WO2000046498A1 - Generador hidraulico y/o eolico perfeccionado - Google Patents

Generador hidraulico y/o eolico perfeccionado Download PDF

Info

Publication number
WO2000046498A1
WO2000046498A1 PCT/ES2000/000034 ES0000034W WO0046498A1 WO 2000046498 A1 WO2000046498 A1 WO 2000046498A1 ES 0000034 W ES0000034 W ES 0000034W WO 0046498 A1 WO0046498 A1 WO 0046498A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
transformer
fluid
section
axis
Prior art date
Application number
PCT/ES2000/000034
Other languages
English (en)
French (fr)
Inventor
Fredy P. Paciello
Original Assignee
Paciello Fredy P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from UY25379A external-priority patent/UY25379A1/es
Priority claimed from UY25666A external-priority patent/UY25666A1/es
Application filed by Paciello Fredy P filed Critical Paciello Fredy P
Priority to AU22948/00A priority Critical patent/AU2294800A/en
Priority to EP00901613A priority patent/EP1079104A1/en
Publication of WO2000046498A1 publication Critical patent/WO2000046498A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/065Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having a cyclic movement relative to the rotor during its rotation
    • F03B17/067Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having a cyclic movement relative to the rotor during its rotation the cyclic relative movement being positively coupled to the movement of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0445Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor
    • F03D3/0454Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor and only with concentrating action, i.e. only increasing the airflow speed into the rotor, e.g. divergent outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C2/3442Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • F05B2240/313Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape with adjustable flow intercepting area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to an improved hydraulic and / or wind power transformer that provides essential novelty characteristics and notable advantages over those known in the current state of the art. More particularly, the invention proposes the development of a device for harnessing wind, hydraulic or any other energy originating in moving fluid currents, conceived as a cylinder arranged in the form of an axis, provided with rotating blades. being driven by a fluid flow, so that, thanks to that mobility, either from the surface of the blades or from the opening of the flow inlet in the transformer, significant advantages are obtained in terms of the performance of the cited transformer.
  • the field of application of the present invention is within the industry dedicated to energy transformation from the movement of a fluid or flow rate in mechanical energy or electrical energy.
  • a multitude of devices capable of harnessing energy from a fluid, both hydraulic and wind, among others, are known in the state of the art to transform it into mechanical energy or electrical energy by means of a generator. These devices have blades that rotate when driven by the flow and transmit that mechanical energy or movement through an axis that supports the aforementioned blades.
  • the present invention proposes hydraulic and / or wind energy transformers that solve the above-mentioned drawbacks so that in some cases the surface of the blades can be varied according to the needs and achieve that said surface is greater when the blades drive the fluid and that is less when it offers resistance to the movement of rotation, and in addition, it can be used in any direction of the fluid or before a change of direction of the fluid, and in other cases that the fluid inlet can be regulated, varying the width of the channel so that greater ease is allowed to take full advantage of the current and thus increase performance.
  • Figure 1 shows a schematic perspective view of a hydraulic and / or wind power transformer, bidirectional and with variable blade surface.
  • Figure 2 shows a schematic view of a section perpendicular to the transformer axis of the previous figure.
  • Figure 3 shows a perspective drawing of the link between the blade and the transformer guide of Figure 1.
  • Figure 4 shows a drawing of examples of extensibility means of the blade sections of the transformer of Figure 1.
  • Figure 5 shows a perspective scheme of a wind power transformer, unidirectional and with the channel or cover of variable opening.
  • Figure 6 shows a diagram of a perpendicular section of the transformer axis of the previous figure.
  • Figure 1 shows a schematic perspective view of a hydraulic and / or wind power transformer, comprising a shaft cylinder (1) provided with radially grooved radial grooves or cavities (2) in which a blade system (3) is housed. ) Extensible of two or more sections (4), a set of guides (5) of circular or ellipsoid shape that regulate according to the position the dimension of the radius or surface of each blade (3) with which they are linked by means (6 ) suitable, and finally, a structure (7) for channeling the impeller fluid of the blades (3).
  • the axle cylinder (1) comprises a rotating structure
  • the extensible blades (3) are made up of at least two sections (4) that are linked to each other and to the axle cylinder (1) by suitable means.
  • the guides (5) are circular, elliptical, ellipsoid or similar, and to them the free edges of the cross section (4) of blade (3) more distant from the axis cylinder (1) are linked.
  • the relative position between the axis cylinder (1) and the guide (5) is such that said axis cylinder approaches the point of tangency with the guide located at one end of the major axis of the guide.
  • the channeling structure (7) that guides the direction, inlet and outlet of the fluid is symmetrical with respect to the major axis of the guide (5) and comprises an upper wall
