WO2000063278A1 - Process for producing thermoplastic resin composition and thermoplastic resin composition - Google Patents

Process for producing thermoplastic resin composition and thermoplastic resin composition Download PDF

Info

Publication number
WO2000063278A1
WO2000063278A1 PCT/JP2000/002540 JP0002540W WO0063278A1 WO 2000063278 A1 WO2000063278 A1 WO 2000063278A1 JP 0002540 W JP0002540 W JP 0002540W WO 0063278 A1 WO0063278 A1 WO 0063278A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
fibrous
coupling agent
zonolite
Prior art date
Application number
PCT/JP2000/002540
Other languages
French (fr)
Japanese (ja)
Inventor
Shin-Ichi Yamamoto
Kaoru Takazaki
Original Assignee
Ube Material Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries, Ltd. filed Critical Ube Material Industries, Ltd.
Priority to AU38393/00A priority Critical patent/AU3839300A/en
Priority to JP2000612362A priority patent/JP4718015B2/en
Publication of WO2000063278A1 publication Critical patent/WO2000063278A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • thermoplastic resin composition Description Method for producing thermoplastic resin composition and thermoplastic resin composition
  • the present invention relates to a thermoplastic resin composition that can be advantageously used for producing a resin molded product having improved properties such as impact resistance and bending strength, and a method for producing the same.
  • Thermoplastic polyamide resins, polyester resins, polyolefin resins, etc. are easy to mold using their thermoplasticity, and the resulting resin molded products have good properties such as elasticity and rigidity. Used in the manufacture of molded products. In particular, it is widely used in the manufacture of automotive parts, electrical and electronic parts, precision machine parts, and so on.
  • fibrous calcium silicate hydrate such as zonolite is treated with a surfactant and Z or a force-pulverizing agent.
  • Kneaded thermoplastic resin compositions have been proposed (e.g., Japanese Patent Application Laid-Open No. Hei 6-12841, Japanese Patent Laid-open No. Hei 7-21613, Japanese Patent Laid-open No. Hei 8-16653) No. 7 publication).
  • the fibrous zonolite is easily crushed into fine particles in the major axis and minor axis directions to form fine particles. It has the effect of improving various properties such as impact resistance and bending strength of the molded article of the thermoplastic resin composition.
  • thermoplastic resin molded products can be improved by adding the above-mentioned surface treated zonolite to thermoplastic resin.
  • thermoplastic resin molded products In the technical fields such as parts and precision machinery parts, there is a tendency for thermoplastic resin molded products to have higher properties such as higher impact resistance and bending strength.
  • the demand for further improvement of the mechanical properties of such resin molded articles cannot be sufficiently satisfied by the zonotrite-containing thermoplastic resin compositions known so far.
  • an object of the present invention is to provide a thermoplastic resin composition containing a zonotrite, which has improved properties such as impact resistance and flexural strength, and is more suitable for producing a resin molded product than before.
  • a main object is to provide a plastic resin composition.
  • the present invention also provides a method capable of advantageously producing a thermoplastic resin composition suitable for producing a resin molded article having improved properties such as impact resistance and bending strength. Aim.
  • the present invention provides a thermoplastic resin, a BET ratio surface area of which surface is previously coated with a surfactant, a surface area of 21 n ⁇ Zg or more, an average fiber length of 1 to 5 ⁇ m, and an average fiber diameter of 0 ⁇ m.
  • a fibrous zonolite in the range of 1 to 0.5 ⁇ m is mixed at a weight ratio of 99.5: 0.5 to 20:80, and the resulting mixture is mixed with the fiber.
  • the present invention provides a method for producing a thermoplastic resin composition, comprising heating and kneading in the presence of a force coupling agent in an amount in the range of 0.2 to 10% by weight based on the weight of the zonotralate. .
  • the present invention also provides a thermoplastic resin and a fibrous material having an average fiber length in the range of 0.1 to 0.7 / xm and an average fiber diameter in the range of 0.01 to 0.05 / m.
  • thermoplastic resin composition containing a force coupling agent.
  • the present invention also resides in a thermoplastic resin composition obtained by the above method for producing a thermoplastic resin composition of the present invention.
  • the present invention further comprises the step of heating and melting the above-mentioned thermoplastic resin composition of the present invention.
  • thermoplastic resin molded product obtained by molding it into a desired shape.
  • the present invention also provides a thermoplastic resin composition of the present invention described above as a master batch, to which the thermoplastic resin 1: 1 to 1: 1 6 0 weight ratio were mixed in (the former the latter), then heated There is also a method for producing a thermoplastic resin composition characterized by kneading.
  • the present invention further provides a thermoplastic resin composition obtained by the above-described production method of the present invention as a masterbatch, and a thermoplastic resin in a weight ratio of 1: 1 to 1: 160 (former: latter). And then heating and kneading, there is also a method for producing a thermoplastic resin composition.
  • thermoplastic resin composition obtained by adding a conventional fibrous zonolite having a surface treated with a surfactant to a thermoplastic resin and kneading the resin
  • the dispersibility of the fibrous zonolite is excellent, the adhesiveness between the resin component and the fibrous zonolite inside the molded product is insufficient in the resin molded product obtained by molding the resin composition.
  • the conventional fibrous zonolite whose surface has been treated with a coupling agent is added to a thermoplastic resin and kneaded.
  • the fibrous zonolite is hard to be crushed by the coupling agent bonded to the surface thereof and is hard to be dispersed in the resin composition, so that it is difficult to form fine particles. , That It has been found that a resin molded product obtained by molding the resin composition of the above does not easily obtain the required high impact resistance and bending strength.
  • the present inventor continued research and found that fibrous zonotrite, which had been surface-treated with a surfactant in advance, was treated with a resin component (thermoplastic resin component) without being subjected to a coupling agent treatment. Then, after adding a coupling agent to the mixture, the mixture is heated and kneaded, or the coupling agent is added when the mixture is heated and kneaded.
  • a force coupling agent that is not bound to fibrous zonolite enables the fibrous zonolite to be finely divided and improves the dispersion of the finely divided zonolite in the resin composition. And found that the binding between the finely divided zonolite and the resin component is also improved, and arrived at the present invention.
  • the average aspect ratio represented by the average fiber length and average fiber diameter of the fibrous zonolite used in the method for producing the thermoplastic resin composition of the present invention is 10 to 35 (particularly, 10 to 20). Be in the range.
  • thermoplastic resin used in the thermoplastic resin composition of the present invention is selected from the group consisting of polyamide resin, polyester resin, polyolefin resin, polyacetal resin, polyphenylene sulfide resin, and polycarbonate resin. Is also a kind of thermoplastic resin.
  • the surfactant used for coating the fibrous zonolite is a nonionic surfactant.
  • the BET specific surface area of the fibrous zonolite used in the method for producing a thermoplastic resin composition of the present invention is 30 m 2 / g or more and 60 m 2 / g or less.
  • the amount of the surfactant coated on the fibrous zonolite should be in the range of 0.1 to 10% by weight based on the weight of the fibrous zonolite.
  • the coupling agent is at least one kind of force coupling agent selected from the group consisting of a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent.
  • thermoplastic resin composition the thermoplastic resin and the fibrous zonolite should be mixed at a weight ratio of 99.5: 0.5 to 30:70.
  • thermoplastic resin composition the thermoplastic resin and the fibrous zonolite are mixed at a weight ratio of 55:45 to 20:80.
  • the average fiber length of the fibrous zonolite contained in the thermoplastic resin composition is in the range of 1 ° to 35 (especially, 10 to 20) represented by the average fiber diameter. .
  • thermoplastic resin mixed with the master batch and heated and kneaded is selected from the group consisting of polyamide resin, polyester resin, polyolefin resin, polyacetal resin, polyphenylene sulfide resin, and polycarbonate resin. It must be a kind of thermoplastic resin.
  • thermoplastic resin mixed with the master batch and heated and kneaded is It must be in the range of 2 to 50 parts by weight, especially in the range of 3 to 30 parts by weight, per part by weight of the terbatch.
  • thermoplastic resin composition The thermoplastic resin composition, the method for producing the thermoplastic resin composition, and the thermoplastic resin molded article of the present invention will be described in detail.
  • the fibrous Zono trie you want to blended in the thermoplastic resin composition of the present invention Zono tri Doo (rational formula: C ai ⁇ (OH), I ⁇ formula: 6 C a O ⁇ 6 S i 0 2 ⁇ H 2 0, the term needle crystals substances known Kei calcium hydrate can be generally represented).
  • the value of the specific surface area of the fibrous Zono tri preparative is very important, it must be at 2 1 m 2 Zg or more, good Mashiku 30 m 2 It is Zg or more (however, it is a measured value by the BET method by nitrogen adsorption).
  • the shape of the raw material fibrous zonolite (the fibrous zonolite in a state before kneading) to be blended in the thermoplastic resin composition of the present invention is, particularly, an average fiber length.
  • the fibrous zonolite used in the present invention can be produced, for example, by a production method described in Japanese Patent Application Laid-Open No. 6-128412, that is, a hydrothermal synthesis by mixing a calcareous raw material and a siliceous raw material at a specific ratio. It can be produced by a reaction.
  • the fibrous zonolite used in the present invention is treated with a surfactant before mixing with the thermoplastic resin. It is considered that the surfactant improves the affinity of the fibrous zono-lite with the thermoplastic resin as a matrix, and promotes the dispersion of the zono-lite granules into the primary particles in the initial stage of kneading.
  • any of anionic, cationic, amphoteric and nonionic surfactants can be used.
  • anionic surfactants include alkyl ether sulfate, dodecylbenzene sulfonate, and stearate.
  • examples of the cationic surfactant include tetradecylamine acetate and alkyltrimethylammonium chloride.
  • Examples of the amphoteric surfactant include dimethyl alkyl lauryl pentane.
  • Nonionic surfactants include polyoxyethylene octadecylamine, polyepoxy Tylene lauryl ether can be mentioned. Particularly preferred are nonionic surfactants, which can be used in combination with other types of surfactants, if desired.
  • An amount in the range from 1 to 1 0 weight 0/0, preferably 0. 5 8 is an amount in the range of weight 0/0. If the added amount is less than 0.1% by weight, the above-mentioned effects are hardly exhibited, and if the added amount exceeds 10% by weight, the above-mentioned effects are significantly improved even if the added amount is increased. do not do.
  • a slurry of fibrous zonolite obtained by a hydrothermal synthesis reaction is extracted from an autoclave, and then the surface of the fibrous zonolite with a surfactant is directly used. Processing can be performed.
  • the surface treatment method is not limited.For example, a surfactant is added to the fibrous zonolite slurry as it is or after adding an appropriate amount of water, and the slurry is mixed and stirred in an appropriate apparatus in a slurry state. Then, excess water is filtered and separated by a centrifugal dehydrator or a filter press to obtain a cake-like surfactant-treated fibrous zonolite.
  • This surface treatment with a surfactant may be carried out using a surfactant dissolved in a small amount of water or a solvent after drying the fibrous zonolite.
  • the fibrous zonolite treated with the surfactant is granulated in a granular form in order to easily mix and stir the thermoplastic resin and the coupling agent.
  • Granular zonolite can be obtained by forming the above-mentioned surfactant-treated cake-like fibrous zonolite into granules having a diameter of 1 to 8 mm using a granulator and drying. Can be.
  • a known granulator such as a rotary vertical granulator, a rotary drum granulator, a rotary dish granulator, a screw extrusion granulator, and a roll extrusion granulator can be used.
  • Drying at the time of granulation is performed using a known dryer such as a hot air circulating dryer or an infrared heating dryer at a temperature of 100 to 180 ° C for 1 to 30 hours. It is desirable to carry out until the water content of the try becomes 1% by weight or less.
  • a known dryer such as a hot air circulating dryer or an infrared heating dryer at a temperature of 100 to 180 ° C for 1 to 30 hours. It is desirable to carry out until the water content of the try becomes 1% by weight or less.
  • thermoplastic resin to be mixed with the fibrous zonolite treated with a surfactant in the present invention examples include polyethylene having various densities and molecular weights, and linear low density.
  • Polyethylene ethylene copolymer (ethylene'vinyl acetate copolymer, ethylene.propylene copolymer, etc.), polypropylene homopolymer, polypropylene copolymer (ethylene'propylene block copolymer, etc.), modified polypropylene, polybutene 1 and poly 4 —Polyolefin resin such as methylpentene, polyvinyl alcohol copolymer, polystyrene, high-impact polystyrene, acrylonitrile-butadiene-styrene (ABS) resin, polyvinyl chloride resin, acrylonitrile-styrene ( AS) Resin, maleic anhydride-styrene resin, polcapamide (nylon 6), polytetramethylene adipamide (
  • Examples of the coupling agent used in the production of the thermoplastic resin composition of the present invention include a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent, and a silane coupling agent is preferable.
  • the coupling agent may be partially hydrolyzed in advance and modified to partially have a silanol group before use.
  • the silane coupling agent has an organic functional group such as an amino group, a diamino group, a butyl group, a chloro group, a methacryloxy group, a cyclic epoxy group, a glycidoxy group, a mercapto group, a ureide group, and a ketimide group.
  • organic functional group such as an amino group, a diamino group, a butyl group, a chloro group, a methacryloxy group, a cyclic epoxy group, a glycidoxy group, a mercapto group, a ureide group, and a ketimide group.
  • silane-based coupling agents having an inorganic functional group such as a methoxy group, an ethoxy group, and an ethoxy group can be used.
  • silane coupling agent examples include vinyl trichlorosilane, vinyl tris (i3-methoxyethoxy) silane, vinyl triethoxy silane, ⁇ - (methacryloyloxypropyl) triethoxy silane, ⁇ — (3, 4 —Epoxycyclyl hexyl) ethi ⁇ / trimethoxysilane, ⁇ -glycidinoleoxypropyltrimethoxysilane, ⁇ —glycidoxypropylmethyljetoxysilane, ⁇ — (aminoethyl) ⁇ -aminoaminopropyltrimethoxysilane, N—] 3 (aminoethyl) ⁇ —aminopropyltrimethyldimethoxysilane, ⁇ —aminopropyltriethoxysilane, ⁇ -phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -methylcaptopropyltri
  • thermoplastic resin when a polyamide resin is used as the thermoplastic resin, an amino-based, chloro-based, or cationic silane coupling agent can be advantageously used, but an amino-based resin is particularly desirable.
  • thermoplastic resin is a polyester resin
  • amino-, epoxy-, or Lol-based or cationic silane coupling agents can be advantageously used, and epoxy-based compounds are particularly desirable.
  • thermoplastic resin is a polyolefin resin, particularly when it is modified and polar, an amino-based, epoxy-based, chloro-based, cationic-based silane coupling agent is advantageously used, but an amino-based resin is particularly preferred. .
  • thermoplastic resin is a polyphenylene sulfide resin
  • a mercapto-based silane coupling agent is desirable.
  • thermoplastic resin composition of the present invention may optionally contain various auxiliary materials added for improving the properties of the resin composition and improving the production, such as a heat stabilizer and a light stabilizer.
  • auxiliary materials such as a heat stabilizer and a light stabilizer.
  • Plasticizers, crosslinkers, antioxidants, flame retardants, reinforcements, pigments, dyes, lubricants, antistatic agents, release agents, fragrances, rubber or thermoplastic elastomers, thermoplastics modified with rubber A resin or the like can be blended.
  • the weight percentage of the addition ratio of the coupling agent to the fibrous zonolite is preferably at least 0.2% by weight and less than 10% by weight, particularly preferably. Is not less than 0.5% by weight and not more than 5% by weight.
  • thermoplastic resin composition of the present invention can be produced, for example, using the following method.
