WO2000052419A1 - Capteur de mesure de forme de type sonde, dispositif d'usinage nc, et procede de mesure de forme utilisant ledit capteur - Google Patents

Capteur de mesure de forme de type sonde, dispositif d'usinage nc, et procede de mesure de forme utilisant ledit capteur Download PDF

Info

Publication number
WO2000052419A1
WO2000052419A1 PCT/JP2000/001196 JP0001196W WO0052419A1 WO 2000052419 A1 WO2000052419 A1 WO 2000052419A1 JP 0001196 W JP0001196 W JP 0001196W WO 0052419 A1 WO0052419 A1 WO 0052419A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
contact
probe
measured
probe shaft
Prior art date
Application number
PCT/JP2000/001196
Other languages
English (en)
French (fr)
Inventor
Sei Moriyasu
Yutaka Yamagata
Hitoshi Ohmori
Shinya Morita
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to DE60033272T priority Critical patent/DE60033272T2/de
Priority to US09/763,747 priority patent/US6539642B1/en
Priority to EP00906598A priority patent/EP1134543B1/en
Priority to JP2000602588A priority patent/JP3932502B2/ja
Publication of WO2000052419A1 publication Critical patent/WO2000052419A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • G01B11/007Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Definitions

  • the present invention relates to a stylus type shape measuring sensor, an NC processing apparatus using the same, and a shape measuring method. Description of related technology
  • on-machine measurement technology Technology for measuring the shape of a workpiece on a processing machine, so-called on-machine measurement technology, is indispensable for performing high-precision processing.
  • This on-machine measurement technology not only improves machining accuracy by eliminating positioning errors when attaching and detaching workpieces, but also achieves improved machining efficiency and automation at the same time by eliminating setup labor. can do.
  • a stylus type shape measuring sensor for measuring the shape of a workpiece by bringing the tip of a measurement probe into contact with the surface of the workpiece has been conventionally known.
  • Such a stylus type shape measuring sensor can be roughly classified into an analog type and a digital type by a measuring probe position detecting means.
  • Analog type shape measurement sensors such as electric micrometers, convert the amount of displacement of a measurement probe into an analog amount of electricity by a change in voltage of a differential transformer, a change in capacitance, a change in resistance of a strain gauge, etc. Things.
  • the electrical drift is large and the linearity of the detection output is poor, so that a submicron accuracy of about 0.1 m cannot be obtained at a travel distance of about 100 xm.
  • digital shape measurement sensors such as digital micrometers, measure the displacement of a measurement probe digitally using an optical scale, a magnetic scale, or an interferometer.
  • optical scale e.g., a laser beam
  • magnetic scale e.g., a magnetic scale
  • interferometer e.g., a magnetic scale
  • the measurement probe is supported movably in the axial direction by linear pole bearings or air slides, and a spring is used.
  • the probe is pre-pressed at the object to be measured by pressure or air pressure. Therefore, there has been a problem that the measurement pressure fluctuates due to a change in the position of the probe, and that the measurement pressure is too large, and that the measurement pressure cannot be freely adjusted.
  • the minimum preload by the spring is about 10 gf, which is too large to obtain high accuracy, and the measurement pressure fluctuates due to the change in the panel force due to the probe displacement. there were.
  • the measurement pressure can be reduced by lowering the air pressure, but it is only about 1 gf at the minimum, and when the air pressure is reduced, the rigidity of the ground slide itself decreases, and the inclination of the probe increases. And the measurement error increases. So even if it ’s digital,
  • the measurement pressure is lower (preferably, about 500 mgf or less).
  • the measurement pressure is lower (preferably, about 500 mgf or less).
  • a high-precision shape measuring device as shown in Fig. 1 has been developed.
  • This shape measuring device has a minimum measuring force of about 5 Omgf and is extremely small, and achieves a measurement accuracy of about 0.1 / m by measuring the displacement of the measuring probe with a laser interferometer.
  • this device requires a large number of optical elements such as movable mirrors and prisms, and the shape measuring device itself is very large and delicate, so it is processed for on-machine measurement. There was a problem that it could not be mounted on the machine.
  • the object of the present invention is to reduce the electrical drift, improve the linearity of the detection output, reduce the fluctuation of the measurement pressure due to the change in the probe position, and reduce the measurement pressure without lowering the bearing rigidity of the probe. Can be adjusted to a very small load, and the measurement pressure can be freely changed, thereby achieving submicron accuracy of about 0.1 im, and miniaturization is possible and easy.
  • Another object of the present invention is to provide a stylus type shape measurement sensor applicable to on-machine measurement, an NC processing apparatus using the same, and a shape measurement method.
  • Another object of the present invention is to reduce waiting time and measure between command points by using the above-mentioned stylus type shape measuring sensor, thereby reducing necessary command points and reducing measurement time.
  • An object of the present invention is to provide an NC processing apparatus and a shape measuring method that can be shortened.
  • the contact (2) that comes into contact with the object (1) is supported so as to be movable toward the object with extremely low sliding resistance, and the contact (2) is attached to the object with a small load.
  • a displacement measuring device (20) for non-contact and high-accuracy measurement of the displacement of the contactor, and a stylus-type shape measurement sensor is provided. .
  • the contact (2) is movably supported by the probe head (10) with extremely low sliding resistance, and is urged toward the object to be measured, so that the contact is minutely placed on the surface of the object to be measured. It can follow the surface exactly while contacting with a load (approximately 500 mg or less). Furthermore, sub-micron accuracy of about 0.1 / m can be obtained by measuring the displacement of the contactor in a non-contact manner with high accuracy using the displacement measuring device (20).
  • the probe head (10) is an elongated probe shaft having a contact attached to one end (12a) and a step (11a, lib) in the middle. (12), gas bearings (14a, 14b) provided before and after the step to support the probe shaft, and gas supply means (2) for supplying a second pressurized gas to the step. 16), wherein the gas bearing has high rigidity in a radial direction, and ,
  • the probe shaft is floated by the first pressurized gas to reduce the sliding resistance, and the gas supply means supplies the second and / or third pressurized gas to be supplied to the stepped portion.
  • the biasing force generated at the stepped portion toward the object to be measured is kept constant within a small load within a predetermined range.
  • An elongate probe shaft (12) with a contact attached to one end (12a) is supported by a gas bearing (14a, 14b) to increase the rigidity of the bracket's gas bearing in the radial direction. 1
  • pressurized gas for example, compressed air
  • a step (11a, lib) is provided in the middle of the probe shaft, and the gas supply means (16a, 16b) provides a second or third or both pressurized gas (for example, By supplying compressed air, the urging force toward the object to be measured, which is generated due to the difference in the area of the stepped portion, can be kept constant within a small load within a predetermined range.
  • the second and / or third pressurized gas for generating the biasing force toward the object to be measured is supplied independently of the first pressurized gas for floating the probe shaft, the probe bearing rigidity
  • the measurement pressure can be adjusted to a very small load without reducing the load.
  • the biasing force toward the object to be measured is proportional to the pressure at the step, and since no panel is used, fluctuations in the measurement pressure due to changes in the position of the probe can be eliminated, and the linearity of the detection output is improved.
  • the measurement pressure can be freely changed by the pressure of the second and / or third pressurized gas.
  • the urging force of the probe shaft toward the object to be measured is about lOmgf or more, and about 500mg. f or less is preferable. If the biasing force toward the measured object exceeds about 500 mg ⁇ ⁇ , the sliding resistance with the measured object increases, and the inclination of the probe shaft increases, resulting in submicron accuracy of about 0.1 m. Can not be. If it is less than about 10 mgf, the contact jumps easily, and the measurement speed is greatly reduced.
  • the displacement measuring device (20) is provided at the other end (12b) of the probe shaft.
  • a laser interference displacement meter (24) that measures the position of the reflector from the reflected mirror and the reflected light from the radiation end face.
  • the position of the reflecting mirror (2 1) can be measured with a high accuracy of 0.1 m by the laser interferometer (24).
  • the laser beam is emitted toward the reflecting mirror through the optical fiber (22)
  • the movable parts of the probe head (10) and the laser interference displacement meter (24) can be miniaturized.
  • the weight of the probe shaft (12) can be reduced, the response speed at the time of measurement is improved, and high-speed measurement can be performed.
  • the laser interferometer can be installed away from the probe head, deformation of the measuring instrument due to heat generation can be suppressed, and high-precision measurement can be performed.
