WO2015009175A1 - Generador eólico con palas de ángulo diedro psp - Google Patents

Generador eólico con palas de ángulo diedro psp Download PDF

Info

Publication number
WO2015009175A1
WO2015009175A1 PCT/PE2014/000010 PE2014000010W WO2015009175A1 WO 2015009175 A1 WO2015009175 A1 WO 2015009175A1 PE 2014000010 W PE2014000010 W PE 2014000010W WO 2015009175 A1 WO2015009175 A1 WO 2015009175A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
wind
dihedral angle
generator
blade
Prior art date
Application number
PCT/PE2014/000010
Other languages
English (en)
French (fr)
Inventor
Pedro Saavedra Pacheco
Original Assignee
Pedro Saavedra Pacheco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pedro Saavedra Pacheco filed Critical Pedro Saavedra Pacheco
Priority to CN201480049198.0A priority Critical patent/CN105518291B/zh
Priority to CA2918621A priority patent/CA2918621A1/en
Priority to US14/905,791 priority patent/US20160186719A1/en
Priority to EP14826589.5A priority patent/EP3059442A4/en
Publication of WO2015009175A1 publication Critical patent/WO2015009175A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • F05B2240/2213Rotors for wind turbines with horizontal axis and with the rotor downwind from the yaw pivot axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention that is intended to be patented in the field of renewable wind energies, has been developed with the aim of obtaining greater wind power at equal or lesser height than the current aerodynamic blade generators, so far the most productive and commercial in the world , which require high-speed winds that only exist at great heights and whose engineering is producing more electrical energy than their immediate predecessors.
  • Two rotary axes from two sets of double rotation dihedral angle blades can activate the two magnetic fields of a double rotation electric generator, doubling the production of each set of blades with a single wind mass.
  • the second objective of the experiment was to make an analysis of the amount of wind used by the two blades of dihedral angle and the two blades being only one long section forming a moving diametral rectangle, it was visible that it would rotate at a very high speed, it would always be proportional to that immense mass of untouched wind that passed on both sides of the blades, keeping intact its kinetic power that nobody was using. Generating two new inevitable technical objectives.
  • Figure 06 Front view of a dihedral angle shovel for large generators
  • Figure 07 Front view of two dihedral angle blades armed 180 ° from the rotation circle.
  • Figure 08 Front view of a set of two dihedral angle blades in relation to the horizontal rotary axis coming out of the gondola.
  • Figure 10 Elevation cut of a two-bladed wind generator rotating in the same direction, on a single horizontal axis.
  • Figure 11 Front view of a set of two blades of dihedral angle crossed to the eye to rotate in the same direction, centered by a rotary axis horn.
  • Graph 12 Elevation cut of a wind generator showing the incidence of wind in the first and second set.
  • Figure 13 Front view of two sets of crossed dihedral angle blades centered on a single common axis, with dihedral angles on opposite sides in each set to rotate in opposite directions.
  • Figure 14 Elevation view of a double rotation wind generator, showing the axes of the opposite rotary movement from the blades to the double rotation generator.
  • N ° is that a flat blade with a dihedral angle on one of its sides on a horizontal axis can rotate at 90 ° from the wind, which is considered resolved with what has been developed so far and with the performance tests performed with the prototype of test, activated by the wind of the fan and the rectangular blades constructed with aluminum.
  • Figure 10 shows two blades, displaying only the back half of the two blades by exact cross-section the center of the rotary axis of the system, so that the two blades are aligned at the same point, they only have a dihedral angle (1-a 2-a) each at the upper edge of said shovel.
  • the two blades (1 and 2) are exactly the same because they are plotted one after the other for the purpose of understanding their functionality, but in practice they will be adjusted to 90 ° from each other for maximum production.