  • thermoplastic resin composition of the present invention comprising a surfactant-treated fibrous zonolite, a thermoplastic resin, and a coupling agent includes, for example, a fibrous zonolite, a thermoplastic resin, and a coupling agent. Simultaneously or sequentially, they can be put into a kneader, and then melt-kneaded under heating to produce the compound. Alternatively, the thermoplastic resin and any one of the components can be mixed in advance, and then the other components can be added during heating and melting.
  • thermoplastic resin and the coupling agent can be arbitrarily selected as described above, but preferably, the fibrous zonolite is preferably used. It is desirable to supply the extruder to the hopper of the extruder. For example, prior to melt-kneading, it may be mixed with a thermoplastic resin and a coupling agent and then supplied to a hopper of an extruder.
  • the fibrous zonolite and the thermoplastic resin are double-feed, and the coupling agent is Liquid addition may be used.
  • cutlet It is also possible to supply only a part of the pulling agent from the middle of the extruder.
  • the above-mentioned various auxiliary materials can be added at the same time, if necessary.
  • the temperature most suitable for the thermoplastic resin used select the temperature most suitable for the thermoplastic resin used.
  • the thermoplastic resin is a crystalline resin
  • a temperature higher by 10 to 60 ° C than the melting point of the resin preferably 10 to 40 ° C higher than the melting point of the resin is used.
  • the thermoplastic resin is an amorphous resin
  • the temperature is 110 to 160 ° C higher than the glass transition point of the resin, preferably 110 to 140 ° C higher than the glass transition point of the resin. Temperature is used.
  • Examples of the kneading machine used include extruders such as a single-screw extruder and a twin-screw extruder, a twin-screw continuous mixer, a non-variable mixer, a super mixer, a mixing groonole, a kneader, a brabender plastograph, and the like.
  • the composition is generally obtained as a pellet.
  • extruders are preferred, and twin-screw extruders are particularly preferred.
  • the fibrous zonolite is broken in the longitudinal direction of the fiber due to the shearing treatment in the molten resin, but is also split vertically. Is expressed. By adding and kneading a coupling agent, this longitudinal tearing phenomenon is further promoted.
  • the initially added zonotrite fiber has an average fiber length (L) of 1111 ⁇ 5 / 111, an average fiber diameter of 0.1 ⁇ 0.5 ⁇ ⁇ and an aspect ratio of Even if the ratio (L ⁇ D) is 10 ⁇ LZD ⁇ 20, the dispersed primary particles of zonolite in the kneaded resin composition have an average fiber length (L) of 0.2 Az m ⁇ L ⁇ 0.7 / im, average fiber diameter is 0.Ol / m D ⁇ 0.05 // m, and aspect ratio (L / D) is 5 ⁇ L, D ⁇ 35 (particularly 5 ⁇ L / D ⁇ 20 and 7 ⁇ L / D ⁇ 15 5) and dispersed.
  • the physical properties of the resin composition are remarkably improved, That balance can be greatly improved.
  • the effect of suppressing line changes and warpage due to molding shrinkage and temperature changes is also improved, so the range of application as a structural material can be expanded, and especially as a material in the fields of automobiles, electricity, electronics, precision machinery, etc. It can be used to advantage.
  • the composition obtained in this way has improved fluidity as compared with conventional compositions, it can be molded by various known molding methods such as injection molding, extrusion molding, compression molding, and hollow molding. You.
  • thermoplastic resin composition obtained by kneading and blending the surfactant-treated fibrous zonolite of the present invention in the presence of a coupling agent can be used as it is for the production of a resin molded product.
  • a thermoplastic resin composition containing a large amount of the agent-treated fibrous zonolite is produced, then used as a masterbatch, and mixed (diluted) with the same type of thermoplastic resin.
  • a thermoplastic resin composition in which the amount of the zonolite in the form of a mixture is adjusted can also be used.
  • the measurement was performed using Tensilon UTM-5T manufactured by Orientec. After molding the desired thermoplastic resin composition, it was conditioned for 48 hours at 23 ° C and a relative humidity of 50% (hereinafter abbreviated as “50% RHJ”). The test was performed at 23 ° C and 50% RH in accordance with STM D 790. In the case of a composition containing a polyamide resin as a main component, the condition was adjusted in a desiccator at 23 ° C for 48 hours. Flexural strength and flexural modulus were measured according to ASTM D790 at 23 ° C in a completely dry state.
  • the measurement was performed using an Izod impact tester manufactured by Toyo Seiki Co., Ltd.
  • the notched Izod impact strength was determined in accordance with ASTM D256 under the same temperature and humidity conditions as in the above item (1), using the test specimen whose condition was adjusted in the same manner as in the above item (1).
  • the measurement was performed using a Toyo Seiki load deflection tester. The value was determined under the stress of 1.82 MPa in accordance with ASTM D648 using a test piece which had been subjected to the same condition control as in the above (1). In the case of a composition containing a polypropylene resin as a main component, the value was obtained under a stress of 0.45 MPa.
  • the measurement was performed using a melt indexer YA2072-0000 manufactured by Takara Kogyo Co., Ltd. According to ASTM D 1 238, using a test piece with the same condition adjustment as in the above (1), in the case of a composition containing nylon 6 as a main component, at a temperature of 250 ° C, In the case of a composition containing propylene resin as a main component, the value was determined at a temperature of 230 ° C.
  • the thickness of the kneading strand was set to 0.1 / m using a microtome with a cryo-apparatus, manufactured by Raike Co., Ltd., targeting the center of the kneading strand.
  • a slice sample parallel to the direction was produced.
  • the dimensions of the Zono Tritoe secondary particles were measured. After measuring the fiber length and diameter of 500 to 1,000 particles, the average aspect ratio was calculated.
  • This granular fibrous Zono tri DOO each was subjected to measurement of the average fiber ⁇ and average fiber diameter by the measurement and scanning electron micrograph of the BET specific surface area by nitrogen adsorption, 4 8 m 2 / g, It was confirmed that they were 3 / m and 0.2 / m (therefore, the aspect ratio: 15).
  • the obtained fibrous zonolite is hereinafter referred to as “surfactant-treated fibrous zonolite A”.
  • the production of granular fibrous zonolite was carried out in exactly the same manner as in Reference Example 1, except that the holding temperature for the hydrothermal synthesis reaction was 240 ° C instead of 220 ° C in Reference Example 1.
  • a fibrous zonolite with a BET specific surface area of 24 m 2 / g, an average fiber length of 4 ⁇ m and an average fiber diameter of 0.2 ⁇ m (hence the aspect ratio of 20) was used. Obtained.
  • this is referred to as “surfactant-treated fibrous zonolite B”.
  • Granular zonolite was produced in the same manner as in Reference Example 1 except that the nonionic surfactant as a surface treatment agent was not added, and the BET specific surface area was 39 n ⁇ Zg. : 3 m and an average fiber diameter of 0.2 m (accordingly, an aspect ratio: 15), a fibrous zonolite untreated with a surfactant was obtained.
  • Treated fibrous Zonotry E 14
  • Nonionic surfactant (trade name: Nymein 204) is replaced with silane coupling agent—Aminopropyl Triethoxyethoxylan, a product of Nippon Tunica Co., Ltd., trade name: A—110) 46 g (fibrous Zono tri fed versus except the E strange to 5 weight 0/0) solids, reference example 1 and row production of exactly the same way Zono tri preparative surface treatment Le ,, 8 £ Ding specific surface area 45 111 2 8 Thus, a fibrous zonolite having an average fiber length of 3 ⁇ m and an average fiber diameter of 0.2 ⁇ m (accordingly, an aspect ratio of 15) was obtained. Hereinafter, this is referred to as “Fibrous Zonotri F treated with coupling agent F”.
  • Nylon 6 as thermoplastic resin (trade name: UBE Nylon 1013B) manufactured by Ube Industries, Ltd. 99.5 parts by weight, aminosilane-based coupling agent as coupling agent (trade name, manufactured by Nippon Tunicar Co., Ltd.) : A—1 100) 0.5 part by weight of a mixture consisting of 0.5 part by weight and 20 parts by weight of the surfactant-treated fibrous zonolite A obtained in Reference Example 1 as fibrous zonolite in a proportion of 80 parts by weight. Parts were previously mixed using a V-type blender.
  • the cylinder temperature (however, the temperature of the nozzle head, the same applies hereinafter) 260 ° C and the mold temperature 1
  • the pellet was injection-molded at 00 ° C to prepare a molded article (test piece) for a physical property test.
  • Table 1 shows the results of the physical property test.
  • the melt flow index (MF I) was 43%.
  • Example 2 Except that an epoxy silane coupling agent (trade name: A-187, manufactured by Nippon Tunicer Co., Ltd.) was used in place of the aminosilane-type jj agent A-110 of Example 1. Was performed in exactly the same manner as in Example 1. Table 1 shows the physical property test results of the obtained test pieces.
  • an epoxy silane coupling agent trade name: A-187, manufactured by Nippon Tunicer Co., Ltd.
  • Example 1 Except that the aminosilane type coupling agent A-110 of Example 1 was replaced with a mercapto-based silane coupling agent (trade name: A-197, manufactured by Nippon Tunicer Co., Ltd.), The same operation as in Example 1 was performed. The test results of physical properties of the obtained test piece were as shown in Table 1.
  • Example 1 The same operation as in Example 1 was performed, except that the surfactant-treated fibrous zono-lite A in Example 1 was changed to the surfactant-treated fibrous zono-lite B.
  • Table 1 shows the physical property test results of the obtained test pieces.
  • Example 1 The pellet obtained in Example 1 was used as a master batch, and 25 parts by weight of the pellet and 75 parts by weight of nylon 6 alone were pre-blended using a V-type blender. By performing the same operation as above, the molded product for heat melting and physical property evaluation
  • Table 1 shows the physical property test results of the obtained test pieces.
  • Example 1 Using the pellet obtained in Example 1 as a master batch, 5 parts by weight thereof and 95 parts by weight of nylon 6 alone were previously blended using a V-type blender, and then completely blended as in Example 1. Molding for heat melting and physical property evaluation
  • coupling agent 98.988 parts by weight: 1 part by weight: 0.02 parts by weight
  • Example 1 the amount of the aminosilane-based coupling agent was (The same operation was performed except that the amount was changed to 1% by weight based on the surfactant-treated fibrous zonolite A.)
  • the physical property test results of the obtained test piece are as shown in Table 1.
  • the melt flow index (MF I) was 44%.
  • Example 1 The same operation as in Example 1 was performed except that the amount of the aminosilane-based coupling agent was changed to 0.8 parts by weight (4% by weight based on the surfactant-treated fibrous zonolite A). Table 1 shows the physical property test results of the obtained test pieces.
  • the melt flow index (MF I) was 42%.
  • Example 1 Except that the surfactant-treated fibrous zono-lite A in Example 1 was changed to coarse surfactant-treated fibrous zono-lite C, the same operation as in Example 1 was performed. Physical test results of the obtained test pieces are as shown in Table 1. Melt flow index (MFI) was 39%.
  • Example 1 Except that the surfactant-treated fibrous zonolite A in Example 1 was changed to untreated fibrous zonolite E, the same operation as in Example 1 was performed. Physical test results of the obtained test pieces are as shown in Table 1.
  • Example 1 Except that the amount of the aminosilane-based coupling agent (A-1100) used in Example 1 was set to 0.01 part by weight (0.05% by weight based on the surfactant-treated fibrous zonolite A). Was performed in exactly the same manner as in Example 1. Physical test results of the obtained test piece are as shown in Table 1.
  • Example 1 The same operation as in Example 1 was performed, except that the aminosilane-based coupling agent (A-110) in Example 1 was not used at all. Physical test results of the obtained test piece are as shown in Table 1. The melt flow index (MFI) was 38%.
  • Example 1 The surfactant-treated fibrous zonolite A in Example 1 was treated with a coupling agent. Except for changing to the fibrous zonolite F, the same operation as in Example 1 was carried out. C The physical property test results of the obtained test pieces were as shown in Table 1. Table 1 Example I z Impact strength Falling weight impact strength Flexural strength Flexural modulus Load deflection
  • Example 4 1 02 3 8 1 6 1 2 7 0 2 29 Example 5 6 7 1 1 4 1 1 1 1 5 2 1 56 Example 6 6 5 1 1 3 1 0 9 1 3 3
  • Example 7 8 9 1 7 1 6 3 2 5 9 2 2 7
  • Example 8 1 1 3 1 6 1 6 5 2 5 9 2 27 Comparative Example 1 60 5 1 5 8 24 8 208 Comparative Example 2 Surface withstanding evaluation 3 5 6 5 1 5 9 2 3 7
  • Example 9 The same operation as in Example 9 was performed, except that the blending amount of the fibrous zonolite A treated with surfactant was changed to 5 parts by weight. Physical test results of the obtained test pieces are as shown in Table 2.
  • Example 9 the same operation as in Example 9 was performed except that no coupling agent was used. Physical test results of the obtained test piece are as shown in Table 2.
  • Example 9 The same operation as in Example 9 was performed, except that the fibrous zonolite A treated with a surfactant in Example 9 was changed to the fibrous zonolite F treated with a coupling agent. Physical test results of the obtained test pieces are as shown in Table 2. Table 2 Example I Z impact strength Drop weight impact strength Flexural strength Flexural modulus Load deflection
  • Nylon 6 was changed to polybutylene terephthalate (PBT resin) (manufactured by Ube Industries, Ltd., trade name: UBE PBT 100), and the coupling agent was amino.
  • the coupling agent was changed from an aminosilane-based coupling agent to a mercapto-based silane coupling agent (A-197, manufactured by Nippon Tunicer Co., Ltd.).
  • the melting and kneading temperature was changed to 250 ° C. 300 ° C, cylinder temperature of injection molding machine changed from 260 ° C to 300 ° C, and mold temperature of injection molding machine changed from 100 ° C to 130 ° C Except for this, the same operation as in Example 1 was performed. Table 3 shows the physical property test results of the obtained test pieces.
  • Example 4 shows the physical property test results of the obtained test pieces. Table 4 Example Iz impact strength Falling weight impact strength Flexural strength Flexural modulus Load deflection
  • thermoplastic resin composition produced by the method of the present invention has a high impact resistance because the fibrous zonolite is finely divided and uniformly dispersed in the resin composition and shows a strong bond with the thermoplastic resin. It has particularly excellent properties and bending strength, and can be used particularly advantageously in the production of resin moldings for automobile parts, electric and electronic parts, precision machined parts, and the like.
  • fibrous zonolite is dispersed in a resin composition at a high concentration as a master patch and using a method of diluting with a thermoplastic resin, the fibrous zonolite is formed at a desired concentration.
  • the melt-kneading temperature was changed to 240 ° C instead of 250 ° C, and the cylinder temperature of the injection molding machine was changed from 260 ° C to 27 ° C.
  • the same operation as in Example 1 was performed except that the temperature was changed to 0 ° C, and the mold temperature of the injection molding machine was changed from 100 ° C to 110 ° C.
  • Table 3 shows the physical property test results of the obtained test pieces.
  • Example 11 was completely different from Example 11 except that the amount of the epoxy silane coupling agent was changed to 0.2 part by weight (1% by weight based on the surfactant-treated fibrous zonolite A). A similar operation was performed. Table 3 shows the physical property test results of the obtained test pieces.
  • Example 9 the same operation as in Example 11 was performed, except that no coupling agent was used.
  • Table 3 shows the physical property test results of the obtained test pieces.
  • Example I Z impact strength Falling weight impact strength Flexural strength Flexural modulus Load deflection
  • Nylon 6 was changed to Polyphenylene Sulfide (PPS resin) (manufactured by Kureha Corporation, trade name: FORTRON KPS Compound PF-200A). Can also be manufactured.
  • PPS resin Polyphenylene Sulfide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A thermoplastic resin composition which is produced by mixing a thermoplastic resin with fibrous xonotlite the surface of which has been coated beforehand with a surfactant and which has a BET specific surface area of 21 m2/g or larger, an average fiber length of 1 to 5 νm, and an average fiber diameter of 0.1 to 0.5 νm in a weight ratio of 99.5/0.5 to 20/80 and kneading the resultant mixture with heating in the presence of 0.2 to 10 wt.% coupling agent based on the fibrous xonotlite. In the resin composition, the fibrous xonotlite has been reduced to fine particles, is evenly dispersed, and strongly bonds to the thermoplastic resin. The composition is hence excellent especially in impact resistance and flexural strength. It is advantageously usable especially in producing molded resins for automotive parts, electrical/electronic parts, precision work parts, etc.

