WO2006024182A2 - Verfahren und anlage zur regelung eines carnot-kreislaufprozesses - Google Patents

Verfahren und anlage zur regelung eines carnot-kreislaufprozesses Download PDF

Info

Publication number
WO2006024182A2
WO2006024182A2 PCT/CH2005/000480 CH2005000480W WO2006024182A2 WO 2006024182 A2 WO2006024182 A2 WO 2006024182A2 CH 2005000480 W CH2005000480 W CH 2005000480W WO 2006024182 A2 WO2006024182 A2 WO 2006024182A2
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
compressor
heat exchanger
temperature
line
Prior art date
Application number
PCT/CH2005/000480
Other languages
English (en)
French (fr)
Other versions
WO2006024182A3 (de
Inventor
Felix Kalberer
Original Assignee
Felix Kalberer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Felix Kalberer filed Critical Felix Kalberer
Publication of WO2006024182A2 publication Critical patent/WO2006024182A2/de
Publication of WO2006024182A3 publication Critical patent/WO2006024182A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the invention relates to a method for controlling a Carnot cycle process of a plant according to the preamble of claims 1 and a plant for carrying out the process according to the preamble of Anspru ⁇ Ches 4.
  • Such plants are usually designed as heat pumps or Kältemaschi ⁇ NEN.
  • a method and a system for controlling the Carnot cycle process of the type mentioned are known from WO03 / 106900 and have achieved very good results.
  • the control is carried out with a computer-controlled control unit which regulates an expansion valve to the evaporator on the basis of various parameters.
  • the object of the invention is to further improve the process and the plant of the type mentioned in the introduction.
  • the compressor is protected from excessively high temperatures of the working fluid (hot gas) if the temperature of the working fluid before or after the compressor is reduced to a permissible value by at least one of the following process steps: a. Diverting a portion of the working fluid to the secondary side of the heat ⁇ exchanger; b. Diverting a part of the working fluid to the primary side of the heat ⁇ exchanger; c. Injecting liquid working fluid into the compressor.
  • the temperature and / or the pressure of the gaseous working fluid before and / or after the compressor can be used for regulation.
  • the above-mentioned method steps for regulation can be realized by at least one of the following devices: a. a bypass provided with a control element for bypassing the secondary side of the heat exchanger; a. a bypass provided with a control element for bypassing the primary side of the heat exchanger; c. a compressor associated with the controllable injection valve which is connected to the line for the liquid working fluid.
  • a temperature sensor and / or pressure sensor which are / are connected to the control unit, are / is arranged in the line before and / or after the compressor.
  • Figure 1 shows the block diagram of a heat pump with a bypass on the
  • Figure 2 shows the block diagram of a heat pump with a bypass on the
  • FIG. 3 shows the block diagram of a heat pump with an injector associated with the injector.
  • the camot cycle processes illustrated in FIGS. 1 to 3 form, for example, heat pumps, which each contain a working medium circuit 10, in which an evaporator 12, a multi-pass internal heat exchanger 14, a compressor 16, a condenser 18 and an expansion valve 20 Lines 10a, 10b, 10c, 10d, 10e and 10f are interconnected.
  • the lines 10f, 10a, 10b form the suction gas side of the cycle process with low pressure and the lines 10c, 10d, 10e form the hot gas side, which is under high pressure.
  • the primary sides of the evaporator 12, the heat exchanger 14 and the condenser 18 are each denoted by "P" and the secondary sides by "S", which are used as an addition to the respective reference numeral.
  • the supply line 22 and the discharge line 24 of a heat source are connected.
  • a heat source as a heat carrier, a fluid, such as water, or a gas, such as air, have.
  • a fluid such as water
  • a gas such as air
  • the secondary side 12S of the evaporator 12 is connected via the line 10a to the primary side 14P of the internal heat exchanger 14, which in turn is connected to the compressor 16 via the line 10b.
  • the line 10c leads to the primary side 18P of the capacitor 18, whose secondary side 18S via the supply line 26 and the discharge line 28 with a non-contact her illustrated heat consumers, for example, a heating system is connected.
  • the primary side 18P of the condenser 18 is connected via the line 10d to the secondary side 14S of the heat exchanger 14.
  • the line 10e leads to the expansion valve 20, which in turn is connected via the line 10f to the secondary side 12S of the evaporator 12.
  • a control unit 30 is present, which is connected by a line 32 to a temperature sensor 34 and a line 36 to a pressure sensor 38, which is located in the line 10b between the primary side 14P of the heat exchanger 14 and the compressor 16 runs.
  • a temperature sensor 40 in line 10c via a line 42 and a pressure sensor 44 via line 46 to the control unit 30 are connected.
  • a further temperature sensor 48, which is connected to the control unit 30 via the line 50, is arranged in the line 10d extending in front of the primary side 18P of the capacitor 18 up to the second side 14S of the heat exchanger 14.
  • the system has a bypass 52 which bridges the secondary side 14S of the heat exchanger 14, i. the lines 10d, 10e connected.
  • a control valve 54 which is disposed in the line 10 e and is connected via a line 56 to the control unit 30.
  • the temperature of the hot gas in the Lei ⁇ tion 10 b can be controlled in a narrow limit range, which is just no longer harmful to the compressor 16.
  • This solution is particularly preferred, since the control takes place on the secondary side of the circuit, in which the working fluid is liquid, so that only a small, inexpensive control valve 54 is required. In addition, there is no energetic influence on the actual Carnot circulation process.
  • FIG. 2 shows the camot cycle process in which a bypass 58 is arranged on the primary side 14P of the heat exchanger 14 and bridges the primary side 14P of the heat exchanger 14, ie connects the lines 10a and 10b.
  • a in the line 10 b arranged control valve 60 is connected via a line 62 with the Control unit 30 connected.
  • This variant corresponds to the energy variant of Figure 1, but a larger control valve 60 is required because the Anlagenmit ⁇ tel is to control in the gaseous phase on the primary side of the Carnot cycle process.
  • the compressor 16 is equipped with an injection valve 64, which is connected via a line 66 to the line 10e, which connects the secondary side 14S of the heat exchanger 14 to the expansion valve 20.
  • a control valve 68 is arranged, which is connected via a line 70 to the control unit 30 and the compressor 16 supplies liquid working fluid to operate the temperature of the Verdich ⁇ age 16 in the vicinity of the allowable limit temperature. Energetically, this is the worst option, since the volume flow through the evaporator 12 and the primary side 14P of the heat exchanger 14 is reduced.
  • FIGS. 1 to 3 It may be useful to combine its, two or all variants of FIGS. 1 to 3 with one another.
  • the working medium in the heat exchanger up to the evaporation temperature, ie for example by at least 20 K, which corresponds to an increase in power of at least 12 to 15%.
  • the working medium cooled to near the vaporization temperature does not bring any energy into the evaporator, but the entire evaporator surface brings the necessary evaporation energy from the available heat source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Control Of Temperature (AREA)