  • This graph shows the rotational movement of the blades that have the same direction, whose mechanical torque is moved through the rotary axis (3), by the pinions (16 and 17), towards the gearbox ( 5), and finally to the conventional electric generator (7).
  • Figure 11 shows two sets of double blades (1 and 2), exactly the same as crossed to the eye but centered on a single axis by the horn 4, generating one-way rotational movement like the clock giving the time for the position of its dihedral angles that are determinants of that function.
  • Graphs confirming hypothesis two.
  • test tests were carried out with two sets of double blades installed on a support column that contained two sets of double shoots centered on a single mathematical axis, within which two equal rotary axes of tubular steel rotated holding two sets of double blades. , with tabs or bends in dihedral angle on different sides as shown in Figure 12, which shows a cut of two blades of opposite movement seen at 0 or its line of rotation, from the center of the rotary axis (3) and of the whole system defined by the rotating arrows (11), for the blade (1), which receives the wind (10) that when colliding frontally with the blade is divided into two directions, where the wind (10-a) is inserted inside of the dihedral angle 1 -a, driving the blade in that direction and the wind 10-b, is lost in a vacuum.
  • the rotary movement of the shaft (3) is transferred to the multiplication box (5), and along the shaft (6), to one of the fields of the double-rotation electric generator (7), contributing 50% of RPM while the Shovel (2), located at the back of the gondola with the dihedral angle at the bottom, will have the same effect of the wind driving it in the opposite direction, providing its rotational movement marked by the arrow (11-a), from there along the axis (3) towards the multiplier (5-a), and along the axis (6-a), towards the other magnetic field of the electric generator, contributing 50% of RPM remaining for operation.
  • Figure 13 shows two sets of dihedral angle blades (1 and 2) crossed to the eye centered by the horn (4) with their dihedral angles on different sides that generate opposite rotational movements, indicated by the arrows (1 1) and (11 -to ). Graphs demonstrating the tests performed to solve the third hypothesis of the present invention.
  • Figure 14 shows an elevation of the same system as Figure 13, with the difference that in this case the complete system is shown, with the tower (21) showing a gear system (9), which support the gondola (13 ) which contains all the machines that engage the rotary movement and produce electrical energy and on said gears its axis will be constantly oriented in line with the movement of the wind by known electro-mechanical means.
  • Said Graph shows the blades (1 and 2), seen laterally with their decreasing longitudinal form, the set of blades (1) receiving the first impact of the wind and the blades (2), the impact of the wind that has passed to the other side without losing its kinetic power, because of the ample space left by the diametral shape of only two blades.
  • Two rotary axes of two sets of blades with opposite rotation dihedral angle can activate the two magnetic fields of a double rotation electric generator, doubling the electrical production of each set of blades with a single wind mass.
  • the double rotation electric generator was already claimed by me in my invention "Marine Wind Generator with Extensible Blades", where more than two sets of three blades can rotate in the opposite direction, by turning in the same direction of the wind that does not alter the power kinetic of said wind mass in its lateral rotation spaces, and it is presented here only to illustrate how the doubling of the electric energy occurs with dihedral angle rotation blades that rotate in this case like the giant gut at 90 ° of the direction of movement of the wind with an effect that is the same, but whose source of rotation is not equal to the previous one and has its own principle and sustenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