  • the above-described stylus-type shape measuring sensor is mounted, and is moved relative to the object to be measured by numerical control, thereby measuring the shape without removing the processed object.
  • An NC machining device is provided.
  • a stylus-type shape measurement sensor capable of obtaining sub-micron accuracy of about 0.1 and capable of miniaturization is provided on the machine of the NC processing apparatus, so that on-machine measurement becomes possible. This eliminates positioning errors when attaching and removing workpieces, improves machining accuracy, and saves the time and labor required for setup, thereby simultaneously improving machining efficiency and achieving automation.
  • the NC processing apparatus includes an interface for outputting the coordinate values of the respective numerical control axes and the output signals of the stylus type shape measuring sensor to the outside of the machine in real time. .
  • the coordinate value of each numerical control axis and the output signal of the stylus-type shape measurement sensor can be transferred in real time to an external competitor while moving the stylus-type shape measurement sensor following the object to be measured. This eliminates stationary and positioning at the command point of the NC control device, and reduces the number of command points, thereby shortening the measurement time.
  • the contact (2) that comes into contact with the object to be measured (1) is attached to one end (12a) of an elongated probe shaft (12) having a step (11a, lib).
  • the probe shaft is movably supported by the first pressurized gas with extremely low sliding resistance, and at the same time is supported with high rigidity in the radial direction, and the step portion is pressurized by the second and / or third pressure.
  • the gas is supplied, the biasing force of the probe shaft toward the measured object is maintained at a very small load by the pressure, and the displacement of the contact toward the measured object is measured in a non-contact manner using a laser interference displacement meter (24).
  • a shape measuring method is provided.
  • the contact (2) is movably supported with extremely low sliding resistance, and is urged toward the object to be measured, so that the contact comes into contact with the surface of the object to be measured with a small load. While following the surface exactly.
  • sub-micron accuracy of about 0.1 m can be obtained by measuring the displacement of the contact without contact with high accuracy using a laser interference displacement meter (24).
  • the second and / or third pressurized gas for generating a biasing force toward the object to be measured is supplied independently of the first pressurized gas for floating the probe shaft, the probe bearing The measurement pressure can be adjusted to a small load without reducing the stiffness.
  • the biasing force toward the object to be measured is proportional to the pressure at the step, fluctuations in the measurement pressure due to changes in the position of the probe can be eliminated, the linearity of the detection output can be improved, and the second or third Alternatively, the measurement pressure can be freely changed by the pressure of both pressurized gases.
  • the above-mentioned stylus-type shape measurement sensor is mounted in an NC processing device, and the stylus-type shape measurement sensor is moved relative to the object by numerical control, thereby removing the processed object.
  • the shape measurement method is characterized in that the shape measurement is performed without any need.
  • This method enables on-machine measurement, eliminates positioning errors when attaching and detaching workpieces, improves machining accuracy, and at the same time improves machining efficiency and automates by eliminating setup work. be able to.
  • the shape measuring method includes: reading coordinate values of each axis output directly from each numerical control axis of the NC processing apparatus to the outside of the machine; and output signals output from the stylus type shape measuring sensor. It is preferable to measure the shape of the object to be measured by performing the processing in real time without stopping the NC processing apparatus.
  • the coordinate value of each numerical control axis of the NC processing equipment and the output signal of the stylus type shape measurement sensor are transferred to the external computer in real time while moving the stylus type shape measurement sensor following the workpiece. It can be taken in the evening, etc., and the measurement time can be reduced by measuring the shape of the workpiece without stopping the NC processing equipment.
  • FIG. 1 is a configuration diagram of a conventional high-precision shape measuring device.
  • FIG. 2 is an overall configuration diagram of a stylus type shape measurement sensor of the present invention.
  • FIG. 3 is a partial cross-sectional view of FIG.
  • FIG. 4 is an overall configuration diagram of another stylus type shape measurement sensor of the present invention.
  • FIG. 5 is a partial cross-sectional view of FIG.
  • FIG. 6 is a characteristic diagram of the probe head of FIG.
  • FIG. 7 is a schematic diagram of a measurement probe during measurement.
  • FIG. 8 is a system configuration diagram of the NC processing apparatus of the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 8 is a system configuration diagram of the NC processing apparatus of the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • preferred embodiments of the present invention will be described with reference to the drawings.
  • the same reference numerals are given to the same parts in each of the drawings, and redundant description will be omitted.
  • FIG. 2 is an overall configuration diagram of a stylus type shape measurement sensor of the present invention.
  • the stylus-type shape measuring sensor of the present invention includes a probe head 10 and a displacement measuring device 20.
  • the probe head 10 supports the contact 2 that contacts the DUT 1 so that it can move horizontally with extremely low sliding resistance, and urges the bracket horizontally toward the DUT 1 with a small load. It has become.
  • the displacement measuring device 20 .
  • the horizontal displacement is measured with high accuracy without contact.
  • a spherical sapphire pole is attached to the tip (contact portion) of the contact 2 to reduce the coefficient of friction with the DUT 1 and prevent wear.
  • FIG. 3 is a partial cross-sectional view of the probe head 10 of FIG.
  • the probe head 10 comprises an elongated probe shaft 12, gas bearings 14a and 14b, and gas supply means 16 and 17.
  • the elongated probe shaft 12 has a contact 2 attached to one end 12a (the left end in this figure) and a step 11a at an intermediate portion.
  • the probe shaft 12 has a large-diameter portion on the side to which the contact 2 is attached and a small-diameter portion on the opposite side, and a step 11a is provided at an intermediate portion.
  • the size of the step 11a is set so that the horizontal biasing force generated by the difference in the area of the step becomes a small load within a predetermined range (for example, about 500 mgf or less).
  • a predetermined range for example, about 500 mgf or less.
  • the probe shaft has a rectangular cross section in this example, the present invention is not limited to this.
  • the probe shaft may have a circular cross section.
  • the gas bearings 14a and 14b are provided before and after the step 11a.
  • the gas bearings 14a and 14b are configured to have high rigidity in the radial direction (radial direction).
  • the gas bearings 14 a and 14 b are provided with a gas supply means 17 (for example, an air source, a regulator, an electropneumatic regulator, a first flow path 15 a provided in the probe body 15).
  • the probe shaft 12 is floated by a first pressurized gas (for example, compressed air) supplied by the pressure reducing device to reduce sliding resistance. After the probe shaft 12 is floated, the first pressurized gas is exhausted back and forth through the gap between the gas bearings 14 a and 14 b and the probe shaft 12.
  • a first pressurized gas for example, compressed air
  • the gas supply means 16 is composed of, for example, an air source, a regulator, an electropneumatic regulator, a second flow path 15b provided in the probe body 15, and a step portion 11 of the probe shaft 12. Supply a second pressurized gas (eg another compressed air) to a.
  • a second pressurized gas eg another compressed air
  • the horizontal biasing force generated by the area difference of the step portion 11a can be reduced to a very small range. It can be kept constant under load.
  • the other end 1 2b (right end in this figure) of the shaft 12 has an enlarged portion 13 larger than the shaft diameter of the probe shaft, but this may not be provided.
  • the sensor of the present invention can be used not only horizontally but also vertically or diagonally.
  • FIG. 4 is an overall configuration diagram of another stylus type shape measurement sensor of the present invention
  • FIG. 5 is a partial cross-sectional view of FIG.
  • a third pressurized gas is supplied from the gas supply means 16b independently of the first and second pressurized gases, and the pressure of the third pressurized gas is increased.
  • a return force is generated in a direction opposite to the urging force of the second pressurized gas, thereby canceling out the effect of the own weight of the probe shaft 12.
  • the return force is the biasing force generated by the difference in the gap between the probe shaft 12 and the gas bearings 14a and 14b, and the stepped portion of the probe shaft 12 from the gas supply means 16b.
  • the biasing force is generated by the area difference of the step portion 11b.
  • the displacement measuring device 20 includes a reflecting mirror 21, an optical fiber 22, and a laser interference displacement meter 24.
  • the reflecting mirror 21 is a plane mirror provided at the other end 12 b of the probe shaft 12 perpendicular to the axis.
  • the optical fiber 22 has a radiation end face 22 a facing the reflection mirror 21 at an interval L.
