WO2000053898A1 - Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie, insbesondere für einen warmwassermotor - Google Patents

Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie, insbesondere für einen warmwassermotor Download PDF

Info

Publication number
WO2000053898A1
WO2000053898A1 PCT/DE2000/000642 DE0000642W WO0053898A1 WO 2000053898 A1 WO2000053898 A1 WO 2000053898A1 DE 0000642 W DE0000642 W DE 0000642W WO 0053898 A1 WO0053898 A1 WO 0053898A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
expansion element
gas expansion
pressure vessel
element according
Prior art date
Application number
PCT/DE2000/000642
Other languages
English (en)
French (fr)
Inventor
Gerhard Stock
Original Assignee
Gerhard Stock
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerhard Stock filed Critical Gerhard Stock
Priority to AT00920368T priority Critical patent/ATE251713T1/de
Priority to JP2000604101A priority patent/JP2002539351A/ja
Priority to DE50003997T priority patent/DE50003997D1/de
Priority to DK00920368T priority patent/DK1159512T3/da
Priority to EP00920368A priority patent/EP1159512B1/de
Priority to US09/914,766 priority patent/US6564551B1/en
Priority to AU40988/00A priority patent/AU4098800A/en
Priority to DE10080564T priority patent/DE10080564D2/de
Publication of WO2000053898A1 publication Critical patent/WO2000053898A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors

Definitions

  • Gas expansion element for an arrangement for converting from thermal to motor
  • the invention relates to a gas expansion element for an arrangement for converting thermal energy into motor energy, in particular for a hot water engine, consisting of a closed pressure vessel filled with a gas or a gas mixture, which is effectively connected to the arrangement via a displaceable piston.
  • DE 197 19 190 C2 discloses an arrangement for converting thermal m electrical energy, which consists of a working circuit with a working fluid for driving a flow machine and a multiplicity of heat exchangers alternately flowed through by a cold and warm medium.
  • each of the heat exchangers there is an expansion element which expands and contracts depending on the temperature of the medium, the temperature-related expansions and contractions of which are fed to the working circuit via a buffer store.
  • each heat exchanger is assigned a buffer memory designed as a spring, each spring being connected to the piston of a pressure cylinder, the work space of which is connected to a working oil circuit, which is connected to a turbine, via controllable valves via suction and pressure lines drives a generator.
  • This arrangement has a relatively complex structure, in particular due to the buffer stores designed as springs, and comprises the previously explained disadvantages of a heat exchanger. It is an object of the invention to provide a gas expansion element of the type mentioned at the outset, with which a relatively large output can be achieved with little technical effort.
  • the object is achieved in that the pressure vessel has an upper injection opening for hot and cold water and a controllable lower water drain opening.
  • an injection opening with a spray and atomizer nozzle directed into the interior of the pressure container is provided for the hot and cold water.
  • the spraying and atomizing nozzle causes a fine distribution of the sprayed hot or cold water in the pressure vessel and thus a quick penetration of the gas.
  • the separate injection openings with the assigned atomizing nozzles ensure that no residues remain when spraying cold water of the hot water get into the interior of the pressure vessel and conversely no remnants of the cold water are introduced when hot water is injected.
  • At least the inner wall of the pressure vessel preferably consists of a non-heat-absorbing material or is coated with an insulation material.
  • the inner wall of the pressure container is expediently made of a water-repellent material or is coated with such a material.
  • controllable lower water drain opening is arranged at the lower end of a sump projecting downward from the container.
  • the sump preferably has a substantially smaller diameter than the pressure vessel.
  • the condensate is collected in the sump, which prevents the gaseous medium from flowing out of the interior of the pressure vessel. Due to the relatively small diameter of the sump, the heat transfer between the inside of the pressure vessel and an outlet for the condensate or the outflowing condensate itself is reduced, while the length of the sump is relatively large.
  • the piston is designed as a liquid piston pump, the inlet side with the water outlet opening of the pressure vessel, to which a water inlet of a working circuit is assigned, and the outlet side with a water outlet of the working circuit connected is.
  • the liquid piston pump is not subject to friction losses, which increases the efficiency compared to the use of a piston guided in a cylinder.
  • the liquid piston pump is expediently each provided with a level sensor for an upper and a lower level of the water within the liquid piston pump. After reaching the upper level, the hot water is injected into the pressure vessel under computer control, whereupon the gaseous medium in the pressure vessel expands and the level of the water inside the liquid piston pump drops until the lower level is reached and the associated level sensor injects the cold water Contraction of the gaseous medium is signaled by computer.
  • a check valve is preferably used in each case in the water outlet and the water inlet.
  • the pressure vessel is advantageously funnel-shaped in the sump or in the direction of the water drain. This shape favors a quick drainage of the sprayed hot or cold water downwards.
  • Fig.l shows a section through an inventive gas expansion element with associated components
  • FIG. 2 shows an alternative embodiment of the gas expansion element according to FIG. 1.
  • An essentially cylindrical to spherical pressure container 1 according to FIG. 1 has on its upper side an injection opening 2 which has a spray and atomizer nozzle 3 directed into the interior of the pressure container. Hot water or cold water can be alternately sprayed into the pressure vessel 1 via assigned valves 4.
  • the wall of the pressure vessel 1 filled with a gas or a gas mixture is connected to a displaceable piston 5 which establishes the connection to an arrangement 9 for converting the thermal energy, in particular a hot water motor.
  • the pressure vessel 1 is funnel-shaped at its lower section 6, which merges into a sump 7 which projects downward below the pressure vessel 1 and which has a controllable lower water drain opening 8 at its lower end.
  • the pressure vessel 1 In order to heat the air or other gases of the pressure vessel 1, hot water is fed directly into the pressure via the assigned valve 4 and the injection opening 2 via the spray nozzle 3 sprayed container where it immediately largely penetrates the gas to be expanded.
  • the pressure vessel 1 is insulated at least on the inside, otherwise on the whole wall, so that it does not absorb any heat in the material.
  • the inner wall is water-repellent so that the water that is brought in can be drained down quickly after cooling.
  • the warm water is sprayed in such a way that the heat or cold brought in the water can spread directly in the container. This ensures a high clock frequency (approx. One cycle in one to three seconds).
  • the controllable lower water drain opening 8 only controls so much water under computer control that the sump 7 becomes dry and thus gas / air outflow is avoided.
  • the sump 7 is long and narrow, so that no heat transfer into the wastewater can take place.
  • the amount of water required for heating is very small. It is enough to heat 100 liters of air from 0 ° C to 100 ° C 9.1 kJ in 22 g of water. A useful work of 3.6 kJ becomes available (approx. 40% efficiency when using Air :
  • valves 4 are assigned on its upper side, one valve 4 via a connecting line 10 with a cooling device 11 for generating the cold water and the other valve 4 also via a connecting line 10 with a heating device 12 for generating the Hot water is coupled. Both the hot and the cold water reach a separate injection opening 2, each with an associated spray and atomizer nozzle 3.
  • the cooling device 11 and the heating device 12 are fed via a corresponding branching line 13 from a pump 14, the line 13 being connected to a compensating tank 15.
  • a check valve 27, 26 is inserted into the line 13 immediately before the cooling device 11 and the heating device 12, the non-return valves 27, 26 preventing the correspondingly tempered water from flowing out of the cooling device 11 or the heating device 12.
  • a check valve 25 is provided between the pump 14 and an inlet 32 of the compensating tank 15 to the line 13.
  • the compensation tank 15 is connected to a corresponding water supply m via an inlet valve 30.
  • the expansion tank 15 via a Pressure sensor 31 coupled to the pump 14.
  • a liquid piston pump 17 filled with water 16 is arranged on the underside of the pressure vessel 1 according to FIG. 2 and connects on the inlet side to the water outlet opening 8 of the pressure vessel 1 coupled to a water inlet 23 of the working circuit 20 and on the outlet side to a water outlet 33 of the working circuit 20 stands.
  • the gaseous medium expands inside the pressure vessel 1, i.e. when hot water is sprayed out
  • the water 16 in the liquid piston pump 17 is pressurized accordingly and the level 18 reaches a lower end position, which is monitored by a level sensor 29 which detects the end of the Spraying phase of the hot water controls.
  • a check valve 19 assigned to the water drain opening 8 is opened and the pressure generated propagates in the working circuit 20 in accordance with the direction of the arrow 21.
  • a non-return valve 22 in a water inlet 23 arranged between the pressure vessel 1 and the liquid piston pump 17 is closed, which at a later point in time, namely when the gaseous medium contracts inside the pressure vessel 1, for supplying the medium 16 in the liquid piston pump 17 and opened to form the working circuit 20.
  • the check valve 19 assigned to the water drain opening 8 is closed and the level 18 of the medium 16 of the liquid piston pump 17 reaches an upper end position, which is also monitored by a level sensor 28 . After a corresponding The signaling by the level sensor 28 ends the injection phase of the cold water.
  • the water 16 drives the arrangement 9 connected to the working circuit 20 for converting the thermal energy.
  • liquid media other than water 16 can also be used to operate the working circuit 20.
  • the condensate or waste water accumulating in the pressure vessel reaches the working circuit 20 via the liquid piston pump 17, which is coupled to the pump 14, which in turn is controlled by the pressure sensor 31 of the expansion tank 15, the waste water from the cooling device 11, the heating device 12 and the Equalization tank 15 supplies.
  • valves 4, the level sensors 28, 29 of the liquid piston pump 17, the pressure sensor 31 of the expansion tank 17 and / or the pump 14 can be coupled to a computer, not shown, which monitors the injection processes, the level 18 and the pressure monitored and the previously listed components controlled accordingly.

Abstract

Ein Gasausdehnungselement für eine Anordnung zum Umwandeln von thermischer in motorische Energie, insbesondere für einen Warmwassermotor, besteht aus einem mit einem Gas oder Gasgemisch gefüllten geschlossenen Druckbehälter (1), der über einen verschiebbaren Kolben (5) mit der Anordnung wirksam verbunden ist. Der Druckbehälter (1) hat eine obere Einspritzöffnung (2) für Warm- und Kaltwasser und eine steuerbare untere Wasserablauföffnung (8).

