WO2000061888A1 - Materiau absorbant, constitue d'une matiere poreuse a double porosite - Google Patents

Materiau absorbant, constitue d'une matiere poreuse a double porosite Download PDF

Info

Publication number
WO2000061888A1
WO2000061888A1 PCT/FR2000/000912 FR0000912W WO0061888A1 WO 2000061888 A1 WO2000061888 A1 WO 2000061888A1 FR 0000912 W FR0000912 W FR 0000912W WO 0061888 A1 WO0061888 A1 WO 0061888A1
Authority
WO
WIPO (PCT)
Prior art keywords
porosity
absorbent material
perforations
range
panel
Prior art date
Application number
PCT/FR2000/000912
Other languages
English (en)
Inventor
Claude Boutin
Xavier Olny
Original Assignee
Centre National De La Recherche Scientifique (C N R S)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (C N R S) filed Critical Centre National De La Recherche Scientifique (C N R S)
Priority to EP00917175A priority Critical patent/EP1169526A1/fr
Priority to US09/958,665 priority patent/US6615951B1/en
Priority to AU38271/00A priority patent/AU3827100A/en
Publication of WO2000061888A1 publication Critical patent/WO2000061888A1/fr

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8476Solid slabs or blocks with acoustical cavities, with or without acoustical filling
    • E04B2001/848Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
    • E04B2001/849Groove or slot type openings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8476Solid slabs or blocks with acoustical cavities, with or without acoustical filling
    • E04B2001/848Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
    • E04B2001/8495Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element the openings going through from one face to the other face of the element