  • the optical fiber 22 is flexible and has a sufficient length, and its opposite end face is connected to the laser interference displacement meter 24 via, for example, an optical connector or the like.
  • the laser interference displacement meter 24 includes, for example, a semiconductor laser, a light receiving element, an optical fiber force blur, etc., radiates a laser beam through the optical fiber 22 to the reflecting mirror 21, 2 The position of the reflector is measured from the reflected light from a. — ' ⁇
  • the position of the reflecting mirror 21 can be measured by the laser interference displacement meter 24 with a high accuracy of 0.1 lm.
  • the movable parts of the probe head 10 and the laser interference displacement meter 24 can be miniaturized.
  • the contact 2 is movably supported by the probe head 10 with extremely low sliding resistance, and is urged toward the DUT 1 so that the contact 2 is moved to the DUT 1.
  • the surface can be imitated accurately along the surface while contacting the surface with a small load (about 500 mgf or less). Further, by measuring the displacement of the contact 2 toward the object to be measured by the displacement measuring device 20 in a non-contact manner with high accuracy, it is possible to obtain a sub-micron accuracy of about 0.1.
  • the elongate probe shaft 12 with the contact 2 attached to one end 12a is supported by the gas bearings 14a and 14b, and the rigidity of the gas bearings 14a and 14b in the radial direction is increased.
  • the probe shaft 12 is floated with the first pressurized gas (compressed air) to prevent the probe shaft 12 from inclining due to the sliding resistance of the contact 2, and the probe shaft 12 is covered with extremely low sliding resistance. It can be supported so as to be movable toward the object to be measured, and an increase in measurement error can be prevented.
  • steps 11a and 11b are provided in the middle of the probe shaft, and the gas supply means 16a and 161) add second and / or third or both to the steps 11 & and lib. By supplying pressurized gas (another compressed air), it is possible to maintain a constant biasing force toward the DUT caused by the area difference between the steps 11a and 11b within a predetermined range of minute load. it can.
  • FIG. 2 described above is a schematic diagram of a newly developed shape measuring sensor.
  • a sapphire pole is attached to the tip of the measurement probe, and the probe shaft 12 is supported by air slides (gas bearings 14a and 14b).
  • the principle of performing shape measurement by measuring the displacement of the probe is that the measurement pressure at the time of t measurement can be changed to about 0 to 500 mgf by controlling the air pressure by electropneumatic regulation. it can.
  • Fig. 6 is a characteristic diagram of the developed probe head.
  • the horizontal axis is the air pressure of the second pressurized gas (biasing air) supplied to the step 11a, and the vertical axis is the measured value of the biasing force. It is.
  • the horizontal biasing force shows a slightly negative value.
  • the horizontal energizing force increases in proportion to the air pressure. Therefore, the horizontal biasing force is accurately proportional to the pressure at the step, and since no panel is used, fluctuations in the measured pressure due to changes in the position of the probe can be eliminated. It can be seen that the measurement pressure can be freely changed by the pressure of the pressurized gas.
  • FIGS 7 (A) and (B) schematically show the state of the measurement probe during measurement. Assume that the tip radius of the probe shaft is r, and the slope to be measured at an angle ⁇ is moving at a constant speed V. During the measurement, the probe shaft is assumed to have external force F x in the radial direction from the air slide, F y in the axial direction, and the vertical force N and frictional force N from the object to be measured.
  • the first term in the above equation indicates the error due to the probe shaft slip
  • the second term indicates the error due to the inclination.
  • the geometrical shape of the measurement probe when the slope of the DUT is relatively large ⁇ It can be seen that the measurement error due to the geometrical position error is dominated by the slip due to the primary order of the rigidity ratio between the axial and radial directions of the gear slide.
  • the computer when measuring with a shape measurement sensor mounted on the processing machine, the computer sends an NC data message to the NC controller, confirms that the processing machine has reached the command position, and then measures the shape at that position.
  • the method of taking displacement into a personal computer was common. However, in this method, the processing machine stopped at each measurement point and the measurement was performed, so that much time was required for the measurement. Therefore, in the present invention, as shown in Fig. 8, the current position information is directly taken out from the processing machine, and at the same time, the displacement of the shape measurement sensor is taken into the personal computer, so that real-time measurement can be performed without stopping the processing machine at each measurement point. Made it possible. Thereby, high-accuracy and high-speed measurement can be realized.
  • the shape measurement sensor When the shape measurement sensor is mounted on the processing machine, a slight shift occurs between the processing machine axis and the sensor axis. The measurement error due to this deviation increases as the tilt angle of the DUT increases, and correction by data processing is required for high-accuracy measurement. Therefore, based on the linearity between the mechanical coordinate displacement and the sensor output using the reference sphere, the inclination error and the probe tip sphere shape error when the sensor was attached were estimated and corrected.
  • the inclination at the measurement point of the object to be measured is 6> in the XZ plane, 2 in the YZ plane, the inclination when the sensor is mounted is not in the XZ plane, ⁇ 2 in the YZ plane, and the machine is along the ⁇ axis. If the sensor output when displaced by ⁇ 5 is given by 7 ?, the ratio of sensor output to machine coordinate displacement (5 (linearity correction value) k is given by the following equation. ⁇ J (sin a t f + (cos a, -sino ⁇ ) 2 + (cos a, cosa,) 2
  • the sensor output at several points using the reference sphere 7] and the machine coordinate displacement (5 obtains the inclination k by Fuittengu, fitting the values of k for definitive to the plurality of points in the above equation to obtain the gradient a have a 2 when the sensor is mounted by using a least squares fitting.
  • X measured in the Y directions theory values that very consistent.
  • shape error of the good shape error of the reference sphere is the value of aa 2 obtained Te Unishi the data obtained by correcting the measured de Isseki based and the probe end ball is contained redundantly
  • shape error of the probe tip sphere can be evaluated by using a reference sphere with a high sphericity and a highly evaluated radius of curvature, and the spherical error of the probe tip obtained in this way can be evaluated.
  • the measurement data can be corrected based on the map.
  • shape measurement was performed using the reference sphere three times in each of the positive and negative directions in each of the X and Y directions, in each of the four directions, and the variation in data from the average value curve was evaluated. It was evaluated using the standard deviation.
  • the measurement conditions were as follows: the measurement pressure was 100 to 150 mg ⁇ , and the measurement speed was 50 to 1 O OmmZmin, so that the measurement could be performed relatively stably.
  • the reproducibility of the measured data in all directions was 3 ⁇ ⁇ 0.1 / ⁇ m.
  • this value is the accuracy limit because the guaranteed accuracy of the laser interference displacement meter used is 0.1 in the range of 30 mm.
  • the size (approx. 130 x 40 x 30 mm) can be easily mounted on the processing machine. '' High precision measurement is possible because the measurement pressure can be controlled extremely small.
  • the stylus-type shape measurement sensor of the present invention generates an urging force toward the object to be measured due to the difference in the area of the step portion, and thus has no electrical drift.
  • the second pressurized gas for generating a biasing force toward the object to be measured is supplied independently of the first pressurized gas that floats the probe shaft, the bearing rigidity of the probe is not reduced.
  • the measurement pressure can be constantly adjusted to a small load.
  • the biasing force toward the object to be measured is proportional to the pressure at the step, and since no panel is used, fluctuations in the measurement pressure due to probe position changes can be eliminated, and the linearity of the detection output improves.
  • the measurement pressure can be freely changed by the pressure of the second pressurized gas.
  • the stylus-type shape measuring sensor of the present invention the NC machining apparatus and the shape measuring method using the same, have a small electric drift, a good linearity of the detection output, and a good measurement pressure due to a change in the probe position. With little fluctuation, the measurement pressure can be adjusted to a very small load without lowering the probe stiffness, and the measurement pressure can be changed freely. Micron accuracy can be obtained, miniaturization is possible, and it can be easily applied to on-machine measurement.
  • the NC processing apparatus is not limited to the stylus-type shape measurement sensor, and includes an apparatus mounted with or capable of mounting another sensor. That is, although the present invention has been described with reference to some preferred embodiments, it can be understood that the scope of rights included in the present invention is not limited to these embodiments. On the contrary, the scope of the present invention includes all improvements, modifications, and equivalents included in the appended claims.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