  • the wall (7.1) furthest from the axis cylinder (1) is horizontal and is composed of two wedge-shaped sections joined together, and at its intersection (7.4) it coincides with the point of the major axis of the guide farthest from the axis cylinder.
  • the other wall (7.2) closest to the axis cylinder (1) is composed of three sections, a central one (7.5) of cylindrical or similar shape next to the guide, and at an angle slightly less than 180 degrees the other two sections (7.6 ) flat symmetrics that form an angle between zero and thirty degrees with the horizontal.
  • the devices for transforming hydraulic and / or wind energy described above can be grouped into batteries with the axes placed in different positions such as parallel, horizontal or vertical coaxial axes, etc.
  • FIG. 2 shows a diagram of a section perpendicular to the axis of the transformer described in the foregoing.
  • Said transformer allows to take advantage of the movement of the fluid in both directions, so that it can be used in cases such as in marine currents, which are in perpetual movement (flow and reflux), obtaining energy without varying the position of the device and without requiring the use of elements that invalidate part of the operation by changing the direction of the tide direction. That is, once the system is located on one site, its useful operation is continuous and permanent.
  • Figure 3 shows a perspective drawing of the link between the blade (3) and the guide (5) of the transformer of Figures 1 and 2.
  • the link (6) is of the bilateral type and is provided with a sliding mechanism of said blade end (3) on the guide (5), such as a double bearing in a "T" profile of the guide or wheels that rotate within a guide section profile of angular letter "C".
  • Figure 4 shows a drawing of examples of extensibility means of the sections of the blades (3) of the transformer of Figure 1, so that the extensible blades (3) are formed by at least two sections (4) which are they link each other and with the axle cylinder (1) by suitable means, such as coliza, scissors, folding turns or similar means.
  • FIG. 5 shows a perspective scheme of a wind power transformer, in which, by similarity with the previous figures, the various parts have been referenced with the same numerical indicators, differentiated with "premium".
  • the transformer comprises an axis (1 ') orientable according to the direction of the fluid, a set of blades (3') jointly and severally linked to a cylindrical axis (5 ') or similar, which in turn is connected by rotation to the main axis (1 ') orientable, and a cover (15) of generatrices parallel to the referred axis that allows a greater use of the flow.
  • the shaft (1 ') is fixed at its ends to a frame
  • the blades (3 ') are portions of cylindrical surfaces of straight section, equidistant from each other, with an approximate shape of an arc of circumference.
  • the number of blades will always be greater than one and will depend on the characteristics of the design, although in the preferred embodiment the device described consists of three of these blades.
  • Said blades are joined together by one of its lateral edges to an axis (5 ') consisting of a cylindrical tube inside which the axis (1') is located by suitable or similar bearings.
  • the cover (15) is also of cylindrical shape of straight section formed by an open curve in the form of an arc of circumference of approximately 240 degrees, so that the radius of curvature varies according to three sections (4.1 '-4.3') that make up said cover, which in turn is of variable and adjustable angle with respect to the main axis (1 ') as well as in its radius of curvature in the extreme sections of said cover.
  • the roof is composed of three sections (4.1'- 4.3 '), joined by two generatrices (6'-7'), of different curvature.
  • Section (4.1 ') helps to orient the fluid between this section and the concave area of the blade (3') when it is in the proper position.
  • This section (4.1 ') has a triangular shape and is of variable and adjustable angle with respect to the generatrix (6') that separates it from the middle section (4.2 ') of the roof, in order to vary the distance between the section (4.1 ') of the cover and the circumference generated by the rotation of the blades (3').
  • the middle section (4.2 ') is formed by a mesh that allows the flow of the blades (3') to flow out.
  • Said mesh has two sections of different trellis dimensions, the next one being the first section (4.1 ') having the largest dimensions, in order to obtain less resistance to the fluid.
  • the third section (4.3 ') of the cover in the preferred embodiment, presents in its straight section a triangular shape with a vertex that coincides with the generatrix (7') that separates this section (4.3 ') from the mesh (4.2' ).
  • the side of this section near the blades is concave and the other convex.
  • the concave face of this section (4.3 ') is the one that is in charge of orienting the fluid towards the blade in the position of being driven and prevents the current from working in the opposite direction to the one sought when colliding with the blade located in the opposite position to which It is being driven.
  • the convex outer face of this section is the one that deflects the fluid flow that is not used.
  • the shaft (5 '), integral with the blades (3'), is constituted in the shaft (1 ') driving mechanical energy transformable in any other type of energy by suitable known means, for example, an electric power generator whose axis is the main axis (1 ') of the device.
  • Figure 6 shows a scheme related to a cut made perpendicular to the axis of the transformer described in relation to Figure 5 above, taking advantage of the same references marked "premium”, and clarifying the relative positioning of the various components.