Abstract

Das Verfahren und die Anlage zur Regelung eines Carnot-Kreislaufprozesses weisen in einem Arbeitsmittelkreislauf mindestens Folgendes auf: einen Verdichter (12), einen Kondensator (18), ein Expansionsventil (20), einen Verdampfer (12) sowie einen mehrpassigen inneren Wärmetauscher (14). Letzterer wird von dem aus dem Kondensator austretenden kondensierten Arbeitsmittel und von dem aus dem Verdampfer austretenden Arbeitsmittel durchströmt, wobei das gasförmige Arbeitsmittel erhitzt und das kondensierte Arbeitsmittel gekühlt werden. Die Heissgastemperatur wird mittels einer rechnergesteuerten Steuereinheit (30) geregelt. Um einen engen Grenzbereich für die für den Verdichter (18) zulässige Höchsttemperatur einhalten zu können, ist ein die Sekundärseite (14S) umgehender Bypass (52) mit einem Regelorgan (54) vorhanden.

Description

Verfahren und Anlage zur Regelung eines Carnot-Kreislaufprozesses
Technisches Gebiet
Die Erfindung betrifft ein Verfahren zur Regelung eines Carnot- Kreislaufprozesses einer Anlage gemäss Oberbegriff des Ansprüche 1 sowie eine Anlage zur Durchführung des Verfahrens gemäss Oberbegriff des Anspru¬ ches 4. Solche Anlagen sind in der Regel als Wärmepumpen oder Kältemaschi¬ nen ausgebildet.
Stand der Technik
Ein Verfahren und eine Anlage zur Regelung des Carnot-Kreislaufprozesses der eingangs genannten Art sind aus der WO03/106900 bekannt und haben sehr gute Ergebnisse erzielt. Die Regelung erfolgt dort unter anderem mit einer rechnergesteuerten Steuereinheit, die anhand verschiedener Parameter ein Expansionsventil zum Verdampfer regelt.
Darstellung der Erfindung
Aufgabe der Erfindung ist es, das Verfahren und die Anlage der eingangs ge¬ nannten Art weiter zu verbessern.
Die Aufgabe wird gelöst durch die kennzeichnenden Merkmale der Ansprüche 1 und 4.
Es wurde überraschend festgestellt, dass der Verdichter vor zu hohen Tempe- raturen des Arbeitsmittels (Heissgas) geschützt wird, wenn man die Tempera¬ tur des Arbeitsmittels vor oder nach dem Verdichter durch mindestens einen der folgenden Verfahrensschritte auf einen zulässigen Wert senkt: a. Umleiten eines Teils des Arbeitsmittels um die Sekundärseite des Wärme¬ tauschers; b. Umleiten eines Teils des Arbeitsmittels um die Primärseite des Wärme¬ tauschers; c. Einspritzen von flüssigem Arbeitsmittel in den Verdichter. Durch einen oder mehrere der genannten Verfahrensschritte lässt sie die An¬ lage konstant und mit enger Bandbreite an der maximal zulässigen Grenze der Heissgastemperatur betreiben, deren Grosse beispielsweise von der Art des verwendeten Arbeitsmittels des Kreislaufes und insbesondere von der zulässi¬ gen Höchsttemperatur des Heissgases am Verdichter abhängt. Die zulässige Höchsttemperatur des Heissgases am Verdichter ist jene Temperatur, bei der der Verdichter keinen Schaden beispielsweise durch Verkokung des Schmier¬ mittels erleidet. Diese Höchsttemperatur hängt wiederum vom verwendeten Schmiermittel ab. Durch die neuen Massnahmen ist es möglich, die Tempera¬ tur-Differenz zwischen der gasförmigen Phase und der flüssigen Phase des Ar¬ beitsmittels zu vergrössern, denn je grösser die Unterkühlung des Arbeitmit- tels ist umso höher wird die Verdampferleistung. Dies ermöglicht eine maxi¬ male Ausnutzung der Kondensationsenthalpie. Daraus resultiert eine wesent¬ lich bessere Arbeitszahl, das heisst eine bessere Leistung des Carnot- Kreislaufprozesses.
Vorteilhafte Ausgestaltungen des Verfahrens und der Anlage ergeben sich aus den Ansprüchen 2 bis 3 sowie 5 bis 7.