Description

明 細 書 熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂組成物  Description Method for producing thermoplastic resin composition and thermoplastic resin composition
[技術分野] [Technical field]
本発明は、 耐衝撃性、 曲げ強度などの特性が改良された榭脂成形物の製造に有 利に利用できる熱可塑性樹脂組成物、 及びその製造方法に関する。  The present invention relates to a thermoplastic resin composition that can be advantageously used for producing a resin molded product having improved properties such as impact resistance and bending strength, and a method for producing the same.
[背景技術] [Background technology]
熱可塑性のポリアミ ド樹脂、 ポリエステル樹脂、 ポリオレフイン樹脂などは、 その熱可塑性を利用する成形が容易で、 また得られる樹脂成形物の弾性や剛性な どの特性が良好なことから、 様々な目的の樹脂成形物の製造に利用されている。 なかでも、 自動車部品、 電気 ·電子部品、 精密機械部品などの製造に際して広範 囲に利用されている。  Thermoplastic polyamide resins, polyester resins, polyolefin resins, etc. are easy to mold using their thermoplasticity, and the resulting resin molded products have good properties such as elasticity and rigidity. Used in the manufacture of molded products. In particular, it is widely used in the manufacture of automotive parts, electrical and electronic parts, precision machine parts, and so on.
近年、 自動車部品、 電気 ·電子部品、 精密機械部品などに用いられる樹脂成形 品について高い耐衝撃性が求められるようになってきている。 このため、 熱可塑 性榭脂に、 ゴム、 熱可塑性エラストマ一、 ゴム成分で変性させた勢可塑性榭脂な どを改質剤として混合した樹脂組成物と使用することが検討された。 しかしなが ら、 このようなゴム成分などの添加によって、 得られる樹脂成形物の強度、 弾性 率、 さらには耐熱性が低下する傾向があるため、 熱可塑性樹脂組成物の物性の改 良方法としては充分ということができない。  In recent years, high impact resistance has been required for resin molded products used for automobile parts, electric / electronic parts, precision machine parts, and the like. For this reason, the use of a resin composition in which a rubber, a thermoplastic elastomer, a thermoplastic resin modified with a rubber component, or the like was mixed as a modifier with a thermoplastic resin was studied. However, the addition of such a rubber component tends to decrease the strength, elastic modulus, and heat resistance of the obtained resin molded product. Cannot be enough.
上記の問題を解決するために、 ゾノ トライ トなどの繊維状のケィ酸カルシウム 水和物の表面を界面活性剤及ぴ Z又は力ップリング剤で処理したフィラーを熱可 塑性樹脂に混合し、 加熱混練した熱可塑性樹脂組成物が提案されている (例、 特 開平 6— 1 2 8 4 1 2号公報、 特開平 7— 2 1 6 1 3 3号公報、 特開平 8— 1 6 5 3 7 7号公報など)。 繊維状ゾノ トライ トは、 榭脂成分との加熱混練の際に、 その長軸方向と短軸方向に細かく解砕して微粒子になりやすく、 このような微粒 子化した繊維状ゾノ トライ トは、 熱可塑性樹脂組成物成形品の耐衝撃性、 曲げ強 度などの諸特性を向上させる効果を示す。 [発明の開示] In order to solve the above problems, fibrous calcium silicate hydrate such as zonolite is treated with a surfactant and Z or a force-pulverizing agent. Kneaded thermoplastic resin compositions have been proposed (e.g., Japanese Patent Application Laid-Open No. Hei 6-12841, Japanese Patent Laid-open No. Hei 7-21613, Japanese Patent Laid-open No. Hei 8-16653) No. 7 publication). During heating and kneading with a resin component, the fibrous zonolite is easily crushed into fine particles in the major axis and minor axis directions to form fine particles. It has the effect of improving various properties such as impact resistance and bending strength of the molded article of the thermoplastic resin composition. [Disclosure of the Invention]
熱可塑性樹脂成形品の耐衝撃性、 弾性などの諸特性は、 熱可塑性樹脂への、 上 記の表面処理したゾノ トライ トの添加によって向上するが、 最近では、 特に自動 車部品、 電気 ·電子部品、 精密機械部品などの技術分野において、 熱可塑性樹脂 成形品について更に高い耐衝撃性、 曲げ強度などの諸特性が求められる傾向にあ る。 これに対して、 そのような樹脂成形品への機械的特性のさらなる向上の要求 については、 これまでに知られているゾノ トライ ト含有熱可塑性樹脂組成物では 充分な対応ができない。  Various properties such as impact resistance and elasticity of thermoplastic resin molded products can be improved by adding the above-mentioned surface treated zonolite to thermoplastic resin. In the technical fields such as parts and precision machinery parts, there is a tendency for thermoplastic resin molded products to have higher properties such as higher impact resistance and bending strength. On the other hand, the demand for further improvement of the mechanical properties of such resin molded articles cannot be sufficiently satisfied by the zonotrite-containing thermoplastic resin compositions known so far.
従って、 本発明の目的は、 ゾノ トライ ト含有熱可塑性樹脂組成物であって、 耐 衝撃性や曲げ強度などの諸特性が従来にも増して向上した樹脂成形品を製造する のに適した熱可塑性樹脂組成物を提供することを主な目的とする。  Accordingly, an object of the present invention is to provide a thermoplastic resin composition containing a zonotrite, which has improved properties such as impact resistance and flexural strength, and is more suitable for producing a resin molded product than before. A main object is to provide a plastic resin composition.
本発明はまた、 耐衝撃性や曲げ強度などの諸特性が向上した樹脂成形品を製造 するのに適した熱可塑性樹脂組成物を有利に製造することのできる方法を提供す ることも、 その目的とする。  The present invention also provides a method capable of advantageously producing a thermoplastic resin composition suitable for producing a resin molded article having improved properties such as impact resistance and bending strength. Aim.
本発明は、 熱可塑性樹脂と、 予め表面を界面活性剤で被覆処理した B ET比表 面積が 2 1 n^Zg以上、 平均繊維長が 1〜5 μ mの範囲、 そして平均繊維径が 0. 1〜0. 5 μ mの範囲の繊維状ゾノ トライ トとを、 重量比で 99. 5 : 0. 5〜20 : 80の範囲内の比にて混合し、 得られる混合物を、 該繊維状ゾノ トラ ィ トの重量に対して 0. 2〜 1 0重量%の範囲の量の力ップリング剤の存在下に て、 加熱混練することを特徴とする熱可塑性樹脂組成物の製造方法にある。  The present invention provides a thermoplastic resin, a BET ratio surface area of which surface is previously coated with a surfactant, a surface area of 21 n ^ Zg or more, an average fiber length of 1 to 5 μm, and an average fiber diameter of 0 μm. A fibrous zonolite in the range of 1 to 0.5 μm is mixed at a weight ratio of 99.5: 0.5 to 20:80, and the resulting mixture is mixed with the fiber. The present invention provides a method for producing a thermoplastic resin composition, comprising heating and kneading in the presence of a force coupling agent in an amount in the range of 0.2 to 10% by weight based on the weight of the zonotralate. .
本発明はまた、 熱可塑性榭脂と、 平均繊維長が 0. 1〜0. 7 /xmの範囲にあ り、 平均繊維径が 0. 0 1〜0. 05 / mの範囲にある繊維状ゾノ トライ トとを、 重量比で 9 9. 5 : 0. 5〜 20 : 80の比率で含む混練物であって、 該繊維状 ゾノ トライ トの重量に対して 0. 2〜 1 0重量%の力ップリング剤を含む熱可塑 性樹脂組成物にもある。  The present invention also provides a thermoplastic resin and a fibrous material having an average fiber length in the range of 0.1 to 0.7 / xm and an average fiber diameter in the range of 0.01 to 0.05 / m. A kneaded product containing zono-lite in a weight ratio of 99.5: 0.5 to 20:80, and 0.2 to 10% by weight based on the weight of the fibrous zono-lite. There is also a thermoplastic resin composition containing a force coupling agent.
本発明はまた、 上記の本発明の熱可塑性樹脂組成物の製造方法により得られた 熱可塑性樹脂組成物にもある。  The present invention also resides in a thermoplastic resin composition obtained by the above method for producing a thermoplastic resin composition of the present invention.
本発明はさらに、 上記の本発明の熱可塑性榭脂組成物を加熱溶融したのち、 こ れを所望の形状に成形してなる熱可塑性樹脂成形物にもある。 The present invention further comprises the step of heating and melting the above-mentioned thermoplastic resin composition of the present invention. There is also a thermoplastic resin molded product obtained by molding it into a desired shape.
本発明はまた、 上記の本発明の熱可塑性樹脂組成物をマスターバッチとして、 これに熱可塑性樹脂を 1 : 1〜 1 : 1 6 0の重量比 (前者:後者) にて混合し、 次いで加熱混練することを特徴とする熱可塑性樹脂組成物の製造方法にもある。 本発明はさらに、 上記の本発明の製造方法により得られた熱可塑性樹脂組成物 をマスターバッチとして、 これに熱可塑性樹脂とを 1 : 1〜 1 : 1 6 0の重量比 (前者:後者) にて混合し、 次いで加熱混練することを特徴とする熱可塑性樹脂 組成物の製造方法にもある。 The present invention also provides a thermoplastic resin composition of the present invention described above as a master batch, to which the thermoplastic resin 1: 1 to 1: 1 6 0 weight ratio were mixed in (the former the latter), then heated There is also a method for producing a thermoplastic resin composition characterized by kneading. The present invention further provides a thermoplastic resin composition obtained by the above-described production method of the present invention as a masterbatch, and a thermoplastic resin in a weight ratio of 1: 1 to 1: 160 (former: latter). And then heating and kneading, there is also a method for producing a thermoplastic resin composition.
すなわち、 本発明者の研究により、 界面活性剤で表面を処理した従来の繊維状 ゾノ トライ トを熱可塑性榭脂に添加し、 混練して得た熱可塑性樹脂組成物では、 その樹脂組成物中の繊維状ゾノ トライ トの分散性は優れているが、 その樹脂組成 物を成形した樹脂成形品では、 その成形品内部における樹脂成分と繊維状ゾノ ト ライ トとの密着性が不充分であるため、 求める高い耐衝擊性や曲げ強度などが得 られにくいこと、 そして一方、 カップリング剤で表面を処理した従来の繊維状ゾ ノ トライ トを熱可塑性樹脂に添加し、 混練して得た熱可塑性榭脂組成物では、 繊 維状ゾノ トライ 卜が、 その表面に結合したカップリング剤により、 解砕されにく くなつて、 樹脂組成物中で分散されにくいため微粒子化しにく く、 従って、 その 榭脂組成物を成形した樹脂成形品では、 求める高い耐衝撃性や曲げ強度などが得 られにくいことが判明した。  That is, according to the research of the present inventor, in a thermoplastic resin composition obtained by adding a conventional fibrous zonolite having a surface treated with a surfactant to a thermoplastic resin and kneading the resin, Although the dispersibility of the fibrous zonolite is excellent, the adhesiveness between the resin component and the fibrous zonolite inside the molded product is insufficient in the resin molded product obtained by molding the resin composition. As a result, it is difficult to obtain the required high impact resistance and bending strength.On the other hand, the conventional fibrous zonolite whose surface has been treated with a coupling agent is added to a thermoplastic resin and kneaded. In the plastic resin composition, the fibrous zonolite is hard to be crushed by the coupling agent bonded to the surface thereof and is hard to be dispersed in the resin composition, so that it is difficult to form fine particles. , That It has been found that a resin molded product obtained by molding the resin composition of the above does not easily obtain the required high impact resistance and bending strength.
上記の知見に基づき、 本発明者はさらに研究を続けた結果、 予め界面活性剤で 表面処理した繊維状ゾノ トライ トを、 カップリング剤処理を施すことなく、 樹脂 成分 (熱可塑性榭脂成分) と混合し、 次いでこの混合物にカップリング剤を添加 した後、 加熱混練処理するか、 あるいは上記混合物を加熱混練処理する際にカツ プリング剤を添加させる等の方法によって、 混合物の加熱混練時に、 繊維状ゾノ トライ トに結合していない力ップリング剤を存在させることにより、 繊維状ゾノ トライ トの微粒子化を可能とし、 かつ微粒子となったゾノ トライ トの榭脂組成物 中の分散を向上させることができ、 かつ微粒子化したゾノ トライ トと榭脂成分と の結合も向上することを見出し、 本願発明に到達した。 [発明を実施するための最良の形態]4 Based on the above findings, the present inventor continued research and found that fibrous zonotrite, which had been surface-treated with a surfactant in advance, was treated with a resin component (thermoplastic resin component) without being subjected to a coupling agent treatment. Then, after adding a coupling agent to the mixture, the mixture is heated and kneaded, or the coupling agent is added when the mixture is heated and kneaded. The presence of a force coupling agent that is not bound to fibrous zonolite enables the fibrous zonolite to be finely divided and improves the dispersion of the finely divided zonolite in the resin composition. And found that the binding between the finely divided zonolite and the resin component is also improved, and arrived at the present invention. [Best Mode for Carrying Out the Invention] 4
(1 ) 本発明の熱可塑性樹脂組成物の製造方法に用いる繊維状ゾノ トライ 卜の平 均繊維長 平均繊維径で表わされる平均アスペク ト比が 1 0〜 3 5 (特に、 1 0 〜 20 ) の範囲にあること。  (1) The average aspect ratio represented by the average fiber length and average fiber diameter of the fibrous zonolite used in the method for producing the thermoplastic resin composition of the present invention is 10 to 35 (particularly, 10 to 20). Be in the range.
(2) 本発明の熱可塑性樹脂組成物に用いる熱可塑性樹脂が、 ポリアミ ド樹脂、 ポリエステル榭脂、 ポリオレフイン樹脂、 ポリアセタール樹脂、 ポリフエ二レン スルフィ ド樹脂、 およびポリカーボネート樹脂からなる群より選ばれる少なく と も一種の熱可塑性樹脂であること。  (2) The thermoplastic resin used in the thermoplastic resin composition of the present invention is selected from the group consisting of polyamide resin, polyester resin, polyolefin resin, polyacetal resin, polyphenylene sulfide resin, and polycarbonate resin. Is also a kind of thermoplastic resin.
(3) 繊維状ゾノ トライ 卜の被覆処理に用いる界面活性剤が、 非イオン界面活性 剤であること。  (3) The surfactant used for coating the fibrous zonolite is a nonionic surfactant.
(4) 本発明の熱可塑性樹脂組成物の製造方法に用いる繊維状ゾノ トライ トの B E T比表面積が 30 m2/ g以上であって、 かつ 60 m2/ g以下であること。(4) The BET specific surface area of the fibrous zonolite used in the method for producing a thermoplastic resin composition of the present invention is 30 m 2 / g or more and 60 m 2 / g or less.
(5) 繊維状ゾノ トライ トに被覆された界面活性剤の量が、 繊維状ゾノ トライ ト の重量に対して 0. 1〜 1 0重量%の範囲にあること。 (5) The amount of the surfactant coated on the fibrous zonolite should be in the range of 0.1 to 10% by weight based on the weight of the fibrous zonolite.
(6) カップリング剤が、 シランカップリング剤、 チタネートカップリング剤、 及びアルミネートカツプリング剤からなる群より選ばれる少なく とも一種の力ッ プリング剤であること。  (6) The coupling agent is at least one kind of force coupling agent selected from the group consisting of a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent.
(7) 熱可塑性樹脂組成物の製造に際して、 熱可塑性樹脂と繊維状ゾノ トライ ト との重量比が 9 9. 5 : 0. 5〜30 : 70の範囲内の比にて混合すること。 (7) In producing the thermoplastic resin composition, the thermoplastic resin and the fibrous zonolite should be mixed at a weight ratio of 99.5: 0.5 to 30:70.