Abstract

Generador de energía por medios hidráulicos y/o eólicos, que aprovecha la energía originada en las corrientes. Está compuesto básicamente por un cilindro (1) provisto de palas (3) o álabes (3') que giran al ser impulsados por un caudal o corriente, transmitiendo esa energía mecánica a través de un eje (1') que soporta las citadas palas o álabes. Tiene la particularidad de regular la movilidad de algunos de sus componentes, como la superficie de impulsión de las palas (3) cuyos extremos (6) recorren la guía (5), o el ángulo de apertura de la cubierta (4.1') por donde se introduce la corriente en el generador.

Description

GENERADOR HIDRÁULICO Y/O EOLICO PERFECCIONADO
DESCRIPCIÓN
Objeto de la Invención
La presente invención se refiere a un transformador de energía hidráulica y/o eólica perfeccionado que aporta esenciales características de novedad y notables ventajas con respecto a los conocidos en el estado actual de la técnica. Más en particular, la invención propone el desarrollo de un dispositivo para aprovechar la energía eólica, hidráulica o cualquier otra originada en las corrientes de fluidos en movimiento, concebido a modo de cilindro dispues- to en forma de eje, provisto de aspas susceptibles de giro al ser impulsadas por un caudal de fluido, de manera que, gracias a esa movilidad, bien de la superficie de las aspas o bien de la apertura de la entrada de flujo en el transformador, se obtienen notables ventajas en cuanto al rendimien- to del citado transformador.
El campo de aplicación de la presente invención se encuentra comprendido dentro de la industria dedicada a transformación de energía procedente del movimiento de un fluido o caudal en energía mecánica o en energía eléctrica.
Antecedentes y Sumario de la Invención
Se conocen en el estado actual de la técnica multitud de dispositivos capaces de aprovechar la energía procedente de un fluido, tanto hidráulico como eólico, entre otros, para transformarla en energía mecánica o bien en energía eléctrica mediante un generador. Dichos dispositivos disponen de unas aspas que giran al ser impulsadas por el caudal y transmiten esa energía mecánica o movimiento a través de un eje que soporta las citadas aspas.
Pero dichos dispositivos presentan el inconveniente de que el rendimiento obtenido no está optimizado, puesto que no siempre se aprovecha todo el caudal debido a causas tales como un tamaño reducido de las aspas, o a que el flujo es bidireccional .
También presentan el problema de que el flujo choca de forma transversal a las aspas, por lo que ofrece resistencia al giro, o también no se direcciona correctamente el citado flujo.
La presente invención propone unos transformadores de energía hidráulica y/o eólica que solucionan los inconvenientes planteados anteriormente de manera que en unos casos se puede variar la superficie de las aspas según las necesidades y conseguir que dicha superficie sea mayor cuando las aspas impulsan el fluido y que sea menor cuando ofrece resistencia al movimiento de giro, y además, se puede utilizar en cualquier dirección del fluido o ante un cambio de dirección de éste, y en otros casos que la entrada del fluido se pueda regular, variando el ancho del canal, de manera que se permita una mayor facilidad para aprovechar al máximo la corriente y aumentar asi el rendimiento.
Breve Descripción de los Dibujos
Las características expuestas en lo que antecede, van a ser presentadas de forma gráfica con aprovechamiento de las figuras de los dibujos anexos, en los que se han representado a título de ejemplo puramente ilustrativo y no limitativo, dos formas preferidas de realización. En tales dibujos : La Figura 1 muestra una vista esquemática en perspectiva de un transformador de energía hidráulica y/o eólica, bidireccional y con la superficie de las aspas variable.
La Figura 2 muestra una vista esquemática de un corte perpendicular al eje del transformador de la figura anterior.
La Figura 3 muestra un dibujo en perspectiva del vinculo entre el aspa y la guía del transformador de la Figura 1.
La Figura 4 muestra un dibujo de ejemplos de medios de extensibilidad de las secciones de las aspas del transformador de la Figura 1.
La Figura 5 muestra un esquema en perspectiva de un transformador de energía eólica, unidireccional y con el canal o cubierta de apertura variable.
La Figura 6 muestra un esquema de un corte perpendicular el eje del transformador de la figura anterior.
Descripción de la Realización Preferida de la Invención
Para llevar a cabo la descripción detallada que sigue de las realizaciones preferidas de la presente invención, se hará referencia permanente a las Figuras de los dibujos, a través de las cuales se han utilizado las mismas referencias numéricas para las partes iguales o similares.