Description

Gasausdehnungselement für eine Anordnung zum Umwandeln von thermischer in motorische
Energie, insbesondere für einen Warmwassermotor
Beschreibung
Die Erfindung bezieht sich auf ein Gasausdehnungselement für eine Anordnung zum Umwandeln von thermischer in motorische Energie, insbesondere für einen Warmwassermotor, bestehend aus einem mit einem Gas oder einem Gasgemisch gefüllten geschlossenen Druckbehälter, der über einen verschiebbaren Kolben mit der Anordnung wirksam verbunden ist.
Gase wandeln relativ viel Wärme bei Erhitzung und Ausdehnung in Arbeit um, wobei in schnellen Prozessen, wie etwa dem Stirlingprozess große Einbußen durch Dissipation, ungünstige Kolbensteuerung, Wärme- und Pendelverluste, Totraumeffekte, großen Regeneratorwiderstand und hohe Geschwindigkeiten entstehen .
Aus der US-A-4 283 915 ist eine Anordnung zum Umwandeln von thermischer in motorische Energie bekannt, die jeweils eine Einspeisung für Warmwasser und eine für Kaltwasser umfasst, wobei eine bestimmte Temperaturdifferenz zwischen dem Warmund dem Kaltwasser herrscht. Das Warm- und das Kaltwasser werden alternierend durch Rohre eines Wärmetauschers geleitet, um eine Arbeitsflussigkeit zu expandieren und zu kon- traktieren. Der Arbeitszyklus wird oberhalb eines Siedepunktes der Arbeitsflussigkeit durchgeführt. Mittels Rückschlagventilen wird ein relativ hoher Druck zur Betätigung der Anordnung sichergestellt. Hierbei erweist sich die Verwendung des Wärmetauschers als nachteilig, da ein solcher Rohr- Warmetauscher bei einem großen technischen Aufwand lediglich einen stark begrenzten Wirkungsgrad aufweist und in Abhängigkeit von der Beschaffenheit der hn durch- und umströmenden Medien relativ störanfällig ist.
Darüber hinaus offenbart die DE 197 19 190 C2 eine Anordnung zum Umwandeln von thermischer m elektrische Energie, die aus einem Arbeitskreislauf mit einem Arbeitsfluid zum Antrieb einer Stromungsmaschine und aus einer Vielzahl von abwechselnd von einem kalten und warmen Medium durchströmten Wärmetauschern besteht. In den Wärmetauschern ist jeweils ein sich m Abhängigkeit von der Temperatur des Mediums ausdehnendes und zusammenziehendes Ausdehnungselement angeordnet, dessen temperaturbedingten Ausdehnungen und Kontraktionen über einen Puffer-Speicher dem Arbeits-Kreislauf zugeführt werden. Zur Speicherung einer Kraft st jedem Wärmetauscher ein als Feder ausgebildeter Puffer-Speicher zugeordnet, wobei jede Feder mit dem Kolben eines Druckzylinders verbunden ist, dessen Arbeitsraum jeweils über steuerbare Ventile über Saug- und Druckleitungen mit einem Arbeits-Olkreislauf verbunden ist, der eine Turbine mit einem Generator antreibt. Diese Anordnung weist einen relativ komplexen Aufbau, insbesondere durch die als Federn ausgeführten Puffer-Speicher auf und umfasst die zuvor erläuterten Nachteile eines Wärmetauschers . Es ist Aufgabe der Erfindung, ein Gasausdehnungselement der eingangs genannten Art zu schaffen, mit dem sich bei geringem technischen Aufwand eine relativ große Leistung erzielen lässt .
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass der Druckbehälter eine obere Einspritzöffnung für Warm- und Kaltwasser und eine steuerbare untere WasserablaufÖffnung hat.
Durch diese Maßnahmen ist sichergestellt, dass die Ausdehnung und Kontraktion desselben Mediums (Gases) in ein und derselben Kammer des Gasausdehnungselements stattfindet, wodurch das Gasausdehnungselement mit einem geringen technischen Aufwand realisiert ist. Somit beaufschlagt das bei der Zufuhr von Kaltwasser kontraktierende und bei der Zufuhr von Warmwasser expandierende Medium den Kolben, ohne dass Verluste eines Wärmetauschers oder dergleichen auftreten. Hierbei wird zur Erwärmung der Luft bzw. eines anderen Gases im Druckbehälter heißes Wasser direkt in den Druckbehälter gesprüht, wo es das auszudehnende Gas sofort weitestgehend durchdringt.
Nach einer vorteilhaften Ausgestaltung der Erfindung ist für das Warm- und das Kaltwasser jeweils eine Einspritzöffnung mit einer ins Innere des Druckbehälters gerichteten Sprüh- und Zerstäuberdüse vorgesehen. Die Sprüh- und Zerstäuberdüse bewirkt eine Feinverteilung des eingesprühten Warm- bzw. Kaltwassers im Druckbehälter und somit eine schnelle Durchdringung des Gases. Darüberhinaus ist durch die separaten Einspritzöffnungen mit den zugeordneten Zerstäuberdüsen sichergestellt, dass beim Einsprühen von Kaltwasser keine Reste des Warmwassers in das Innere des Druckbehalters gelangen und umgekehrt auch keine Reste des Kaltwassers beim Einspritzen von Warmwasser eingeleitet werden.
Um Warmeverluste weitgehend zu verhindern, besteht bevorzugt mindestens die Innenwand des Druckbehalters aus einem nicht Warme aufnehmenden Werkstoff oder ist mit einem Isolationsma- terial beschichtet.