明細書
触針式形状測定センサとこれを用いた N C加工装置および形状測定方法 発明の背景
発明の技術分野
本発明は、 触針式形状測定センサとこれを用いた N C加工装置および形状測定 方法に関する。 関連技術の説明
加工機上で被加工物の形状を測定する技術、 いわゆる機上計測技術は、 高精度 加工を行う上で必要不可欠である。 この機上計測技術は、 被加工物の着脱の際の 位置決め誤差を無くすことで加工精度を向上させるばかりでなく、 その際の段取 りの手間を省いて加工能率の向上と自動化を同時に達成することができる。 被加工物の形状を測定する装置として、 測定プローブの先端を被加工物の表面 に接触させてその形状を測定する触針式形状測定センサが、 従来から知られてい る。 かかる触針式形状測定センサは、 測定プローブの位置検出手段により、 アナ ログ式とデジタル式に大別することができる。
アナログ式の形状測定センサ、 例えば電気マイクロメ一夕は、 測定プローブの 変位量を、 差動トランスの電圧変化、 静電容量変化、 歪ゲージの抵抗変化等によ りアナログ式に電気量に変換するものである。 しかし、 アナログ式であるため、 電気的ドリフトが大きく、 かつ検出出力の直線性が悪いため、 1 0 0 x m程度の 移動距離において 0 . 1 m程度のサブミクロン精度は到底得られない欠点があ る。
これに対して、 デジタル式の形状測定センサ、 例えばデジタルマイクロメータ は、 測定プローブの変位量を、 光学式スケール、 磁気スケール、 或いは干渉測長 光学系によってデジタル式に測定するものであり、 最高で 1 0 n m程度の高分解 能が可能である利点がある。
しかし、 デジタル式の形状測定センサであっても、 その測定プローブはリニア ポールべァリング又はエア一スライ ドで軸方向に移動可能に支持され、 かつバネ や空気圧でプローブを被測定物に向けて予圧を加えるようになつている。 そのた め、 プローブの位置変化により測定圧が変動し、 かつその測定圧が大き過ぎ、 更 にその測定圧を自由に調整することができない問題点があった。
すなわち、 バネによる予圧は最小で約 1 0 g f 程度であり高精度を得るために は大きすぎ、 かつプローブ変位によりパネ力が変化して測定圧が変動するので、 測定誤差が大きくなる問題点があった。 また、 空気圧による予圧では空気圧を下 げて測定圧を下げることができるが最小でも約 1 g f 程度にすぎず、 かつ空気圧 を下げるとェアースライ ドの剛性自体が低下してしまい、 プローブの傾きが大き くなり、 測定誤差が増大する問題点がある。 そのため、 デジタル式であっても、
0 . 1 /z m程度のサブミクロン精度は得られなかった。
なお、 サブミクロンの高精度を得るためには、 測定圧が低いほど望ましく (好 ましくは、 約 5 0 0 m g f 以下)、 一方測定時の飛び跳ねによる精度低下を防ぐ ためには、 測定圧を任意に調整できることが望ましい、 ことが解析の結果明らか になった。
この要望を満たすために、 図 1に例示する高精度形状測定装置が開発されてい る。 この形状測定装置は、 測定力が最小で約 5 O m g f と極めて小さく、 かつ測 定プローブの変位をレーザ干渉計により測定することにより、 約 0 . 1 / mの測 定精度を達成している。 しかし、 この装置では、 図に示すように、 可動ミラー、 プリズム等の多数の光学素子を必要とし、 形状測定装置自体が非常に大型でデリ ゲートなものとなるため、 機上計測のために加工機上に取り付けることができな い問題点があった。
また、上述した触針式形状測定センサを従来の N C加工装置に取り付けた場合、 パーソナルコンピュータ等で N C制御装置へ測定点毎に位置指令を出し、 その指 令点で一定時間静止させ位置決めが安定したと思われるところで形状測定センサ からの出力を取り込んで被測定物の形状を測定することになる。 しかし、 この手 段では、 指令点での静止 ·位置決めのための待ち時間の累積により、 その中間点 の測定ができず、 多数の指令点を必要とし、 測定に多くの時間がかかる問題点が あった。 つ .
発明の要約 本発明は上述した種々の問題点を解決するために創案されたものである。 すな わち、 本発明の目的は、 電気的ドリフトが少なく、 検出出力の直線性が良く、 プ ローブの位置変化による測定圧の変動が少なく、 プローブの軸受剛性を低下させ ることなく測定圧を微小荷重に一定に調整することができ、 かつ測定圧を自由に 変化させることができ、 これにより 0. 1 im程度のサブミクロン精度を得るこ とができ、 かつ小型化が可能であり容易に機上計測に適用できる触針式形状測定 センサとこれを用いた N C加工装置および形状測定方法を提供することにある。 また、 本発明の別の目的は、 上述した触針式形状測定センサを用いて、 待ち時 間を低減し、 かつ指令点間の測定ができ、 これにより必要な指令点を低減し測定 時間を短縮することができる N C加工装置および形状測定方法を提供することに ある。
本発明によれば、 被測定物 ( 1 ) と接触する接触子 (2) を極めて低い摺動抵 抗で被測定物へ向かい移動可能に支持しかっこれを被測定物に向けて微小荷重で 付勢するプローブヘッ ド ( 1 0) と、 接触子の変位を非接触で高精度に計測する 変位測定装置 (2 0) とを備える、 ことを特徴とする触針式形状測定センサが提 供される。
プローブヘッ ド ( 1 0) により、 接触子 (2) を極めて低い摺動抵抗で移動可 能に支持しかっこれを被測定物に向けて付勢することにより、 接触子を被測定物 の表面に微小荷重 (約 5 0 0 mg i以下) で接触させながらその表面に沿って正 確に倣うことができる。 更に、 変位測定装置 (2 0) により接触子の変位を非接 触で高精度に計測することにより、 0. 1 / m程度のサブミクロン精度を得るこ とができる。
本発明の好ましい実施形態によれば、 前記プローブへッ ド ( 1 0 ) は、 一端 ( 1 2 a) に接触子が取り付けられ中間部に段差 ( 1 1 a, l i b) を有する細長い プローブシャフ ト ( 1 2) と、 前記段差の前後に設けられプローブシャフ トを支 持する気体軸受 ( 1 4 a, 1 4 b) と、 前記段差部に第 2の加圧気体を供給する 気体供給手段 ( 1 6 ) とを備え、 前記気体軸受は、 半径方向の剛性が高く、 かつ ,
4
第 1の加圧気体によりプローブシャフトを浮遊させて摺動抵抗を低減するように なっており、 前記気体供給手段は、 段差部に供給する第第 2又は第 3又はその両 方の加圧気体の圧力を一定に保持し、 これにより段差部で発生する被測定物へ向 かう付勢力を所定範囲の微小荷重に一定に保持する。
一端 ( 1 2 a) に接触子が取り付けられた細長いプローブシャフト ( 1 2) を 気体軸受 ( 1 4 a, 1 4 b) で支持し、 かっこの気体軸受の半径方向の剛性を高 くし、 第 1加圧気体 (例えば圧縮空気) でプローブシャフトを浮遊させることに より、 接触子の摺動抵抗によるプローブシャフトの傾きを防止しながら、 極めて 低い摺動抵抗で被測定物へ向けて移動可能に支持することができ、 計測誤差の増 大を防止することができる。 また、 プローブシャフトの中間部に段差 ( 1 1 a, l i b) を設け、 気体供給手段 ( 1 6 a, 1 6 b) で段差部に第 2又は第 3又は その両方の加圧気体 (例えば別の圧縮空気) を供給することにより、 段差部の面 積差により発生する被測定物へ向かう付勢力を所定範囲の微小荷重に一定に保持 することができる。
従って、 段差部の面積差により被測定物へ向かう付勢力を発生させるので電気 的ドリフトがまったくない。 また、 プローブシャフトを浮遊させる第 1加圧気体 とは独立して被測定物へ向かう付勢力を発生させるための第 2又は第 3又はその 両方の加圧気体を供給するので、 プローブの軸受剛性を低下させることなく測定 圧を微小荷重に一定に調整することができる。 更に、 被測定物へ向かう付勢力が 段差部の圧力に比例し、 またパネ等を用いないのでプローブの位置変化による測 定圧の変動をなくすることができ、 検出出力の直線性が良くなりかつ第 2又は第 3又はその両方の加圧気体の圧力により測定圧を自由に変化させることができる, 前記プローブシャフトの被測定物へ向かう付勢力は、 約 l Omg f 以上, 約 5 0 0 mg f 以下であることが好ましい。 被測定物へ向かう付勢力が約 5 0 0 mg ίを超えると、 被測定物との摺動抵抗が増大し、 プローブシャフトの傾きが大き くなつて 0. 1 m程度のサブミクロン精度が得られなくなる。 また、 約 1 0 m g f 未満になると、 接触子の飛び跳ねが起こりやすくなり、 計測速度が大幅に遅 くなる。
前記変位測定装置 (2 0) は、 プローブシャフトの他端 ( 1 2 b) に設けられ た反射鏡 ( 2 1 ) と、 該反射鏡に間隔を隔てて対向する放射端面 (2 2 a) を有 する光ファイバ ( 2 2 ) と、 該光ファイバを通してレーザー光を前記反射鏡に向 けて放射し反射鏡と放射端面からの反射光から反射鏡の位置を測定するレーザ干 渉変位計 ( 2 4) と、 を備える。
この構成により、 レーザ干渉変位計 (24) により反射鏡 (2 1 ) の位置を 0. 1 mの高精度で測定することができる。 また、 光ファイバ (2 2) を通してレ —ザ一光を反射鏡に向けて放射するので、 プローブヘッド ( 1 0) 及びレーザ干 渉変位計 (24) の可動部分を小型にできる。 またプローブシャフト ( 1 2 ) を 軽量化することが可能であるため、 測定時の応答速度が向上し高速に測定するこ とができる。
また、 レーザ干渉変位計本体をプローブへッ ドから離して設置することが可能 であるため、 発熱による計測器の変形を抑えることができ、 高精度測定が可能と なる。
また、 本発明によれば、 上述した触針式形状測定センサを搭載し、 数値制御に よりこれを被測定物に対して相対運動させ、 これにより加工した被加工物を取り 外すことなく形状測定を行う、 ことを特徴とする N C加工装置が提供される。
この構成によれば、 0. 1 程度のサブミクロン精度を得ることができかつ 小型化が可能な触針式形状測定センサを N C加工装置の機上に備えるので、 機上 計測が可能となり、 被加工物の着脱の際の位置決め誤差を無くして加工精度を向 上させ、 かつその際の段取りの手間を省いて加工能率の向上と自動化を同時に達 成することができる。
本発明の好ましい実施形態によれば、 前記 N C加工装置は、 各数値制御軸の座 標値と触針式形状測定センサの出力信号をリアルタイムに機外に出力するイン夕 —フエ一スを備える。