(8) 熱可塑性樹脂組成物の製造に際して、 熱可塑性樹脂と繊維状ゾノ トライ ト との重量比が 5 5 : 45〜20 : 8 0の範囲内の比にて混合すること。 (8) In the production of the thermoplastic resin composition, the thermoplastic resin and the fibrous zonolite are mixed at a weight ratio of 55:45 to 20:80.
(9) 熱可塑性樹脂組成物に含まれる繊維状ゾノ トライ トの平均繊維長 平均繊 維径で表わされる平均アスペク ト比が 1 ◦〜 3 5 (特に、 1 0〜20) の範囲に あること。  (9) The average fiber length of the fibrous zonolite contained in the thermoplastic resin composition is in the range of 1 ° to 35 (especially, 10 to 20) represented by the average fiber diameter. .
(1 0) マスターバッチと混合され、 加熱混練される熱可塑性樹脂が、 ポリアミ ド樹脂、 ポリエステル榭脂、 ポリオレフイン榭脂、 ポリアセタール樹脂、 ポリフ ュニレンスルフィ ド樹脂、 およびポリカーボネート樹脂からなる群より選ばれる 少なく とも一種の熱可塑性樹脂であること。  (10) at least a thermoplastic resin mixed with the master batch and heated and kneaded is selected from the group consisting of polyamide resin, polyester resin, polyolefin resin, polyacetal resin, polyphenylene sulfide resin, and polycarbonate resin. It must be a kind of thermoplastic resin.
(1 1 ) マスターバッチと混合され、 加熱混練される熱可塑性榭脂の量が、 マス ターバッチ 1重量部に対して 2〜 50重量部の範囲、 特に 3〜 3 0重量部の範囲 にあること。 (11) The amount of thermoplastic resin mixed with the master batch and heated and kneaded is It must be in the range of 2 to 50 parts by weight, especially in the range of 3 to 30 parts by weight, per part by weight of the terbatch.
本発明の熱可塑性榭脂組成物、 熱可塑性樹脂組成物の製造方法、 そして熱可塑 性樹脂成形体について詳しく説明する。  The thermoplastic resin composition, the method for producing the thermoplastic resin composition, and the thermoplastic resin molded article of the present invention will be described in detail.
本発明の熱可塑性樹脂組成物に配合する繊維状ゾノ トライ トとは、 ゾノ トライ ト (示性式: C a i βθιτ (OH) 、 ィ匕学式: 6 C a O · 6 S i 02 · H20 で一般的に表わすことのできる公知のケィ酸カルシウム水和物) の針状結晶物質 をいう。 本発明の熱可塑性樹脂組成物に配合する場合、 繊維状ゾノ トライ トの比 表面積の値が非常に重要であり、 2 1 m2Zg以上であることが必要であり、 好 ましくは 30m2Zg以上 (但し、 窒素吸着による BET法での測定値である) である。 さらに、 本発明の熱可塑性樹脂組成物に配合する原料繊維状ゾノ トライ ト (混練前の前の状態の繊維状ゾノ トライ ト) の形状としては、 特に平均繊維長The fibrous Zono trie you want to blended in the thermoplastic resin composition of the present invention, Zono tri Doo (rational formula: C ai βθιτ (OH), I匕学formula: 6 C a O · 6 S i 0 2 · H 2 0, the term needle crystals substances known Kei calcium hydrate can be generally represented). When blending the thermoplastic resin composition of the present invention, the value of the specific surface area of the fibrous Zono tri preparative is very important, it must be at 2 1 m 2 Zg or more, good Mashiku 30 m 2 It is Zg or more (however, it is a measured value by the BET method by nitrogen adsorption). Further, the shape of the raw material fibrous zonolite (the fibrous zonolite in a state before kneading) to be blended in the thermoplastic resin composition of the present invention is, particularly, an average fiber length.
(L) 力 S 1 m≤ L≤ 5 m、 平均繊維径が 0. l Ai m≤D≤ 0. 5 /zm、 そし てアスペク ト比 (LZD) が 1 0≤しノ0≤ 35、 特に 1 0≤ LZD≤ 20の条 件を同時に満たすものが好適に使用できる。 (L) Force S 1 m ≤ L ≤ 5 m, average fiber diameter 0. l Ai m ≤ D ≤ 0.5 / zm, and aspect ratio (LZD) 10 ≤ 0 ≤ 0 ≤ 35, especially Those satisfying the condition of 10 ≤ LZD ≤ 20 at the same time can be suitably used.
本発明で用いる繊維状ゾノ トライ トは、 たとえば、 特開平 6— 1 284 1 2号 公報に記載された製造法、 すなわち、 石灰質原料と珪酸質原料とを特定割合で配 合して水熱合成反応により製造することができる。  The fibrous zonolite used in the present invention can be produced, for example, by a production method described in Japanese Patent Application Laid-Open No. 6-128412, that is, a hydrothermal synthesis by mixing a calcareous raw material and a siliceous raw material at a specific ratio. It can be produced by a reaction.
本発明で用いる繊維状ゾノ トライ トは、 その熱可塑性樹脂との混合に先立って 界面活性剤で処理される。 界面活性剤は、 繊維状ゾノ トライ トのマ ト リ ックスと なる熱可塑性樹脂との親和性を向上させ、 混練の初期段階においてゾノ トライ ト 顆粒を一次粒子に分散させることを促進すると考えられる。  The fibrous zonolite used in the present invention is treated with a surfactant before mixing with the thermoplastic resin. It is considered that the surfactant improves the affinity of the fibrous zono-lite with the thermoplastic resin as a matrix, and promotes the dispersion of the zono-lite granules into the primary particles in the initial stage of kneading.
界面活性剤としては、 陰イオン性、 陽イオン性、 両性および非イオン性の界面 活性剤のいずれも使用できる。 陰イオン性界面活性剤の例としては、 アルキルェ 一テル硫酸塩、 ドデシルベンゼンスルフォン酸塩、 ステアリン酸塩を挙げること ができる。 陽イオン性界面活性剤としては、 テトラデシルァミン酢酸塩、 アルキ ルトリメチルアンモニゥムクロライ ドを挙げることができる。 両性界面活性剤と しては、 ジメチルアルキルラウリルぺタインを挙げることができる。 非イオン性 界面活性剤としては、 ポリオキシエチレンォクタデシルァミン、 ポリエポキシェ チレンラウリルエーテルを挙げることができる。 特に好ましいのは、 非イオン性 界面活性剤であり、 所望により他の種類の界面活性剤と併用することもできる。 これらの界面活性剤の通常の添加量は、 繊維状ゾノ トライ ト (乾燥物基準) に 対して、 0 . 1〜 1 0重量0 /0の範囲内の量であり、 好ましくは 0 . 5〜8重量0 /0 の範囲内の量である。 添加量が 0 . 1重量%未満では、 前述の効果が十分現われ にく くなり、 また、 添加量が 1 0重量%を超える場合は、 添加量を増量しても前 述の効果は余り向上しない。 As the surfactant, any of anionic, cationic, amphoteric and nonionic surfactants can be used. Examples of anionic surfactants include alkyl ether sulfate, dodecylbenzene sulfonate, and stearate. Examples of the cationic surfactant include tetradecylamine acetate and alkyltrimethylammonium chloride. Examples of the amphoteric surfactant include dimethyl alkyl lauryl pentane. Nonionic surfactants include polyoxyethylene octadecylamine, polyepoxy Tylene lauryl ether can be mentioned. Particularly preferred are nonionic surfactants, which can be used in combination with other types of surfactants, if desired. Normal amount of these surfactants, for the fibrous Zono tri preparative (dry basis), 0. An amount in the range from 1 to 1 0 weight 0/0, preferably 0. 5 8 is an amount in the range of weight 0/0. If the added amount is less than 0.1% by weight, the above-mentioned effects are hardly exhibited, and if the added amount exceeds 10% by weight, the above-mentioned effects are significantly improved even if the added amount is increased. do not do.
繊維状ゾノ トライ トの界面活性剤による表面処理は、 例えば、 水熱合成反応に よって得られた繊維状ゾノ トライ トのスラリーをオートクレーブから抜き出し、 次いでそのまま界面活性剤による繊維状ゾノ トライ トの表面処理を行なうことが できる。 表面処理方法は限定されないが、 例えば、 繊維状ゾノ トライ トスラリー にそのまま、 あるいは適当量の水を加えた後に、 界面活性剤を添加し、 適当な装 置内でスラリ一状態で混合 ·攪拌し、 次いで遠心脱水機あるいはフィルタープレ ス機などにより余剰の水分を濾過分離し、 ケーキ状の界面活性剤処理繊維状ゾノ トライ トを得ることができる。 この界面活性剤による表面処理については、 繊維 状ゾノ トライ トを乾燥した後に、 少量の水あるいは溶媒に溶解した界面活性剤を 用いて行なっても良い。  For surface treatment of fibrous zonolite with a surfactant, for example, a slurry of fibrous zonolite obtained by a hydrothermal synthesis reaction is extracted from an autoclave, and then the surface of the fibrous zonolite with a surfactant is directly used. Processing can be performed. The surface treatment method is not limited.For example, a surfactant is added to the fibrous zonolite slurry as it is or after adding an appropriate amount of water, and the slurry is mixed and stirred in an appropriate apparatus in a slurry state. Then, excess water is filtered and separated by a centrifugal dehydrator or a filter press to obtain a cake-like surfactant-treated fibrous zonolite. This surface treatment with a surfactant may be carried out using a surfactant dissolved in a small amount of water or a solvent after drying the fibrous zonolite.
さらに、 界面活性剤処理済みの繊維状ゾノ トライ トは、 熱可塑性榭脂と、 カツ プリング剤との混合 ·攪拌を容易に行う 目的で顆粒状に造粒しておくことが望ま しい。 顆粒状のゾノ トライ トは、 前記の界面活性剤処理したケーキ状の繊維状ゾ ノ トライ トを、 造粒機によって直径が 1〜8 m mの顆粒状に成形し、 乾燥するこ とによって得ることができる。 用いる造粒機には特に制限はなく、 回転縦型造粒 機、 回転ドラム型造粒機、 回転皿型造粒機、 スクリュウ押出造粒機、 ロール押出 造粒機など公知の造粒機を用いることができる。 造粒時の乾燥は、 熱風循環式乾 燥器、 赤外線加熱式乾燥器など公知の乾燥器を用いて 1 0 0〜 1 8 0 °Cの温度で 1〜3 0時間かけて顆粒状のゾノ トライ トの水分が 1重量%以下になる程度まで 行うことが望ましい。  Further, it is desirable that the fibrous zonolite treated with the surfactant is granulated in a granular form in order to easily mix and stir the thermoplastic resin and the coupling agent. Granular zonolite can be obtained by forming the above-mentioned surfactant-treated cake-like fibrous zonolite into granules having a diameter of 1 to 8 mm using a granulator and drying. Can be. There is no particular limitation on the granulator to be used, and a known granulator such as a rotary vertical granulator, a rotary drum granulator, a rotary dish granulator, a screw extrusion granulator, and a roll extrusion granulator can be used. Can be used. Drying at the time of granulation is performed using a known dryer such as a hot air circulating dryer or an infrared heating dryer at a temperature of 100 to 180 ° C for 1 to 30 hours. It is desirable to carry out until the water content of the try becomes 1% by weight or less.
本発明において界面活性剤処理済みの繊維状ゾノ トライ トと混合する熱可塑性 榭脂の例としては、 種々の密度および分子量を有するポリエチレン、 直鎖状低密 度ポリエチレン、 エチレンコポリマー (エチレン '酢酸ビニルコポリマー、 ェチ レン . プロピレンコポリマーなど)、 ポリプロピレンホモポリマー、 ポリプロピ レンコポリマー (エチレン ' プロピレンブロックコポリマー等)、 変†生ポリプロ ピレン、 ポリブテン一 1およびボリ一 4—メチルペンテンなどのポリオレフイン 樹脂、 ボリ ビニルアルコール共重合体、 ポリスチレン、 耐衝撃性ポリスチレン、 アク リ ロニ ト リル一ブタジエン—スチレン (AB S) 樹脂、 ポリ塩化ビニル樹脂、 アク リ ロニ ト リル一スチレン (AS) 樹脂、 無水マレイン酸一スチレン樹脂、 ポ ロカプドアミ ド (ナイロン 6)、 ポリテ トラメチレンアジパミ ド (ナイロン 4 6)、 ポリへキサメチレンアジパミ ド (ナイロン 66)、 ポリへキサメチレンセバ カミ ド (ナイロン 6 1 0)、 ポリへキサメチレンドデカノアミ ド (ナイロン 6 1 2)、 ポリへキサメチレンテレフタルアミ ド (ナイロン 6丁)、 ポリへキサメチレ ンィソフタルァミ ド (ナイロン 6 I )、 ポリ ゥンデカンァミ ド (ナイロン 1 1 )、 ポリ ドデカンァミ ド (ナイロン 1 2)、 ナイロン 96、 ナイロン 9 1 2、 ナイ口 ン 9 1、 ナイロン 9 T、 ナイロン 6 6 6、 ナイロン 6 Ζ 1 1、 ナイロン 6 1 2、 ナイロン 6 6 1 0、 ナイロン 6ノ 6 1 2、 ナイロン 6 6ノ 6 1 0、 ナイ口 ン6 66 6 1 0、 ナイロン 6Ζ66/1 2、 ナイロン 6 6 Τ、 ナイロン 6 6 1、 ナイロン 6 9丁、 ナイロン 6ノ9 1、 ナイロン 6 6Ζ9 Τ、 ナイロン 66/9 1、 ナイロン δΖδ δΖθ Τ ナイロン 6Z1 2 9 Τ、 ナイロン 6 6 / \ 2/9 ナイロン 6 6ノ61\ ナイロン 6 6 6 1、 ナイロン 6 1 1/ 6 Τ、 ナイロン 6 1 2Ζ6 Τ、 ナイロン β δ/Ι ΐ/δ Τ ナイロン 6 6/1 2/6 Τ、 ナイロン 1 1Z6 Tノ 6 Iおよびナイロン 1 2/6 TZ6 Iなどのポ リアミ ド樹脂、 ポリブチレンテレフタレー ト、 ポリエチレンテレフタレー トおよ びその他の芳香族ポリエステルなどのポリエステル樹脂、 ポリカーボネート、 ポ リアセタール樹脂 (ホモポリマーおよびコポリマーを含む)、 ポリフエ二レンェ 一テル、 変性ポリフエ二レンエーテル、 ポリエーテルケトン、 ポリサルフォン、 ポロエーテルサルフォン、 ポリフエ二レンサルファイ ド榭脂、 ポリエーテルイミ ド、 熱可塑性ポリイミ ド、 熱可塑性ポリイミ ドアミ ド、 ポリテトラフルォロェチ レン、 テ トラフルォロエチレン一へキサフルォロプロピレン共重合体、 テ トラフ ルォロエチレン一エチレン共重合体、 テ トラフノレォロエチレン一パーフノレオロア ルキルビュルエーテル共重合体、 ポリ クロ口 トリフルォロエチレン、 ポリ フッ化 ビニリデン、 テ トラフノレオ口エチレン一へキサフノレオ口プロピレン一パーフノレオ 口アルキルビュルェ一テル共重合体など、 およびこれらの混合体を挙げることが できる。 これらの中でも、 ポリアミ ド樹脂、 ポリエステル樹脂、 ポリオレフイン 樹脂、 ポリアセタール樹脂、 およびポリフエ二レンサルファイ ド樹脂、 およびこ れらの混合体が特に好適な具体例としてして挙げられる。 Examples of the thermoplastic resin to be mixed with the fibrous zonolite treated with a surfactant in the present invention include polyethylene having various densities and molecular weights, and linear low density. Polyethylene, ethylene copolymer (ethylene'vinyl acetate copolymer, ethylene.propylene copolymer, etc.), polypropylene homopolymer, polypropylene copolymer (ethylene'propylene block copolymer, etc.), modified polypropylene, polybutene 1 and poly 4 —Polyolefin resin such as methylpentene, polyvinyl alcohol copolymer, polystyrene, high-impact polystyrene, acrylonitrile-butadiene-styrene (ABS) resin, polyvinyl chloride resin, acrylonitrile-styrene ( AS) Resin, maleic anhydride-styrene resin, polcapamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebaca (Nylon 610), polyhexamethylene dodecanoamide (nylon 612), polyhexamethylene terephthalamide (6 nylons), polyhexamethylene phthalamide (nylon 6I), polydecanamide (Nylon 11), Polydodecaneamide (Nylon 12), Nylon 96, Nylon 912, Nylon 91, Nylon 9T, Nylon 666, Nylon 6Ζ11, Nylon 612, Nylon 6 610, nylon 6 6 6 12, nylon 6 6 6 10, nylon 6 66 6 10, nylon 6Ζ66 / 12, nylon 6 6Τ, nylon 6 61, nylon 6 9 Nylon 6 9 1, Nylon 6 6Ζ9 Τ, Nylon 66/91 1, Nylon δΖδ δΖθ Τ Nylon 6Z1 2 9 Τ, Nylon 6 6 / \ 2/9 Nylon 6 6 6 1 \ Nylon 6 6 6 1, Nylon 6 1 1/6 Τ, nylon 6 1 2Ζ6 Τ, Niro β δ / Ι ΐ / δ Τ Nylon 6 6/1 2/6 Τ, Nylon 1 1Z6 Tno 6 I and Nylon 1 2/6 TZ6 I, etc.Polyamide resin, polybutylene terephthalate, polyethylene terephthalate And other polyester resins such as aromatic polyesters, polycarbonate, polyacetal resins (including homopolymers and copolymers), polyphenylene ether, modified polyphenylene ether, polyether ketone, polysulfone, poloethersulfone , Polyphenylene sulfide resin, Polyetherimide, Thermoplastic polyimide, Thermoplastic polyimide, Polytetrafluoroethylene, Tetrafluoroethylene-hexafluoropropylene copolymer, Te Trifluoroethylene-ethylene copolymer, tetrafluoroethylene Pafunoreoroa To mention, for example, alkyl vinyl ether copolymers, trifluoromethyl ethylene copolymers, polyvinylidene fluoride, tetrafluoronoreoethylene-hexaphnoleo-propylene-perphnoleo-alkylbule ether copolymers, and mixtures thereof. Can be done. Among these, a polyamide resin, a polyester resin, a polyolefin resin, a polyacetal resin, a polyphenylene sulfide resin, and a mixture thereof are mentioned as particularly preferred specific examples.
本発明の熱可塑性樹脂組成物の製造において用いるカツプリング剤としては、 シラン系カップリング剤、 チタネート系カップリング剤、 アルミニウム系カップ リング剤等が挙げられるが、 シラン系カップリング剤が好ましい。 カップリング 剤は予め部分的に加水分解させて、 部分的にシラノール基を持つように変性させ て用いてもよい。  Examples of the coupling agent used in the production of the thermoplastic resin composition of the present invention include a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent, and a silane coupling agent is preferable. The coupling agent may be partially hydrolyzed in advance and modified to partially have a silanol group before use.