Man kann zur Regelung die Temperatur und/oder den Druck des gasförmigen Arbeitsmittels vor und/oder nach dem Verdichter verwendet.
Die vorstehend erwähnten Verfahrensschritte zur Regelung lassen sich durch mindestens eine der folgenden Einrichtungen verwirklichen: a. einen mit einem Regelorgan versehenen Bypass zur Umgehung der Se¬ kundärseite des Wärmetauschers; a. einen mit einem Regelorgan versehenen Bypass zur Umgehung der Pri¬ märseite des Wärmetauschers; c. ein dem Verdichter zugeordnetes regelbares Einspritzventil, das mit der Leitung für das flüssige Arbeitsmittel verbunden ist.
Vorzugsweise sind/ist in der Leitung vor und/oder nach dem Verdichter ein Temperaturfühler und/oder Druckfühler angeordnet, die/der mit der Steuer¬ einheit verbunden sind/ist. Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeich¬ nungen näher beschrieben, dabei zeigen :
Figur 1 das Blockschema einer Wärmepumpe mit einem Bypass auf der
Sekundärseite eines Wärmetauschers; Figur 2 das Blockschema einer Wärmepumpe mit einem Bypass auf der
Primärseite eines Wärmetauschers; und
Figur 3 das Blockschema einer Wärmepumpe mit einem dem Verdichter zugeordneten Einspritzventil.
Wege zur Ausführung der Erfindung
Die in den Figuren 1 bis 3 dargestellten Camot-Kreislaufprozesse bilden bei¬ spielsweise Wärmepumpen, welche jeweils einen Arbeitsmittelkreislauf 10 enthal- ten, in dem ein Verdampfer 12, ein mehrpassiger innerer Wärmetauscher 14, ein Verdichter 16, ein Kondensator 18 sowie ein Expansionsventil 20 über Leitungen 10a,10b,10c,10d,10e und 10f miteinander verbunden sind. Die Leitungen 10f,10a,10b bilden die Sauggasseite des Kreislaufprozesses mit Niederdruck und die Leitungen 10c,10d,10e bilden die Heissgasseite, die unter Hochdruck steht. Die Primärseiten des Verdampfers 12, des Wärmetauschers 14 und des Konden¬ sators 18 sind jeweils mit "P" und die Sekundärseiten mit "S" bezeichnet, die als Zusatz zum jeweiligen Bezugszeichen verwendet werden.
An der Primärseite 12P des Verdampfers 12 sind die Zuleitung 22 und die Ablei- tung 24 einer nicht näher dargestellten Wärmequelle angeschlossen. Eine solche Wärmequelle kann als Wärmeträger ein Fluid, wie beispielsweise Wasser, oder ein Gas, wie beispielsweise Luft, aufweisen. Es kommen die verschiedensten Wärmequellen in Frage, wie z.B. die Abluft eines Gebäudes oder das Wasser ei¬ ner Erdsonde und dergleichen. Die Sekundärseite 12S des Verdampfers 12 ist über die Leitung 10a mit der Primärseite 14P des inneren Wärmetauschers 14 verbunden, die ihrerseits über die Leitung 10b an den Verdichter 16 angeschlos¬ sen ist. Die Leitung 10c führt zur Primärseite 18P des Kondensators 18, dessen Sekundärseite 18S über die Zuleitung 26 und die Ableitung 28 mit einem nicht nä- her dargestellten Wärmeverbraucher beispielsweise einer Heizanlage verbunden ist. Die Primärseite 18P des Kondensators 18 ist über die Leitung 10d an die Se¬ kundärseite 14S des Wärmetauschers 14 angeschlossen. Von dort führt die Lei¬ tung 10e zum Expansionsventil 20, das wiederum über die Leitung 10f mit der Se- kundärseite 12S des Verdampfers 12 verbunden ist.
Zur Regelung des Carnot-Kreislaufprozesses ist eine Steuereinheit 30 vorhanden, die mit einer Leitung 32 mit einem Temperaturfühler 34 und einer Leitung 36 mit einem Druckfühler 38 verbunden ist, die in der Leitung 10b zwischen der Primär- seite 14P des Wärmetauschers 14 und dem Verdichter 16 verläuft. Nach dem Verdichter 16 sind in der Leitung 10c wiederum ein Temperaturfühler 40 über eine Leitung 42 und ein Druckfühler 44 über die Leitung 46 mit der Steuereinheit 30 verbunden. In der vor der Primärseite 18P des Kondensators 18 bis zur Sekun¬ därseite 14S des Wärmetauschers 14 verlaufende Leitung 10d ist ein weiterer Temperaturfühler 48 angeordnet, der über die Leitung 50 mit der Steuereinheit 30 verbunden ist.