Zur relativ schnellen Ableitung des m den Druckbehalter em- gespruhten Warm- bzw. Kaltwassers nach unten besteht zweckma- ßigerweise d e Innenwand des Druckbehalters aus einem wasserabweisenden Werkstoff oder ist mit einem solchen beschichtet.
Bei einer Weiterbildung des Erfindungsgedankens ist die steuerbare untere Wasserablaufoffnung am unteren Ende eines den Behalter nach unten überragenden Sumpfes angeordnet. Vorzugsweise hat der Sumpf einen wesentlich kleineren Durchmesser als der Druckbehalter. In dem Sumpf, der ein Ausstromen des gasformigen Mediums aus dem Inneren des Druckbehalters verhindert, wird das Kondensat gesammelt. Durch den relativ geringen Durchmesser des Sumpfes wird bei gleichzeitig relativ großer Lange desselben der Wärmeübergang zwischen dem Inneren des Druckbehalters und einem Ablauf für das Kondensat bzw. dem abfließenden Kondensat selbst vermindert.
Nach einer alternativen Ausgestaltung der Erfindung ist der Kolben als Flussigkolbenpumpe ausgebildet, die emgangsseitig mit der WasserablaufÖffnung des Druckbehalters, der ein Wasserzulauf eines Arbeitskreislaufes zugeordnet ist, und aus- gangsseitig mit einem Wasserablauf des Arbeitskreislaufes verbunden ist. Die Flüssigkolbenpumpe unterliegt keinen Reibungsverlusten, wodurch der Wirkungsgrad gegenüber der Verwendung eines in einem Zylinder geführten Kolbens erhöht ist.
Zur Steuerung der Einspritzzeit des Warm- oder Kaltwassers, ist zweckmäßigerweise die Flüssigkolbenpumpe jeweils mit einem Niveau-Sensor für einen oberen und einen unteren Pegel des Wassers innerhalb der Flüssigkolbenpumpe versehen. Nach dem Erreichen des oberen Pegels erfolgt rechnergesteuert das Einspritzen des Warmwassers in den Druckbehälter, worauf das gasförmige Medium im Druckbehälter expandiert und der Pegel des Wassers innerhalb der Flüssigkolbenpumpe sinkt, bis der unteren Pegel erreicht ist und der zugeordnete Niveau-Sensor das Einsprühen des Kaltwassers zur Kontraktion des gasförmigen Mediums rechnergesteuert signalisiert.
Zur Verhinderung eines unerwünschten Druckabfalls sowie zur Vorgabe der Strömungsrichtung in dem Arbeitskreislauf, ist vorzugsweise in den Wasserablauf und den Wasserzulauf jeweils ein Rückschlagventil eingesetzt.
Vorteilhafterweise ist der Druckbehälter trichterförmig in den Sumpf bzw. in Richtung des Wasserablaufs übergehend ausgebildet. Diese Formgebung begünstigt ein schnelles Ableiten des eingesprühten Warm- bzw. Kaltwassers nach unten.
Es versteht sich, dass die vorstehend genannten und nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen. Die Erfindung wird im folgenden anhand zweier Ausführungsbeispiele unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert. Es zeigen:
Fig.l einen Schnitt durch ein erfindungsgemäßes Gasausdehnungselement mit zugehörigen Komponenten, und
Fig.2 eine alternative Ausführung des Gasausdehnungselementes nach Fig . 1.
Ein im wesentlichen Zylinder- bis kugelförmiger Druckbehälter 1 gemäß Fig. 1 hat an seiner Oberseite eine Einspritzöffnung 2, die eine in das Innere des Druckbehälters gerichtete Sprüh- und Zerstäuberdüse 3 aufweist. Über zugeordnete Ventile 4 kann in den Druckbehälter 1 abwechselnd Warmwasser oder Kaltwasser eingesprüht werden.
Der mit einem Gas oder einem Gasgemisch gefüllte Druckbehälter 1 ist in seiner Wandung mit einem verschiebbaren Kolben 5 verbunden, der die Verbindung zu einer Anordnung 9 zum Umwandeln der thermischen Energie, insbesondere einem Warmwassermotor, herstellt.
Der Druckbehälter 1 ist an seinem unteren Abschnitt 6 trichterförmig ausgebildet, der in einen den Druckbehälter 1 nach unten überragenden Sumpf 7 übergeht, der an seinem unteren Ende eine steuerbare untere WasserablaufÖffnung 8 hat.
Um die Luft bzw. andere Gase des Druckbehälters 1 zu erwärmen, wird heißes Wasser direkt über das zugeordnete Ventil 4 und die Einspritzöffnung 2 über die Sprühdüse 3 in den Druck- behälter eingesprüht, wo es das auszudehnende Gas sofort weitgehend durchdringt. Der Druckbehälter 1 ist mindestens innen, ansonsten ganzwandig so isoliert, dass er keine Wärme im Material aufnimmt. Zudem ist die Innenwand wasserabweisend, um das eingebrachte Wasser nach dem Abkühlen schnell nach unten abzuleiten.
Die Luft erwärmt sich mit dem Einsprühen des warmen Wassers, dehnt sich aus und verrichtet über den verschiebbaren Kolben 5 Arbeit, die einem nicht weiter dargestellten Arbeitskreislauf 20 der Anordnung 9 zur Umwandlung der thermischen Energie zugeführt wird. Das Sprühen des warmen Wassers geschieht dabei so, dass die im Wasser mitgebrachte Wärme bzw. Kälte sich unmittelbar im Behälter ausbreiten kann. Dies gewährleistet eine hohe Taktfrequenz (ca. ein Kreisprozess in ein bis drei Sekunden) .
Nach dem Druckanstieg und dem nach Kolbendisplazierung entsprechenden Druckabfall im Druckbehälter und nach entsprechender Abkühlung fällt das Wasser aus und setzt sich nach unten im Sumpf 7 ab. Dort lässt die steuerbare untere Wasserablauföffnung 8 rechnergesteuert nur soviel Wasser ab, dass ein Trockenwerden des Sumpfes 7 und damit ein Ausströmen von Gas/Luft vermieden wird. Der Sumpf 7 ist lang und schmal gehalten, damit kein Wärmeübergang in das Abwasser stattfinden kann.