Para la descripción de la presente invención se han desarrollado dos realizaciones diferentes con soluciones distintas para situaciones y problemas distintos, que presentan ambas, no obstante, el principio común de tener situadas las aspas de tal manera que el flujo de la corriente impulsora ataca ortogonalmente sus superficies en el punto espacial y temporal en el que la generación de empuje es máxima.
La Figura 1 muestra una vista esquemática en perspectiva de un transformador de energía hidráulica y/o eólica, que comprende un cilindro eje (1) provisto de ranuras o cavidades (2) radiales distribuidas equiangularmente en las cuales se alberga un sistema de aspas (3) extensibles de dos o más secciones (4), un conjunto de guías (5) de forma circular o elipsoide que regulan según la posición la dimensión del radio o superficie de cada aspa (3) con la cual se vinculan por un medio (6) adecuado, y por ultimo, una estructura (7) de canalización del fluido impulsor de las aspas (3) .
El cilindro eje (1) comprende una estructura giratoria
(10) alrededor de un eje (11), de manera que el cilindro eje esta provisto de entradas o cavidades (2) radiales donde se alojan las aspas (3) extensibles.
Las aspas (3) extensibles están conformadas al menos por dos secciones (4) que se vinculan entre sí y con el cilindro eje (1) por medios adecuados.
Las guías (5) son de forma circular, elíptica, elipsoide o semejante, y a ellas se vinculan los bordes libres de la sección (4) de aspa (3) más distante del cilindro eje (1) . La posición relativa entre el cilindro eje (1) y la guía (5) es tal que dicho cilindro eje se aproxima al punto de tangencia con la guía u-bicado en uno de los extremos del eje mayor de la guia.
La estructura (7) de canalización que orienta la dirección, entrada y salida del fluido es simétrica respecto al eje mayor de la guía (5) y comprende una pared superior
(7.1) y una inferior (7.2), ambas provistas de canalizacio- nes (7.3) para permitir la salida del fluido de retorno en caso necesario de manera que impida que se frene el giro.
La pared (7.1) más alejada del cilindro eje (1) es horizontal y está compuesta por dos secciones en forma de cuña unidas, y en su intersección (7.4) coincide con el punto del eje mayor de la guia más alejado del cilindro eje.
La otra pared (7.2) más próxima al cilindro eje (1) está compuesta por tres secciones, una central (7.5) de forma cilindrica o similar próxima a la guía, y en un ángulo levemente inferior a 180 grados las otras dos secciones (7.6) simétricas planas que forman con la horizontal un ángulo comprendido entre cero y treinta grados .
Los dispositivos para transformar energía hidráulica y/o eólica descritos en lo que antecede se pueden agrupar en baterías con los ejes colocados en diferentes posiciones tales como paralelo, ejes coaxiales horizontales o verticales, etc.
Por ultimo, este dispositivo descrito anteriormente permite la instalación de generadores de energía eléctrica en el cilindro eje (1) sin necesidad de transmisiones mecánicas . La Figura 2 muestra un esquema de un corte perpendicular ai eje del transformador descrito en lo que precede. Dicho transformador permite aprovechar el movimiento del fluido en ambos sentidos, de manera que permite su utilización en casos como en corrientes marinas, que están en perpetuo movimiento (flujo y reflujo), obteniendo energía sin variar la posición del dispositivo y sin requerir la utilización de elementos que invaliden parte del funciona- miento por cambio de sentido de la dirección de la marea. Es decir, que una vez emplazado en un sitio el sistema, su funcionamiento útil es continuado y permanente.
La Figura 3 muestra un dibujo en perspectiva del vínculo entre el aspa (3) y la guía (5) del transformador de las Figuras 1 y 2. El vinculo (6) es de tipo bilateral y está provisto de un mecanismo de deslizamiento de dicho extremo de aspa (3) sobre la guía (5), como por ejemplo un doble rodamiento en un perfil "T" de la guia o ruedas que giran dentro de un perfil de guía de sección de letra "C" angular.
La Figura 4 muestra un dibujo de ejemplos de medios de extensibilidad de las secciones de las aspas (3) del transformador de la Figura 1, de manera que, las aspas (3) extensibles están conformadas al menos por dos secciones (4) que se vinculan entre sí y con el cilindro eje (1) por medios adecuados, tal como coliza, tijera, giros de plegabi- lidad o medios similares.