Un Generador Eólico con Palas de Ángulo Diedro PSP, caracterizado por una pala aerodinámica semiplana que en uno de sus lados contiene un doblez aproximado a un cuarto del ancho total de dicha pala, formando un ángulo diedro menor a 30°, cuyo espacio interior capta la potencia cinética del viento que colisiona con dicha pala, generando un movimiento rotatorio poderoso hacia esa dirección. Dichas palas formando un conjunto diametral de dos palas, que generan un movimiento rotatorio fuerte y efectivo a 90° del movimiento lineal del viento, que permite crear: Un Generador de un solo conjunto de dos palas. Un Generador con dos conjuntos de palas con movimiento unidireccional que suman su producción. Un Generador de dos conjuntos de palas de rotación contraria, que multiplican por dos, la producción de un conjunto de palas unidireccionales de rotación, con una sola estructura fija y móvil, un solo generador y una sola masa de viento.

Description

GENERADOR EOLICO CON PALAS DE ANGULO DIEDRO PSP
1. HISTORIA DEL ARTE La historia del arte en este campo de los generadores eólicos con palas de eje horizontal, está concentrada en el perfeccionamiento y potenciación de los generadores eólicos de tres palas aerodinámicas que han alcanzado su techo tecnológico, con un sistema consistente en la rotación de sus palas a 90° de la dirección de movimiento del viento y su capacidad de producción que depende de vientos de alta velocidad hasta 150 m. de altura, que se van sofisticando con el perfeccionamiento de sus palas con formas aerodinámicas, nuevos materiales como fibra de carbón. Dichas palas que por su posición de rotación rompen la potencia cinética del viento en los espacios laterales a dicho generador, impidiendo instalar otro conjunto de palas sobre el mismo eje, que esta invención resuelve.
2. SUMARIO DE LA INVENCIÓN
La invención que se pretende patentar en el campo de las energías renovables del viento, se ha desarrollado con el objetivo de obtener mayor potencia del viento a igual o menor altura que los actuales generadores de palas aerodinámicas, hasta ahora las más productivas y comerciales del mundo, que requieren de vientos de altas velocidades que solo existen a grandes alturas y cuya ingeniería va produciendo más energía eléctrica que sus antecesores inmediatos.
Esto llevó al inventor a considerar nuevas posibilidades con sus recursos técnicos ganados con palas planas en sus dos invenciones anteriores, una de eje vertical patentado en los EEUU, otra de eje horizontal de palas extensibles publicado por la OMPI y en fase nacional, ambas en estado de abandono por falta de capital para construir prototipos comerciales y hacerlos evaluar científicamente para presentarlos al mercado y que le sirvan a la humanidad.
Dichas posibilidades al ser diseñadas en el papel, generaron hipótesis que se podían resolver y, si no se demuestran que son posibles y verdaderas no ameritarían patentarlos. Como las pruebas de ensayo realizadas por el inventor han demostrado su valía, se procede a demostrar su valor como un potencial producto para producir más energía renovable y contribuir a la lucha contra el cambio i climático que solo será paliado o detenido con mayor producción de energía renovable.
-Primera hipótesis: Que una pala eólica plana con ángulo diedro agudo en uno de sus lados sobre un eje horizontal puede girar a 90° del viento.
-Segunda hipótesis: Que dos conjuntos de palas con ángulo diedro agudo a un lado pueden girar sobre un solo eje horizontal en una sola dirección de rotación.
-Tercera hipótesis: Dos conjuntos de palas con ángulo diedro, con ejes independientes centrados sobre un solo eje matemático, pueden girar en direcciones contrarias, con la misma masa de viento, como dos conjuntos de una sola dirección de rotación. -
- Cuarta hipótesis: Dos ejes rotatorios provenientes de dos conjuntos de palas de ángulo diedro de doble rotación, pueden activar los dos campos magnéticos de un generador eléctrico de doble rotación, duplicando la producción de cada conjunto de palas con una sola masa de viento.
Esto requiere del diseño y construcción de nuevas palas semiplanas que capten más potencia cinética del viento que las aerodinámicas, reteniendo el 50% del viento que impacta al chocar con el viento con la pala en su lado frontal, cuyas dos mitades del fluido se van hacia los dos lados longitudinales de dicha pala, que en esta invención la mitad es retenida por el lado interior del ángulo diedro de la nueva pala, convirtiendo dicha masa de viento chocando contra el lado interior de dicho lado menor, en una fuerza de impulso adicional al obtenido con el diseño tradicional. Para este fin se diseñó y construyó un prototipo de ensayo formado solo por dos palas rectangulares alargadas con una bocina al centro para el ajuste a un eje rotatorio horizontal, cuyos dos lados iguales hacia sus extremos fueron construidos con láminas de aluminio liviano auto estructurado por doblez total en un lado recto