Die Menge des zum Aufheizen benötigten Wassers ist sehr gering. So genügen um 100 Liter Luft von 0°C auf 100°C zu erwärmen 9,1 kJ in 22 g Wasser. Dabei wird eine Nutzarbeit von 3,6 kJ verfügbar (ca. 40% Wirkungsgrad bei Verwendung von Lu ft :
Für die Abkühlung und nachfolgende Kontraktion der Luft (Gases) im Druckbehalter 1 wird kaltes Wasser emgespruht. Es entsteht Unterdruck, so dass der verschiebbare Kolben 5 wieder in die Ausgangsposition zurückgeht. Durch spezielle Gase bzw. Gasgemische kann der Wirkungsgrad gesteigert werden.
Dem Druckbehalter 1 nach Fig. 2 sind an seiner Oberseite die Ventile 4 zugeordnet, wobei das eine Ventil 4 über eine Verbindungsleitung 10 mit einer Kuhlemrichtung 11 zur Erzeugung des Kaltwassers und das andere Ventil 4 ebenfalls über eine Verbmdungsleitung 10 mit einer Heizeinrichtung 12 zur Erzeugung des Warmwassers gekoppelt ist. Sowohl das Warm- als auch das Kaltwasser gelangen eine separate Emspritzoffnung 2 mit jeweils zugeordneter Sprüh- und Zerstäuberdüse 3.
Die Kuhlemrichtung 11 sowie die Heizeinrichtung 12 werden über eine sich entsprechend verzweigende Leitung 13 von einer Pumpe 14 gespeist, wobei die Leitung 13 mit einem Ausgleichs- gefaß 15 verbunden ist. In die Leitung 13 ist jeweils unmittelbar vor der Kuhlemrichtung 11 sowie der Heizeinrichtung 12 ein Rückschlagventil 27, 26 eingesetzt, wobei die Ruckschlagventile 27, 26 ein Ausstromen des entsprechend temperierten Wassers aus der Kuhlemrichtung 11 bzw. der Heizeinrichtung 12 verhindern. Im weiteren ist ein Ruckschlagventil 25 zwischen der Pumpe 14 und einem Zulauf 32 des Ausgle chs- gefaßes 15 zu der Leitung 13 vorgesehen. Um das gesamte System mit Wasser zu befullen, steht das Ausgleichsgefaß 15 über ein Zulaufventil 30 mit einer entsprechenden Wasserversorgung m Verbindung. Ferner ist das Ausgleichsgefaß 15 über einen Drucksensor 31 mit der Pumpe 14 gekoppelt.
An der Unterseite des Druckbehalters 1 nach Fig. 2 ist eine mit Wasser 16 gefüllte Flussigkolbenpumpe 17 angeordnet, die emgangsseitig mit der mit einem Wasserzulauf 23 des Arbeits- kreislaufes 20 gekoppelten WasserablaufÖffnung 8 des Druckbehalters 1 und ausgangsseitig mit einem Wasserablauf 33 des Arbeitskreislaufes 20 in Verbindung steht. Beim Expandieren des gasformigen Mediums im Inneren des Druckbehalters 1, also beim Emspruhen von Warmwasser, wird das Wasser 16 in der Flussigkolbenpumpe 17 entsprechend druckbeaufschlagt und der Pegel 18 gelangt eine untere Endlage, die von einem Niveau-Sensor 29 überwacht wird, der das Ende der Emspruhphase des Warmwassers steuert. Hierbei wird ein der Wasserablauf- offnung 8 zugeordnetes Rückschlagventil 19 geöffnet und der erzeugte Druck pflanzt sich in dem Arbeitskreislauf 20 entsprechend der Richtung des Pfeils 21 fort. Wahrend des Druckaufbaus m dem Arbeitskreislauf 20 ist ein Rückschlagventil 22 in einem zwischen dem Druckbehalter 1 und der Flussigkolbenpumpe 17 angeordneten Wasserzulauf 23 geschlossen, das zu einem spateren Zeitpunkt, nämlich beim Kontrahieren des gasformigen Mediums im Inneren des Druckbehalters 1, zur Zuleitung des Mediums 16 in die Flussigkolbenpumpe 17 und zur Bildung des Arbeitskreislaufes 20 geöffnet wird.
Beim Kontrahieren des gasformigen Mediums im Inneren des Druckbehalters 1 durch das Emspruhen des Kaltwassers ist das der Wasserablaufoffnung 8 zugeordnete Rückschlagventil 19 geschlossen und der Pegel 18 des Mediums 16 der Flussigkolbenpumpe 17 gelangt in eine obere Endlage, die ebenfalls von einem Niveau-Sensor 28 überwacht wird. Nach einer entsprechen- den Signalgebung durch den Niveau-Sensor 28 wird die Einspritzphase des Kaltwassers beendet.
Während des Durchströmens des Arbeitskreislaufes 20 treibt das Wasser 16 die in den Arbeitskreislauf 20 geschaltete Anordnung 9 zur Umwandlung der thermischen Energie an. Selbstverständlich sind zum Betreiben des Arbeitskreislaufes 20 auch andere flüssige Medien als Wasser 16 einsetzbar.
Das in dem Druckbehälter anfallende Kondensat bzw. Abwasser erreicht über die Flüssigkolbenpumpe 17 den Arbeitskreislauf 20, der mit der Pumpe 14 gekoppelt ist, die wiederum durch eine entsprechende Steuerung durch den Drucksensor 31 des Ausgleichsgefäßes 15 das Abwasser der Kühleinrichtung 11, der Heizeinrichtung 12 sowie dem Ausgleichsgefäß 15 zuführt.
Zur Steuerung der Abläufe können die Ventile 4, die Niveau- Sensoren 28, 29 der Flüssigkolbenpumpe 17, der Drucksensor 31 des Ausgleichsgefäßes 17 und/oder die Pumpe 14 mit einem nicht dargestellten Rechner gekoppelt sein, der die Einspritzvorgänge, den Pegel 18 sowie den Druck überwacht und die zuvor aufgezählten Bauteile entsprechend ansteuert.