La Figura 5 muestra un esquema en perspectiva de un transformador de energía eólica, en el que, por similitud con las figuras anteriores, las diversas partes se han referenciado con los mismos indicadores numéricos, diferenciados con "prima". Según se observa, el transformador comprende un eje (1') orientable según la dirección del fluido, un conjunto de aspas (3') vinculadas solidariamente a un eje cilindrico (5') o similar, el cual a su vez se une por giro al eje (1') principal orientable, y una cubierta (15) de generatrices paralelas al eje referido que permite un mayor aprovechamiento del flujo.
El eje (1') se fija por sus extremos a un bastidor
(2') que le sostiene y que permite ubicar el dispositivo descrito en posición óptima según la dirección de la corriente del fluido impulsor.
Las aspas (3') son porciones de superficies cilindricas de sección recta, equidistantes entre sí, con forma aproximada de arco de circunferencia. El número de aspas será siempre mayor de uno y dependerá de las características del diseño, si bien en la realización preferida el dispositivo descrito consta de tres de estas aspas. Dichas aspas se unen entre sí por uno de sus bordes laterales a un eje (5') que consiste en un tubo cilindrico en cuyo interior se ubica el eje (1') mediante rodamientos adecuados o similares.
La cubierta (15) también es de forma cilindrica de sección recta conformada por una curva abierta en forma de arco de circunferencia de aproximadamente 240 grados, de manera que el radio de curvatura varia según tres secciones (4.1' -4.3') que componen dicha cubierta, la que a su vez es de ángulo variable y regulable respecto al eje (1') principal como también en su radio de curvatura en las secciones extremas de dicha cubierta. La cubierta esta compuesta por tres secciones (4.1'- 4.3'), unidas por dos generatrices (6'-7'), de diferente curvatura .
La sección (4.1') contribuye a orientar el fluido entre esta sección y la zona cóncava del aspa (3') cuando ésta está en la posición adecuada. Esta sección (4.1') presenta una forma triangular y es de ángulo variable y regulable respecto a la generatriz (6') que la separa de la sección (4.2') media de la cubierta, con el fin de variar la distancia entre la sección (4.1') de la cubierta y la circunferencia generada por el giro de las aspas (3').
La sección (4.2') media está formada por una malla que permite la salida del flujo que impulsa las aspas (3'). Dicha malla tiene dos secciones de diferente dimensión de enrejado, siendo el próximo a la primera sección (4.1') el de mayores dimensiones, con el fin de obtener menor resistencia al fluido.
La tercera sección (4.3') de la cubierta, en la realización preferida, presenta en su sección recta una forma triangular con un vértice que coincide con la generatriz (7') que separa esta sección (4.3') de la malla (4.2'). El lado de esta sección próximo a las aspas es de forma cóncava y el otro de forma convexa. La cara cóncava de esta sección (4.3') es la que se encarga de orientar el fluido hacia el aspa en posición de ser impulsada y evita que la corriente obre en sentido opuesto al buscado al chocar con el aspa ubicada en posición opuesta a la que está siendo impulsada. La cara exterior convexa de esta sección es la que desvia la corriente de fluido que no se utiliza. Aunque las secciones 4.1' y 4.3' se han descrito como de forma triangular para la realización preferida, dichas secciones podrían adoptar diferentes formas siempre que posibilitasen el uso del concepto aquí descrito. De esta forma, podrían mostrar una sección estilizada, roma, rectangular, etc.
El eje (5'), solidario a las aspas (3'), se constituye en el eje (1') impulsor de energía mecánica transformable en cualquier otro tipo de energía por medios adecuados conocidos, por ejemplo, un generador de energía eléctrica cuyo eje sea el eje (1') principal del dispositivo.
La Figura 6 muestra un esquema relativo a un corte realizado de manera perpendicular al eje del transformador descrito con relación a la Figura 5 anterior, con aprovechamiento de las mismas referencias marcadas con "prima", y aclaratorio del posicionamiento relativo de los diversos componentes .
No se considera necesario hacer más extenso el contenido de esta descripción para que un experto en la materia pueda comprender su alcance y las ventajas derivadas de la invención, así como desarrollar y llevar a la práctica el objeto de la misma.
No obstante, debe entenderse que la invención ha sido descrita según una realización preferida de la misma, por lo que puede ser susceptible de modificaciones sin que ello suponga alteración alguna de su fundamento, pudiendo afectar tales modificaciones, en especial, a la forma, la escala, los materiales de fabricación, el número de aspas y/o el tamaño de la abertura de la cubierta .