この構成により、 触針式形状測定センサを被測定物に倣って移動させながら、 インターフェースを介して各数値制御軸の座標値と触針式形状測定センサの出力 信号をリアルタイムに機外のコンュビータ等に取り込むことができ、 N C制御装 置の指令点での静止 ·位置決めをなくし、 かつ指令点を低減して測定時間を短縮 することができる。 ,
更に本発明によれば、 被測定物 ( 1 ) と接触する接触子 (2 ) を、 段差 ( 1 1 a , l i b ) を有する細長いプローブシャフト ( 1 2 ) の一端 ( 1 2 a ) に取り 付け、 該プローブシャフトを第 1の加圧気体により極めて低い摺動抵抗で移動可 能に支持しながら同時に半径方向に高い剛性で支持し、 前記段差部に第 2又は第 3又はその両方の加圧気体を供給しその圧力によりプローブシャフトの被測定物 へ向かう付勢力を微小荷重に保持し、 接触子の被測定物へ向かう変位をレーザ干 渉変位計 (2 4 ) を用いて非接触に計測する、 ことを特徴とする形状測定方法が 提供される。
この方法により、 接触子 (2 ) を極めて低い摺動抵抗で移動可能に支持しかつ これを被測定物に向けて付勢することにより、 接触子を被測定物の表面に微小荷 重で接触させながらその表面に沿って正確に倣うことができる。 また、 レーザ干 渉変位計 ( 2 4 ) により接触子の変位を非接触で高精度に計測することにより、 0 . 1 m程度のサブミクロン精度を得ることができる。 更に、 プローブシャフ 卜を浮遊させる第 1加圧気体とは独立して被測定物へ向かう付勢力を発生させる ための第 2又は第 3又はその両方の加圧気体を供給するので、 プローブの軸受剛 性を低下させることなく測定圧を微小荷重に一定に調整することができる。また、 被測定物へ向かう付勢力が段差部の圧力に比例するので、 プローブの位置変化に よる測定圧の変動をなくすることができ、 検出出力の直線性が良くなりかつ第 2 又は第 3又はその両方の加圧気体の圧力により測定圧を自由に変化させることが できる。
更に、 上述した触針式形状測定センサを N C加工装置内に搭載し、 数値制御に より触針式形状測定センサを被測定物に対して相対運動させ、 これにより加工し た被加工物を取り外すことなく形状測定を行う、 ことを特徴とする形状測定方法 が提供される。
この方法により、 機上計測が可能となり、 被加工物の着脱の際の位置決め誤差 を無くして加工精度を向上させ、 かつその際の段取りの手間を省いて加工能率の 向上と自動化を同時に達成することができる。
前記形状測定方法は、 前記 N C加工装置の各数値制御軸から直接機外に出力さ れた各軸の座標値と、 前記触針式形状測定センサから出力された出力信号をリァ ルタイムで処理することにより、 前記 N C加工装置を静止させることなく被測定 物の形状を測定することが好ましい。
この方法により、 触針式形状測定センサを被測定物に倣って移動させながら、 N C加工装置の各数値制御軸の座標値と触針式形状測定センサの出力信号をリァ ルタイムに機外のコンュピー夕等に取り込むことができ、 N C加工装置を静止さ せることなく被測定物の形状を測定して測定時間を短縮することができる。
本発明のその他の目的及び有利な特徴は、 添付図面を参照した以下の説明から 明らかとなろう。 図面の簡単な説明 図 1は、 従来の高精度形状測定装置の構成図である。
図 2は、 本発明の触針式形状測定センサの全体構成図である。
図 3は、 図 2の部分断面図である。
図 4は、 本発明の別の触針式形状測定センサの全体構成図である。
図 5は、 図 4の部分断面図である。
図 6は、 図 2のプローブヘッドの特性図である。
図 7は、 測定中の測定プローブの模式図である。
図 8は、 本発明の N C加工装置のシステム構成図である。 好ましい実施例の説明 以下、 本発明の好ましい実施形態を図面を参照して説明する。 なお、 各図にお いて共通する部分には同一の符号を付し、 重複した説明を省略する。
図 2は、 本発明の触針式形状測定センサの全体構成図である。 この図に示すよ うに、 本発明の触針式形状測定センサは、 プローブヘッ ド 1 0と変位測定装置 2 0とを備える。 プローブヘッ ド 1 0は、 被測定物 1 と接触する接触子 2を極めて 低い摺動抵抗で水平に移動可能に支持し、 かっこれを被測定物 1に向けて水平に 微小荷重で付勢するようになっている。 また、 変位測定装置 2 0は、 接触子 1の 。
水平変位を非接触で高精度に計測するようになっている。 接触子 2の先端 (接触 部) には、 この例では、 球形のサフアイャポールが取り付けられ、 被測定物 1と の摩擦係数を低減し、 かつ摩耗を防ぐようになつている。
図 3は、 図 2のプローブヘッ ド 1 0の部分断面図である。 この図に示すように、 プローブへッ ド 1 0は、 細長いプローブシャフ卜 1 2、 気体軸受 1 4 a , 1 4 b、 及び気体供給手段 1 6、 1 7からなる。
細長いプロ一ブシャフト 1 2は、 一端 1 2 a (この図で左端) に接触子 2が取 り付けられ、 中間部に段差 1 1 aを有している。 プローブシャフト 1 2は、 接触 子 2を取り付ける側の大径部と、 反対側の小径部からなり、 その中間部に段差 1 1 aが設けられる。 段差 1 1 aの大きさは、 段差部の面積差により発生する水平 付勢力が所定範囲の微小荷重 (例えば、 約 5 0 0 m g f 以下) になるように設定 されている。 なお、 この例ではプローブシャフトは矩形断面であるが、 本発明は これに限定されず、 例えば円形断面であってもよい。
気体軸受 1 4 a , 1 4 bは、 段差 1 1 aの前後に設けられている。 またこの気 体軸受 1 4 a , 1 4 bは、 半径方向 (ラジアル方向) の剛性が高く構成されてい る。 更に、 この気体軸受 1 4 a , 1 4 bは、 気体供給手段 1 7 (例えば、 空気源、 レギユレ一夕、 電空レギユレ一夕、 プローブ本体 1 5に設けられた第 1流路 1 5 aからなる) により供給される第 1の加圧気体 (例えば圧縮空気) によりプロ一 ブシャフト 1 2を浮遊させて摺動抵抗を低減するようになっている。 なお、 プロ —ブシャフト 1 2を浮遊させたのち、 第 1加圧気体は、 気体軸受 1 4 a , 1 4 b とプローブシャフト 1 2の隙間から前後に排気される。
気体供給手段 1 6は、 例えば、 空気源、 レギユレ一夕、 電空レギユレ一夕、 プ ローブ本体 1 5に設けられた第 2流路 1 5 bからなり、 プローブシャフト 1 2の 段差部 1 1 aに第 2の加圧気体 (例えば別の圧縮空気) を供給する。 この気体供 給手段 1 6で段差部 1 1 aに供給する第 2加圧気体の圧力を一定に保持すること により、 段差部 1 1 aの面積差により発生する水平付勢力を所定範囲の微小荷重 に一定に保持することができる。
図 3において、 水平戻り力はプローブシャフト 1 2と気体軸受 1 4 a , 1 4 b 間のギャップの差から発生するようになっている。 そのためこの例では、 プロ一 n
ブシャフト 1 2の他端 1 2 b (この図で右端) にプローブシャフトの軸径より大 きい拡径部 1 3を有するがこれは無くてもよい。 また、 この戻り力を適正に設定 することにより、 本発明のセンサを水平のみならず垂直や斜めに設置して使用す ることも可能である。
図 4は、 本発明の別の触針式形状測定センサの全体構成図であり、 図 5は、 図 4の部分断面図である。
図 3にしめした本発明のセンサを垂直方向など水平方向以外に設置して使用す る場合は、 プローブシャフト 1 2の自重が測定力に加わってしまい、 微小荷重で の測定が不可能となる。 そのため、 図 4に示すように、 第 1および第 2の加圧気 体とは独立して、 第 3の加圧気体を気体供給手段 1 6 bから供給し、 この第 3の 加圧気体の圧力により、第 2の加圧気体の付勢力とは逆方向に戻り力を発生させ、 プローブシャフト 1 2の自重の影響を相殺させるようになつている。
図 5において、 戻り力は、 プローブシャフ ト 1 2と気体軸受 1 4 a , 1 4 b間 のギャップの差から発生する付勢力と、 気体供給手段 1 6 bからプローブシャフ ト 1 2の段差部 1 1 bに供給された第 3の加圧気体の圧力を一定に保持すること により段差部 1 1 bの面積差により発生する付勢力とからなる。 この戻り力を適 正に設定することにより、 本発明のセンサを水平のみならず垂直や斜めに設置し て、 かつ微小荷重による測定が可能である。
また、 図 2、 図 3、 図 4および図 5に示すように、 変位測定装置 2 0は、 反射 鏡 2 1、 光ファイバ 2 2、 及びレーザ千渉変位計 2 4からなる。
反射鏡 2 1は、 プローブシャフト 1 2の他端 1 2 bに軸線に垂直に設けられた 平面鏡である。 光ファイバ 2 2は、 反射鏡 2 1から間隔 Lを隔てて対峙する放射 端面 2 2 aを有する。 光ファイバ 2 2は可撓性を有し、 かつ十分な長さを有し、 その反対側端面がレーザ干渉変位計 2 4に例えば光コネクタ等を介して接続され ている。
レーザ干渉変位計 2 4は、 例えば半導体レーザ、 受光素子、 光ファイバ力ブラ 等を備え、 光ファイバ 2 2を通してレーザー光を反射鏡 2 1に向けて放射し、 反 射鏡 2 1 と放射端面 2 2 aからの反射光から反射鏡の位置を測定するようになつ ている。 — '―
この構成により、 レ一ザ干渉変位計 24により反射鏡 2 1の位置を 0. l m の高精度で測定することができる。 また、 光ファイバ 2 2を通してレーザー光を 反射鏡に向けて放射するので、 プローブへッ ド 1 0及びレーザ干渉変位計 24の 可動部分を小型にできる。
上述した構成により、 プローブへッ ド 1 0で接触子 2を極めて低い摺動抵抗で 移動可能に支持しかっこれを被測定物 1に向けて付勢することにより、 接触子 2 を被測定物 1の表面に微小荷重 (約 5 0 0 mg f 以下) で接触させながらその表 面に沿って正確に倣うことができる。 更に、 変位測定装置 2 0により接触子 2の 被測定物へ向かう変位を非接触で高精度に計測することにより、 0. 程度 のサブミク口ン精度を得ることができる。
また、 一端 1 2 aに接触子 2が取り付けられた細長いプローブシャフト 1 2を 気体軸受 1 4 a, 1 4 bで支持し、 かっこの気体軸受 1 4 a, 1 4 bの半径方向 の剛性を高くし、 第 1加圧気体 (圧縮空気) でプローブシャフト 1 2を浮遊させ ることにより、 接触子 2の摺動抵抗によるプローブシャフト 1 2の傾きを防止し ながら、極めて低い摺動抵抗で被測定物へ向かい移動可能に支持することができ、 計測誤差の増大を防止することができる。 また、 プローブシャフトの中間部に段 差 1 1 a, 1 1 bを設け、 気体供給手段 1 6 a, 1 6 1)で段差部 1 1 &, l i b に第 2又は第 3又はその両方の加圧気体(別の圧縮空気) を供給することにより、 段差部 1 1 a, 1 1 bの面積差により発生する被測定物へ向かう付勢力を所定範 囲の微小荷重に一定に保持することができる。