Claims

Patentansprüche
1. Gasausdehnungselement für eine Anordnung (9) zum Umwandeln von thermischer m motorische Energie, insbesondere für einen Warmwassermotor, bestehend aus einem mit einem Gas oder Gasgemisch gefüllten geschlossenen Druckbehalter (1) , der über einen verschiebbaren Kolben (5) mit der Anordnung wirksam verbunden ist, da du r ch ge k e nn z e i chne t , dass der Druckbehalter (1) eine obere Einspritzoffnung (2) für Warmund Kaltwasser und eine steuerbare untere Wasserablaufoffnung (8) hat.
2. Gasausdehnungselement nach Anspruch 1, da du r ch ge kenn z e i chn e t , dass für das Warm- und das Kaltwasser jeweils eine Einspritzoffnung (2) mit einer ins Innere des Druckbehalters (1) gerichteten Spruh- und Zerstäuberdüse (3) vorgesehen ist.
3. Gasausdehnungselement nach Anspruch 1 oder 2, da durch ge kenn z e i chne t , dass zumindest die Innenwand des Druckbehalters (1) aus einem nicht warme- aufnehmenden Werkstoff besteht oder mit einem Isolationsmaterial beschichtet ist.
4. Gasausdehnungselement nach einem der Ansprüche 1 bis 3, da dur ch ge kenn z e i chne t , dass die Innenwand des Druckbehalters (1) aus einem wasserabweisenden Werkstoff besteht oder mit einem solchen beschichtet ist .
5. Gasausdehnungselement nach einem der Ansprüche 1 bis 4, da du r c h ge kenn z e i chne t , dass die steuerbare untere WasserablaufÖffnung (8) am unteren Ende eines den Druckbehälter (1) nach unten überragenden Sumpfes (7) angeordnet ist.
6. Gasausdehnungselement nach Anspruch 5, da du r ch ge kenn z e i chne t , dass der Sumpf (7) einen wesentlich kleineren Durchmesser als der Druckbehälter (1) hat.
7. Gasausdehnungselement nach einem der Ansprüche 1 bis 4, da du r ch g e ke nn z e i chne t , dass der Kolben
(5) als Flüssigkolbenpumpe (17) ausgebildet ist, die eingangsseitig mit der WasserablaufÖffnung (8) des Druckbehälters (1), der ein Wasserzulauf (23) eines Arbeitskreislaufes (20) zugeordnet ist, und ausgangssei- tig mit einem Wasserablauf (33) des Arbeitskreislaufes (20) verbunden ist.
8. Gasausdehnungselement nach Anspruch 7, da du r ch ge kenn z e i chne t , dass die Flüssigkolbenpumpe
(17) jeweils mit einem Niveau-Sensor (28, 29) für einen oberen und einen unteren Pegel (18) des Wassers innerhalb der Flüssigkolbenpumpe (17) versehen ist.
9. Gasausdehnungselement nach Anspruch 7, dadu rch ge kenn z e i chne t , dass in den Wasserablauf (8) und den Wasserzulauf (23) jeweils ein Rückschlagventil
(19, 22) eingesetzt ist.
10. Gasausdehnungselement nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass der Druck- behälter (1) trichterförmig in den Sumpf (7) bzw. in Richtung des Wasserzulaufs (23) übergehend ausgebildet ist .
PCT/DE2000/000642 1999-03-05 2000-03-04 Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie, insbesondere für einen warmwassermotor WO2000053898A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT00920368T ATE251713T1 (de) 1999-03-05 2000-03-04 Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie, insbesondere für einen warmwassermotor
JP2000604101A JP2002539351A (ja) 1999-03-05 2000-03-04 熱エネルギーから電動エネルギーに変換するための特に熱水電動機用の気体膨張装置
DE50003997T DE50003997D1 (de) 1999-03-05 2000-03-04 Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie, insbesondere für einen warmwassermotor
DK00920368T DK1159512T3 (da) 1999-03-05 2000-03-04 Gasekspansionselement
EP00920368A EP1159512B1 (de) 1999-03-05 2000-03-04 Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie, insbesondere für einen warmwassermotor
US09/914,766 US6564551B1 (en) 1999-03-05 2000-03-04 Gas expansion apparatus for a system for the conversion of thermal energy into motive energy, in particular for a hot-water motor
AU40988/00A AU4098800A (en) 1999-03-05 2000-03-04 Gas expansion element provided for a device used to convert thermal energy into motor energy, especially for a hot-water motor
DE10080564T DE10080564D2 (de) 1999-03-05 2000-03-04 Gasausdehnungselement für eine Anordnung zum Umwandeln von thermischer in motorische Energie, insbesondere für einen Warmwassermotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19909611A DE19909611C1 (de) 1999-03-05 1999-03-05 Gasausdehnungselement für eine Anordnung zum Umwandeln von thermischer in motorische Energie, insbesondere für einen Warmwassermotor
DE19909611.2 1999-03-05

Publications (1)

Publication Number Publication Date
WO2000053898A1 true WO2000053898A1 (de) 2000-09-14

Family

ID=7899758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000642 WO2000053898A1 (de) 1999-03-05 2000-03-04 Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie, insbesondere für einen warmwassermotor

Country Status (10)

Country Link
US (1) US6564551B1 (de)
EP (1) EP1159512B1 (de)
JP (1) JP2002539351A (de)
AT (1) ATE251713T1 (de)
AU (1) AU4098800A (de)
DE (3) DE19909611C1 (de)
DK (1) DK1159512T3 (de)
ES (1) ES2208307T3 (de)
PT (1) PT1159512E (de)
WO (1) WO2000053898A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133153C1 (de) * 2001-07-07 2002-07-11 Gerhard Stock Anordnung von Gasausdehnungselementen und Verfahren zum Betreiben der Anordnung
WO2003074857A1 (de) * 2002-03-07 2003-09-12 Gerhard Stock Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie
WO2011088821A2 (de) 2010-01-21 2011-07-28 Gerhard Stock Anordnung zum umwandeln von thermischer in motorische energie

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2376507A (en) * 2001-05-03 2002-12-18 S & C Thermofluids Ltd An engine where the working gases in the cylinder are heated by injection of hot liquid
DE10236749A1 (de) * 2002-08-10 2004-02-19 Arnold Berdel Verfahren zur Energieumwandlung und Vorrichtung dazu
DE102004003694A1 (de) 2004-01-24 2005-11-24 Gerhard Stock Anordnung zum Umwandeln von thermischer in motorische Energie
GB0725200D0 (en) * 2007-12-24 2008-01-30 Heptron Ltd Power conversion apparatus
US8919117B2 (en) * 2008-12-22 2014-12-30 Exencotech Ab Energy cell operable to generate a pressurized fluid via bladder means and a phase change material
US8096118B2 (en) * 2009-01-30 2012-01-17 Williams Jonathan H Engine for utilizing thermal energy to generate electricity
US8146354B2 (en) * 2009-06-29 2012-04-03 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8247915B2 (en) * 2010-03-24 2012-08-21 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8436489B2 (en) * 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
DE102010022088A1 (de) * 2010-05-31 2011-12-01 Peter Wolf Grundlastfähiges Energiespeicherkraftwerk mit Brauchwasseraufbereitung
KR20130095421A (ko) * 2012-02-20 2013-08-28 삼성전자주식회사 전구물질 기화 장치 및 이를 이용한 막 형성 방법
PL240516B1 (pl) * 2018-01-09 2022-04-19 Dobrianski Jurij Maszyna parowa
US11125183B1 (en) * 2020-08-04 2021-09-21 Navita Energy, Inc. Effective low temperature differential powered engines, systems, and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107928A (en) * 1975-08-12 1978-08-22 American Solar King Corporation Thermal energy method and machine
EP0043879A2 (de) * 1980-07-16 1982-01-20 Thermal Systems Limited. Hubkolbenmaschine mit äusserer Verbrennung sowie Verfahren zu deren Betrieb
US5074110A (en) * 1990-10-22 1991-12-24 Satnarine Singh Combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932995A (en) * 1971-04-17 1976-01-20 Milan Pecar System for producing work using a small temperature differential
FR2233871A5 (de) * 1973-06-14 1975-01-10 Mengin Ets Pierre
US4283915A (en) 1976-04-14 1981-08-18 David P. McConnell Hydraulic fluid generator
US4545207A (en) * 1978-04-10 1985-10-08 Neary Michael P Solar energy system
US4748813A (en) * 1985-06-23 1988-06-07 The Board Of Trustees Of The Leland Stanford Junior University Method of operating a thermal engine powered by a chemical reaction
DE19719190C2 (de) 1997-05-08 1999-02-25 Gerhard Stock Warmwassermotor zur Wandlung von thermischer in elektrische Energie

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107928A (en) * 1975-08-12 1978-08-22 American Solar King Corporation Thermal energy method and machine
EP0043879A2 (de) * 1980-07-16 1982-01-20 Thermal Systems Limited. Hubkolbenmaschine mit äusserer Verbrennung sowie Verfahren zu deren Betrieb
US5074110A (en) * 1990-10-22 1991-12-24 Satnarine Singh Combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133153C1 (de) * 2001-07-07 2002-07-11 Gerhard Stock Anordnung von Gasausdehnungselementen und Verfahren zum Betreiben der Anordnung
WO2003004835A1 (de) 2001-07-07 2003-01-16 Gerhard Stock Anordnung von gasausdehnungselementen und verfahren zum betreiben der anordnung
WO2003074857A1 (de) * 2002-03-07 2003-09-12 Gerhard Stock Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie
WO2011088821A2 (de) 2010-01-21 2011-07-28 Gerhard Stock Anordnung zum umwandeln von thermischer in motorische energie
DE102010005232A1 (de) 2010-01-21 2011-09-08 Gerhard Stock Anordnung zum Umwandeln von thermischer in motorische Energie

Also Published As

Publication number Publication date
DE19909611C1 (de) 2000-04-06
DK1159512T3 (da) 2004-02-09
EP1159512B1 (de) 2003-10-08
PT1159512E (pt) 2004-02-27
JP2002539351A (ja) 2002-11-19
ATE251713T1 (de) 2003-10-15
EP1159512A1 (de) 2001-12-05
US6564551B1 (en) 2003-05-20
AU4098800A (en) 2000-09-28
ES2208307T3 (es) 2004-06-16
DE10080564D2 (de) 2002-02-14
DE50003997D1 (de) 2003-11-13

Similar Documents

Publication Publication Date Title
EP1159512B1 (de) Gasausdehnungselement für eine anordnung zum umwandeln von thermischer in motorische energie, insbesondere für einen warmwassermotor
DE102010005232A1 (de) Anordnung zum Umwandeln von thermischer in motorische Energie
EP1706601B1 (de) Anordnung zum umwandeln von thermischer in motorische energie
WO2006024182A2 (de) Verfahren und anlage zur regelung eines carnot-kreislaufprozesses
DE4135119A1 (de) Verfahren zum autoklavieren von poroesem, stueckigem gut, insbesondere formkoerper aus porenbeton.
DE10133153C1 (de) Anordnung von Gasausdehnungselementen und Verfahren zum Betreiben der Anordnung
DE2122063A1 (de) Abhitze-Dampferzeuger
WO2009049598A1 (de) Thermo-hydraulisches verfahren zur druckerhöhung diverser arbeitsfluids und deren anwendung
EP1930558A1 (de) Energieumwandler
EP0152931B1 (de) Verfahren zum Betreiben einer Generator-Absorptionswärmepumpen-Heizanlage für die Raumheizung, Warmwasserbereitung und dergl. und Generator-Absorptionswärmepumpen-Heizanlage
EP1065442B1 (de) Feuerungsanlage mit flüssigkeitsgekühlten Rostelementen
WO2012152602A1 (de) Leitungskreis und verfahren zum betreiben eines leitungskreises zur abwärmenutzung einer brennkraftmaschine
AT412998B (de) Solaranlage
CH698265B1 (de) Einrichtung zum Erwärmen eines flüssigen Wärmeträgermediums.
DE10209998B4 (de) Gasausdehnungselement für eine Anordnung zum Umwandeln von thermischer in motorische Energie
DE3744487A1 (de) Verfahren und vorrichtung zur foerderung von siedefaehigen fluessigkeiten
EP1647768A1 (de) Geschlossenes System zur Kondensatrückspeisung und geschlossenes Verfahren zur Kondensatrückspeisung
DE102013013104B4 (de) Wärmekraftmaschine
DE2402557A1 (de) Kraftmaschine
EP2129975B1 (de) Wärmekraftanlage
DE3719388C2 (de)
DE10132464B4 (de) Verfahren zur Wärmeenergiegewinnung aus einem gasförmigen Medium mittels eines Wärmetauschers
EP0631823A1 (de) Hochdruck-Spritzvorrichtung für Hartwachs
EP3147466B1 (de) Fluidenergiemaschine
DE102019124971A1 (de) Gaskolbenspeicher

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2000 604101

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000920368

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT DE)

WWP Wipo information: published in national office

Ref document number: 2000920368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09914766

Country of ref document: US

REF Corresponds to

Ref document number: 10080564

Country of ref document: DE

Date of ref document: 20020214

WWE Wipo information: entry into national phase

Ref document number: 10080564

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000920368

Country of ref document: EP