Definitions

  • Absorbent material consisting of a porous material with double porosity
  • the present invention relates to an improvement made to acoustic and sound absorption materials.
  • It relates more particularly to absorbent porous materials intended for buildings (wall coverings) and public works (anti-noise devices), for which it is desired to improve the performance of the products, in particular in terms of absorption coefficient, especially at the level of a specific frequency band.
  • acoustic absorbent materials because of their properties, limit the amount of energy that is reflected.
  • the sound absorption of this material is also a function of the sensitivity in terms of bandwidth of the receiving organ, which when it comes to the human ear, is between 20 and 20,000 Hz.
  • bandwidth of the receiving organ which when it comes to the human ear, is between 20 and 20,000 Hz.
  • materials are used which take the form of panels or of pulverulent products which are sprayed, and which are made from mineral glass wool, foam, fabric or rigid perforated panels.
  • Japanese patent JP10-175263 which describes an absorbent material formed of a "sandwich" consisting in particular of a first layer of material provided with a plurality of orifices which open out within a plurality of cavities formed in a second layer backed by the first.
  • this absorbent material works according to the Helmholtz principle, the energy of the sound waves dissipating in the cavities.
  • absorbent materials can be used both outdoors and in a confined (indoor) environment.
  • mineral wools and certain foams with open porosity a material is said to have open porosity when its pores are connected to each other and with the outside
  • open porosity a material is said to have open porosity when its pores are connected to each other and with the outside
  • they are used in acoustic correction applications of ceilings or false ceilings (installation in plenum) rather than in insulation of conventional walls.
  • these products based on glass wool or foam have suitable absorption properties but have drawbacks which are of three types: - they are usually relatively fragile and therefore not very durable, in particular because of the low densities employed taking into account that we want to get a relatively high permeability and porosity, this mechanical fragility makes it difficult to install;
  • American patent 4 113 053 discloses an acoustic absorption material formed from an inorganic porous material and comprising a plurality of perforations positioned at an angle less than 80 ° relative to a specific dimension of the material.
  • these perforations have a cross section (square, circular or rectangular) with a surface that can reach several tens of mm 2 .
  • DE 33 39 701 a soundproofing panel made of fibers and comprising a plurality of perforations arranged on its surface at an angle between 10 ° and 80 °.
  • the cross section of these perforations can be chosen arbitrarily.
  • the present invention therefore aims to overcome these drawbacks, by proposing improvements to acoustic materials which give them significant mechanical properties (mechanical resistance), even when these materials have a small thickness while retaining optimum acoustic absorption properties for them, especially in the area of low frequencies.
  • the absorbent material consisting of a porous material with open porosity, comprising a plurality of perforations of varied cross section and positioned at an angle ⁇ relative to a specific dimension of the material, thus conferring added porosity (Pa ) to the material which is the subject of the invention characterized in that the added porosity (Pa) is included in a range of 10 to 30% and in that it comprises an absorption coefficient included in a range ranging between 0.7 and 0.95 approximately for low frequencies, of the order in particular of 300 Hz.
  • FIG. 1 is a perspective view of an absorbent material according to a first embodiment of one invention
  • Figure 2 is a sectional view in plan elevation of Figure 1;
  • Figure 3 is a sectional view in side elevation of Figure 2;
  • FIG. 4 is a perspective view of an absorbent material according to a second embodiment of the invention.
  • Figure 5 is a sectional view in side elevation of Figure 4.
  • FIG. 6 is a graph illustrating the evolution of the absorption coefficient of the panel which is the subject of the invention, for different values of the frequency according to various porosities;
  • FIG. 7 is a graph illustrating the evolution of the absorption coefficient of the panel which is the subject of the invention, for different values of the frequency according to different values of the angle of inclination ⁇ ;
  • FIGS. 1 and 4 illustrate two different embodiments of the acoustic material, the latter comprising a basic material represented by the reference 1 in the figures.
  • This material is packaged in a nonlimiting manner in the form of panels or boards of suitable dimensions so that they can be easily handled by a single user.
  • this material is porous and has an open porosity (an open porosity is defined as follows: the pores are connected to each other and to the outside.
  • a material based on mineral wool, concrete with mineral fibers, wood or synthetics, or more generally foams exhibits this property.
  • the size of the pores (represented by the reference 2 in FIGS. 1 and 4) is less than a millimeter.
  • the flow of air within this material and the absorption of the corresponding acoustic wave through this material is a function of the dynamic permeability and the frequency of the wave.
  • the dynamic permeability of this material is itself a function of the geometrical characteristics of the material and by modifying the geometrical properties of the panel 1, the absorption factors of an acoustic wave passing through it are acted upon.
  • a plurality of additional perforations 3 are produced within the panel 1.
  • the specific dimension of the perforation in the case of a circle: its diameter, and in the case of a rectangular profile slot: its width, can vary within a range of between 0.005 and 0.1 m approximately. .
  • the porosity added to the single-porosity material using the aforementioned parameters (inclination and / or choice of the specific dimension of the perforation), as a function of the following equation where Pa represents the added porosity which is defined as follows, this being the ratio of the volume of the cylinders to the total volume of the panel.
  • Pa represents the added porosity which is defined as follows, this being the ratio of the volume of the cylinders to the total volume of the panel.
  • n number of perforations per m 2
  • d specific dimension in meters
  • inclination of the perforation.
  • a double porosity panel which is the subject of the invention has coefficients absorption significantly higher than those of the prior art panels (cf. Figures 6, 7 and 8), this absorption coefficient being between 0.8 and 0.95 approximately for frequency values between 400 and 600 Hz for Figures 6 and 7 and close to the range 225-350 Hz in Figure 8.
  • the invention as described above offers multiple advantages because it can be implemented from single-porosity panels known from the prior art, the optimal results in terms of absorption coefficient being obtained for relatively porosity values. low, which is preferable when one wishes to benefit from a high mechanical strength, guaranteeing great ease of implementation and lasting results.
  • the added porosity (Pa) of the absorbent material (1) is within a range of 10 to 30%.
  • the absorption coefficient is within a range extending between 0.7 and 0.95 approximately for low frequencies, of the order in particular of 300 Hz. It remains of course that the present invention is not limited to the exemplary embodiments described and shown above, but that it encompasses all variants thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

Matériau absorbant (1), constitué d'une matière poreuse à porosité ouverte (2), caractérisé en ce qu'il comporte une pluralité de perforations (3) de section droite transversale variée et positionnées selon un angle theta par rapport à une dimension spécifique du matériau, conférant ainsi une porosité ajoutée (Pa) au matériau (1).