Im Beispiel der Figur 1 weist die Anlage einen Bypass 52 auf, der die Sekundär¬ seite 14S des Wärmetauschers 14 überbrückt, d.h. die Leitungen 10d,10e verbin- det. Zur Steuerung des Bypassflusses dient ein Regelventil 54, das in der Leitung 10e angeordnet ist und über eine Leitung 56 mit der Steuereinheit 30 verbunden ist. Mit Hilfe dieses Bypasses 52 kann die Temperatur des Heissgases in der Lei¬ tung 10b in einem engen Grenzbereich geregelt werden, der für den Verdichter 16 gerade nicht mehr schädlich ist. Diese Lösung ist besonders bevorzugt, da die Regelung auf der Sekundärseite des Kreislaufes erfolgt, in der das Arbeitsmittel flüssig ist, so dass nur ein kleines, kostengünstiges Regelventil 54 erforderlich ist. Ausserdem erfolgt keine energetische Beeinflussung des eigentlichen Carnot- Kreislaufprozesses.
Die Figur 2 zeigt den Camot-Kreislaufprozess, bei dem auf der Primärseite 14P des Wärmetauschers 14 ein Bypass 58 angeordnet ist, der die Primärseite 14P des Wärmetauschers 14 überbrückt, d.h. die Leitungen 10a und 10b verbindet. Ein in der Leitung 10b angeordnetes Regelventil 60 ist über eine Leitung 62 mit der Steuereinheit 30 verbunden. Diese Variante entspricht energetisch der Variante der Figur 1 , jedoch ist ein grosseres Regelventil 60 erforderlich, da das Arbeitsmit¬ tel in der gasförmigen Phase auf der Primärseite des Carnot-Kreislaufprozesses zu regeln ist.
Bei der Regelung des Carnot-Kreislaufprozesses nach Figur 3 ist der Verdichter 16 mit einem Einspritzventil 64 ausgerüstet, das über eine Leitung 66 mit der Lei¬ tung 10e verbunden ist, welche die Sekundärseite 14S des Wärmetauschers 14 mit dem Expansionsventil 20 verbindet. In der Leitung 66 ist ein Regelventil 68 angeordnet, das über eine Leitung 70 mit der Steuereinheit 30 verbunden ist und dem Verdichter 16 flüssiges Arbeitsmittel zuführt, um die Temperatur des Verdich¬ ters 16 in der Nähe der zulässigen Grenztemperatur zu betreiben. Energetisch ist dies die schlechteste Variante, da sich der Volumenstrom über den Verdampfer 12 und die Primärseite 14P des Wärmetauschers 14 verringert.
Gegebenenfalls kann es nützlich seine, zwei oder alle Varianten der Figuren 1 bis 3 miteinander zu kombinieren.
Mit der erfindungsgemässen Regelung des Carnot-Kreislaufprozesses ist es mög- lieh, das Arbeitsmittel im Wärmetauscher bis an die Verdampfungstemperatur abzukühlen, das heisst beispielsweise um mindestens 20 K, was einer Steigerung der Leistung um mindestens 12 bis 15% entspricht. Das bis nahe an die Verdamp¬ fungstemperatur abgekühlte Arbeitsmittel bringt keine Energie in den Verdampfer, sondern die gesamte Verdampferfläche holt die notwendige Verdampfungsenergie von der zur Verfügung stehenden Wärmequelle.
Bezuqszeichenliste
10 Arbeitskreislauf 50 Leitung
10a Leitung 52 Bypass
10b Leitung 54 Regelventil
10c Leitung 56 Leitung
1Od Leitung 58 Bypass
1Oe Leitung 60 Regelventil
1Of Leitung 62 Leitung
12 Verdampfer 64 Einspritzventil
14 Wärmetauscher 66 Leitung
16 Verdichter 68 Regelventil
18 Kondensator 70 Leitung
20 Expansionsventil
20a Expansionsventil
20b Expansionsventil
20c Expansionsventil
22 Zuleitung
24 Ableitung
26 Zuleitung
28 Ableitung
30 Steuereinheit
32 Leitung
34 Temperaturfühler
36 Leitung
38 Druckfühler
40 Temperaturfühler
42 Leitung
44 Druckfühler
46 Leitung
48 Temperaturfühler