continuo y en el otro lado una lámina adicional doblada en ángulo diedro aproximado al 30% del ancho de la parte mayor o principal. Puesto a funcionar a 90° de la dirección de movimiento del viento de un ventilador doméstico, demostró una perfecta coincidencia con la hipótesis de propiedades de aumento de fuerza rotatoria de las nuevas palas sobre el eje rotatorio. Comparado con un conjunto de tres palas aerodinámicas demostró mayor velocidad y equilibrio. El sistema de tres palas demostró lentitud, el nuevo sistema de dos palas de ángulo diedro demostró mayor suavidad y velocidad de rotación, que amerita presentarlo a Patente de Invención. El segundo objetivo del experimento consistió en hacer un análisis de la cantidad de viento usado por las dos palas de ángulo diedro y siendo las dos palas solo una sección larga formando un rectángulo diametral en movimiento, era visible que así girara a muy alta velocidad, siempre sería proporcional a esa inmensa masa de viento no tocada que pasaba a ambos lados de las palas, conservando intactas su potencia cinética que nadie la estaba utilizando. Generando dos nuevos objetivos técnicos inevitables.
Uno, hacer funcionar dos conjuntos de palas sobre un mismo eje horizontal solo separados por la góndola con sus elementos mecánicos y generador eléctrico convencional, si ambos giraran en la misma dirección.
Dos, hacer funcionar dos conjuntos de palas girando en dirección contraria sobre un solo eje teórico, pero cada eje incidiendo sobre un generador eléctrico de doble rotación.
3. BREVE DESCRIPCION DE LOS GRÁFICOS Gráf ico 01 - Vista de un generador con palas de ángulo diedro PSP para
publicación.
Gráfico 02 - Corte de una pala aerodinámica actual.
Gráfico 03 - Corte de una pala de ángulo diedro tal como fue ensayada.
Gráfico 04 - Corte de una pala de ángulo diedro desarrollada.
Gráfico 05 - Vista frontal de una pala de ángulo diedro tal como fue
ensayada.
Gráfico 06 - Vista frontal de una pala de ángulo diedro para generadores de gran tamaño
Gráfico 07 - Vista frontal de dos palas de ángulo diedro armadas a 180° del círculo de rotación.
Gráfico 08 - Vista frontal de un conjunto de dos palas de ángulo diedro en relación al eje rotatorio horizontal saliendo de la góndola.
Gráfico 09 - Corte de una pala de ángulo diedro en relación con el viento
Gráfico 10 - Corte en elevación de un generador eólico de dos palas rotando en la misma dirección, sobre un solo eje horizontal.
Gráfico 11 - Vista frontal de un conjunto de dos palas de ángulo diedro cruzado al ojo para girar en la misma dirección, centradas por una bocina del eje rotatorio. Gráfico 12 - Corte en elevación de un generador eólico mostrando la incidencia del viento en el primer y segundo conjunto. Gráfico 13 - Vista frontal de dos conjuntos de palas de ángulo diedro cruzadas y centradas en un solo eje común, con los ángulos diedros en lados opuestos en cada conjunto para girar en direcciones contrarias.
Gráfico 14 - Vista en elevación de una generador eólico de doble rotación, mostrando los ejes de movimiento rotatorio contrario desde las palas hasta el generador de doble rotación.
4. MEMORIA DESCRIPTIVA DE LA INVENCIÓN La invención desarrollada experimental y teóricamente en su máxima expresión digna de ser patentada, se presenta en el Gráfico 01 , como un nuevo generador eólico completo de doble rotación y de máxima producción de energía renovable para fines de publicación.
Como la invención sigue un objetivo de obtener una mayor producción eléctrica de las tres palas aerodinámicas actuales, cuyo corte transversal se muestra en el Gráfico 02, se conceptuó una nueva pala para efectos de laboratorio. Dicha pala rectangular de 20 cm. de largo, plana, tal como enuncia la hipótesis que se muestra ene Gráfico 03, fabricada en una plancha liviana doblada de aluminio y probada con un ventilador de oficina, para todos los efectos de dicho proceso de investigación. Dicha lámina rectangular ( 1 ), con un ángulo diedro adicional ( 2 ), que se muestra en el Gráfico 03, y el Gráfico 05, tal como fue fabricado y probado. Pala que puede mantenerse vigente para generadores pequeños o medianos porque tiene más área de impacto con el viento, resultando más conveniente en dichas proporciones.