Description

Matériau absorbant, constitué d'une matière poreuse à double porosité
La présente invention est relative à un perfectionnement apporté aux matériaux d ' absorption acoustique et phonique.
Elle vise plus particulièrement des matériaux poreux absorbants destinés aux bâtiments (revêtements muraux) et travaux publics (dispositifs anti-bruit) , pour lesquels on souhaite améliorer les performances des produits, notamment en termes de coefficient d'absorption, surtout au niveau d'une bande de fréquences spécifiques.
Pour améliorer les ambiances acoustiques des milieux bruyants, on utilise souvent des éléments absorbants des ondes sonores. Celles-ci, lorsqu'elles rencontrent un matériau en fonction de leurs propriétés, sont généralement en partie réfléchies, diffractées, transmises au travers des matériaux et absorbées.
Les matériaux dits absorbants acoustiques en raison de leurs propriétés, limitent la part d'énergie qui est réfléchie.
En outre, l'absorption acoustique de ce matériau est également fonction de la sensibilité en terme de bande passante de l'organe récepteur, qui lorsqu'il s'agit de l'oreille humaine, est comprise entre 20 et 20000 Hz. Généralement, il est difficile de trouver des matériaux permettant de traiter l'ensemble du spectre de la bande audible et en particulier l'absorption des basses fréquences, inférieures à 400 Hz, est très limitée. Dans le domaine de l'absorption acoustique, destinée à l'industrie ou à des applications domestiques, on utilise des matériaux qui prennent la forme de panneaux ou de produits pulvérulents qui sont projetés, et qui sont constitués à base de laine de verre minérale, de mousse, de tissu ou encore de panneaux rigides perforés. Dans ce dernier mode de réalisation, on pourra se reporter au brevet japonais JP10-175263 qui décrit un matériau absorbant formé d'un "sandwich" constitué notamment d'une première couche de matériau munie d'une pluralité d'orifices qui débouchent au sein d'une pluralité de cavités formées dans une seconde couche adossée à la première. Néanmoins, ce matériau absorbant fonctionne selon le principe de Helmholtz, l'énergie des ondes sonores se dissipant dans les cavités.
Le choix de ces matériaux absorbants est conditionné par leur destination finale (salles de spectacles, de réunions, piscines, gymnases, réfectoires, milieu industriel...), par leurs caractéristiques acoustiques (bande passante) , mais aussi par leurs propriétés mécaniques, de résistance au feu, d'absorption thermique, d ' imputrescibilité...
Ces matériaux absorbants peuvent aussi bien être employés à l'extérieur que dans un milieu confiné (intérieur) .
Ainsi, en fonction du type d'application, on est amené à utiliser par exemple des laines minérales et certaines mousses à porosité ouverte (un matériau est dit à porosité ouverte lorsque ses pores sont connectés entre eux et avec l'extérieur) à faible densité ou à densité plus importante, et dans ce cas, elles sont utilisées dans des applications de correction acoustique de plafonds ou de faux-plafonds (pose en plénum) plutôt qu'en isolation de parois classiques.
Généralement, ces produits à base de laine de verre ou de mousse présentent des propriétés d'absorption convenables mais possèdent des inconvénients qui sont de trois types : - ils sont usuellement relativement fragiles et donc peu endurants, notamment à cause des faibles densités employées compte tenu que 1 ' on veut obtenir une perméabilité et une porosité relativement élevées, cette fragilité mécanique rend difficile leur pose ;
- ils possèdent des performances acoustiques qui diminuent rapidement dans le domaine des basses fréquences (inférieures à 500 Hz) , ce phénomène étant accentué lorsque ces matériaux sont conditionnés en panneaux de faible épaisseur ;
- la pose de ces matériaux en faux-plafonds permet d'obtenir des performances acoustiques acceptables, mais requiert de disposer d'un vide d'air important afin de garantir les performances acoustiques.
On connaît par le brevet américain 4 113 053 un matériau d'absorption acoustique formé d'une matière poreuse inorganique et comprenant une pluralité de perforations positionnées selon un angle inférieur à 80° par rapport à une dimension spécifique du matériau. En outre, ces perforations possèdent une section droite transversale (carrée, circulaire ou rectangulaire) de surface pouvant atteindre plusieurs dizaines de mm2. On connaît par ailleurs par le brevet allemand