シラン系カップリング剤としては、 アミノ基、 ジァミノ基、 ビュル基、 クロル 基、 メタクリロキシ基、 環状エポキシ基、 グリシドキシ基、 メルカプト基、 ウレ イ ド基、 ケチミ ド基、 などの有機官能基を有し、 メ トキシ基、 エトキシ基、 エト キシ基の無機官能基を有する各種のシラン系力ップリング剤が使用できる。  The silane coupling agent has an organic functional group such as an amino group, a diamino group, a butyl group, a chloro group, a methacryloxy group, a cyclic epoxy group, a glycidoxy group, a mercapto group, a ureide group, and a ketimide group. Various silane-based coupling agents having an inorganic functional group such as a methoxy group, an ethoxy group, and an ethoxy group can be used.
シランカップリング剤の具体例としては、 ビニルトリクロロシラン、 ビニルト リス ( i3—メ トキシエトキシ) シラン、 ビニルトリエトキシシラン、 γ— (メタ クリロイルォキシプロピル) トリエトキシシラン、 β — ( 3, 4—エポキシシク 口へキシル) ェチ^/トリメ トキシシラン、 γ—グリシジノレォキシプロビルトリメ トキシシラン、 γ —グリシドキシプロピルメチルジェトキシシラン、 Ν— (ァ ミノェチル) γ—ァミノプロビルトリメ トキシシラン、 N— ]3 (アミノエチル) γ —ァミノプロピルトリメチルジメ トキシシラン、 γ —ァミノプロピルトリエト キシシラン、 Ν—フエニル一 γーァミノプロピルトリメ トキシシラン、 γ—メチ ルカプトプロピルトリメ トキシシラン、 一クロ口プロビルトリメ トキシシラン などが挙げられる。  Specific examples of the silane coupling agent include vinyl trichlorosilane, vinyl tris (i3-methoxyethoxy) silane, vinyl triethoxy silane, γ- (methacryloyloxypropyl) triethoxy silane, β— (3, 4 —Epoxycyclyl hexyl) ethi ^ / trimethoxysilane, γ-glycidinoleoxypropyltrimethoxysilane, γ—glycidoxypropylmethyljetoxysilane, Ν— (aminoethyl) γ-aminoaminopropyltrimethoxysilane, N—] 3 (aminoethyl) γ—aminopropyltrimethyldimethoxysilane, γ—aminopropyltriethoxysilane, 、 -phenyl-γ-aminopropyltrimethoxysilane, γ-methylcaptopropyltrimethoxysilane, Provir trimethoxysilane It is.
特に、 熱可塑性榭脂としてポリアミ ド樹脂を用いる場合には、 アミノ系、 クロ ル系、 カチオン系などのシランカップリング剤が有利に使用できるが、 特にアミ ノ系が望ましい。  In particular, when a polyamide resin is used as the thermoplastic resin, an amino-based, chloro-based, or cationic silane coupling agent can be advantageously used, but an amino-based resin is particularly desirable.
熱可塑性樹脂がポリエステル樹脂である場合には、 アミノ系、 エポキシ系、 ク ロル系、 カチオン系などのシランカップリング剤が有利に使用できる、 特にェポ キシ系が望ましい。 When the thermoplastic resin is a polyester resin, amino-, epoxy-, or Lol-based or cationic silane coupling agents can be advantageously used, and epoxy-based compounds are particularly desirable.
熱可塑性樹脂がポリオレフイン樹脂であって、 特に変性され極性を有する場合 には、 アミノ系、 エポキシ系、 クロル系、 カチオン系などのシランカップリング 剤が有利に使用されるが、 特にアミノ系が望ましい。  When the thermoplastic resin is a polyolefin resin, particularly when it is modified and polar, an amino-based, epoxy-based, chloro-based, cationic-based silane coupling agent is advantageously used, but an amino-based resin is particularly preferred. .
熱可塑性樹脂がポリフエ二レンサルフアイ ド榭脂である場合には、 メルカプト 系のシラン力ップリング剤が望ましい。  When the thermoplastic resin is a polyphenylene sulfide resin, a mercapto-based silane coupling agent is desirable.
本発明の熱可塑性樹脂組成物には、 カップリング剤以外にも、 所望によって、 樹脂組成物の特性改善や製造改善のために添加される各種の副資材、 たとえば、 熱安定剤、 光安定剤、 可塑剤、 架橋剤、 酸化防止剤、 難燃剤、 強化材、 顔料、 染 料、 滑剤、 帯電防止剤、 離型剤、 香料、 ゴムあるいは熱可塑性エラス トマ一、 ゴ ムで変性された熱可塑性樹脂などを配合することができる。  In addition to the coupling agent, the thermoplastic resin composition of the present invention may optionally contain various auxiliary materials added for improving the properties of the resin composition and improving the production, such as a heat stabilizer and a light stabilizer. , Plasticizers, crosslinkers, antioxidants, flame retardants, reinforcements, pigments, dyes, lubricants, antistatic agents, release agents, fragrances, rubber or thermoplastic elastomers, thermoplastics modified with rubber A resin or the like can be blended.
次に、 繊維状ゾノ トライ ト (界面活性剤処理済みのもの) に対するカップリン グ剤の添加比率の重量百分率は、 0 . 2重量%以上、 1 0重量%未満であること が好ましく、 特に好ましくは 0 . 5重量%以上、 5重量%以下である。  Next, the weight percentage of the addition ratio of the coupling agent to the fibrous zonolite (which has been treated with a surfactant) is preferably at least 0.2% by weight and less than 10% by weight, particularly preferably. Is not less than 0.5% by weight and not more than 5% by weight.
本発明の熱可塑性樹脂組成物は、 たとえば、 下記の方法を利用して製造するこ とができる。  The thermoplastic resin composition of the present invention can be produced, for example, using the following method.
すなわち、 界面活性剤処理繊維状ゾノ トライ トと、 熱可塑性樹脂およびカップ リング剤からなる本発明の熱可塑性樹脂組成物は、 たとえば、 繊維状ゾノ トライ ト、 熱可塑性樹脂、 そしてカップリング剤を、 同時に、 もしくは順次、 混練機に 投入し、 ついで加熱下に溶融混練することにより製造することができる。 あるい は、 熱可塑性樹脂と任意の一成分を予め混合し、 次いで加熱溶融時に他の成分を 添加することもできる。  That is, the thermoplastic resin composition of the present invention comprising a surfactant-treated fibrous zonolite, a thermoplastic resin, and a coupling agent includes, for example, a fibrous zonolite, a thermoplastic resin, and a coupling agent. Simultaneously or sequentially, they can be put into a kneader, and then melt-kneaded under heating to produce the compound. Alternatively, the thermoplastic resin and any one of the components can be mixed in advance, and then the other components can be added during heating and melting.
繊維状ゾノ トライ ト、 熱可塑性樹脂およびカップリング剤を溶融混練する際の これら成分の添加、 混合順序については、 上記のように、 任意に選択することが できるが、 好ましくは、 繊維状ゾノ トライ トは、 押出機のホッパーに供給するこ とが望ましい。 例えば、 溶融混練に先立ち、 熱可塑性樹脂およびカップリング剤 と混合した後押出機のホッパーに供給してもよく、 繊維状ゾノ トライ トと熱可塑 性樹脂は、 ダブルフィードで、 カップリング剤は、 液添加でも良い。 また、 カツ プリング剤の一部分のみ押出機の途中から供給することも可能である。 なお、 前 記組成物を製造するに際して、 必要に応じて、 同時に前記各種副資材を添加する こともできる。 The addition and mixing order of these components when melt-kneading the fibrous zonolite, the thermoplastic resin and the coupling agent can be arbitrarily selected as described above, but preferably, the fibrous zonolite is preferably used. It is desirable to supply the extruder to the hopper of the extruder. For example, prior to melt-kneading, it may be mixed with a thermoplastic resin and a coupling agent and then supplied to a hopper of an extruder.The fibrous zonolite and the thermoplastic resin are double-feed, and the coupling agent is Liquid addition may be used. Also, cutlet It is also possible to supply only a part of the pulling agent from the middle of the extruder. In the production of the above-mentioned composition, the above-mentioned various auxiliary materials can be added at the same time, if necessary.
溶融混練温度は、 使用する熱可塑性樹脂に最も適した温度を選ぶ。 熱可塑性樹 脂が結晶性樹脂の場合には、 樹脂の融点より 1 0〜6 0°C高い温度、 好ましくは 樹脂の融点よりも 1 0〜4 0°C高い温度が利用される。 熱可塑性樹脂が非晶性の 樹脂の場合には、 樹脂のガラス転移点より 1 1 0〜1 6 0°C高い温度、 好ましく は樹脂のガラス転移点より 1 1 0〜1 4 0°C高い温度が利用される。  For the melt-kneading temperature, select the temperature most suitable for the thermoplastic resin used. When the thermoplastic resin is a crystalline resin, a temperature higher by 10 to 60 ° C than the melting point of the resin, preferably 10 to 40 ° C higher than the melting point of the resin is used. When the thermoplastic resin is an amorphous resin, the temperature is 110 to 160 ° C higher than the glass transition point of the resin, preferably 110 to 140 ° C higher than the glass transition point of the resin. Temperature is used.
用いる混練機の例としては、 一軸押出機や二軸押出機などの押出機、 二軸連続 ミキサー、 ノ ンバリ ーミキサー、 ス一パーミキサー、 ミキシングローノレ、 ニーダ 一、 ブラベンダープラストグラフなどを挙げることができ、 組成物は、 一般にべ レッ ト状として得るのが普通である。 これらの中でも、 押出機が好ましく、 二軸 押出機が特に好ましい。  Examples of the kneading machine used include extruders such as a single-screw extruder and a twin-screw extruder, a twin-screw continuous mixer, a non-variable mixer, a super mixer, a mixing groonole, a kneader, a brabender plastograph, and the like. The composition is generally obtained as a pellet. Among these, extruders are preferred, and twin-screw extruders are particularly preferred.
本発明の熱可塑性榭脂組成物の製造に際して、 上記の混練工程において、 溶融 樹脂中での剪断処理により繊維状ゾノ トライ トが繊維の長手方向に折損を受ける が、 併せて縦にも裂ける現象が発現する。 カップリング剤を加えて混練すること により、 この縦にも裂ける現象は、 より促進される。 その結果、 添加した当初の ゾノ トライ ト繊維が、 平均繊維長 (L) が 1 111≤し≤ 5 / 111、 平均繊維径が 0. 1 μ τη≤Ό≤ 0. 5 μ πι^ そしてアスペク ト比 (L^ D) カ 1 0≤ LZD≤ 2 0 であっても、 混練した後の榭脂組成物におけるゾノ トライ トの分散一次粒子は、 平均繊維長 (L) が 0. 2 Az m≤ L≤ 0. 7 /i m、 平均繊維径が 0. O l / m D≤ 0. 0 5 // m、 かつアスペク ト比 (L/D) が 5≤ L,D≤ 3 5 (特に、 5 ≤ L/D≤ 2 0、 さらに 7≤ L/D≤ 1 5) に微細化し、 分散する。 本発明で使 用する熱可塑性樹脂とゾノ トライ トとの界面の結合がカツプリング反応により強 化されることにより、 樹脂組成物の物性、 特に剛性、 耐熱性、 耐衝撃性が顕著に 向上し、 そのバランスが大幅に改善することができる。 併せて、 成形収縮、 温度 変化などによる線変化、 反りなどを抑制する効果も向上することから、 構造材料 としての適用範囲を拡大でき、 自動車、 電気,電子、 精密機械などの分野の材料 として特に有利に使用できる。 このようにして得られた組成物は、 従来の組成物と比較し流動性も向上するこ とから、 射出成形、 押出成形、 圧縮成形、 中空成形などの公知の種々の成形法に より成形される。 In the production of the thermoplastic resin composition of the present invention, in the above-mentioned kneading step, the fibrous zonolite is broken in the longitudinal direction of the fiber due to the shearing treatment in the molten resin, but is also split vertically. Is expressed. By adding and kneading a coupling agent, this longitudinal tearing phenomenon is further promoted. As a result, the initially added zonotrite fiber has an average fiber length (L) of 1111≤≤≤5 / 111, an average fiber diameter of 0.1 μτη≤Ό≤0.5 μππ ^ and an aspect ratio of Even if the ratio (L ^ D) is 10 ≤ LZD ≤ 20, the dispersed primary particles of zonolite in the kneaded resin composition have an average fiber length (L) of 0.2 Az m ≤ L≤0.7 / im, average fiber diameter is 0.Ol / m D≤0.05 // m, and aspect ratio (L / D) is 5≤L, D≤35 (particularly 5 ≤ L / D≤ 20 and 7≤ L / D≤ 15 5) and dispersed. By strengthening the bond at the interface between the thermoplastic resin used in the present invention and the zonolite by a coupling reaction, the physical properties of the resin composition, particularly rigidity, heat resistance and impact resistance, are remarkably improved, That balance can be greatly improved. At the same time, the effect of suppressing line changes and warpage due to molding shrinkage and temperature changes is also improved, so the range of application as a structural material can be expanded, and especially as a material in the fields of automobiles, electricity, electronics, precision machinery, etc. It can be used to advantage. Since the composition obtained in this way has improved fluidity as compared with conventional compositions, it can be molded by various known molding methods such as injection molding, extrusion molding, compression molding, and hollow molding. You.
本発明の界面活性剤処理繊維状ゾノ トライ トがカップリング剤の存在下で混練 配合された熱可塑性樹脂組成物は、 そのまま樹脂成形体の製造に利用することが できるが、 所望により、 界面活性剤処理繊維状ゾノ トライ トの配合量が多い熱可 塑性樹脂組成物を製造し、 次いでそれをマスターバッチとして用い、 これに同種 の熱可塑性樹脂を混合 (希釈) する方法を利用して、 繊維状ゾノ トライ トの配合 量を調節した熱可塑性樹脂組成物とすることもできる。 以下に実施例および比較例を述べて本発明を具体的に説明する。 なお、 実施例 および比較例において述べる成形品の物性評価方法は、 下記の方法に従って実施 した。  The thermoplastic resin composition obtained by kneading and blending the surfactant-treated fibrous zonolite of the present invention in the presence of a coupling agent can be used as it is for the production of a resin molded product. A thermoplastic resin composition containing a large amount of the agent-treated fibrous zonolite is produced, then used as a masterbatch, and mixed (diluted) with the same type of thermoplastic resin. A thermoplastic resin composition in which the amount of the zonolite in the form of a mixture is adjusted can also be used. Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The methods for evaluating physical properties of molded articles described in Examples and Comparative Examples were performed according to the following methods.
( 1 ) 曲げ特性  (1) Bending characteristics
(株) オリエンテック製テンシロン UTM— 5 Tを使用して測定した。 所望の 熱可塑性樹脂組成物を成形後、 2 3°C、 相対湿度 50% (以下 「50%RHJ) と略記) で 48時間状態調節をした。 そして、 曲げ強度や曲げ弾性率の測定を A STM D 790に従い、 2 3°C、 50 % R Hにおいて行った。 なお、 ポリアミ ド樹脂を主成分とする組成物の場合には、 2 3°C、 デシケーター中で 48時間状 態調節をし、 曲げ強度や曲げ弾性率の測定を AS TM D 7 90に従い、 2 3°C、 絶乾状態において行った。  The measurement was performed using Tensilon UTM-5T manufactured by Orientec. After molding the desired thermoplastic resin composition, it was conditioned for 48 hours at 23 ° C and a relative humidity of 50% (hereinafter abbreviated as “50% RHJ”). The test was performed at 23 ° C and 50% RH in accordance with STM D 790. In the case of a composition containing a polyamide resin as a main component, the condition was adjusted in a desiccator at 23 ° C for 48 hours. Flexural strength and flexural modulus were measured according to ASTM D790 at 23 ° C in a completely dry state.
(2) アイゾッ ト衝撃強度  (2) Izod impact strength
(株) 東洋精機製アイゾッ ト衝撃試験機を使用して測定した。 そして、 前記 (1 ) 項と同様の状態調節をした試験片を用いて、 ASTM D 25 6に従い、 前記 (1) 項と同様の温度および湿度条件においてノッチ付きアイゾッ ト衝撃強 度を求めた。  The measurement was performed using an Izod impact tester manufactured by Toyo Seiki Co., Ltd. The notched Izod impact strength was determined in accordance with ASTM D256 under the same temperature and humidity conditions as in the above item (1), using the test specimen whose condition was adjusted in the same manner as in the above item (1).
(3) 計装化落錘衝撃強度  (3) Instrumented falling weight impact strength
(株) オリエンテックの計装化衝撃試験機 UTM— 5を使用して、 速度 4. 5 秒、 温度 23°C、 湿度 5 0%の条件で測定した。 (4) 荷重たわみ温度 The measurement was performed using Orientec's instrumented impact tester UTM-5 at a speed of 4.5 seconds, a temperature of 23 ° C, and a humidity of 50%. (4) Deflection temperature under load