Claims

REIVINDICACIONES
1.- Transformador de energía hidráulica y/o eólica perfeccionado que aprovecha la energía originada en las corrientes, consistente en un cilindro (1) dispuesto a modo de eje provisto de aspas (3) que giran al ser impulsadas por un caudal o corriente transmitiendo esa energía mecánica a través de un eje (11) que soporta las citadas aspas, que se caracteriza porque las aspas están situadas ortogonalmente con respecto a la dirección del flujo de la corriente en el punto en el que el empuje impartido por dicho flujo sobre dichas aspas es máximo.
2.- Transformador de energía hidráulica y/o eólica perfeccionado, según la reivindicación 1, que se caracteriza por presentar una geometría variable para aprovechar al máximo el citado caudal, bien aumentando y disminuyendo la superficie de las aspas, o bien regulando y variando el ángulo de apertura de la cubierta o canal por donde se introduce la corriente en el transformador.
3.- Transformador de energía hidráulica y/o eólica perfeccionado, según las reivindicaciones 1 y 2, que se caracteriza por comprender un cilindro eje (1), que comprende una estructura giratoria (10) alrededor de un eje (11), provisto de ranuras o cavidades (2) radiales distribuidas equiangularmente en las cuales se alberga un sistema de aspas (3) extensibles de dos o más secciones (4), vinculadas entre sí y con el cilindro eje (1) por medios adecuados, un conjunto de guías (5) de forma circular, elíptica o elipsoide que regulan según la posición la dimensión del radio o superficie de cada aspa (3) con la cual se vinculan por un medio (6) adecuado, y una estructura (7) de canalización del fluido impulsor de las aspas (3).
4.- Transformador de energía hidráulica y/o eólica perfeccionado, según las reivindicaciones 1 y 2, caracterizado porque las aspas (3) extensibles están conformadas al menos por dos secciones (4) que se vinculan entre sí y con el cilindro eje (1) por medios adecuados, tal como coliza, tijera, giros de plegabilidad o medios similares.
5.- Transformador de energía hidráulica y/o eólica perfeccionado, según las reivindicaciones 1 y 2, caracterizado porque las guías (5) de forma circular, elíptica o elipsoide se vinculan en forma bilateral con los bordes libres de las aspas (3) por medio de un doble rodamiento en un perfil "T" de la guia (5) o por ruedas que giran dentro de un perfil de guía de sección en "C" angular.
6.- Transformador de energía hidráulica y/o eólica perfeccionado, según las reivindicaciones 1 y 2, que se caracteriza porque la estructura (7) de canalización que orienta la dirección, entrada y salida del fluido es simétrica respecto al eje mayor de la guía (5) y comprende una pared superior (7.1) y una inferior (7.2), ambas provistas de canalizaciones (7.3) para permitir la salida del fluido de retorno en caso necesario de manera que impida que se frene el giro.
7.- Transformador de energía hidráulica y/o eólica perfeccionado, según las reivindicaciones 1 y 2, que se caracteriza porque se pueden agrupar una multitud de los citados transformadores en baterías con los ejes ubicados de forma coaxial, paralela, horizontal y/o verticalmente.
8.- Transformador de energía hidráulica y/o eólica perfeccionado, según las reivindicaciones 1 y 2, que se caracteriza porque posibilita la instalación de generadores de energía eléctrica en el interior del cilindro eje (1) sin necesidad de transmisiones mecánicas .
9.- Transformador de energía hidráulica y/o eólica perfeccionado, según las reivindicaciones 1 y 2, que se caracteriza porque dicho transformador permite aprovechar el movimiento del fluido en ambos sentidos, obteniendo energía sin variar la posición del dispositivo y sin requerir la utilización de elementos que invaliden parte del funcionamiento por cambio de sentido de la dirección del flujo o corriente.
10.- Transformador de energía eólica perfeccionado, según las reivindicaciones 1 y 2, que se caracteriza por comprender un eje (1') orientable según la dirección del fluido, un conjunto de aspas (3') vinculadas solidariamente a un eje cilindrico (5'), el cual a su vez se une por giro al eje (1') principal orientable que se fija por sus extremos a un bastidor (2') que le sostiene y fija en la posición óptima según la dirección de la corriente impulso- ra, y una cubierta parcial, de orientación variable, compuesta por tres sectores (4.1'-4.3'), dos de ellos extremos de orientación de la corriente de fluido hacia la zona de mayor aprovechamiento dinámico y el tercero, central, conformado por una malla que permite la salida del fluido del transformador.
11.- Transformador de energía eólica perfeccionado, según la reivindicación 10, que se caracteriza porque las aspas (3') son porciones de superficies cilindricas de sección recta, equidistantes entre sí, con forma aproximada de arco de circunferencia, y se unen entre sí por uno de sus bordes laterales al eje (5').
12.- Transformador de energía eólica perfeccionado, según la reivindicación 10, que se caracteriza porque la sección extrema (4.1') presenta una forma triangular y es de ángulo variable y regulable respecto a la generatriz (6') que la separa de la sección (4.2') media de la cubierta, con el fin de variar la distancia entre la sección (4.1') de la cubierta y la circunferencia generada por el giro de las aspas (3'), y porque contribuye a orientar el fluido entre esta sección y la zona cóncava del aspa (3')
13.- Transformador de energía eólica perfeccionado, según la reivindicación 10, que se caracteriza porque la malla que conforma la sección (4.2') y permite la salida del flujo que impulsa las aspas (3') tiene dos secciones de diferente dimensión de enrejado, siendo el próximo a la primera sección (4.1') el de mayores dimensiones, con el fin de obtener menor resistencia al fluido.
14.- Transformador de energía eólica perfeccionado, según la reivindicación 10, que se caracteriza porque la sección (4.3') de la cubierta presenta en su sección recta una forma triangular con un vértice que coincide con la generatriz (7') que separa esta sección (4.3') de la malla
(4.2') y que permite variar y regular el ángulo entre ambas, de manera que el lado de esta sección próximo a las aspas es de forma cóncava y se encarga de orientar el fluido hacia el aspa en posición de ser impulsada y evita que la corriente obre en sentido opuesto, y el otro lado exterior es de forma convexa y se encarga de desviar la corriente de fluido que no se utiliza.
15.- Transformador de energía eólica perfeccionado, según la reivindicación 10, que se caracteriza porque el eje (5'), solidario a las aspas (3'), se constituye en el eje (1') impulsor de energía mecánica transformable en cualquier otro tipo de energía por medios adecuados conocidos.
PCT/ES2000/000034 1999-02-03 2000-02-03 Generador hidraulico y/o eolico perfeccionado WO2000046498A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU22948/00A AU2294800A (en) 1999-02-03 2000-02-03 Improved hydraulic and/or wind generator
EP00901613A EP1079104A1 (en) 1999-02-03 2000-02-03 Improved hydraulic and/or wind generator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
UY25.379 1999-02-03
UY25379A UY25379A1 (es) 1999-02-03 1999-02-03 Dispositivo para el aprovechamiento de energía eólica y/o hidráulica
UY25.666 1999-08-17
UY25666A UY25666A1 (es) 1999-08-17 1999-08-17 Motor hidraulico, transformador de energia, transformador de energia fluidica y transformador de energia hidraulica o eolica