DE 33 39 701 un panneau insonorisant constitué de fibres et comprenant une pluralité de perforations disposées sur sa surface sous un angle compris entre 10° et 80°. De plus, la section droite transversale de ces perforations peut être choisie arbitrairement.
La présente invention vise donc à pallier ces inconvénients, en proposant des perfectionnements apportés aux matériaux acoustiques qui leur confèrent des propriétés mécaniques importantes (résistance mécanique) , même lorsque ces matériaux possèdent une faible épaisseur tout en leur conservant des propriétés d'absorption acoustiques optimales, surtout dans le domaine des basses fréquences.
A cet effet, le matériau absorbant, constitué d'une matière poreuse à porosité ouverte, comportant une pluralité de perforations de section droite transversale variée et positionnées selon un angle θ par rapport à une dimension spécifique du matériau, conférant ainsi une porosité ajoutée (Pa) au matériau, objet de l'invention, se caractérise en ce que la porosité ajoutée (Pa) est comprise dans une fourchette de 10 à 30% et en ce qu'il comporte un coefficient d'absorption compris dans une fourchette s 'étendant entre 0,7 et 0,95 environ pour des basses fréquences, de l'ordre notamment de 300 Hz.
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci- après, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
- la figure 1 est une vue en perspective d'un matériau absorbant selon un premier mode de réalisation de 1 ' invention ;
- la figure 2 est une vue en coupe et en élévation plane de la figure 1 ;
- la figure 3 est une vue en coupe et en élévation latérale de la figure 2 ;
- la figure 4 est une vue en perspective d'un matériau absorbant selon un deuxième mode de réalisation de l'invention ;
- la figure 5 est une vue en coupe et en élévation latérale de la figure 4 ;
- la figure 6 est un graphe illustrant l'évolution du coefficient d'absorption du panneau faisant l'objet de l'invention, pour différentes valeurs de la fréquence selon diverses porosités ;
- la figure 7 est un graphe illustrant l'évolution du coefficient d'absorption du panneau faisant l'objet de l'invention, pour différentes valeurs de la fréquence selon diverses valeurs de l'angle d'inclinaison θ ;
- la figure 8 est un graphe illustrant l'évolution du coefficient d'absorption du panneau faisant l'objet de l'invention, pour différentes valeurs de la fréquence selon diverses valeurs de la porosité ajoutée. Selon un mode préféré de réalisation, on pourra se reporter aux figures 1 et 4 qui illustrent deux modes de réalisation différents du matériau acoustique, celui-ci comportant un matériau de base représenté par la référence 1 sur les figures.
Ce matériau est conditionné de manière non limitative sous la forme de panneaux ou planches de dimensions convenables afin de pouvoir être manipulés aisément par un unique utilisateur.
Selon une caractéristique de l'invention, ce matériau est poreux et présente une porosité ouverte (une porosité ouverte est définie de la manière suivante : les pores sont connectés entre eux et avec l'extérieur.
Par exemple, un matériau à base de laine minérale, de béton de fibres minérales, de bois ou synthétiques, ou plus généralement de mousses, présente cette propriété. De façon classique, la taille des pores (représenté par la référence 2 sur les figures 1 et 4) est inférieure au millimètre.
Ainsi, lorsqu'une onde acoustique pénètre dans un tel milieu poreux, il se produit une mise en vibration de l'air emprisonné dans les pores du matériau, qui induit des effets visqueux inertiels et thermiques qui dissipent une partie de l'énergie.
L'écoulement de l'air au sein de ce matériau et l'absorption de l'onde acoustique correspondante au travers de ce matériau est fonction de la perméabilité dynamique et de la fréquence de l'onde.
La perméabilité dynamique de ce matériau est quant à elle fonction des caractéristiques géométriques du matériau et en modifiant les propriétés géométriques du panneau 1, on agit les facteurs d'absorption d'une onde acoustique la traversant.
Ainsi, selon une autre caractéristique avantageuse de l'invention, on réalise une pluralité de perforations 3 supplémentaires au sein du panneau 1.