(株) 東洋精機荷重たわみ試験機を使用して測定した。 前記 ( 1 ) 項と同様の 状態調節をした試験片を用いて、 A S TM D 648に従い、 応力 1. 8 2Mp aのもとで値を求めた。 なお、 ポリプロピレン樹脂を主成分とする組成物の場合 には、 応力 0. 45 M p aの下で値を求めた。  The measurement was performed using a Toyo Seiki load deflection tester. The value was determined under the stress of 1.82 MPa in accordance with ASTM D648 using a test piece which had been subjected to the same condition control as in the above (1). In the case of a composition containing a polypropylene resin as a main component, the value was obtained under a stress of 0.45 MPa.
(5) メルトフローインデックス (MF I と略記することもある)  (5) Melt flow index (may be abbreviated as MFI)
宝工業 (株) 製のメルトインデクサ YA 2 07 2— 0000を使用して測定し た。 前記 ( 1 ) 項と同様の状態調節をした試験片を用いて、 AS TM D 1 2 3 8に従い、 ナイロン 6を主成分とする組成物の場合には温度 2 50°Cのもとで、 ポロプロピレン榭脂を主成分とする組成物の場合には温度 2 30°Cのもとでの値 を求めた。  The measurement was performed using a melt indexer YA2072-0000 manufactured by Takara Kogyo Co., Ltd. According to ASTM D 1 238, using a test piece with the same condition adjustment as in the above (1), in the case of a composition containing nylon 6 as a main component, at a temperature of 250 ° C, In the case of a composition containing propylene resin as a main component, the value was determined at a temperature of 230 ° C.
(6) 組成物中のゾノ トライ トの繊維長、 繊維径の測定  (6) Measurement of fiber length and fiber diameter of zonolite in the composition
組成物におけるゾノ トライ ト繊維のモルホロジーを把握する目的で、 混練スト ランドの中心部を対象としてライケ (株) 製のクライオ装置付きミクロ トームゥ ルトラカッ ト Sにより厚さ 0. 1 / mに設定し流れ方向に平行な薄片試料を制作 した。 一部参考図において示した 6万倍の TEM観察像を基に、 ゾノ トライ トー 次粒子のディメンジョンを測定した。 500〜 1 000個の粒子の繊維長、 繊維 径を測定の後に、 平均アスペク ト比を算出した。  In order to understand the morphology of the zono-lite fibers in the composition, the thickness of the kneading strand was set to 0.1 / m using a microtome with a cryo-apparatus, manufactured by Raike Co., Ltd., targeting the center of the kneading strand. A slice sample parallel to the direction was produced. Based on the 60,000-times TEM observation image shown in some of the reference figures, the dimensions of the Zono Tritoe secondary particles were measured. After measuring the fiber length and diameter of 500 to 1,000 particles, the average aspect ratio was calculated.
[参考例 1 ] [Reference Example 1]
石灰質原料として生石灰 (宇部マテリアルズ (株) 製、 C a O純度: 9 8%) 430 g、 珪酸質原料として農業用珪石粉 (ジャパンゼネラル (株) 製品、 ブレ ーン比表面積: 7000 c m2Zg、 S i〇2純度: 9 7%) 4 70 g、 および水 道水 1 8リッ トルを内容積 30リ ツ トルの SUS 3 1 6製攪拌機付きォートクレ ーブに投入した。 そして、 回転数 80 r pmで攪拌しながら、 保持温度 2 20°C でまで 2°CZ分の割合で昇温し、 保持温度 2 20°Cで 5時間保持して水熱合成反 応を行った後、 攪拌しながら 1 0時間以上かけて放冷して繊維状ゾノ トライ トス ラリーを得た。 なお、 このスラリー X線回折を測定したところ、 ゾノ トライ トの みが同定された。 続いて、 この繊維状ゾノ トライ トスラ リー 9 2 0 g (固定分基準) に水道水約 1 8 リ ツ トルおよび非イオン系の界面活性剤 (ポリオキシエチレンォクタデシル ァミン、 日本油脂 (株) 製品、 商品名 :ナイミーン 2 0 4 ) 4 6 g (繊維状ゾノ トライ ト固形分に対して 5重量%) を加え、 ホモジナイザーで分散しながら表面 処理した。 このスラリーをヌッチェにて脱水してケーキ状にした後、 造粒機によ り 0 3 mmの径に成形し、 約 1 0 0でで乾燥することにより、 表面処理した顆粒 状の繊維状ゾノ トライ トを得た。 この顆粒状の繊維状ゾノ トライ トについて、 窒 素吸着による B E T比表面積の測定ならびに走査型電子顕微鏡写真による平均繊 維長および平均繊維径の測定を行ったところそれぞれ、 4 8 m2/ g、 3 / mお よび 0. 2 / m (従って、 アスペク ト比 : 1 5 ) であることが確認された。 得ら れた繊維状ゾノ トライ トを以下、 『界面活性剤処理繊維状ゾノ トライ ト A』 と表 す。 Quicklime as calcareous material (Ube Material Co., C a O Purity: 9 8%) 430 g, agricultural silica powder as siliceous material (Japan General Corporation product, blur over down specific surface area: 7000 cm 2 zg, S I_〇 2 purity: 9 7%) 4 70 g , and water Michisui 1 8 liters was charged to SUS 3 1 with 6 made stirrer Otokure over blanking the internal volume 30 Li Tsu torr. Then, while stirring at a rotation speed of 80 rpm, the temperature was raised at a holding temperature of 220 ° C at a rate of 2 ° C / Z, and held at a holding temperature of 220 ° C for 5 hours to perform a hydrothermal synthesis reaction. Thereafter, the mixture was allowed to cool over 10 hours or more with stirring to obtain a fibrous zono trie slurry. When the slurry X-ray diffraction was measured, only zonotrite was identified. Subsequently, about 180 g of tap water and a nonionic surfactant (polyoxyethylene octadecylamine, Nippon Oil & Fats Co., Ltd.) were added to 920 g of the fibrous zono trit slurry (based on the fixed amount). Product, trade name: Nymein 204) 46 g (5% by weight based on the solid content of fibrous zonolite) was added, and the surface was treated with a homogenizer while dispersing. The slurry is dehydrated by Nutsche to form a cake, then formed into a diameter of 0.3 mm by a granulator, and dried at about 100 to obtain a surface-treated granular fibrous zono. Got a try. This granular fibrous Zono tri DOO, each was subjected to measurement of the average fiber維長and average fiber diameter by the measurement and scanning electron micrograph of the BET specific surface area by nitrogen adsorption, 4 8 m 2 / g, It was confirmed that they were 3 / m and 0.2 / m (therefore, the aspect ratio: 15). The obtained fibrous zonolite is hereinafter referred to as “surfactant-treated fibrous zonolite A”.
[参考例 2]  [Reference Example 2]
水熱合成反応の保持温度を、 参考例 1における 2 2 0°Cに代えて 2 4 0°Cとし た以外は、 参考例 1 と全く同様にして顆粒状の繊維状ゾノ トライ トの製造を行な レヽ、 B E T比表面積: 2 4 m2/ g、 平均繊維長 4 μ mおよび平均繊維径 0. 2 μ m (従って、 ァスぺク ト比 : 2 0 ) の繊維状ゾノ トライ トを得た。 以下、 これ を 『界面活性剤処理繊維状ゾノ トライ ト B』 と表す。 The production of granular fibrous zonolite was carried out in exactly the same manner as in Reference Example 1, except that the holding temperature for the hydrothermal synthesis reaction was 240 ° C instead of 220 ° C in Reference Example 1. A fibrous zonolite with a BET specific surface area of 24 m 2 / g, an average fiber length of 4 μm and an average fiber diameter of 0.2 μm (hence the aspect ratio of 20) was used. Obtained. Hereinafter, this is referred to as “surfactant-treated fibrous zonolite B”.
[参考例 3 ]  [Reference Example 3]
水熱合成反応の保持温度を、 参考例 1における 2 2 0°Cに代えて 2 6 0°Cとし た以外は、 参考例 1 と全く同様にして顆粒状の繊維状ゾノ トライ トの製造を行な レ、、 B E T比表面積: 1 6 m2/ g、 平均繊維長 1 0 μ πιおよび平均繊維径◦. 2 / m (従って、 アスペク ト比 : 5 0) の繊維状ゾノ トライ トを得た。 以下、 こ れを 『界面活性剤処理繊維状ゾノ トライ ト粗粒子 C』 と表す。 Production of granular fibrous zonolite was carried out in exactly the same manner as in Reference Example 1, except that the holding temperature for the hydrothermal synthesis reaction was changed to 260 ° C instead of 220 ° C in Reference Example 1. The BET specific surface area: 16 m 2 / g, average fiber length 10 μπι and average fiber diameter ◦. 2 / m (Accordingly, aspect ratio: 50) were obtained. Was. Hereinafter, this is referred to as “surfactant-treated fibrous zonolite coarse particles C”.
[参考例 4 ]  [Reference Example 4]
表面処理剤としての非イオン系界面活性剤を添加しなかったこと以外は、 参考 例 1 と全く同様にして顆粒状のゾノ トライ トの製造を行い、 B E T比表面積 3 9 n^Zg 平均繊維長 : 3 mおよび平均繊維径 0. 2 m (従って、 ァスぺク ト比: 1 5 ) の界面活性剤未処理の繊維状ゾノ トライ トを得た。 以下これを 『未 処理繊維状ゾノ トライ E』 と表す。14 Granular zonolite was produced in the same manner as in Reference Example 1 except that the nonionic surfactant as a surface treatment agent was not added, and the BET specific surface area was 39 n ^ Zg. : 3 m and an average fiber diameter of 0.2 m (accordingly, an aspect ratio: 15), a fibrous zonolite untreated with a surfactant was obtained. Hereafter, Treated fibrous Zonotry E ”. 14
[参考例 5]  [Reference Example 5]
非イオン系の界面活性剤 (商品名 :ナイ ミーン 204) をシラン系カップリン グ剤 —ァミ ノプロピルト リエ トキシソラン、 日本ュニカー (株) 製品、 商品 名 : A— 1 1 00) 46 g (繊維状ゾノ トライ ト固形分に対して 5重量0 /0) に変 えたこと以外は、 参考例 1 と全く同様にしてゾノ トライ ト表面処理の製造を行な レ、、 8 £丁比表面積451112 8、 平均繊維長 : 3 μ mおよび平均繊維径 0. 2 μ m (従って、 ァスぺク ト比 : 1 5) の繊維状ゾノ トライ トを得た。 以下、 これ を 『カップリング剤処理繊維状ゾノ トライ F』 と表す。 Nonionic surfactant (trade name: Nymein 204) is replaced with silane coupling agent—Aminopropyl Triethoxyethoxylan, a product of Nippon Tunica Co., Ltd., trade name: A—110) 46 g (fibrous Zono tri fed versus except the E strange to 5 weight 0/0) solids, reference example 1 and row production of exactly the same way Zono tri preparative surface treatment Le ,, 8 £ Ding specific surface area 45 111 2 8 Thus, a fibrous zonolite having an average fiber length of 3 μm and an average fiber diameter of 0.2 μm (accordingly, an aspect ratio of 15) was obtained. Hereinafter, this is referred to as “Fibrous Zonotri F treated with coupling agent F”.
[実施例 1 ] [Example 1]
熱可塑性樹脂としてナイロン 6 (宇部興産 (株) 製、 商品名 U B Eナイロン 1 0 1 3 B) 9 9. 5重量部、 カップリング剤としてアミノシラン系カップリング 剤 (日本ュニカー (株) 製、 商品名 : A— 1 1 00) 0. 5重量部とからなる混 合物 80重量部に対し、 繊維状ゾノ トライ トとして参考例 1により得られた界面 活性剤処理繊維状ゾノ トライ ト Aを 20重量部の配合割合で予め V型プレンダー を用いて混合した。 引き続いて、 シリンダー径: Φ 3 Ommの同方向回転型二軸 スク リユウ押出機 (池貝鉄工 (株) 製: P CM30) を使用し、 250°C (ただ し、 ノズル部の温度とし、 以下に同じ) で、 溶融混練し、 前記ナイロンが 7 9. 6重量部、 前記カップリング剤が 0. 4重量部および繊維状ゾノ トライ トが 20 重量部からなるペレッ トを作成した。 ただし、 スク リューフィーダ一を用いて供 給口より前記ナイロン 6、 アミノシラン系カツプリング剤および繊維状ゾノ トラ イ ト Aを供給し、 第二ベン ト口から脱気操作を行った。  Nylon 6 as thermoplastic resin (trade name: UBE Nylon 1013B) manufactured by Ube Industries, Ltd. 99.5 parts by weight, aminosilane-based coupling agent as coupling agent (trade name, manufactured by Nippon Tunicar Co., Ltd.) : A—1 100) 0.5 part by weight of a mixture consisting of 0.5 part by weight and 20 parts by weight of the surfactant-treated fibrous zonolite A obtained in Reference Example 1 as fibrous zonolite in a proportion of 80 parts by weight. Parts were previously mixed using a V-type blender. Subsequently, using a co-rotating twin-screw screw extruder with a cylinder diameter of Φ3 Omm (PCM30, manufactured by Ikegai Iron Works Co., Ltd.), the temperature was set to 250 ° C (where the temperature of the nozzle was The same procedure was followed by melt-kneading to prepare a pellet composed of 79.6 parts by weight of the nylon, 0.4 part by weight of the coupling agent, and 20 parts by weight of the fibrous zonolite. However, the nylon 6, aminosilane-based coupling agent and fibrous zono triit A were supplied from the supply port using a screw feeder, and deaeration was performed from the second vent port.
次に、 射出成形機 (日本製鋼所 (株) 製 N 1 00) を使用して、 シリンダー温 度 (ただし、 ノズルへッ ド部の温度とし、 以下において同じ) 260°Cおよび金 型温度 1 00°Cにおいて上記ペレッ トを射出成形し、 物性試験用の成形体 (試験 片) を作成した。 物性試験の結果を表 1に示す。 なお、 メルトフローインデック ス (MF I ) は 43%であった。  Next, using an injection molding machine (N100 manufactured by Japan Steel Works, Ltd.), the cylinder temperature (however, the temperature of the nozzle head, the same applies hereinafter) 260 ° C and the mold temperature 1 The pellet was injection-molded at 00 ° C to prepare a molded article (test piece) for a physical property test. Table 1 shows the results of the physical property test. The melt flow index (MF I) was 43%.
[実施例 2] 実施例 1のァミノシラン形力ッブ jJング剤 A— 1 1 0 0の代わりに、 エポキシ 系シランカップリング剤 (日本ュニカー (株) 製、 商品名 : A— 1 8 7 ) を用い たこと以外は、 実施例 1 と全く同様の操作を行なった。 得られた試験片の物性試 験結果は、 表 1に示すとおりであった。 [Example 2] Except that an epoxy silane coupling agent (trade name: A-187, manufactured by Nippon Tunicer Co., Ltd.) was used in place of the aminosilane-type jj agent A-110 of Example 1. Was performed in exactly the same manner as in Example 1. Table 1 shows the physical property test results of the obtained test pieces.
[実施例 3 ]  [Example 3]
実施例 1のアミノシラン形力ップリング剤 A— 1 1 0 0の代わりに、 メルカプ ト系シランカップリング剤 (日本ュニカー (株) 製、 商品名 : A— 1 9 7 ) を用 いたこと以外は、 実施例 1 と全く同様の操作を行なった。 得られた試験片の物性 試験結果は、 表 1に示すとおりであった。  Except that the aminosilane type coupling agent A-110 of Example 1 was replaced with a mercapto-based silane coupling agent (trade name: A-197, manufactured by Nippon Tunicer Co., Ltd.), The same operation as in Example 1 was performed. The test results of physical properties of the obtained test piece were as shown in Table 1.
[実施例 4 ]  [Example 4]
実施例 1における界面活性剤処理繊維状ゾノ トライ ト Aを界面活性剤処理繊維 状ゾノ トライ ト Bに変えた以外は、 実施例 1 と全く同様の操作を行なった。 得ら れた試験片の物性試験結果は、 表 1に示すとおりであった。  The same operation as in Example 1 was performed, except that the surfactant-treated fibrous zono-lite A in Example 1 was changed to the surfactant-treated fibrous zono-lite B. Table 1 shows the physical property test results of the obtained test pieces.
[実施例 5 ]  [Example 5]
実施例 1で得られたペレッ トをマスターバッチとして、 これを 2 5重量部、 そ してナイロン 6単独の 7 5重量部とを、 予め V型ブレンダーを用いてプレンドし たのち、 実施例 1 と全く同様な操作を行なって、 加熱溶融と物性評価用の成形物 The pellet obtained in Example 1 was used as a master batch, and 25 parts by weight of the pellet and 75 parts by weight of nylon 6 alone were pre-blended using a V-type blender. By performing the same operation as above, the molded product for heat melting and physical property evaluation
(試験片、 ナイロン 6 :界面活性剤処理繊維状ゾノ トライ ト A : カップリング剤 = 9 4 . 9重量部: 5重量部 : 0 . 1重量部) を得た。 得られた試験片の物性試 験結果は、 表 1に示すとおりであった。 (Test piece, nylon 6: surfactant-treated fibrous zonolite A : coupling agent = 94.9 parts by weight: 5 parts by weight: 0.1 part by weight) was obtained. Table 1 shows the physical property test results of the obtained test pieces.