【実施例】
以下、 上述した触針式形状測定センサの実施例及び解析結果とこれを用いた N C加工装置および形状測定方法を説明する。
1. 傾斜測定時の測定プローブのすべり ·傾き誤差解析
上述した図 2は、 新たに開発した形状測定センサの概略図である。 測定プロ一 ブ先端にはサフアイャポールが取り付けてあり、 プローブシャフト 1 2はエアー スライ ド (気体軸受 1 4 a, 1 4 b) によって支えられている。 反対面には反射 鏡 2 1が取り付けてあり、 光ファイバ一式レーザ干渉変位計(変位測定装置 2 0) U
によってプローブの変位を測定することにより形状測定を行う原理となっている t 測定時の測定圧はエアー圧を電空レギユレ一夕により制御することによって 0〜 5 0 0 m g f 程度まで変化させることができる。
図 6は、 開発したプローブヘッ ドの特性図であり、 横軸は、 段差部 1 1 aに供 給する第 2加圧気体 (付勢用空気) の空気圧、 縦軸は、 付勢力の測定値である。 この図に示すように、 空気圧が約 9 . 4 k P a以下の場合には、 水平付勢力は僅 かに負の値を示している。 また、 付勢用空気の空気圧を約 9 . 4 k F aを超える と、 空気圧に比例して正確に水平付勢力が増大していることがわかる。 従って、 水平付勢力が段差部の圧力に正確に比例し、 またパネ等を用いないのでプローブ の位置変化による測定圧の変動をなくすることができ、 検出出力の直線性が良く なりかつ第 2加圧気体の圧力により測定圧を自由に変化させることができること がわかる。
ここで触針式の形状測定センサを用いた形状測定の場合、 測定中のプローブの すべりおよび傾きが測定誤差となるため、 センサの構造設計においてこの誤差量 が測定精度以下となるように設計する必要がある。 図 7 ( A ) ( B ) は測定中の 測定プローブの様子を模式化している。 プローブシャフトの先端半径を rとし、 角度 Ψの被測定斜面が一定速度 Vで移動しているものとする。 測定中プローブシ ャフ 卜には外力としてエアースライ ドからラジアル方向に力 F x、 アキシャル方 向に F y、 被測定物から垂直抗カ Nと摩擦力 Nが働いているものとし、 プロ一 ブシャフトは被測定物斜面に沿って距離 pだけ滑り、 プロ一ブ先端球中心まわり に角度 頃くとする。 このときのプローブシャフトのラジアル方向およびアキシ ャル方向の釣り合い式およびプローブ先端球中心まわりのモーメントの釣り合い 式を解くことによって、 測定中のプロ一ブシャフ卜のすべり ·傾き誤差(5は、 以 下の式で与えられる。 【数 1】
6
Figure imgf000014_0001
上式の第 1項はプローブシャフ卜のすべりによる誤差を、 また第 2項は傾きに よる誤差を示しており、 被測定物斜面の傾斜角 ^が比較的大きな場合の測定プロ ーブの幾何学的位置誤差による測定誤差は、 ェアースライ ド部のアキシャル方向 とラジアル方向の剛性比 が 1次で作用するすべりによる誤差が支配的になるこ とがわかる。
これらから、 最大傾斜角(i)ma x= 6 0 ° 、 動摩擦係数^ = 0. 3、 空気軸受剛 性 k = 0. 1 5 NZ tmのもとで、 測定誤差 ά < 0. 1 /z mを実現するためには 測定圧 Fyは以下のようになる。
【数 2】
0.065
Figure imgf000014_0002
ただし、 センサ構造定数 α = 2 8. 2 mm/ 8. 5 mm= 3. 3 2、 )3 = 49. 5 mm/ 8. 5 mm= 5. 8 2、 ζ = 1 4. 3 mm/ 8. 5 mm= 1. 6 8を用 いた。 なおこれらの値をもとに製作した形状測定センサのェアースライ ド部の剛 性を XY正負の 4方向に対して測定したところ 0. 1〜 0. 2 1 NZ mとなり、 ほぼ目標岡 IJ性値を満足することができた。
2. 最大スキャンスピード解析
触針式で形状測定を行う場合、 特に大型の被測定物に対しては測定スピ一ドを 上げたいという要求が生じる。 そこで、 最大振幅 Aの正弦波的なうねりをもつ面 を質量 mのプローブを用いて測定圧 F y、 測定データピッチ dで測定した場合に、 プローブが被測定物表面に追従して測定できる最大スキャンスピ一ド v m a xは次 式で与えられる。
【数 3】
V 一— · J- - 53mm I min ただし、 数値は d = 0 . 0 1 mm、 A = l /z m、 m = 2 . l g、 F y = 0 . 0 6 5 gのときの値である。 上式から高い測定精度を維持しながら最大スキャンス ピードを上げるためには、 プローブ質量 mを小さくすることが有効であることが わかる。
3 . データ入出力インタ一フェース設計
加工機上に形状測定センサを取り付けて測定を行う場合、 従来はパソコンから N Cデ一夕を N Cコントローラに送信し、 加工機が指令位置に達したのを確認し て、 その位置における形状測定センサ変位をパソコンに取り込むという手法が一 般的であった。 しかしながらこの手法では測定点毎に加工機が止まって測定を行 うため測定に多くの時間がかかっていた。そこで本発明では、 図 8に示すように、 加工機から直接現在の位置情報を取り出し、 同時に形状測定センサの変位をパソ コンに取り込むことにより、 加工機を測点毎に止めることなくリアルタイム測定 を可能にした。 これによつて高精度かつ高速な測定を実現することができる。
4 . センサ取付時の傾き補正とプローブ先端球形状補正
加工機上に形状測定センサを取り付ける際に加工機軸とセンサ軸との間に若干 のずれが生じてしまう。 このずれ量に起因する測定誤差は被測定物の傾斜角が大 きくなるにつれて増大し、 高精度測定のためにはデータ処理による補正が必要と なる。 そこで基準球を用いて機械座標変位とセンサ出力との直線性をもとに、 セ ンサ取付時の傾き誤差とプローブ先端球形状誤差を推定し補正を行った。
被測定物のある測定点におてる傾斜が X Z平面内で 6> い Y Z平面内で 2、 センサ取付時の傾きが X Z平面内で い Y Z平面内で α 2、 加工機を Ζ軸に沿 つて <5変位させたときのセンサ出力が 7?で与えられる場合、 センサ出力 と機械 座標変位 (5との比 (直線性補正値) kは以下の式で与えられる。 【数 4】 ξ J {sin atf + (cos a, -sino^)2 + (cos a, cosa,)2
k =>— = — —―
0 - tan - sin ,一 tan Θ, - cosa, 'sina2 + cos a, -cosa2 このため、 基準球を用いて複数の点においてセンサ出力 7]と機械座標変位(5を 測定し、 線形フイッテングにより傾き kを求め、 これらの複数の点における kの 値を上式に当てはめ、 最小自乗フィッテングを用いてセンサ取付時の傾き aい a2を求めた。 X, Y両方向において測定値は理論値と極めて一致した。 このよ うにして得られた a a 2の値をもとに測定デ一夕を補正したデータには基準 球の形状誤差とプローブ先端球の形状誤差が重複して含まれているが、 真球度が 高く曲率半径が高精度に評価されている基準球を用いることによりプローブ先端 球の形状誤差を評価することができ、 このようにして得られたプローブ先端球形 状誤差マツプをもとに測定データの補正を行うことができる。
5. 形状測定センサの性能評価
製作した形状測定センサの性能を評価するために X, Yそれぞれの方向で正負 両方向に計 4方向に対してそれぞれ 3回ずつ基準球を用いて形状測定を行い平均 値曲線からのデータのばらつきを標準偏差を用いて評価した。 測定条件は、 測定 圧 1 00〜1 50mg ί、 測定スピード 50〜1 O OmmZm i nにおいて比較 的安定して測定を行うことができた。 全方向において測定データの再現性は士 3 σ<0. 1 /^mを実現することができた。 測定データの絶対精度に関しては使用 したレーザ千渉変位計の保証精度が 30 mmの範囲で土 0. 1 であるため、 この値が精度限界となる。
6. まとめ
本発明では、 新たに機上計測用高精度小型触針式形状測定センサの開発を行つ た。 製作したセンサの特徴をまとめると以下のようになる。
•加工機に用意に搭載可能な大きさ (本体約 1 3 0 X 4 0 X 3 0 mm) である。 ' 測定圧を極めて小さく制御できるため高精度測定が可能である。
, レーザ千渉変位計を用いているため従来の差動卜ランス式に比べて長ストロー クに対するデータの直線性が高く、 また温度変化に対する安定性が高い。
•加工機から直接現在の位置情報を取り出すことによりリアルタイム測定ができ るため、 高速測定が可能である。
•測定データの再現性は 4方向に対して土 3 σ < 0 . 1 mを実現した。
上述したように本発明の触針式形状測定センサは、 段差部の面積差により被測 定物へ向かう付勢力を発生させるので電気的ドリフトがまったくない。 また、 プ ローブシャフトを浮遊させる第 1加圧気体とは独立して被測定物へ向かう付勢力 を発生させるための第 2加圧気体を供給するので、 プローブの軸受剛性を低下さ せることなく測定圧を微小荷重に一定に調整することができる。 更に、 被測定物 へ向かう付勢力が段差部の圧力に比例し、 またパネ等を用いないのでプローブの 位置変化による測定圧の変動をなくすることができ、 検出出力の直線性が良くな りかつ第 2加圧気体の圧力により測定圧を自由に変化させることができる。 従って、 本発明の触針式形状測定センサとこれを用いた N C加工装置および形 状測定方法により、 電気的ドリフトが少なく、 検出出力の直線性が良く、 プロ一 ブの位置変化による測定圧の変動が少なく、 プローブの軸受剛性を低下させるこ となく測定圧を微小荷重に一定に調整することができ、 かつ測定圧を自由に変化 させることができ、 これにより 0 . 1 ^ m程度のサブミクロン精度を得ることが でき、 かつ小型化が可能であり容易に機上計測に適用できる。
更に、 この触針式形状測定センサを用いて、 待ち時間を低減し、 かつ指令点間 の測定ができ、 これにより必要な指令点を低減し測定時間を短縮することができ る。
また、 本発明における N C加工装置は、 触針式形状測定センサに限定されず、 別のセンサを搭載し、 或いは搭載できるように構成したものも包含するものであ る。 すなわち、 本発明をいくつかの好ましい実施例により説明したが、 本発明に 包含される権利範囲は、 これらの実施例に限定されないことが理解できょう。 反 対に本発明の権利範囲は、 添付の請求の範囲に含まれるすべての改良、 修正及び 均等物を含むものである。