Lo expuesto hasta aquí, resuelve la primera hipótesis de obtener movimiento rotatorio de una pala con una ángulo diedro sobre un eje horizontal a 90° de la dirección de movimiento del viento, sin embargo, las palas para generadores de mayor longitud en niveles de mayor velocidad de viento se muestran en el Gráfico 04, de un corte transversal de dicha pala ( 1 ), con una forma cónica aguda hacia sus dos lados extremos, por efecto de la estructura interior necesaria para palas de gran longitud y peso, así como la sección adicional en ángulo diedro ( 2 ), y una pala desarrollada completa para generadores de gran longitud y capacidad de producción que requieren de forma cónica aguda como se aprecia en una vista frontal en el Gráfico 06, donde la pala ( 1 ), empieza en la bocina cilindrica ( 4 ) y se prolonga en forma decreciente hacia la punta y hacia su derecha se ve en blanco el perfil diedro adicional ( 2 ) El Gráfico 07, presenta una vista frontal de dos palas ensambladas en par con las secciones ( 1 ), a la izquierda en la parte baja y derecha en la parte alta y las secciones dos en el mismo orden desigual, formando un diámetro sobre el eje ( 3 ), con las dos palas ( 1 ), en posición diametral, dentro del círculo de rotación de la pala superior hacia la izquierda y la pala inferior hacia la derecha, movidos por el viento ( 10 ), que los impulsa hacia la izquierda y derecha a los lados menores ( 1 -a ), al desviarse del centro de la pala hacia el ángulo diedro, generando un poderoso movimiento rotatorio circular de 360° expresado por las flechas ( 11 ).
Este Gráfico puede ser objetado diciendo que es lo mismo que hacen las palas aerodinámicas, pero eso no es cierto, porque en dichas palas el viento se desvía hacia ambos lados de la pala libremente, mientras en las palas con ángulo diedro la mitad del viento se fuga y la otra mitad hace un trabajo especial de impulsión y no se fuga, mientras el vértice exterior del ángulo corta el viento hacia ese lado alcanzando un alto grado de rotación, que muestra el Gráfico 08, donde el movimiento rotatorio se traslada hacia el generador eléctrico por medio del eje rotatorio ( 3 ), hacia la sala de máquinas o góndola ( 13 ). Dicho eje que se ajustará a la bocina ( 4 ), donde las palas ( ), vistas lateralmente reciben el impulso del viento ( 10 )
La hipótesis N° , es que una pala plana con ángulo diedro en uno de sus lados sobre un eje horizontal puede girar a 90° del viento, que se considera resuelta con lo desarrollado hasta este momento y con las pruebas de funcionamiento realizadas con el prototipo de ensayo, activadas por el viento del ventilador y las palas rectangulares construidas con aluminio.
La segunda hipótesis: Dos conjuntos de palas de ángulo diedro a un lado pueden girar sobre un solo eje horizontal en una sola dirección de rotación.
En el Gráfico 09, se presenta un corte transversal de una pala con ángulo diedro y su relación con el viento ( 10 ) que en la zona central de la pala choca directamente con ésta pero se desplaza hacia sus dos extremos para perderse en el vacío, la pestaña ( 1 -a ), que empalma con el extremo superior de la pala formando un ángulo diedro hacia cuyo interior se dirige la mitad de la masa de viento ( 10-a ), que choca con la mitad superior de la pala, viento que al no encontrar salida impulsa con energía a toda la pala a girar con firmeza hacia ese lado, mientras el viento ( 0-c ) equivalente más o menos a la cuarta parte de la masa del viento golpea adicionalmente a la pala sumándose al viento ( 10-a ) y el viento (10-b ) fuga hacia el vacío, generando un movimiento rotatorio de la pala con mucha efectividad . El Gráfico 10 presenta dos palas, visualizando solo la mitad posterior de las dos palas por corte transversal exacto el centro del eje rotatorio del sistema, por lo que estando las dos palas alineadas en el mismo punto, solo presentan un ángulo diedro ( 1 -a y 2-a ) cada uno en el borde superior de dicha pala. Las dos palas ( 1 y 2 ), son exactamente iguales porque se grafican uno detrás del otro para fines de comprensión de su funcionalidad, pero en la práctica se ajustarán a 90° uno del otro para su máxima producción. En dicho Gráfico se muestra el movimiento rotatorio de las palas que tienen la misma dirección, cuya fuerza mecánica de torsión se traslada a través del eje rotatorio ( 3 ), por los piñones ( 16 y 17 ), hacia la caja de cambio de velocidad ( 5 ), y de ahí finalmente al generador eléctrico convencional ( 7 ).
Finalmente el Gráfico 11 , presenta dos conjuntos de palas dobles ( 1 y 2 ), exactamente ¡guales cruzadas al ojo pero centradas en un solo eje por la bocina 4, generando movimiento rotatorio de una sola dirección como el reloj dando la hora por la posición de sus ángulos diedros que son determinantes de esa función. Gráficos que confirman la hipótesis dos.
La hipótesis 3, sostiene que: Dos conjuntos con ángulo diedro con ejes independientes centrados sobre un solo eje matemático, pueden girar en direcciones contrarias, con la misma masa de viento de dos conjuntos de palas de una sola dirección de rotación.
Las pruebas de ensayo fueron hechas con dos conjuntos de palas dobles instalados sobre una columna de sustento que contenía dos juegos de rodajes dobles centrados en un solo eje matemático, dentro del cual giraban dos ejes rotatorios iguales de acero tubular que sostenían dos conjuntos de palas dobles, con pestañas o dobleces en ángulo diedro en lados diferentes como se muestra en el Gráfico 12, que presenta un corte de dos palas de movimiento contrario vistos a 0o de su línea de rotación, desde el centro del eje rotatorio ( 3 ) y de todo el sistema definidos por las flechas rotatorias ( 11 ), para la pala ( 1 ), que recibe el viento ( 10 ) que al chocar frontalmente con la pala se divide en dos direcciones, donde el viento ( 10-a ) se inserta dentro del ángulo diedro 1 -a, impulsando la pala en esa dirección y el viento 10-b, se pierde en el vacío.