[実施例 6 ]  [Example 6]
実施例 1で得られたペレッ トをマスターバッチとして、 これを 5重量部、 そし てナイロン 6単独の 9 5重量部とを、 予め V型ブレンダーを用いてブレンドした のち、 実施例 1 と全く同様な操作を行なって、 加熱溶融と物性評価用の成形物 Using the pellet obtained in Example 1 as a master batch, 5 parts by weight thereof and 95 parts by weight of nylon 6 alone were previously blended using a V-type blender, and then completely blended as in Example 1. Molding for heat melting and physical property evaluation
(試験片、 ナイロン 6 :界面活性剤処理繊維状ゾノ トライ ト A : カップリング剤 = 9 8 . 9 8重量部: 1重量部: 0 . 0 2重量部) を得た。 得られた試験片の物 性試験結果は、 表 1に示すとおりであった。 (Test piece, nylon 6: surfactant treated fibrous zonolite A : coupling agent = 98.988 parts by weight: 1 part by weight: 0.02 parts by weight) was obtained. Physical test results of the obtained test pieces are as shown in Table 1.
[実施例 7 ]  [Example 7]
実施例 1において、 アミノシラン系カップリング剤の使用量を◦ . 2重量部 (界面活性剤処理繊維状ゾノ トライ ト Aに対して 1重量%) に変えた以外は全く 同様な操作を行なった。 得られた試験片の物性試験結果は、 表 1に示すとおりで あった。 メルトフローインデックス (MF I ) は 44%であった。 In Example 1, the amount of the aminosilane-based coupling agent was (The same operation was performed except that the amount was changed to 1% by weight based on the surfactant-treated fibrous zonolite A.) The physical property test results of the obtained test piece are as shown in Table 1. The melt flow index (MF I) was 44%.
[実施例 8]  [Example 8]
実施例 1において、 アミノシラン系カップリング剤の使用量を 0. 8重量部 (界面活性剤処理繊維状ゾノ トライ ト Aに対して 4重量%) に変えた以外は全く 同様な操作を行なった。.得られた試験片の物性試験結果は、 表 1に示すとおりで あった。 メルトフローインデックス (MF I ) は 42%であった。  The same operation as in Example 1 was performed except that the amount of the aminosilane-based coupling agent was changed to 0.8 parts by weight (4% by weight based on the surfactant-treated fibrous zonolite A). Table 1 shows the physical property test results of the obtained test pieces. The melt flow index (MF I) was 42%.
[比較例 1 ]  [Comparative Example 1]
実施例 1における界面活性剤処理繊維状ゾノ トライ ト Aを界面活性剤処理繊維 状ゾノ トライ ト粗粒子 Cに変えた以外は、 実施例 1 と全く同様の操作を行なった。 得られた試験片の物性試験結果は、 表 1に示すとおりであった。 メルトフローイ ンデックス (MF I ) は 3 9%であった。  Except that the surfactant-treated fibrous zono-lite A in Example 1 was changed to coarse surfactant-treated fibrous zono-lite C, the same operation as in Example 1 was performed. Physical test results of the obtained test pieces are as shown in Table 1. Melt flow index (MFI) was 39%.
[比較例 2 ]  [Comparative Example 2]
実施例 1における界面活性剤処理繊維状ゾノ トライ ト Aを未処理繊維状ゾノ ト ライ ト Eに変えた以外は、 実施例 1 と全く同様の操作を行なった。 得られた試験 片の物性試験結果は、 表 1に示すとおりであった。  Except that the surfactant-treated fibrous zonolite A in Example 1 was changed to untreated fibrous zonolite E, the same operation as in Example 1 was performed. Physical test results of the obtained test pieces are as shown in Table 1.
[比較例 3]  [Comparative Example 3]
実施例 1におけるアミノシラン系カップリング剤 (A— 1 1 00) の使用量を 0. 0 1重量部 (界面活性剤処理繊維状ゾノ トライ ト Aに対して 0. 05重量 %) としたこと以外は、 実施例 1 と全く同様の操作を行なった。 得られた試験片 の物性試験結果は、 表 1に示すとおりであった。  Except that the amount of the aminosilane-based coupling agent (A-1100) used in Example 1 was set to 0.01 part by weight (0.05% by weight based on the surfactant-treated fibrous zonolite A). Was performed in exactly the same manner as in Example 1. Physical test results of the obtained test piece are as shown in Table 1.
[比較例 4]  [Comparative Example 4]
実施例 1におけるァミノシラン系カツプリング剤 (A— 1 1 00) を全く使用 しなかったこと以外は、 実施例 1 と全く同様の操作を行なった。 得られた試験片 の物性試験結果は、 表 1に示すとおりであった。 メルトフローインデックス (M F I ) は 38 %であった。  The same operation as in Example 1 was performed, except that the aminosilane-based coupling agent (A-110) in Example 1 was not used at all. Physical test results of the obtained test piece are as shown in Table 1. The melt flow index (MFI) was 38%.
[比較例 5]  [Comparative Example 5]
実施例 1における界面活性剤処理繊維状ゾノ トライ ト Aをカップリング剤処理 繊維状ゾノ トライ ト Fに変えた以外は、 実施例 1 と全く同様の操作を行なった c 得られた試験片の物性試験結果は、 表 1に示すとおりであった。 表 1 例 I z衝撃強度 落錘衝撃強度 曲げ強度 曲げ弾性率 荷重たわみ度 The surfactant-treated fibrous zonolite A in Example 1 was treated with a coupling agent. Except for changing to the fibrous zonolite F, the same operation as in Example 1 was carried out. C The physical property test results of the obtained test pieces were as shown in Table 1. Table 1 Example I z Impact strength Falling weight impact strength Flexural strength Flexural modulus Load deflection
(%) (%) (%) (%) (%) 実施例 1 1 08 40 1 6 3 2 7 0 232 実施例 2 1 08 1 5 0 26 7 2 1 7 実施例 3 1 08 1 4 9 26 7  (%) (%) (%) (%) (%) Example 1 1 08 40 1 6 3 2 7 0 232 Example 2 1 08 1 5 0 26 7 2 1 7 Example 3 1 08 1 4 9 26 7
実施例 4 1 02 3 8 1 6 1 2 7 0 2 29 実施例 5 6 7 1 1 4 1 1 1 1 5 2 1 56 実施例 6 6 5 1 1 3 1 0 9 1 3 3  Example 4 1 02 3 8 1 6 1 2 7 0 2 29 Example 5 6 7 1 1 4 1 1 1 1 5 2 1 56 Example 6 6 5 1 1 3 1 0 9 1 3 3
実施例 7 8 9 1 7 1 6 3 2 5 9 2 2 7 実施例 8 1 1 3 1 6 1 6 5 2 5 9 2 27 比較例 1 60 5 1 5 8 24 8 208 比較例 2 評価に耐える表面状態の成形物の製造できず 一一 比 較例 3 5 6 5 1 5 9 2 3 7 Example 7 8 9 1 7 1 6 3 2 5 9 2 2 7 Example 8 1 1 3 1 6 1 6 5 2 5 9 2 27 Comparative Example 1 60 5 1 5 8 24 8 208 Comparative Example 2 Surface withstanding evaluation 3 5 6 5 1 5 9 2 3 7
比較例 4 6 0 5 1 6 0 24 1 2 1 1 比較例 5 5 6 4 1 44 22 6 Comparative Example 4 6 0 5 1 6 0 24 1 2 1 1 Comparative Example 5 5 6 4 1 44 22 6
[実施例 9] [Example 9]
ナイロン 6を、 ポリプロピレン (エチレン ' プロピレンブロックコポリマー、 グランドポリマ一 (株) 製、 商品名 : グランドポリプロ J 8 1 5 HK) 90重量 部と変性ポリプロピレン (グランドポリマー (株) 製、 商品名 : グランドポリプ 口 (ブロックベース変性ポリプロピレン) Z P 648) 1 0重量部との混合物に 変え、 溶融混練温度を 25 0°Cに代えて 240°Cとしたこと、 そして射出成形機 の金型温度を 1 00°Cから 80°Cに変えたこと以外は実施例 1 と全く同様な操作 を行なった。 得られた試験片の物性試験結果は、 表 2に示すとおりであった。 Nylon 6, polypropylene (ethylene 'propylene block copolymer, manufactured by Grand Polymer Co., Ltd., trade name: Grand Polypro J815K) 90 parts by weight and modified polypropylene (manufactured by Grand Polymer Co., Ltd., trade name: Grand Polyp) Mouth (block-based modified polypropylene) ZP 648) Changed to a mixture with 10 parts by weight, and changed the melt-kneading temperature to 240 ° C instead of 250 ° C, and the injection molding machine Except that the mold temperature was changed from 100 ° C to 80 ° C, the same operation as in Example 1 was performed. Physical test results of the obtained test pieces are as shown in Table 2.
[実施例 1 0]  [Example 10]
実施例 9において、 界面活性剤処理繊維状ゾノ トライ ト Aの配合量を 5重量部 に変えたこと以外は実施例 9と全く同様な操作を行なった。 得られた試験片の物 性試験結果は、 表 2に示すとおりであった。  The same operation as in Example 9 was performed, except that the blending amount of the fibrous zonolite A treated with surfactant was changed to 5 parts by weight. Physical test results of the obtained test pieces are as shown in Table 2.
[比較例 6]  [Comparative Example 6]
実施例 9において、 カツプリング剤を使用しなかったこと以外は実施例 9と全 く同様な操作を行なった。 得られた試験片の物性試験結果は、 表 2に示すとおり であった。  In Example 9, the same operation as in Example 9 was performed except that no coupling agent was used. Physical test results of the obtained test piece are as shown in Table 2.
[比較例 7 ]  [Comparative Example 7]
実施例 9における界面活性剤処理繊維状ゾノ トライ ト Aをカップリング剤処理 繊維状ゾノ トライ ト Fに変えた以外は、 実施例 9と全く同様の操作を行なった。 得られた試験片の物性試験結果は、 表 2に示すとおりであった。 表 2 例 I Z衝撃強度 落錘衝撃強度 曲げ強度 曲げ弾性率 荷重たわみ度  The same operation as in Example 9 was performed, except that the fibrous zonolite A treated with a surfactant in Example 9 was changed to the fibrous zonolite F treated with a coupling agent. Physical test results of the obtained test pieces are as shown in Table 2. Table 2 Example I Z impact strength Drop weight impact strength Flexural strength Flexural modulus Load deflection
(%) (%) (%) (%) (%) 実施例 9 05 47 1 2 7 1 38  (%) (%) (%) (%) (%) Example 9 05 47 1 2 7 1 38
実施例 1 0 9 7 5 2 1 1 0 1 1 9 比較例 6 8 6 42 08 1 3 Example 1 0 9 7 5 2 1 1 0 1 1 9 Comparative Example 6 8 6 42 08 1 3
比較例 7 8 6 2 7 3 8 Comparative Example 7 8 6 2 7 3 8
[実施例 1 1 ] [Example 11]
ナイロン 6を、 ポリブチレンテレフタレート (PBT樹脂) (宇部興産 (株) 製、 商品名 : UBE P BT 1 00) に変えたこと、 カップリング剤をァミノ プリング剤をァミ ノシラン系力ッブリング剤からメルカプト系シラン力ップリ ン グ剤 (日本ュニカー (株) 製、 A— 1 9 7) に変えたこと、 溶融混練温度を 2 5 0°Cに代えて 3 00°Cとしたこと、 射出成形機のシリンダー温度を 2 60°Cから 300°Cに変えたこと、 そして射出成形機の金型温度を 1 00°Cから 1 3 0°Cに 変えたこと以外は実施例 1 と全く同様な操作を行なった。 得られた試験片の物性 試験結果は、 表 3に示すとおりであった。 Nylon 6 was changed to polybutylene terephthalate (PBT resin) (manufactured by Ube Industries, Ltd., trade name: UBE PBT 100), and the coupling agent was amino. The coupling agent was changed from an aminosilane-based coupling agent to a mercapto-based silane coupling agent (A-197, manufactured by Nippon Tunicer Co., Ltd.). The melting and kneading temperature was changed to 250 ° C. 300 ° C, cylinder temperature of injection molding machine changed from 260 ° C to 300 ° C, and mold temperature of injection molding machine changed from 100 ° C to 130 ° C Except for this, the same operation as in Example 1 was performed. Table 3 shows the physical property test results of the obtained test pieces.
[比較例 9]  [Comparative Example 9]
実施例 1 3において、 カップリング剤を使用しなかったこと以外は実施例 1 3 と全く同様な操作を行なった。 得られた試験片の物性試験結果は、 表 4に示すと おりであった。 表 4 例 I z衝撃強度 落錘衝撃強度 曲げ強度 曲げ弾性率 荷重たわみ度  The same operation as in Example 13 was performed, except that the coupling agent was not used in Example 13. Table 4 shows the physical property test results of the obtained test pieces. Table 4 Example Iz impact strength Falling weight impact strength Flexural strength Flexural modulus Load deflection
(%) (%) (%) (%) (%) 実施例 1 3 1 4 3 1 3 7 2 1 0 比較例 9 1 2 3 1 22 2 1 0  (%) (%) (%) (%) (%) Example 1 3 1 4 3 1 3 7 2 1 0 Comparative example 9 1 2 3 1 22 2 1 0
[産業上の利用可能性] [Industrial applicability]
本発明の方法により製造される熱可塑性樹脂組成物は、 その樹脂組成物中で繊 維状ゾノ トライ トが微粒子化し、 かつ均一に分散し、 さらに熱可塑性樹脂と強い 結合を示すため、 耐衝撃性や曲げ強度が特に優れており、 自動車部品、 電気 ·電 子部品、 精密工作部品などのための榭脂成形物の製造に特に有利に用いることが できる。 また、 樹脂組成物中に繊維状ゾノ トライ トが高濃度に分散されたものを マスターパッチとして用いて、 熱可塑性樹脂により希釈する方法を利用すること により、 繊維状ゾノ トライ トが所望の濃度で高度に均一に分散された樹脂組成物 19 The thermoplastic resin composition produced by the method of the present invention has a high impact resistance because the fibrous zonolite is finely divided and uniformly dispersed in the resin composition and shows a strong bond with the thermoplastic resin. It has particularly excellent properties and bending strength, and can be used particularly advantageously in the production of resin moldings for automobile parts, electric and electronic parts, precision machined parts, and the like. In addition, by using a method in which fibrous zonolite is dispersed in a resin composition at a high concentration as a master patch and using a method of diluting with a thermoplastic resin, the fibrous zonolite is formed at a desired concentration. Highly uniformly dispersed resin composition 19
シラン系力ップリング剤からエポキ 系シラン力ップリング剤 (日本ュニカーFrom silane-based coupling agents to epoxy-based silane-based coupling agents
(株) 製、 A— 1 8 7) に変えたこと、 溶融混練温度を 2 5 0°Cに代えて 240 °Cとしたこと、 射出成形機のシリンダ一温度を 2 60°Cから 2 7 0°Cに変えたこ と、 そして射出成形機の金型温度を 1 00°Cから 1 1 0°Cに変えたこと以外は実 施例 1 と全く同様な操作を行なった。 得られた試験片の物性試験結果は、 表 3に 示すとおりであった。 A-187), the melt-kneading temperature was changed to 240 ° C instead of 250 ° C, and the cylinder temperature of the injection molding machine was changed from 260 ° C to 27 ° C. The same operation as in Example 1 was performed except that the temperature was changed to 0 ° C, and the mold temperature of the injection molding machine was changed from 100 ° C to 110 ° C. Table 3 shows the physical property test results of the obtained test pieces.
[実施例 1 2]  [Example 12]
実施例 9において、 エポキシ系シランカップリング剤の量を 0. 2重量部 (界 面活性剤処理繊維状ゾノ トライ ト Aに対して 1重量%) に変えたこと以外は実施 例 1 1 と全く同様な操作を行なった。 得られた試験片の物性試験結果は、 表 3に 示すとおりであった。  Example 11 was completely different from Example 11 except that the amount of the epoxy silane coupling agent was changed to 0.2 part by weight (1% by weight based on the surfactant-treated fibrous zonolite A). A similar operation was performed. Table 3 shows the physical property test results of the obtained test pieces.
[比較例 8]  [Comparative Example 8]
実施例 9において、 カップリング剤を使用しなかったこと以外は実施例 1 1 と 全く同様な操作を行なった。 得られた試験片の物性試験結果は、 表 3に示すとお りであった。 表 3 例 I Z衝撃強度 落錘衝撃強度 曲げ強度 曲げ弾性率 荷重たわみ度  In Example 9, the same operation as in Example 11 was performed, except that no coupling agent was used. Table 3 shows the physical property test results of the obtained test pieces. Table 3 Example I Z impact strength Falling weight impact strength Flexural strength Flexural modulus Load deflection
(%) (%) (%) (%) (%) 実施例 1 1 1 8 62 2 3 9 283 実施例 1 2 9 5 49 2 3 9 28 2 比較例 8 9 3 39 23 2 28  (%) (%) (%) (%) (%) Example 1 1 1 8 62 2 3 9 283 Example 1 2 9 5 49 2 3 9 28 2 Comparative example 8 9 3 39 23 2 28
[実施例 1 3] [Example 13]
ナイロン 6を、 ポリフエ二レンサルフアイ ド (P P S榭脂) (クレハ (株) 製、 商品名 : フォートロン K P Sコンパゥンド P F— 200 A) に変えたこと、 力ッ を製造することもできる。 Nylon 6 was changed to Polyphenylene Sulfide (PPS resin) (manufactured by Kureha Corporation, trade name: FORTRON KPS Compound PF-200A). Can also be manufactured.