Publications (1)

Publication Number Publication Date
WO2000046498A1 true WO2000046498A1 (es) 2000-08-10

Family

ID=27130691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2000/000034 WO2000046498A1 (es) 1999-02-03 2000-02-03 Generador hidraulico y/o eolico perfeccionado

Country Status (3)

Country Link
EP (1) EP1079104A1 (es)
AU (1) AU2294800A (es)
WO (1) WO2000046498A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792179B1 (ko) 2006-04-07 2008-01-31 최진영 조류를 이용한 수차
CN103437948A (zh) * 2013-08-25 2013-12-11 西北工业大学 一种利用风能进行发电和产生推力的马格纳斯效应转子
NO20131421A1 (no) * 2013-10-28 2014-06-23 Thorstein Oscar Seim Vann-/bølgekraft-turbin

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029646A1 (en) * 2001-10-02 2003-04-10 Hilleke.Com A power station
WO2005005824A1 (en) * 2003-07-10 2005-01-20 Serge Allaire Device for interacting with a fluid moving relative to the device and vehicle including such a device
WO2008047991A1 (en) * 2006-10-18 2008-04-24 Aeronet Co., Inc. Wind power generating system with vertical axis jet wheel turbine
WO2011134758A2 (en) * 2010-04-26 2011-11-03 Rahmi Oguz Capan A turbine
WO2011161688A2 (en) * 2010-06-22 2011-12-29 Ashish Kumar Deb A device to utilize energy intrinsic in water movements
GB2489241A (en) * 2011-03-22 2012-09-26 James Graeme Acaster Turbine apparatus with blades movable between active and passive configurations
NL1040434C2 (nl) * 2013-10-08 2015-04-09 Elsmanholding B V Een cilindrische rol, die door in- en uitbewegende schotten, horizontaal in een stromende vloeistof geplaatst, die zich in de vloeistof bevindende energie omzet in een draaiende beweging. op deze wijze draaiend, de uit de vloeistof opgenomen energie om kan zetten in een andere energievorm, zoals elektriciteit.
CN103758679B (zh) * 2014-01-23 2016-08-10 山东大学 一种叶片伸缩式潮流能发电装置
WO2022174877A1 (en) * 2021-02-17 2022-08-25 Dansk Plast A/S Underwater power station