Celles-ci possèdent une section droite transversale de profil très varié (cercle, ovale, carrée, rectangulaire, triangulaire) et s'étendent de part en part selon l'une des dimensions principales du panneau (notamment sur l'épaisseur ou sur la longueur) ou en variante, ces perforations ne sont pas débouchantes et sont donc dans ce cas-là borgnes.
Par ailleurs, selon une autre caractéristique de l'invention, on prévoit d'incliner selon un angle θ compris dans la fourchette 0 à 50° l'axe de ces perforations.
De même, la dimension spécifique de la perforation, dans le cas d'un cercle : son diamètre, et dans le cas d'une fente à profil rectangulaire : sa largeur, peut varier dans une plage comprise entre 0,005 et 0,1 m environ.
Selon encore une autre caractéristique de l'invention, il est possible de déterminer la porosité ajoutée au matériau à simple porosité à l'aide des paramètres précédemment cités (inclinaison et/ou choix de la dimension spécifique de la perforation) , en fonction de l'équation suivante où Pa représente la porosité ajoutée qui est définie de la façon suivante, celle-ci étant le ratio du volume des cylindres sur le volume total du panneau. On prendra comme hypothèse que le panneau décrit une surface de 1 m2 , et dans ce cas,
Pa = n x π x (d/2) 2 /cos(θ)
n : nombre de perforations par m2 d : dimension spécifique en mètre θ : inclinaison de la perforation.
En faisant varier ces trois paramètres simultanément, ou l'un après l'autre, il est possible de déterminer précisément le comportement acoustique d'un tel panneau et particulièrement de figer sa bande passante.
A titre d'exemple, on se reportera aux figures 6,
7, 8, qui illustrent pour diverses configurations de panneaux l'évolution du panneau à double porosité objet de l'invention par rapport à un panneau à simple porosité qui fait partie de l'état de la technique.
Il est important de noter qu'un panneau à double porosité objet de l'invention présente des coefficients d'absorption nettement supérieurs à ceux des panneaux de l'état de la technique (cf. figures 6, 7 et 8), ce coefficient d'absorption étant compris entre 0,8 et 0,95 environ pour des valeurs de fréquence comprises entre 400 et 600 Hz pour les figures 6 et 7 et voisines de la fourchette 225-350 Hz sur la figure 8.
La lecture de ces différents graphes montre parfaitement qu'il est possible d'ajuster la fréquence de coupure du matériau à une valeur proche de la sensibilité de l'oreille humaine (inférieure à 300 Hz).
Par ailleurs, on constate qu'une faible porosité ajoutée, de l'ordre de 10%, contribue à une forte augmentation du coefficient d'absorption dans le voisinage de 300 Hz. Par contre, plus la porosité ajoutée est forte (de l'ordre de 30 % voire 40 %) , plus cette augmentation du coefficient d'absorption se décale vers des valeurs de fréquences moyennes (de l'ordre de 500 Hz). Bien entendu, cette augmentation de la porosité ajoutée, se fait au détriment des caractéristiques mécaniques du panneau ; il est donc clair que le choix des paramètres constitutifs du panneau objet de l'invention est un compromis optimal entre le coefficient d'absorption désiré, la fréquence de coupure, la résistance mécanique du panneau. L'invention telle que décrite précédemment offre de multiples avantages car elle peut être mise en oeuvre à partir de panneaux à simple porosité connus de l'art antérieur, les résultats optimaux en termes de coefficient d'absorption étant obtenus pour des valeurs de porosité relativement faibles, ce qui est préférable lorsque l'on souhaite bénéficier d'une résistance mécanique importante, garantissant une grande facilité de mise en oeuvre et des résultats pérennes.
Bien entendu, ces calculs permettent de maîtriser la bande passante du matériau sur lequel on souhaite faire porter le coefficient d'absorption et sont d'autant plus aisés à mettre en oeuvre à partir d'un logiciel de simulation spécifique qui donne d'excellents résultats par rapport aux mesures expérimentales (cf. figures 6, 7, 8).
Selon une caractéristique de l'invention, la porosité ajoutée (Pa) du matériau absorbant (1) est comprise dans une fourchette de 10 à 30%.
Selon une autre caractéristique de l'invention, le coefficient d'absorption est compris dans une fourchette s 'étendant entre 0,7 et 0,95 environ pour des basses fréquences, de l'ordre notamment de 300 Hz. II demeure bien entendu que la présente invention n'est pas limitée aux exemples de réalisation décrits et représentés ci-dessus, mais qu'elle en englobe toutes les variantes.