Claims

Patentansprüche
1. Verfahren zur Regelung eines Carnot-Kreislaufprozesses einer Anlage, wo¬ bei in einem Arbeitsmittelkreislauf mindestens Folgendes angeordnet ist: ein Verdichter (12), ein Kondensator (18), ein Expansionsventil (20), ein
Verdampfer (12) sowie ein mehrpassiger innerer Wärmetauscher (14), der von dem aus dem Kondensator austretenden kondensierten Arbeitsmittel und von dem aus dem Verdampfer austretenden Arbeitsmittel durchströmt wird und in dem das gasförmige Arbeitsmittel erhitzt und das kondensierte Arbeitsmittel gekühlt werden, wobei die Heissgastemperatur mittels einer rechnergesteuerten Steuereinheit (30) geregelt wird, dadurch gekenn¬ zeichnet, dass eine zu hohe Temperatur des Arbeitsmittels vor oder nach dem Verdichter (16) durch mindestens einen der folgenden Verfahrens- schritte auf den zulässigen Wert gesenkt wird: a. Umleiten eines Teils des Arbeitsmittels um die Sekundärseite (14S) des Wärmetauschers (14); b. Umleiten eines Teils des Arbeitsmittels um die Primärseite (14P) des Wärmetauschers (14); c. Einspritzen von flüssigem Arbeitsmittel in den Verdichter (16).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man zur Rege¬ lung die Temperatur und/oder den Druck des gasförmigen Arbeitsmittels vor dem Verdichter (16) verwendet.
3. Verfahren nach Anspruch I1 dadurch gekennzeichnet, dass man zur Rege¬ lung die Temperatur und/oder den Druck des gasförmigen Arbeitsmittels nach dem Verdichter (16) verwendet.
4. Anlage zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, mit einem Arbeitsmittelkreislauf, in dem mindestens Folgendes ange¬ ordnet ist: ein Verdichter (16), ein Kondensator (18), ein Expansionsventil (20), ein Verdampfer (12) sowie ein mehrpassiger innerer Wärmetauscher (14), der auf der Sekundärseite (14S) von dem aus dem Kondensator (18) austretenden kondensierten Arbeitsmittel und auf der Primärseite (14P) von dem aus dem Verdampfer (12) austretenden Arbeitsmittel durch¬ strömbar ist, sowie mit einer rechnergesteuerten Steuereinheit (30) zur Regelung der Temperatur des Arbeitsmittels vor oder nach dem Verdichter (16), dadurch gekennzeichnet, dass sie mindestens eine der folgenden
Einrichtungen aufweist: a. einen mit einem Regelorgan (54) versehenen Bypass (52) zur Umge¬ hung der Sekundärseite (14S) des Wärmetauschers (14); b. einen mit einem Regelorgan (60) versehenen Bypass (58) zur Umge- hung der Primärseite (14P) des Wärmetauschers (14); c. ein dem Verdichter (16) zugeordnetes regelbares Einspritzventil (64), das mit der Leitung (66) für das flüssige Arbeitsmittel verbunden ist.
5. Anlage nach Anspruch 4, dadurch gekennzeichnet, dass in der Leitung (10b) vor dem Verdichter (16) ein Temperaturfühler (34) und/oder Druck¬ fühler (38) angeordnet sind/ist, die/der mit der Steuereinheit (30) verbun¬ den sind/ist.
6. Anlage nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass in der Lei- tung (10c) nach dem Verdichter (16) ein Temperaturfühler (40) und/oder
Druckfühler (44) angeordnet sind/ist, die/der mit der Steuereinheit (30) verbunden sind/ist.
PCT/CH2005/000480 2004-09-03 2005-08-18 Verfahren und anlage zur regelung eines carnot-kreislaufprozesses WO2006024182A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH14612004 2004-09-03
CH1461/04 2004-09-03

Publications (2)