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE736278C (de) * 1941-05-23 1943-06-11 Wilhelm Teubert Dr Ing Windkraftanlage
GB647938A (en) * 1949-03-21 1950-12-28 William James Heppell Improvements in and relating to wind-driven motors
FR2286954A1 (fr) * 1974-10-01 1976-04-30 Poupinet Georges Perfectionnements aux eoliennes ou turbines entrainees par la circulation d'un fluide
US4204795A (en) * 1977-09-21 1980-05-27 Forrest William J Wind collecting method and apparatus
WO1985003981A1 (en) * 1984-03-05 1985-09-12 Victor Kyprianos Fieros Wind energy conversion apparatus
ES8801407A1 (es) * 1986-05-14 1987-12-16 Marin Almodovar Antonio Sistema para mejorar el rendimiento de un aerogenerador de eje vertical
GB2205615A (en) * 1987-06-06 1988-12-14 Salford University Civil Engin A water powered motor
DE4241082A1 (de) * 1992-12-05 1994-06-09 Hermsen Rolf Felix Kraftwerk von strömenden Wassern
WO1998014054A1 (en) * 1996-10-01 1998-04-09 Akva As Power supply device
JPH10318118A (ja) * 1997-05-21 1998-12-02 Fukuoka Kanaami Kogyo Kk 流体発電装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE736278C (de) * 1941-05-23 1943-06-11 Wilhelm Teubert Dr Ing Windkraftanlage
GB647938A (en) * 1949-03-21 1950-12-28 William James Heppell Improvements in and relating to wind-driven motors
FR2286954A1 (fr) * 1974-10-01 1976-04-30 Poupinet Georges Perfectionnements aux eoliennes ou turbines entrainees par la circulation d'un fluide
US4204795A (en) * 1977-09-21 1980-05-27 Forrest William J Wind collecting method and apparatus
WO1985003981A1 (en) * 1984-03-05 1985-09-12 Victor Kyprianos Fieros Wind energy conversion apparatus
ES8801407A1 (es) * 1986-05-14 1987-12-16 Marin Almodovar Antonio Sistema para mejorar el rendimiento de un aerogenerador de eje vertical
GB2205615A (en) * 1987-06-06 1988-12-14 Salford University Civil Engin A water powered motor
DE4241082A1 (de) * 1992-12-05 1994-06-09 Hermsen Rolf Felix Kraftwerk von strömenden Wassern
WO1998014054A1 (en) * 1996-10-01 1998-04-09 Akva As Power supply device
JPH10318118A (ja) * 1997-05-21 1998-12-02 Fukuoka Kanaami Kogyo Kk 流体発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792179B1 (ko) 2006-04-07 2008-01-31 최진영 조류를 이용한 수차
CN103437948A (zh) * 2013-08-25 2013-12-11 西北工业大学 一种利用风能进行发电和产生推力的马格纳斯效应转子
CN103437948B (zh) * 2013-08-25 2015-07-15 西北工业大学 一种利用风能进行发电和产生推力的马格纳斯效应转子
NO20131421A1 (no) * 2013-10-28 2014-06-23 Thorstein Oscar Seim Vann-/bølgekraft-turbin

Also Published As

Publication number Publication date
EP1079104A1 (en) 2001-02-28
AU2294800A (en) 2000-08-25

Similar Documents

Publication Publication Date Title
ES2256879T3 (es) Extraccion de energia de la olas del oceano.
ES2632643T3 (es) Turbina eólica
ES2347356T3 (es) Dispositivo e instalacion para la generacion de energia regenerativa y renovable a partir de viento.
ES2626269T3 (es) Aparato de rotor
WO2000046498A1 (es) Generador hidraulico y/o eolico perfeccionado
ES2391673T3 (es) Turbina con un juego de hélices coaxiales
ES2332344B1 (es) Mejoras en la patente principal num. p200002936 por sistema captador de energia eolica con autoproteccion.
ES2477942T3 (es) Turbina
ES2373058T3 (es) Sistema de conversión de energía mareomotriz.
ES2727655T3 (es) Mejoras en la extracción de energía de olas oceánicas
ES2948797T3 (es) Dispositivo para convertir energía cinética de un medio que fluye en energía eléctrica
ES2690446T3 (es) Sistema de conversión de energía hidrocinética y uso de la misma
ES2557582T3 (es) Rotor híbrido de fuerza eólica
WO2015009175A1 (es) Generador eólico con palas de ángulo diedro psp
WO2017055649A1 (es) Dispositivo para convertir la energía cinética de las olas, las corrientes de agua o el viento en energía mecánica
WO2008071200A1 (es) Dispositivo colector de viento para generación de energía
ES2639124T3 (es) Generador lineal y mecanismo impulsor lineal
ES2860947T3 (es) Dispositivo generador de energía
ES2541600T3 (es) Concentrador solar con sistema de soporte y seguimiento solar
WO2012023866A1 (es) Generador eolico marino de palas extensibles
US8939708B2 (en) Universal spherical turbine with skewed axis of rotation
PL241530B1 (pl) Turbina wiatrowa o pionowej osi obrotu i zmiennej geometrii łopat
ES2401801T3 (es) Aerogenerador
WO2014041232A1 (es) Captador y sistema de generación de energía undimotriz
ES2514990B2 (es) Sistema de aceleración del flujo del aire para aerogeneradores

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000901613

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000901613

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000901613

Country of ref document: EP