Claims

io 請求の範開
1. 被測定物 ( 1 ) と接触する接触子 (2) を極めて低い摺動抵抗で被測定 物へ向かい移動可能に支持しかっこれを被測定物に向けて微小荷重で付勢するプ ローブヘッ ド ( 1 0) と、 接触子の変位を非接触で高精度に計測する変位測定装 置 ( 2 0 ) とを備える、 ことを特徴とする触針式形状測定センサ。
2. 前記プローブへッド ( 1 0) は、 一端 ( 1 2 a) に接触子が取り付けら れ中間部に段差 ( 1 1 a , 1 1 b ) を有する細長いプローブシャフト ( 1 2 ) と、 前記段差の前後に設けられプローブシャフトを支持する気体軸受 ( 1 4 a, 1 4 b) と、 前記段差部に第 2又は第 3又はその両方の加圧気体を供給する気体供給 手段 ( 1 6 a, 1 6 b) とを備え、
前記気体軸受は、 半径方向の剛性が高く、 かつ第 1の加圧気体によりプローブ シャフトを浮遊させて摺動抵抗を低減するようになつており、 前記気体供給手段 は、 段差部に供給する第 2又は第 3又はその両方の加圧気体の圧力を一定に保持 し、 これにより段差部で発生する被測定物へ向かう付勢力を所定範囲の微小荷重 に一定に保持する、 ことを特徴とする請求項 1に記載の触針式形状測定センサ。
3. 前記プロ一ブシャフトの被測定物へ向かう付勢力は、 約 1 Omg ί以上, 約 5 0 O mg ί以下である、 ことを特徴とする請求項 1に記載の触針式形状測定 センサ。
4. 前記変位測定装置 (2 0) は、 プローブシャフトの他端 ( 1 2 b) に設 けられた反射鏡 (2 1 ) と、 該反射鏡に間隔を隔てて対向する放射端面 (2 2 a) を有する光ファイバ (2 2) と、 該光ファイバを通してレーザ一光を前記反射鏡 に向けて放射し反射鏡と放射端面からの反射光から反射鏡の位置を測定するレー ザ干渉変位計 ( 2 4) と、 を備えることを特徴とする請求項 1に記載の触針式形 状測定センサ。
5. 請求項 1乃至 4の触針式形状測定センサを搭載し、 数値制御によりこれ を被測定物に対して相対運動させ、 これにより加工した被加工物を取り外すこと なく形状測定を行う、 ことを特徴とする NC加工装置。
6. 前記 NC加工装置は、 各数値制御軸の座標値と触針式形状測定センサの 出力信号をリアルタイムに機外に出力するインターフエ一スを備える、 ことを特 徴とする請求項 5に記載の NC加工装置。
7. 被測定物 ( 1 ) と接触する接触子 (2) を、 段差 ( 1 1 a) を有する細 長いプローブシャフト ( 1 2 ) の一端 ( 1 2 a) に取り付け、 該プローブシャフ トを第 1の加圧気体により極めて低い摺動抵抗で軸方向に移動可能に支持しなが ら同時に半径方向に高い剛性で支持し、 前記段差部に第 2又は第 3又はその両方 の加圧気体を供給しその圧力によりプローブシャフ トの被測定物へ向かう付勢力 を微小荷重に保持し、 接触子の被測定物へ向かう変位をレーザ干渉変位計(24) を用いて非接触に計測する、 ことを特徴とする形状測定方法。
8. 請求項 1乃至 4の触針式形状測定センサを N C加工装置内に搭載し、 数 値制御により触針式形状測定センサを被測定物に対して相対運動させ、 これによ り加工した被加工物を取り外すことなく形状測定を行う、 ことを特徴とする形状 測定方法。
9. 前記形状測定方法は、 前記 NC加工装置の各数値制御軸から直接機外に 出力された各軸の座標値と、 前記触針式形状測定センサから出力された出力信号 をリアルタイムで処理することにより、 前記 NC加工装置を静止させることなく 被測定物の形状を測定する、 ことを特徴とする請求項 8に記載の形状測定方法。
PCT/JP2000/001196 1999-03-03 2000-03-01 Capteur de mesure de forme de type sonde, dispositif d'usinage nc, et procede de mesure de forme utilisant ledit capteur WO2000052419A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60033272T DE60033272T2 (de) 1999-03-03 2000-03-01 Sondenartiger formmessaufnehmer sowie nc-bearbeitungsvorrichtung und formmessverfahren unter verwendung des messaufnehmers
US09/763,747 US6539642B1 (en) 1999-03-03 2000-03-01 Probe type shape measuring sensor, and NC processing equipment and shape measuring method using the sensor
EP00906598A EP1134543B1 (en) 1999-03-03 2000-03-01 Probe type shape measurement sensor, and nc machining device and shape measuring method using the sensor
JP2000602588A JP3932502B2 (ja) 1999-03-03 2000-03-01 触針式形状測定センサとこれを用いたnc加工装置および形状測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5583599 1999-03-03
JP11/55835 1999-03-03

Publications (1)

Publication Number Publication Date
WO2000052419A1 true WO2000052419A1 (fr) 2000-09-08

Family

ID=13010054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001196 WO2000052419A1 (fr) 1999-03-03 2000-03-01 Capteur de mesure de forme de type sonde, dispositif d'usinage nc, et procede de mesure de forme utilisant ledit capteur

Country Status (5)

Country Link
US (1) US6539642B1 (ja)
EP (1) EP1134543B1 (ja)
JP (1) JP3932502B2 (ja)
DE (1) DE60033272T2 (ja)
WO (1) WO2000052419A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162220A (ja) * 2000-11-22 2002-06-07 Ckd Corp エアベアリングシリンダ
KR20030094938A (ko) * 2002-06-10 2003-12-18 사단법인 고등기술연구원 연구조합 초정밀 선삭가공용 기상(機上) 측정기의 접촉식 프로브장치
JP2005147746A (ja) * 2003-11-12 2005-06-09 Olympus Corp 形状測定機
JP2006329795A (ja) * 2005-05-26 2006-12-07 Jtekt Corp 形状測定器
JP2006337076A (ja) * 2005-05-31 2006-12-14 Jtekt Corp 形状測定器
JP2007064670A (ja) * 2005-08-29 2007-03-15 Tokyo Seimitsu Co Ltd 表面形状測定機
JP2007218815A (ja) * 2006-02-20 2007-08-30 Konica Minolta Opto Inc 形状測定装置
JP2007271367A (ja) * 2006-03-30 2007-10-18 Konica Minolta Opto Inc 検出器、形状測定装置、及び形状測定方法
JP2007271368A (ja) * 2006-03-30 2007-10-18 Konica Minolta Opto Inc 検出器、形状測定装置、及び形状測定方法
EP1909060A2 (en) 2005-12-02 2008-04-09 Riken Micro force measuring device, micro force measuring method, and surface shape measuring probe
JP2010197384A (ja) * 2009-02-25 2010-09-09 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 接触式測定装置
JP2010249814A (ja) * 2009-04-10 2010-11-04 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 誤差補正方法及びこれを用いた部品測定方法
KR101130596B1 (ko) 2010-03-31 2012-04-02 화낙 가부시끼가이샤 기상 계측 장치의 프로브 장착 위치 산출 방법
JP2012247362A (ja) * 2011-05-30 2012-12-13 Sintokogio Ltd ボールねじ軸の累積リード誤差測定装置及び測定方法
JP2013217906A (ja) * 2012-03-13 2013-10-24 Toshiba Mach Co Ltd 機上測定機能付き加工装置
PL424608A1 (pl) * 2018-02-16 2019-08-26 Politechnika Białostocka Sposób wyznaczania względnej sztywności statycznej obrabiarki skrawającej