Publication Number Publication Date
WO2006024182A2 true WO2006024182A2 (de) 2006-03-09
WO2006024182A3 WO2006024182A3 (de) 2006-06-29

Family

ID=35045073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2005/000480 WO2006024182A2 (de) 2004-09-03 2005-08-18 Verfahren und anlage zur regelung eines carnot-kreislaufprozesses

Country Status (1)

Country Link
WO (1) WO2006024182A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113221A1 (de) * 2013-11-29 2015-06-03 Denso Automotive Deutschland Gmbh Innerer Wärmetauscher mit variablem Wärmeübergang
WO2017207526A1 (en) * 2016-05-31 2017-12-07 Eaton Industrial IP GmbH & Co. KG Cooling system
EP3444541A1 (de) * 2017-08-16 2019-02-20 Heatcraft Refrigeration Products LLC Überhitzungssteuerungsschema
EP3789695A1 (de) * 2019-09-03 2021-03-10 Trane International Inc. Hlk-system
SE2050092A1 (en) * 2020-01-30 2021-07-31 Swep Int Ab A refrigeration system and a method for controlling such a refrigeration system
DE102020115269A1 (de) 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Betrieb einer Kompressionskälteanlage und zugehörige Kompressionskälteanlage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611926A1 (de) * 1992-09-17 1994-08-24 Nippondenso Co., Ltd. Verdampfer für klimagerät
JPH1047794A (ja) * 1996-07-31 1998-02-20 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2003214713A (ja) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd 冷凍サイクル装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611926A1 (de) * 1992-09-17 1994-08-24 Nippondenso Co., Ltd. Verdampfer für klimagerät
JPH1047794A (ja) * 1996-07-31 1998-02-20 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2003214713A (ja) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd 冷凍サイクル装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 1998, Nr. 06, 30. April 1998 (1998-04-30) -& JP 10 047794 A (MITSUBISHI HEAVY IND LTD), 20. Februar 1998 (1998-02-20) *
PATENT ABSTRACTS OF JAPAN Bd. 2003, Nr. 11, 5. November 2003 (2003-11-05) -& JP 2003 214713 A (MATSUSHITA ELECTRIC IND CO LTD), 30. Juli 2003 (2003-07-30) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113221A1 (de) * 2013-11-29 2015-06-03 Denso Automotive Deutschland Gmbh Innerer Wärmetauscher mit variablem Wärmeübergang
DE102013113221B4 (de) 2013-11-29 2024-05-29 Denso Automotive Deutschland Gmbh Innerer Wärmetauscher mit variablem Wärmeübergang
WO2017207526A1 (en) * 2016-05-31 2017-12-07 Eaton Industrial IP GmbH & Co. KG Cooling system
CN109477674A (zh) * 2016-05-31 2019-03-15 伊顿智能动力有限公司 冷却系统
EP3444541A1 (de) * 2017-08-16 2019-02-20 Heatcraft Refrigeration Products LLC Überhitzungssteuerungsschema
US10712052B2 (en) 2017-08-16 2020-07-14 Heatcraft Refrigeration Products Llc Cooling system with improved compressor stability
EP3789695A1 (de) * 2019-09-03 2021-03-10 Trane International Inc. Hlk-system
US11555639B2 (en) 2019-09-03 2023-01-17 Trane International Inc. HVAC system
SE2050092A1 (en) * 2020-01-30 2021-07-31 Swep Int Ab A refrigeration system and a method for controlling such a refrigeration system
SE545516C2 (en) * 2020-01-30 2023-10-03 Swep Int Ab A refrigeration system and method for controlling such a refrigeration system
DE102020115269A1 (de) 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Betrieb einer Kompressionskälteanlage und zugehörige Kompressionskälteanlage