Claims

REVENDICATIONS
1 - Matériau absorbant (1), constitué d'une matière poreuse à porosité ouverte (2) , comportant une pluralité de perforations (3) de section droite transversale variée et positionnées selon un angle θ par rapport à une dimension spécifique du matériau, conférant ainsi une porosité ajoutée (Pa) au matériau (1) , caractérisé en ce que la porosité ajoutée (Pa) est comprise dans une fourchette de 10 à 30% et en ce qu'il comporte un coefficient d'absorption compris dans une fourchette s ' étendant entre 0,7 et 0,95 environ pour des basses fréquences, de l'ordre notamment de 300 Hz.
2 - Matériau absorbant (1) selon la revendication 1, caractérisé en ce que les perforations (3) possèdent une section droite transversale circulaire.
3 - Matériau absorbant (1) selon la revendication 1, caractérisé en ce que les perforations (3) possèdent une section droite transversale rectangulaire. 4 - Matériau absorbant (1) selon la revendication
1, caractérisé en ce que l'angle d'inclinaison des perforations (3) est compris dans une fourchette de 0 à 50°.
5 - Matériau absorbant (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que la dimension spécifique d'une perforation (3) est comprise dans une fourchette de 0,005 m à 0,1 m.
PCT/FR2000/000912 1999-04-13 2000-04-10 Materiau absorbant, constitue d'une matiere poreuse a double porosite WO2000061888A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00917175A EP1169526A1 (fr) 1999-04-13 2000-04-10 Materiau absorbant, constitue d'une matiere poreuse a double porosite
US09/958,665 US6615951B1 (en) 1999-04-13 2000-04-10 Absorbent material, consisting of a porous substance with double porosity
AU38271/00A AU3827100A (en) 1999-04-13 2000-04-10 Absorbent material, consisting of a porous matter with double porosity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/04603 1999-04-13
FR9904603A FR2792348B1 (fr) 1999-04-13 1999-04-13 Materiau absorbant, constitue d'une matiere poreuse a double porosite

Publications (1)

Publication Number Publication Date
WO2000061888A1 true WO2000061888A1 (fr) 2000-10-19

Family

ID=9544336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/000912 WO2000061888A1 (fr) 1999-04-13 2000-04-10 Materiau absorbant, constitue d'une matiere poreuse a double porosite

Country Status (5)

Country Link
US (1) US6615951B1 (fr)
EP (1) EP1169526A1 (fr)
AU (1) AU3827100A (fr)
FR (1) FR2792348B1 (fr)
WO (1) WO2000061888A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848232A1 (fr) * 2002-12-10 2004-06-11 Jean Luc Sandoz Structure antibruit
FR2917882A1 (fr) * 2007-06-21 2008-12-26 Renault Sas Materiau absorbant comportant des cabites a peau resistive et procede pour la fabrication d'un tel materiau

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607544B1 (fr) * 2004-06-17 2009-04-15 Heimbach GmbH & Co. KG Dispositif d'amortissement du son pour un revêtement de mur, de plafond ou de sol
EP1653021A1 (fr) * 2004-10-30 2006-05-03 Allan Stefan Wojcinski Revêtement acoustique pour murs et plafonds, notamment pour stands de tir
US20080216969A1 (en) * 2005-03-03 2008-09-11 Barkman Arthur P Sound absorbing blind systems
US20060196617A1 (en) * 2005-03-03 2006-09-07 Barkman Arthur P Sound absorbing composite blind systems
US20100326606A1 (en) * 2005-03-03 2010-12-30 Barkman Arthur P Composite sound absorbing blind systems
KR20080092838A (ko) * 2007-04-12 2008-10-16 가부시끼 가이샤 구보다 캐빈을 구비한 주행 차량
DE102007022616C5 (de) * 2007-05-15 2013-01-17 Airbus Operations Gmbh Mehrschichtplatte mit schräger Schlitzung des Plattenkerns zur Reduzierung der Körperschallabstrahlung und zur Erhöhung der Schalldämmung bei Beibehalten der mechanischen Stabilität
KR20130060885A (ko) * 2011-11-30 2013-06-10 삼성디스플레이 주식회사 충격 흡수 시트 및 이를 구비하는 표시 장치
WO2013153491A1 (fr) * 2012-04-12 2013-10-17 Koninklijke Philips N.V. Élément de construction acoustique électroluminescent
US9792891B2 (en) * 2012-06-20 2017-10-17 Philips Lighting Holding B.V. Acoustic panel having lighting properties
US9873105B2 (en) * 2014-10-24 2018-01-23 City University Of Hong Kong Sorbent material and a method for enhancing sorption performance thereof
CN105118497A (zh) * 2015-09-18 2015-12-02 贵州大学 一种管束式穿孔板和弹簧环状结构吸声装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE520833C (de) * 1925-05-16 1931-03-14 Dahlberg & Company Inc Schalldaempfende Bauplatte aus porigem Faserstoff
DE2441164A1 (de) * 1974-08-28 1976-03-11 Loehlein Ziegelwerke Geb Schallschluck-wandelement
US4113053A (en) * 1976-10-06 1978-09-12 Bridgestone Tire Company Limited Sound absorbing body
DE3339701A1 (de) * 1983-11-03 1985-05-23 Karl 5249 Hamm Rische Schalldaemmende und schalldaempfende platte

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970706559A (ko) * 1994-10-11 1997-11-03 사가라 아츠히코 흡음체, 흡음판 및 흡음유니트
JPH10175263A (ja) 1996-12-18 1998-06-30 Nikki Kogyo Kk 吸音体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE520833C (de) * 1925-05-16 1931-03-14 Dahlberg & Company Inc Schalldaempfende Bauplatte aus porigem Faserstoff
DE2441164A1 (de) * 1974-08-28 1976-03-11 Loehlein Ziegelwerke Geb Schallschluck-wandelement
US4113053A (en) * 1976-10-06 1978-09-12 Bridgestone Tire Company Limited Sound absorbing body
DE3339701A1 (de) * 1983-11-03 1985-05-23 Karl 5249 Hamm Rische Schalldaemmende und schalldaempfende platte

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848232A1 (fr) * 2002-12-10 2004-06-11 Jean Luc Sandoz Structure antibruit
WO2004055284A1 (fr) * 2002-12-10 2004-07-01 Jean-Luc Sandoz Structure antibruit
FR2917882A1 (fr) * 2007-06-21 2008-12-26 Renault Sas Materiau absorbant comportant des cabites a peau resistive et procede pour la fabrication d'un tel materiau
WO2009004258A2 (fr) * 2007-06-21 2009-01-08 Renault S.A.S Materiau absorbant comportant des cavites a peau resistive et procede pour la fabrication d'un tel materiau
WO2009004258A3 (fr) * 2007-06-21 2010-10-21 Renault S.A.S Materiau absorbant comportant des cavites a peau resistive et procede pour la fabrication d'un tel materiau

Also Published As

Publication number Publication date
AU3827100A (en) 2000-11-14
FR2792348A1 (fr) 2000-10-20
US6615951B1 (en) 2003-09-09
FR2792348B1 (fr) 2001-07-06
EP1169526A1 (fr) 2002-01-09

Similar Documents

Publication Publication Date Title
WO2000061888A1 (fr) Materiau absorbant, constitue d'une matiere poreuse a double porosite
CA2485322C (fr) Panneau insonorisant a billes et procede de realisation
EP0940248B1 (fr) Panneau insonorisant et procédé de réalisation
WO2003078740A1 (fr) Mur antibruit
FR2562699A1 (fr) Revetement de paroi absorbant les ondes acoustiques
EP0297008A1 (fr) Enceintes acoustiques à très hautes performances
EP3039672A1 (fr) Panneau acoustique
CA2646933A1 (fr) Structure absorbante pour l'attenuation de bruits generes notamment par un rotor et carenage comportant une telle structure
WO2017093693A1 (fr) Métamatériau acoustique absorbant
EP2467847B1 (fr) Barrière acoustique ajourée permettant un traitement hybride passif/actif du bruit
EP1180186A1 (fr) Materiaux souples en feuilles pour structures tendues, procede de realisation de tels materiaux, faux plafonds tendus comprenant de tels materiaux
WO2020128103A1 (fr) Panneau acoustiquement isolant
EP3195905B1 (fr) Buse silencieuse de diffusion de gaz
WO2007031633A1 (fr) Cloison réalisée à partir de panneaux, notamment de plâtre
FR2930670A1 (fr) Panneau acoustique perfectionne
FR2848232A1 (fr) Structure antibruit
CA3132360A1 (fr) Produit d'isolation acoustique comprenant une couche arriere
FR2528474A1 (fr) Procede de fabrication de panneaux acoustiques absorbants et panneaux obtenus selon ce procede
EP0652331A1 (fr) Panneau absorbant acoustique
FR3095828A1 (fr) Dispositif de ventilation intégré
FR2893646A1 (fr) Ecran acoustique multifrequence modulaire.
WO2021130190A1 (fr) Ensemble d'isolation thermique et acoustique comprenant un produit d'isolation thermique et acoustique et une membrane en face avant
FR2778780A1 (fr) Procede pour realiser a partir de spheres assemblees entre elles, un materiau d'absorption acoustique et materiau obtenu
EP0304352A1 (fr) Panneau isolant à faible module d'élasticité et procédé de doublage utilisant un tel panneau
EP1407091A1 (fr) Dispositif d'absorption acoustique pour un local

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000917175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09958665

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000917175

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2000917175

Country of ref document: EP