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050111011A1 (en) * 2001-04-20 2005-05-26 Dickinson Laurence P. Probe for non-destructive testing
EP1487610B1 (en) * 2002-02-28 2006-05-24 Nina Himmer Automated processing unit for a working station
GB0400144D0 (en) * 2004-01-06 2004-02-11 Renishaw Plc Inspection system
US7395714B2 (en) * 2004-09-16 2008-07-08 The Boeing Company Magnetically attracted inspecting apparatus and method using a ball bearing
US7313959B2 (en) * 2005-05-25 2008-01-01 The Boeing Company Magnetically attracted apparatus, system, and method for remote bondline thickness measurement
DE102005050209A1 (de) * 2005-10-20 2007-04-26 Ott, Reinhold, Waterloo Vorrichtung zur Einspeisung eines Videosignals in eine Anzeigevorrichtung und Betriebsverfahren hierfür
DE102005050205A1 (de) 2005-10-20 2007-04-26 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Kompensieren von Lage-und Formabweichungen
DE102005062130A1 (de) * 2005-12-23 2007-06-28 Isis Sentronics Gmbh Abtastsystem zum Abtasten einer Objektoberfläche, insbesondere für eine Koordinaten-Meßmaschine
DE102006019354B3 (de) 2006-04-24 2007-07-19 Rattunde & Co Gmbh Profilmessung von Rohrenden
US7578176B2 (en) * 2006-12-22 2009-08-25 Veeco Metrology, Inc. Systems and methods for utilizing scanning probe shape characterization
US20080208524A1 (en) * 2007-02-21 2008-08-28 Elcometer Instruments Limited Surface profile measuring instrument
CN101339084B (zh) * 2007-07-06 2012-09-19 鸿富锦精密工业(深圳)有限公司 接触式测量装置
JP4653824B2 (ja) * 2008-07-29 2011-03-16 ファナック株式会社 機上計測装置にて計測対象物の形状を計測する工作機械システム
TWI460567B (zh) * 2009-04-24 2014-11-11 Hon Hai Prec Ind Co Ltd 誤差補正方法及採用該誤差補正方法之工件測量方法
US7911614B1 (en) 2009-11-09 2011-03-22 King Fahd University Of Petroleum And Minerals Non-contact measurement probe
US8408082B2 (en) * 2009-11-18 2013-04-02 General Electric Company Apparatus to measure fluids in a conduit
JP5311294B2 (ja) * 2010-04-28 2013-10-09 株式会社安川電機 ロボットの接触位置検出装置
CN102554705B (zh) * 2012-02-28 2013-12-11 天津微纳制造技术有限公司 一种光学自由曲面补偿加工方法
DE102012106247A1 (de) * 2012-07-11 2014-01-16 Buderus Schleiftechnik Gmbh Messmaschine
JP5945788B2 (ja) * 2014-05-29 2016-07-05 パナソニックIpマネジメント株式会社 三次元形状測定装置
EP3508733B1 (en) * 2016-12-09 2020-08-12 Mitsubishi Heavy Industries Compressor Corporation Compressor system provided with a gas bearing, and method for supplying gas to a compressor provided with a gas bearing
US11041879B2 (en) 2019-06-06 2021-06-22 International Business Machines Corporation Fluidized alignment of a semiconductor die to a test probe
CN114248024B (zh) * 2020-09-21 2024-03-19 深圳市吉祥云科技有限公司 激光切割的定位系统
CN116519094B (zh) * 2023-03-01 2023-11-14 江苏杰创流量仪表有限公司 一种液体流量计检测设备及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356513A1 (en) * 1987-03-13 1990-03-07 Kitamura Machinery Co., Ltd. Method of determining the shape of a processed work
JPH0371843U (ja) * 1989-11-16 1991-07-19
EP0471371A2 (en) * 1990-08-17 1992-02-19 Kabushiki Kaisha Toshiba Displacement-measuring apparatus
JPH06288747A (ja) * 1993-04-06 1994-10-18 Kyocera Corp 非接触型測長器
JPH10253308A (ja) * 1997-03-06 1998-09-25 Tokyo Seimitsu Co Ltd 接触型変位測定器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1135872B (it) * 1980-07-22 1986-08-27 Finike Italiana Marposs Comparatore per il controllo dimensionale di pezzi meccanici
FR2531205A1 (fr) * 1982-07-29 1984-02-03 Commissariat Energie Atomique Dispositif de palpage a laser pour controle dimensionnel
DE3842151A1 (de) * 1988-12-15 1990-06-21 Zeiss Carl Fa Tastkopf vom schaltenden typ
JPH0371843A (ja) 1989-08-10 1991-03-27 Yoshinori Yamauchi 化粧板の製造方法
DE4408912A1 (de) * 1993-06-02 1994-12-08 Zeiss Carl Fa Koordinatenmeßgerät mit einem pneumatischen Gewichtsausgleich
DE4325743C1 (de) * 1993-07-31 1994-09-08 Heidenhain Gmbh Dr Johannes Mehrkoordinaten-Tastkopf
US5473822A (en) * 1994-06-03 1995-12-12 Js Research And Development, Inc. Continuous air flow probe transducer gage assembly
GB9423176D0 (en) * 1994-11-17 1995-01-04 Renishaw Plc Touch probe
ATE199042T1 (de) * 1995-03-10 2001-02-15 Heidenhain Gmbh Dr Johannes Mehrkoordinaten-tastkopf mit gleichen auslenkungen
GB9605609D0 (en) * 1996-03-16 1996-05-15 Renishaw Plc Inspection system for coordinate positioning machine
EP1024341A1 (en) * 1999-01-29 2000-08-02 Renishaw plc Probe with vibration damped stylus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0356513A1 (en) * 1987-03-13 1990-03-07 Kitamura Machinery Co., Ltd. Method of determining the shape of a processed work
JPH0371843U (ja) * 1989-11-16 1991-07-19
EP0471371A2 (en) * 1990-08-17 1992-02-19 Kabushiki Kaisha Toshiba Displacement-measuring apparatus
JPH06288747A (ja) * 1993-04-06 1994-10-18 Kyocera Corp 非接触型測長器
JPH10253308A (ja) * 1997-03-06 1998-09-25 Tokyo Seimitsu Co Ltd 接触型変位測定器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1134543A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677090B2 (ja) * 2000-11-22 2011-04-27 シーケーディ株式会社 エアベアリングシリンダ
JP2002162220A (ja) * 2000-11-22 2002-06-07 Ckd Corp エアベアリングシリンダ
KR20030094938A (ko) * 2002-06-10 2003-12-18 사단법인 고등기술연구원 연구조합 초정밀 선삭가공용 기상(機上) 측정기의 접촉식 프로브장치
JP4519449B2 (ja) * 2003-11-12 2010-08-04 オリンパス株式会社 形状測定機
JP2005147746A (ja) * 2003-11-12 2005-06-09 Olympus Corp 形状測定機
JP2006329795A (ja) * 2005-05-26 2006-12-07 Jtekt Corp 形状測定器
JP2006337076A (ja) * 2005-05-31 2006-12-14 Jtekt Corp 形状測定器
JP2007064670A (ja) * 2005-08-29 2007-03-15 Tokyo Seimitsu Co Ltd 表面形状測定機
EP1909060A2 (en) 2005-12-02 2008-04-09 Riken Micro force measuring device, micro force measuring method, and surface shape measuring probe
US7685733B2 (en) 2005-12-02 2010-03-30 Riken Micro force measurement device, micro force measurement method, and micro surface shape measurement probe
JP2007218815A (ja) * 2006-02-20 2007-08-30 Konica Minolta Opto Inc 形状測定装置
JP2007271368A (ja) * 2006-03-30 2007-10-18 Konica Minolta Opto Inc 検出器、形状測定装置、及び形状測定方法
JP2007271367A (ja) * 2006-03-30 2007-10-18 Konica Minolta Opto Inc 検出器、形状測定装置、及び形状測定方法
JP2010197384A (ja) * 2009-02-25 2010-09-09 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 接触式測定装置
JP2010249814A (ja) * 2009-04-10 2010-11-04 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi 誤差補正方法及びこれを用いた部品測定方法
KR101130596B1 (ko) 2010-03-31 2012-04-02 화낙 가부시끼가이샤 기상 계측 장치의 프로브 장착 위치 산출 방법
JP2012247362A (ja) * 2011-05-30 2012-12-13 Sintokogio Ltd ボールねじ軸の累積リード誤差測定装置及び測定方法
JP2013217906A (ja) * 2012-03-13 2013-10-24 Toshiba Mach Co Ltd 機上測定機能付き加工装置
PL424608A1 (pl) * 2018-02-16 2019-08-26 Politechnika Białostocka Sposób wyznaczania względnej sztywności statycznej obrabiarki skrawającej

Also Published As

Publication number Publication date
EP1134543A4 (en) 2003-05-21
EP1134543B1 (en) 2007-02-07
JP3932502B2 (ja) 2007-06-20
EP1134543A1 (en) 2001-09-19
DE60033272T2 (de) 2007-11-29
US6539642B1 (en) 2003-04-01
DE60033272D1 (de) 2007-03-22

Similar Documents

Publication Publication Date Title
WO2000052419A1 (fr) Capteur de mesure de forme de type sonde, dispositif d&#39;usinage nc, et procede de mesure de forme utilisant ledit capteur
US6971183B2 (en) Probe head for coordinate measuring machines
US5917181A (en) Profile measuring apparatus
US7685733B2 (en) Micro force measurement device, micro force measurement method, and micro surface shape measurement probe
US5832416A (en) Calibration system for coordinate measuring machine
US7535193B2 (en) Five axis compensated rotating stage
WO2005116783A1 (en) A measurement configuration based on linear scales able to measure to a target also moving perpendicular to the measurement axis
US5390424A (en) Analogue probe
US6895682B2 (en) Polar coordinate-based profilometer and methods
CN115540730A (zh) 一种高陡度或深凹复杂曲面的坐标测量系统与方法
JP2000304529A (ja) プローブ装置及び形状測定装置
He et al. Novel compensation method of volumetric errors for micro-coordinate measuring machines using Abbe and Bryan principles
US9025165B2 (en) Normal vector tracing ultra-precision shape measurement method
JP5171108B2 (ja) 三次元形状測定装置
WO2007037224A1 (ja) 触針式形状測定装置及び方法とこれに適した回転規制エアシリンダ
US20220049951A1 (en) Surface metrology systems and methods thereof
CN109373906A (zh) 一种同时测量距离、仰俯和偏摆的方法
JP2010145118A (ja) 形状測定プローブ
JP2004028684A (ja) 形状測定装置及び形状測定方法
EP3572764B1 (en) Shape measuring probe
JP2000193449A (ja) プローブ装置及び形状測定装置
US20240060866A1 (en) Indentation head for an indentation instrument
Lewis et al. The NPL Small CMM-3-D measurement of small features
JP2024078405A (ja) 測定システム及びその動作方法並びにスタイラス運動機構
JP6456087B2 (ja) 形状測定装置および形状測定方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09763747

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000906598

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000906598

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000906598

Country of ref document: EP