Also Published As

Publication number Publication date
WO2006024182A3 (de) 2006-06-29

Similar Documents

Publication Publication Date Title
DE102008046620B4 (de) Hochtemperaturwärmepumpe und Verfahren zu deren Regelung
EP1288761B1 (de) Verfahren zur Regelung eines Niederdruckbypassystems
EP2229524B1 (de) Verfahren zur rückgewinnung einer verlustwärme einer verbrennungskraftmaschine
DE3900692A1 (de) Kaelteanlage
WO2006024182A2 (de) Verfahren und anlage zur regelung eines carnot-kreislaufprozesses
EP1262347A2 (de) Heiz-/Kühlkreislauf für eine Klimaanlage eines Kraftfahrzeuges, Klimaanlage und Verfahren zur Regelung derselben
EP1704313B1 (de) Verfahren zum betrieb einer kraftwerksanlage
DE19720881A1 (de) Kombikraftwerk mit Kraftwärmekopplung
DE10159892B4 (de) Kältemaschine mit einem Rekuperator
EP1031788A2 (de) Verfahren zum Anfahren eines Zwangdurchlauf-Abhitzekessels und Vorrichtung zur Durchführung des Verfahrens
DE2754132C2 (de) Kühlvorrichtung
DE102014000671A1 (de) Solaranlage und Verfahren zum Betreiben einer solchen
EP0866291B1 (de) Kompressionswärmepumpe oder Kompressionskältemaschine und Regelungsverfahren dafür
DE102007013485A1 (de) Verfahren zur Regelung einer CO2-Kälteanlage mit zweistufiger Verdichtung
EP2530409A2 (de) Wärmepumpenanlage sowie Verfahren zum Betrieb einer Wärmepumpenanlage
EP1620684B1 (de) Verfahren zum regeln eines carnot-kreisprozesses sowie anlage zu seiner durchführung
DE3018706A1 (de) Waermepumpe
WO2003106900A1 (de) Verfahren zum regeln eines carnot-kreisprozesses sowie anlage zu seiner durchführung
DE10338388B3 (de) Verfahren zur Regelung einer Klimaanlage
DE19936523B4 (de) Kälteanlage
DE2153651C3 (de) Heißgasabtaueinrichtung für Kälteanlagen
EP4168723B1 (de) Kältegerät mit einem saugrohr-wärmetauscher und verfahren zum betrieb eines kältegeräts mit einem saugrohr-wärmetauscher
WO2018033246A1 (de) Anordnung, insbesondere kältemaschine oder wärmepumpe
DE102022203525A1 (de) Wärmepumpe
DE10320391A1 (de) Kältemittelkondensator, insbesondere für Kraftfahrzeuge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase