abführungsleitungen für Reaktionsprodukte und/oder signalführende Leitungen in einem Bündel oder mehrere derartige Sätze in mehreren Bündeln von Kapillaren angeordnet sind, die vom Robotersystem über den einzelnen Komponenten einer Materialbibliothek zeitlich nacheinander bzw. über mehreren Komponenten gleichzeitig positioniert werden.
2. Verfahren nach Anspruch 1 , wobei die Komponenten der Materialbibliotheken in den Bohrungen einer Platte untergebracht oder durch eine mit Bohrungen versehenen Platte abgedeckt sind, und die Kapillarbündel vom Roboter in die Bohröf nungen mit den Komponenten der Materialbibliothek positioniert werden.
3. Verfahren nach Ansprüchen 1-2, wobei eine Abführungsleitung für Reaktionsprodukte im Kapillarbündel zu einem Analysegerät führt.
4. Verfahren nach Anspruch 3, wobei das Analysegerät ein Massenspektrometer, ein Chromatograph oder eine Kombination von beiden ist.
5. Verfahren nach Anspruch 1, wobei eine signalführende Leitung im Kapillarbündel in Form eines Lichtleiters zur Bestrahlung der Komponenten der Materialbibliothek mit elektromagnetischer Strahlung eingesetzt wird.
6. Verfahren nach Anspruch 1 , wobei eine signalführende Leitung im Kapillarbündel in Form eines Lichtleiters zu einem Detektor führt.
7. Verfahren nach Anspruch 6, wobei der Detektor ein UV- VIS- IR- oder Ramanspektrometer ist.
8. Verfahren nach Anspruch 1-7, wobei der Ablauf der Reaktion als Funktion der Zeit registriert wird.
9. Verfahren nach Ansprüchen 1-8, wobei die Materialbibliothek auf einer beheizbaren Platte fixiert ist.
10. Verfahren nach Ansprüchen 1-9, wobei die Komponenten der Materialbibliothek Katalysatoren, Sensoren oder Leuchtstoffe sind.
11. Verfahren nach Anspruch 1, wobei die Reaktionen Oxidations- oder Reduktionsreaktionen in der Gasphase sind, die direkt auf der offenen Bibliothek durchgeführt werden.
12. Verfahren nach Anspruch 1, wobei als Robotersystem ein Pipettier- roboter eingesetzt wird, in dem die Pipette ersetzt ist durch das Bündel von Kapillaren für Zu- und Abführungsleitungen und/oder signalführenden Leitungen.
PCT/EP2000/003592 1999-04-27 2000-04-20 Verfahren zur automatisierten untersuchung katalytischer und spektroskopischer eigenschaften der komponenten kombinatorischer bibliotheken WO2000065326A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00929399A EP1175608B1 (de) 1999-04-27 2000-04-20 Verfahren zur automatisierten untersuchung katalytischer und spektroskopischer eigenschaften der komponenten kombinatorischer bibliotheken
DE50014036T DE50014036D1 (de) 1999-04-27 2000-04-20 Verfahren zur automatisierten untersuchung katalytischer und spektroskopischer eigenschaften der komponenten kombinatorischer bibliotheken
US09/984,299 US7052914B2 (en) 1999-04-27 2001-10-29 Automated method for examining catalytic and spectroscopic properties of the components of combinatorial libraries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19918956A DE19918956A1 (de) 1999-04-27 1999-04-27 Verfahren zur automatisierten Untersuchung katalytischer und spektroskopischer Eigenschaften der Komponenten kombinatorischer Bibliotheken
DE19918956.0 1999-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/984,299 Continuation US7052914B2 (en) 1999-04-27 2001-10-29 Automated method for examining catalytic and spectroscopic properties of the components of combinatorial libraries

Publications (1)

Publication Number Publication Date
WO2000065326A1 true WO2000065326A1 (de) 2000-11-02

Family

ID=7905924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/003592 WO2000065326A1 (de) 1999-04-27 2000-04-20 Verfahren zur automatisierten untersuchung katalytischer und spektroskopischer eigenschaften der komponenten kombinatorischer bibliotheken

Country Status (5)

Country Link
US (1) US7052914B2 (de)
EP (1) EP1175608B1 (de)
AT (1) ATE353436T1 (de)
DE (2) DE19918956A1 (de)
WO (1) WO2000065326A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068236A2 (en) * 2000-03-16 2001-09-20 Basf Aktiengesellschaft Process and apparatus for the combinatorial production and testing of material libraries by using at least two analytical methods
EP1398077A1 (de) * 2002-09-16 2004-03-17 Corning Incorporated Verfahren und Mikrofluidischereaktor für Photokatalyse
US6864091B1 (en) 2000-08-31 2005-03-08 Symyx Technologies, Inc. Sampling probe
US7390664B2 (en) 2002-12-20 2008-06-24 Exxonmobil Research And Engineering Company Method and apparatus for high throughput catalysts screening and optimization

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059328C2 (de) * 2000-11-29 2003-08-14 Siemens Ag Verfahren zum Herstellen einer strukturierten Materialbibliothek
DE10132441A1 (de) * 2001-07-04 2003-01-23 Studiengesellschaft Kohle Mbh Mischoxid-Katalysatoren und ihre Verwendung zur katalytischen Verbrennung
DE10325735B4 (de) 2003-06-06 2006-06-29 Robert Bosch Gmbh Vorrichtung und Verfahren zur Analyse einer Materialbibliothek
US20110095201A1 (en) * 2003-08-22 2011-04-28 Stolowitz Mark L Electrowetting sample presentation device for matrix-assisted laser desorption/ionization mass spectrometry and related methods
US7774837B2 (en) * 2006-06-14 2010-08-10 Cipheroptics, Inc. Securing network traffic by distributing policies in a hierarchy over secure tunnels
US9068954B1 (en) * 2012-03-28 2015-06-30 Catalytic Combustion Corporation Monolith catalyst test system and method for its use
US9562880B1 (en) 2012-03-28 2017-02-07 Catalytic Combustion Corporation Monolith catalyst test system and method for its use
GB2511772B (en) 2013-03-12 2019-01-30 Ceramex Ltd Testing catalytic efficiency of an exhaust component
US20140335626A1 (en) * 2013-05-10 2014-11-13 Cdti Test Bench Gas Flow Control System and Method
FR3017058B1 (fr) * 2014-02-06 2017-08-18 Centre Nat Rech Scient Dispositif d'evaluation d'au moins un critere de performance de catalyseurs heterogenes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD234941A1 (de) * 1985-02-28 1986-04-16 Leuna Werke Veb Verfahren und anordnung zur katalysatoraktivitaetsbestimmung
US5290513A (en) * 1991-07-18 1994-03-01 Laboratorium Prof. Dr. Rudolf Berthold Gmbh & Co. Kg Radiation measuring device, particularly for luminescence measurements
WO1997032208A1 (en) * 1996-02-28 1997-09-04 Technology Licensing Co. L.L.C. Catalyst testing process and apparatus
WO1998015969A2 (en) * 1996-10-09 1998-04-16 Symyx Technologies Mass spectrometers and methods for rapid screening of libraries of different materials
GB2327754A (en) * 1997-07-26 1999-02-03 Johnson Matthey Plc Catalyst screening system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE234941C (de)
US3267646A (en) * 1963-03-04 1966-08-23 Hewlett Packard Co Automatic preparative gas chromatograph
US3645127A (en) * 1970-01-12 1972-02-29 Veeco Instr Remote leak detection
US3926558A (en) * 1973-07-05 1975-12-16 Robert E Davis Method for measuring conversion efficiency of catalysts
CA1137962A (en) * 1980-05-20 1982-12-21 Martin Moskovits Heterogeneous catalyst and process for its manufacture
JPS5848836A (ja) * 1981-09-18 1983-03-22 Toa Medical Electronics Co Ltd 光学式自動分析測定装置
GB2196116B (en) * 1986-10-07 1990-08-15 Weston Terence E Apparatus for chemical analysis.
US4909090A (en) * 1989-04-24 1990-03-20 Thermedics Inc. Vapor sampling probe
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
GB2237754A (en) 1989-11-06 1991-05-15 Yuan Cheng Peng Air cleaning and humidifying apparatus
WO1991016675A1 (en) * 1990-04-06 1991-10-31 Applied Biosystems, Inc. Automated molecular biology laboratory
DE69132531T2 (de) * 1990-12-06 2001-09-13 Affymetrix Inc Verbindungen und ihre Verwendung in einer binären Synthesestrategie
JP3385670B2 (ja) * 1993-09-17 2003-03-10 株式会社島津製作所 赤外分光光度計
US5537206A (en) * 1993-11-02 1996-07-16 Nkk Corporation Method for analyzing steel and apparatus therefor
DE19608963C2 (de) * 1995-03-28 2001-03-22 Bruker Daltonik Gmbh Verfahren zur Ionisierung schwerer Moleküle bei Atmosphärendruck
US5889199A (en) * 1997-05-13 1999-03-30 Jaesent Inc. Portable leak detector
US6426226B1 (en) * 1997-10-10 2002-07-30 Laboratory Catalyst Systems Llc Method and apparatus for screening catalyst libraries
US6306658B1 (en) * 1998-08-13 2001-10-23 Symyx Technologies Parallel reactor with internal sensing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD234941A1 (de) * 1985-02-28 1986-04-16 Leuna Werke Veb Verfahren und anordnung zur katalysatoraktivitaetsbestimmung
US5290513A (en) * 1991-07-18 1994-03-01 Laboratorium Prof. Dr. Rudolf Berthold Gmbh & Co. Kg Radiation measuring device, particularly for luminescence measurements
WO1997032208A1 (en) * 1996-02-28 1997-09-04 Technology Licensing Co. L.L.C. Catalyst testing process and apparatus
WO1998015969A2 (en) * 1996-10-09 1998-04-16 Symyx Technologies Mass spectrometers and methods for rapid screening of libraries of different materials
GB2327754A (en) * 1997-07-26 1999-02-03 Johnson Matthey Plc Catalyst screening system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANDELEIT B ET AL: "KOMBINATORISCHE MATERIALFORSCHUNG UND KATALYSE", ANGEWANDTE CHEMIE,DE,VCH VERLAGSGESELLSCHAFT, WEINHEIM, vol. 111, 1999, pages 2649 - 2689, XP000856114, ISSN: 0044-8249 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068236A2 (en) * 2000-03-16 2001-09-20 Basf Aktiengesellschaft Process and apparatus for the combinatorial production and testing of material libraries by using at least two analytical methods
WO2001068236A3 (en) * 2000-03-16 2002-03-28 Hte Ag Process and apparatus for the combinatorial production and testing of material libraries by using at least two analytical methods
US6864091B1 (en) 2000-08-31 2005-03-08 Symyx Technologies, Inc. Sampling probe
US7071000B2 (en) 2000-08-31 2006-07-04 Symyx Technologies, Inc. Method for sampling reaction products
EP1398077A1 (de) * 2002-09-16 2004-03-17 Corning Incorporated Verfahren und Mikrofluidischereaktor für Photokatalyse
US7390664B2 (en) 2002-12-20 2008-06-24 Exxonmobil Research And Engineering Company Method and apparatus for high throughput catalysts screening and optimization

Also Published As

Publication number Publication date
EP1175608B1 (de) 2007-02-07
DE50014036D1 (de) 2007-03-22
ATE353436T1 (de) 2007-02-15
US7052914B2 (en) 2006-05-30
EP1175608A1 (de) 2002-01-30
US20020135753A1 (en) 2002-09-26
DE19918956A1 (de) 2000-11-02

Similar Documents

Publication Publication Date Title
EP1175608B1 (de) Verfahren zur automatisierten untersuchung katalytischer und spektroskopischer eigenschaften der komponenten kombinatorischer bibliotheken
DE69725429T2 (de) Verfahren und vorrichtung zum testen von katalysatoren
EP1012598B1 (de) Verfahren und vorrichtung zum untersuchen von chemischen reaktionen in parallel geschalteten, miniaturisierten reaktoren
Snively et al. Chemically sensitive parallel analysis of combinatorial catalyst libraries
DE19618032C2 (de) Lagerfähig vorpräparierte Maldi-Probenträger
DE10012847A1 (de) Verfahren und Vorrichtung zur kombinatorischen Herstellung und Testung von Materialbibliotheken durch Anwendung mindestens zweier Analysemethoden
DE10004816A1 (de) Verfahren und Vorrichtung zur kombinatorischen Herstellung und Testung von Materialbibliotheken durch photoakustische Analysemethoden
DE19809477A1 (de) Anordnung zum Testen der katalytischen Aktivität von einem Reaktionsgas ausgesetzten Feststoffen
MXPA01004785A (es) Metodo y aparato para examinar bibliotecas de catalizadores.
EP0938742B1 (de) Verfahren und vorrichtung zum erkennen der katalytischen aktivität von feststoffen
Kubanek et al. Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research
DE102013006132B9 (de) Hochdurchsatz-Charakterisierung von Proben durch Massenspektrometrie
DE19957682A1 (de) Vorrichtung zur optischen Spektroskopie und Verfahren zu dessen Herstellung
Maier et al. Combinatorial chemistry of materials, polymers, and catalysts
WO2002051546A1 (de) Neue photokatalysatoren und verfahren zu ihrer auffindung
EP4279902A1 (de) Messzelle zur untersuchung von proben mittels elektromagnetischer strahlung
Weiss et al. High-throughput gas chromatography and mass spectrometry for heterogeneous catalysis: screening of catalytic activities and selectivities
Omata et al. Catalyst Screening for Oxidative Reforming of Methane in Direct Route using High Pressure HTS Reactor with Syngas Detection System by Colorimetric Reaction and Gas Chromatograph
Costa Multiple ion detection: a new tool for neurochemistry and biological psychiatry
DE29724908U1 (de) Vorrichtung zum Screening von Katalysatoren
Kirchhoff et al. Classical methods
Su et al. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts
D'ADDIO THE USE OF INELASTIC ELECTRON TUNNELING SPECTROSCOPY FOR THE ANALYSIS OF ALUMINA SUPPORTED RHODIUM.
Howard et al. Status and use of HPLC-DAD/APCI-MS and direct flame sampling/APCI-MS for fullerenes and PAH research. First annual technical report for instrumentation grant, Project period 1 August 1992--31 July 1994
DoAmaral AN APPROACH TO THE ASSAY OF SEROTONIN USING GAS-LIQUID CHROMATOGRAPHY AND MASS FRAGMENTOGRAPHY-THE PINEAL GLAND AS A MODEL SYSTEM

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09984299

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000929399

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000929399

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000929399

Country of ref document: EP