El movimiento rotatorio del eje ( 3 ) se traslada a la caja de multiplicación ( 5 ), y por el eje ( 6 ), a uno de los campos del generador eléctrico de doble rotación ( 7 ), aportando el 50% de RPM mientras la pala ( 2 ), ubicada en la parte posterior de la góndola con el ángulo diedro en la parte inferior, tendrá el mismo efecto del viento impulsándolo en dirección contraria, aportando su movimiento rotatorio marcado por la flecha ( 11 -a ), de ahí por el eje ( 3 ) hacia el multiplicador ( 5-a ), y por el eje ( 6-a ), hacia el otro campo magnético del generador eléctrico, aportando el 50% de RPM restante para su funcionamiento. El concepto del 50% es solo referencial porque en este caso no es necesario que exista igualdad de RPM de cada conjunto contrario, siendo indiferente dicha condición, porque las RPM, en caso de desigualdad siempre serán iguales a la suma de cada uno de los ejes, que siempre serán superiores a los generadores con rotor y estator que van de cero a lo que produce solo el rotor.
El Gráfico13, presenta dos conjuntos de palas ( 1 y 2 ) de ángulo diedro cruzadas al ojo centrados por la bocina ( 4 ) con sus ángulos diedro en lados diferentes que generan movimientos rotatorios contrarios, indicados por las flechas ( 1 1 ) y (11 -a ). Gráficos que demuestran las pruebas realizadas para resolver la tercera hipótesis de la presente invención.
El Gráfico 14, muestra una elevación del mismo sistema del Gráfico 13, con la diferencia que en este caso se muestra el sistema completo, con la torre ( 21 ) que muestra un sistema de engranajes ( 9 ), que sustentan a la góndola ( 13 ) que contiene todas las máquinas que engranan el movimiento rotatorio y producen energía eléctrica y sobre dichos engranajes se orientará constantemente su eje en línea con el movimiento del viento por medios electro mecánicos conocidos. Dicho Gráfico, muestra las palas ( 1 y 2 ), vistas lateralmente con su forma longitudinal decreciente, recibiendo el conjunto de palas ( 1 ) el primer impacto del viento y las palas ( 2 ), el impacto del viento que ha pasado al otro lado sin perder su potencia cinética, por el amplio espacio dejado por la forma diametral de solo dos palas.
Cuarta hipótesis: Dos ejes rotatorios de dos conjuntos de palas con ángulo diedro de rotación contraria, pueden activar los dos campos magnéticos de un generador eléctrico de doble rotación, duplicando la producción eléctrica de cada conjunto de palas con una sola masa de viento.
Esta hipótesis se resuelve con la construcción de un generador eólico formado por dos conjuntos de palas con ángulo diedro con eje físicos centrados en un solo eje matemático a los dos extremos de una góndola que muestra el Gráfico 13, con alineamiento permanente a 0o de la dirección de movimiento del viento, el primero pala ( 1 ) en el lado frontal o delantero del generador y el segundo ( 2 ) en el lado posterior, cada uno con sus ángulos diedros ( 1 -a y 2-a ), de rotación contraria, donde los ejes rotatorios ( 3 ), trasladan su movimiento rotatorio a la caja de velocidad ( 5 ), y a través de los ejes ( 6 ), al generador eléctrico de doble rotación o alternador ( 7 ). Pero como el generador eléctrico de doble rotación recibe impulso rotatorio de los dos ejes de rotación contraria ( 6 y 6-a ), cada uno de ellos inciden en un campo equivalente: Uno al rotor y el otro al estator. En este caso ambos campos rotan o giran en direcciones contrarias, sumando sus RPM, que pueden ser el doble y si así no fuera, siempre el total de RPM será muy alto en comparación con un solo conjunto de palas, utilizando para este fin la misma masa de viento, utilizada por un generador de dos conjuntos de palas de una sola dirección de rotación.
Para mejor ilustración el mismo Gráfico 14, presenta el generador eléctrico ( 7-a ), flotando, sin sustento físico visible, donde la corriente eléctrica ( 18 ) producida es acopiada por los carbones ( 19 ), suspendidos de un anillo exterior 20, que no toca al generador en ningún instante.
El generador eléctrico de doble rotación ya fue reclamado por mí en mi invención "Generador Eólico Marino de Palas Extensibies", donde más de dos conjuntos de tres palas pueden girar en sentido contrario, por girar en la misma dirección del viento que no altera la potencia cinética de dicha masa de viento en sus espacios laterales de rotación, y se presenta aquí solo para ilustrar como se produce la duplicación de la energía eléctrica con palas de ángulo diedro de rotación contraria, que en este caso gira como las tripalas gigantes a 90° de la dirección de movimiento del viento con un efecto que es el mismo, pero cuya fuente de rotación no es igual al anterior y tiene su propio principio y sustento.

Claims

REIVINDICACIONES
1. Un Generador Eólico con Palas de Ángulo diedro PSP., caracterizado por una pala aerodinámica formada por dos secciones longitudinales con: Una mayor o principal semiplana por ambos lados que capta la potencia cinética del viento girando a 90° de dicho fluido, y una menor lateral adicional aproximada a un cuarto del ancho mayor, fijo a uno de sus lados formando un ángulo menor a 30°, dicha sección programada para detener y captar la potencia cinética del viento que fuga hacia ese lado en el momento de colisión con dicho vector natural, provocando una mayor fuerza de rotación en dicha dirección. Dichas palas armadas en un conjunto de dos a 180° de su eje horizontal de rotación, resuelven la hipótesis de: Dos conjuntos de palas paralelas, uno delante y otro en la parte posterior de un generador eléctrico pueden duplicar su producción. Así mismo otra hipótesis de: Dos conjuntos de palas de ángulo diedro centrados en un solo eje matemático pueden girar en direcciones contrarias, activando los dos campos magnéticos de un generador eléctrico flotante de doble rotación, duplicando nuevamente la producción de cada conjunto.
2. Un Generador Eólico con Palas de Ángulo Diedro PSP, de acuerdo a la reivindicación 1 , caracterizado por una pala aerodinámica compuesta por una sección longitudinalmente semiplana por ambos lados con una parte central de mayor espesor por razones estructurales, dicha pala formando en uno de sus lados un ángulo diedro agudo menor a 30° con una sección equivalente a un cuarto del ancho de la pala, para captar una potencia cinética adicional del viento que lo impulsa hacia ese lado, dicho ángulo diedro con un borde exterior afilado para cortar el viento, que así mismo por su lado exterior capta una quinta parte del viento que colisiona con toda la pala de ángulo diedro.
3. Un Generador Eólico con palas de ángulo diedro PSP, de acuerdo a la reivindicación 2, caracterizado por producir movimiento rotatorio direccional en la pala por la posición del ángulo diedro sea a la izquierda o derecha, cuando están ajustadas diametralmente a un eje rotatorio horizontal de un generador eólico de palas de ángulo diedro.
4. Un Generador Eólico con palas de ángulo diedro PSP, de acuerdo a la reivindicación 2, caracterizado por sus palas de forma semiplana ancha en su base o punto de empalme con otra pala formando un conjunto diametral con otra similar, con forma longitudinal decreciente lateral y frontalmente hasta un ángulo agudo en su extremo opuesto. Armable y desmontable al eje rotatorio horizontal para instalación y mantenimiento.
5. Un Generador Eólico con palas de ángulo diedro PSP, de acuerdo a la reivindicación 2, caracterizado por la fabricación de las palas diedro en dos formas: Uno para generadores de pequeña y mediana capacidad, con palas planas y rectangulares de aluminio auto estructurado por doblado y moldeado. Dos, para generadores de gran envergadura con una estructura longitudinal interior de aluminio, forradas con el mismo material, fibra de vidrio o acero inoxidable, relleno con poliuretano expandido para evitar vibraciones y ruidos.
6. Un Generador Eólico con palas de ángulo diedro PSP, de acuerdo a la reivindicación 1 , caracterizado por el movimiento rotatorio de dos conjuntos de palas sobre un solo eje horizontal, perpendicular a las palas y al viento, con una misma dirección de rotación, por la posición igual de su ángulo diedro en los dos conjuntos de palas, que determinan una sola dirección de rotación de las palas a 90° del viento, duplicando la producción de un solo conjunto de palas de ángulo diedro.
7. Un Generador Eólico con palas de ángulo diedro PSP, de acuerdo a la reivindicación 1 , caracterizado por la acción de dos conjuntos de palas de ángulo diedro centrados en un solo eje teórico horizontal del generador: Uno, en la parte anterior del generador eléctrico girando en una dirección y el otro conjunto en la parte posterior de la góndola girando en dirección contraria activando los dos campos magnéticos del generador eléctrico de doble rotación, que duplican sus RPM, multiplicando por dos su capacidad de generación eléctrica usando una sola masa de viento.
PCT/PE2014/000010 2013-07-17 2014-07-15 Generador eólico con palas de ángulo diedro psp WO2015009175A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480049198.0A CN105518291B (zh) 2013-07-17 2014-07-15 包含二面角叶片psp风力发电机
CA2918621A CA2918621A1 (en) 2013-07-17 2014-07-15 Wind turbine with blades at dihedral angles (psp)
US14/905,791 US20160186719A1 (en) 2013-07-17 2014-07-15 Psp wind-powered generator comprising blades at dihedral angles
EP14826589.5A EP3059442A4 (en) 2013-07-17 2014-07-15 Psp wind-powered generator comprising blades at dihedral angles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PE0015652013 2013-07-17
PE1565-2013/DIN 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015009175A1 true WO2015009175A1 (es) 2015-01-22

Family

ID=52346516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PE2014/000010 WO2015009175A1 (es) 2013-07-17 2014-07-15 Generador eólico con palas de ángulo diedro psp

Country Status (5)

Country Link
US (1) US20160186719A1 (es)
EP (1) EP3059442A4 (es)
CN (1) CN105518291B (es)
CA (1) CA2918621A1 (es)
WO (1) WO2015009175A1 (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106321357A (zh) * 2016-08-18 2017-01-11 上海电机学院 一种两风向双馈异步风力发电机
WO2019018220A1 (en) 2017-07-20 2019-01-24 Jmcc Wing, Llc WIND ENERGY SYSTEMS
WO2019139491A2 (es) * 2018-01-12 2019-07-18 Pedro Saavedra Pacheco Generador eólico con palas de angulo diedro psp re-perfeccionado
FR3079884B1 (fr) * 2018-04-05 2020-11-27 Jean Jacques Hort Eolienne construite a partir de deux eoliennes a axe horizontal comprenant un systeme de voiles mobiles
CN109595123A (zh) * 2019-02-19 2019-04-09 鲁能新能源(集团)有限公司 具有双层叶片的风力发电装置
CN111022251A (zh) * 2020-01-09 2020-04-17 诸暨都高风能科技有限公司 一种扇叶可关闭的风力发电机头
CN114151273B (zh) * 2021-12-16 2024-04-12 中国科学院电工研究所 一种基于双输入差速轮系的轮毂双叶轮同向旋转风电机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE134220C (es) *
US2385070A (en) * 1941-10-08 1945-09-18 Gant Leslie Fan
US3827482A (en) * 1972-12-21 1974-08-06 R Pope Radiator fan for earth movers
WO2012023866A1 (es) * 2010-08-20 2012-02-23 Pedro Saavedra Pacheco Generador eolico marino de palas extensibles
WO2013053257A1 (zh) * 2011-10-14 2013-04-18 Zhu Yongbo 一种风能采集装置及其风力发电系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213057A (en) * 1978-05-08 1980-07-15 Endel Are Wind energy conversion device
US4360315A (en) * 1980-04-14 1982-11-23 Leonard Olson Vortex wind turbine
US6278197B1 (en) * 2000-02-05 2001-08-21 Kari Appa Contra-rotating wind turbine system
US7448337B1 (en) * 2007-02-21 2008-11-11 Larry W. Simnacher Wind energy generating apparatus with dihedral sails
WO2011097655A2 (en) * 2010-02-04 2011-08-11 Johannes Faul V- shaped turbine blade and assembly
DE202011104112U1 (de) * 2011-08-05 2012-11-23 Friedrich Mittelstädt Windkraftanlage
US10030628B2 (en) * 2012-05-24 2018-07-24 Thunderbird Power Corp Horizontal axis wind machine with multiple rotors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE134220C (es) *
US2385070A (en) * 1941-10-08 1945-09-18 Gant Leslie Fan
US3827482A (en) * 1972-12-21 1974-08-06 R Pope Radiator fan for earth movers
WO2012023866A1 (es) * 2010-08-20 2012-02-23 Pedro Saavedra Pacheco Generador eolico marino de palas extensibles
WO2013053257A1 (zh) * 2011-10-14 2013-04-18 Zhu Yongbo 一种风能采集装置及其风力发电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3059442A4 *

Also Published As

Publication number Publication date
CA2918621A1 (en) 2015-01-22
CN105518291A (zh) 2016-04-20
CN105518291B (zh) 2018-08-07
EP3059442A1 (en) 2016-08-24
US20160186719A1 (en) 2016-06-30
EP3059442A4 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
WO2015009175A1 (es) Generador eólico con palas de ángulo diedro psp
ES2463118T3 (es) Turbina helicoidal hueca de forma cónica para transducción de energía
ES2338974B1 (es) Central electrica de rotores marinos mecanicos.
ES2709328T3 (es) Turbina de viento y edificio con dicha turbina de viento
ES2647915T3 (es) Unidad y conjunto de turbina
ES2742998T3 (es) Método para determinar y controlar el ángulo de ataque de pala de aerogenerador de velocidad fija
US8932005B2 (en) Archimedean modular / multi-axis rotor (AMR)
JP2016014393A (ja) タービン装置のための羽根デバイス
WO2012023866A1 (es) Generador eolico marino de palas extensibles
WO2000046498A1 (es) Generador hidraulico y/o eolico perfeccionado
WO2014194438A1 (es) Dispositivo convertidor de energia cinetica de mareas en electrica que posee una hidroturbina de flujo transversal capaz de direccionar los flujos captados de una manera optima redirigiendo y acelerandolos hacia un rodete interno de la h idroturbina y una planta generadora de electr1cidad que ocupa a dicho dispositivo.
Nugroho et al. Slotted blade effect on Savonius wind rotor performance
WO2019151847A2 (es) Sistema para la generación de potencia eléctrica a partir del viento
US10202962B2 (en) PSP blades with dihedral angles, comprising a longitudinal depression
WO2016030910A4 (en) Water kinetic energy driven hydro turbine
RU161432U1 (ru) Ветродвигатель складной
ES2514990B2 (es) Sistema de aceleración del flujo del aire para aerogeneradores
Dumitrescu et al. Wind tunnel experiments on vertical-axis wind turbines with straight blades
ES2401801T3 (es) Aerogenerador
ES2614275T3 (es) Turbina de palas múltiples con núcleo de sección trasversal poligonal
Bhayo et al. Performance investigation of the S-Rotors
JP6638952B2 (ja) 風洞付きwタービン発電機
KR20140102459A (ko) 수직축풍력 발전기에 사용하는 수직축 날개들부(분)용기
Loganathan et al. Aerodynamic behaviour of small Savonius turbine with 3 different configurations
Mosquera et al. Experimental Study Modeling Straight-bladed Vertical Axis Wind Turbine with Central Panel to Aid Self-Starting Capability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826589

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14905791

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2918621

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016000756

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014826589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014826589

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016000756

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160114