Claims

請 求 の 範 囲 The scope of the claims
1. 熱可塑性樹脂と、 予め表面を界面活性剤で被覆処理した、 B ET比表面積 が 2 1 m2Zg以上、 平均繊維長が 1〜 5 / mの範囲、 そして平均繊維径が 0. :!〜 0. 5 z mの範囲の繊維状ゾノ トライ トとを、 重量比で 9 9. 5 : 0. 5〜 20 : 80の範囲内の比にて混合し、 得られる混合物を、 該繊維状ゾノ トライ ト の重量に対して 0. 2〜1 0重量%の範囲の量のカップリング剤の存在下にて、 加熱混練することを特徴とする熱可塑性樹脂組成物の製造方法。 1. a thermoplastic resin, and coating treatment beforehand surface with a surfactant, B ET specific surface area of 2 1 m 2 Zg above, the range of the average fiber length. 1 to 5 / m, and an average fiber diameter of 0.1: ~ 0.5 zm in the range of 99.5: 0.5 to 20:80 by weight, and the resulting mixture is mixed with the fibrous zonolite. A method for producing a thermoplastic resin composition, comprising heating and kneading in the presence of a coupling agent in an amount in the range of 0.2 to 10% by weight based on the weight of zonolite.
2. 繊維状ゾノ トライ トの平均繊維長 平均繊維径で表わされる平均ァスぺク ト比力 1 0〜2 0の範囲にあることを特徴とする請求の範囲 1に記載の熱可塑性 樹脂組成物の製造方法。 2. The thermoplastic resin composition according to claim 1, wherein an average fiber specific force represented by an average fiber length represented by an average fiber diameter is in a range of from 10 to 20. Method of manufacturing a product.
3. 熱可塑性榭脂が、 ポリアミ ド榭脂、 ポリエステル榭脂、 ポリオレフイン樹 脂、 ポリアセタール榭脂、 ポリフエ二レンスルフイ ド樹脂、 およびポリカーボネ 一ト榭脂からなる群より選ばれる少なく とも一種の熱可塑性樹脂であることを特 徴とする請求の範囲 1もしくは 2に記載の熱可塑性樹脂組成物の製造方法。 3. at least one thermoplastic resin selected from the group consisting of polyamide resins, polyester resins, polyolefin resins, polyacetal resins, polyphenylene sulfide resins, and polycarbonate resins; 3. The method for producing a thermoplastic resin composition according to claim 1, wherein the method is characterized in that:
4. 界面活性剤が、 非イオン界面活性剤であることを特徴とする請求の範囲 1 乃至 3のうちのいずれかの項に記載の熱可塑性樹脂組成物の製造方法。 4. The method for producing a thermoplastic resin composition according to any one of claims 1 to 3, wherein the surfactant is a nonionic surfactant.
5. 繊維状ゾノ トライ トの BET比表面積が 3 Om^ g以上、 60 m2/ g以 下であることを特徴とする請求の範囲 1乃至 4のうちのいずれかの項に記載の熱 可塑性樹脂組成物の製造方法。 5. fibrous Zono BET specific surface area of the tri bets is 3 Om ^ g or more, thermoplastic according to any one of the paragraphs within the range 1 to 4 claims characterized in that it is a 60 m 2 / g hereinafter A method for producing a resin composition.
6. 繊維状ゾノ トライ トに被覆された界面活性剤の量が、 繊維状ゾノ トライ ト の重量に対して 0. 1〜1 0重量%の範囲にあることを特徴とする請求の範囲 1 乃至 5のうちのいずれかの項に記載の熱可塑性樹脂組成物の製造方法。 6. The amount of the surfactant coated on the fibrous zonolite is in the range of 0.1 to 10% by weight based on the weight of the fibrous zonolite. 6. The method for producing a thermoplastic resin composition according to any one of items 5.
7. カップリング剤が、 シランカップリング剤、 チタネートカップリング剤、 及びアルミネートカツプリング剤からなる群より選ばれる少なく とも一種の力ッ プリング剤であることを特徴とする請求の範囲 1乃至 6のうちのいずれかの項に 記載の熱可塑性樹脂組成物の製造方法- 7. The coupling agent according to claim 1, wherein the coupling agent is at least one kind of coupling agent selected from the group consisting of a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent. Method for producing a thermoplastic resin composition according to any one of-
8. 熱可塑性樹脂と繊維状ゾノ トライ トとの重量比が 9 9. 5 : 0. 5〜30 : 70の範囲内の比にて混合することを特徴とする請求の範囲 1乃至 7のうちの いずれかの項に記載の熱可塑性樹脂組成物の製造方法。 8. The composition according to any one of claims 1 to 7, wherein the weight ratio of the thermoplastic resin to the fibrous zonolite is in the range of 99.5: 0.5 to 30:70. The method for producing a thermoplastic resin composition according to any one of the above items.
9. 熱可塑性樹脂と繊維状ゾノ トライ トとの重量比が 5 5 : 45〜 20 : 80 の範囲内の比にて混合することを特徴とする請求の範囲 1乃至 7のうちのいずれ かの項に記載の熱可塑性樹脂組成物の製造方法。 9. The method according to any one of claims 1 to 7, wherein the weight ratio of the thermoplastic resin to the fibrous zonolite is in the range of 55:45 to 20:80. 13. A method for producing a thermoplastic resin composition according to the above item.
1 0. 熱可塑性樹脂と、 平均繊維長が 0. 1〜0. 7 i mの範囲にあり、 平均 繊維径が 0. 0 1〜0. 05 mの範囲にある繊維状ゾノ トライ トとを、 重量比 で 99. 5 : 0. 5〜20 : 80の比率で含む混練物であって、 該繊維状ゾノ ト ライ トの重量に対して 0. 2〜 1 0重量%のカップリング剤を含む熱可塑性樹脂 組成物。 1 0. Thermoplastic resin and fibrous zonolite having an average fiber length in the range of 0.1 to 0.7 im and an average fiber diameter in the range of 0.01 to 0.05 m A kneaded product containing a weight ratio of 99.5: 0.5 to 20:80, containing 0.2 to 10% by weight of a coupling agent with respect to the weight of the fibrous zonolite. Thermoplastic resin composition.
1 1. 繊維状ゾノ トライ 卜の平均繊維長 平均繊維径で表わされる平均ァスぺ ク ト比カ 5〜 3 5の範囲にあることを特徴とする請求の範囲 1 0に記載の熱可塑 性樹脂組成物。 11. The thermoplastic resin according to claim 10, wherein the average fiber length of the fibrous zonotrites is in the range of 5 to 35, which is the average flux ratio represented by the average fiber diameter. Resin composition.
1 2. 熱可塑性樹脂が、 ポリアミ ド榭脂、 ポリエステル榭脂、 ポリオレフイン 榭脂、 ポリアセタール樹脂、 ポリフエ二レンスルフイ ド榭脂、 及びポリカーボネ ―ト榭脂からなる群より選ばれる少なく とも一種の熱可塑性樹脂であることを特 徴とする請求の範囲 1 1ないし 1 2に記載の熱可塑性樹脂組成物。 1 2. The thermoplastic resin is at least one kind of thermoplastic resin selected from the group consisting of polyamide resin, polyester resin, polyolefin resin, polyacetal resin, polyphenylene sulfide resin, and polycarbonate resin. The thermoplastic resin composition according to any one of claims 11 to 12, characterized in that:
1 3. カップリング剤が、 シランカップリング剤、 チタネートカップリング剤、 及びアルミネートカツプリング剤からなる群より選ばれる少なく とも一種の力ッ プリング剤であることを特徴とする請求の範囲 1 0乃至 1 2のうちのいずれかの 項に記載の熱可塑性樹脂組成物。 1 3. The coupling agent, wherein the coupling agent is at least one kind of force coupling agent selected from the group consisting of a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent. 13. The thermoplastic resin composition according to any one of items 1 to 12.
1 4. 熱可塑性榭脂と繊維状ゾノ トライ トとの重量比が 9 9. 5 : 0. 5〜3 0 : 7 0の範囲内にあることを特徴とする請求の範囲 1 0乃至 1 3のうちのいず れかの項に記載の熱可塑性樹脂組成物。 1 4. The claims 10 to 13 wherein the weight ratio of the thermoplastic resin to the fibrous zonolite is in the range of 99.5: 0.5 to 30:70. The thermoplastic resin composition according to any one of the above.
1 5. 熱可塑性樹脂と繊維状ゾノ トライ トとの重量比が 5 5 : 45〜 20 : 8 0の範囲内にあることを特徴とする請求の範囲 1 0乃至 1 3のうちのいずれかの 項に記載の熱可塑性樹脂組成物。 1 5. The method according to any one of claims 10 to 13, wherein the weight ratio between the thermoplastic resin and the fibrous zonolite is in the range of 55:45 to 20:80. Item 10. The thermoplastic resin composition according to Item 1.
1 6. 請求の範囲 1乃至 9のうちのいずれかの項に記載の製造方法により得ら れた熱可塑性樹脂組成物。 1 6. A thermoplastic resin composition obtained by the production method according to any one of claims 1 to 9.
1 7. 請求の範囲 1 0乃至 1 6のうちのいずれかの項に記載の熱可塑性樹脂組 成物を加熱溶融したのち、 これを所望の形状に成形してなる熱可塑性樹脂成形物。 1 7. A thermoplastic resin molded article obtained by heating and melting the thermoplastic resin composition according to any one of claims 10 to 16 and then molding the same into a desired shape.
1 8. 請求の範囲 1 0乃至 1 6のうちのいずれかの項に記載の熱可塑性樹脂組 成物と熱可塑性樹脂とを 1 : 1〜 1 : 1 60の重量比にて混合し、 次いで加熱混 練することを特徴とする熱可塑性樹脂組成物の製造方法。 1 8. The thermoplastic resin composition according to any one of claims 10 to 16 and the thermoplastic resin are mixed at a weight ratio of 1: 1 to 1: 160, and then A method for producing a thermoplastic resin composition, comprising heating and kneading.
1 9. 請求の範囲 1乃至 9のうちのいずれかの項に記載の製造方法により得ら れた熱可塑性樹脂組成物と熱可塑性樹脂とを 1 : 1〜 1 : 1 6 0の重量比にて混 合し、 次いで加熱混練することを特徴とする熱可塑性樹脂組成物の製造方法。 1 9. The weight ratio of the thermoplastic resin composition and the thermoplastic resin obtained by the production method according to any one of claims 1 to 9 is 1: 1 to 1: 1. And then heating and kneading the mixture. 2. A method for producing a thermoplastic resin composition, comprising:
PCT/JP2000/002540 1999-04-19 2000-04-19 Process for producing thermoplastic resin composition and thermoplastic resin composition WO2000063278A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU38393/00A AU3839300A (en) 1999-04-19 2000-04-19 Process for producing thermoplastic resin composition and thermoplastic resin composition
JP2000612362A JP4718015B2 (en) 1999-04-19 2000-04-19 Method for producing thermoplastic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/111334 1999-04-19
JP11133499 1999-04-19

Publications (1)

Publication Number Publication Date
WO2000063278A1 true WO2000063278A1 (en) 2000-10-26

Family

ID=14558579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002540 WO2000063278A1 (en) 1999-04-19 2000-04-19 Process for producing thermoplastic resin composition and thermoplastic resin composition

Country Status (3)

Country Link
JP (1) JP4718015B2 (en)
AU (1) AU3839300A (en)
WO (1) WO2000063278A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048468A (en) * 2013-09-04 2015-03-16 旭化成ケミカルズ株式会社 Polyacetal resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216133A (en) * 1994-02-04 1995-08-15 Ube Ind Ltd Reinforced organic polymer composition
EP0717072A1 (en) * 1994-12-16 1996-06-19 Ube Industries Limited Xonotlite-reinforced organic polymer composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816179B2 (en) * 1987-05-28 1996-02-21 株式会社クラレ Resin composition
JP2777762B2 (en) * 1992-05-28 1998-07-23 東洋紡績 株式会社 Polyamide resin composition
JPH08165376A (en) * 1994-12-16 1996-06-25 Ube Ind Ltd Thermoplastic resin composition
JPH08170022A (en) * 1994-12-20 1996-07-02 Ube Ind Ltd Thermoplastic resin composition
JPH08165377A (en) * 1994-12-16 1996-06-25 Ube Ind Ltd Thermoplastic resin composition
JP3646737B2 (en) * 1995-03-17 2005-05-11 大日本インキ化学工業株式会社 Reactive polyarylene sulfide
JP3341974B2 (en) * 1996-12-26 2002-11-05 東洋紡績株式会社 Flame retardant polyamide resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216133A (en) * 1994-02-04 1995-08-15 Ube Ind Ltd Reinforced organic polymer composition
EP0717072A1 (en) * 1994-12-16 1996-06-19 Ube Industries Limited Xonotlite-reinforced organic polymer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048468A (en) * 2013-09-04 2015-03-16 旭化成ケミカルズ株式会社 Polyacetal resin composition

Also Published As

Publication number Publication date
AU3839300A (en) 2000-11-02
JP4718015B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
EP2190916A2 (en) Colored long fiber reinforced pellet and colored resin article manufactured by using the same
US5623013A (en) Xonotlite-reinforced organic polymer composition
JP2024028594A (en) Reinforced polyolefin composite material
JP2016509109A (en) Talc composition and use thereof
KR102509040B1 (en) Talc particulate and uses thereof
EP3420021A1 (en) Highly filled polymeric concentrates
JP2020514434A (en) Polymer composition
WO2000008099A1 (en) Flame-retardant polyamide composite material with high rigidity
Xu et al. Effect of nano-silicon nitride on the mechanical and electric properties of polypropylene nanocomposite
KR20170112980A (en) Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same
WO2000063278A1 (en) Process for producing thermoplastic resin composition and thermoplastic resin composition
JPH08165376A (en) Thermoplastic resin composition
Ghanshyam et al. Synthesis and characterization of CaCO3-SiO2 core-shell nanoparticles with PA6 nanocomposites
JP2008069194A (en) Heat-resistant resin composite composition and method for producing the same
JP3067122B2 (en) Enhanced organic polymer composition
JPH08170022A (en) Thermoplastic resin composition
JP2000309707A (en) Aromatic polysulfone resin composition and its molded article
CA2362957C (en) Toughened, high-modulus polyamides
JPH10265630A (en) Reinforced polypropylene composition
JPH10265613A (en) Composite filler for resin
JP6968321B1 (en) Method for Producing Polyarylene Sulfide Resin Composition
JP6968322B1 (en) Method for Producing Polyarylene Sulfide Resin Composition
JP7507379B2 (en) Reinforced Polyolefin Composites
JPH08165377A (en) Thermoplastic resin composition
JP5048282B2 (en) Method for producing thermoplastic resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 612362

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase