WO2000040642A1 - Resin molded product - Google Patents

Resin molded product Download PDF

Info

Publication number
WO2000040642A1
WO2000040642A1 PCT/JP1999/006090 JP9906090W WO0040642A1 WO 2000040642 A1 WO2000040642 A1 WO 2000040642A1 JP 9906090 W JP9906090 W JP 9906090W WO 0040642 A1 WO0040642 A1 WO 0040642A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin molded
conductive filler
resin
weight
voltage
Prior art date
Application number
PCT/JP1999/006090
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroya Kakegawa
Original Assignee
Osaka Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co., Ltd. filed Critical Osaka Gas Co., Ltd.
Priority to US09/869,262 priority Critical patent/US7049362B2/en
Priority to JP2000592348A priority patent/JP3634752B2/en
Priority to MYPI99005749A priority patent/MY135326A/en
Publication of WO2000040642A1 publication Critical patent/WO2000040642A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding

Definitions

  • the present invention moldings, in particular, c relates to a resin molded product
  • Molded bodies made of resin materials are widely used in the field of electrical and electronic components because they generally exhibit excellent electrical insulation properties. However, writing the resin material itself
  • Electric and electronic component materials obtained by molding are generally easily charged due to their high electrical insulation properties, and are liable to damage electronic components such as integrated circuits due to adhesion or discharge of dust. is there. For this reason, a resin molded body used in the semiconductor manufacturing field or the like is usually given weak conductivity by various methods.
  • a method of applying a surfactant solution to the resin molded body is known.
  • a surfactant solution is separately applied to the already manufactured resin molded body in a separate step, so the surfactant solution is applied in addition to the resin material molding step.
  • An additional process is required.
  • the conductivity of the resin molded body obtained by such a method is easily affected by humidity, and exhibits the required conductivity under conditions where the surface of the resin molded body is easily wet (that is, in a high humidity state). Although it is easy, it does not easily exhibit the required conductivity under conditions where the surface is hardly wet (ie, dry).
  • the applied surfactant is often absorbed into the molded body or removed from the surface by friction, so that a decrease in conductivity over time is avoided. Absent. For this reason, such a resin molded body maintains conductivity for a long time. As difficult as possible, the surfactants removed can cause contamination in the semiconductor manufacturing process.
  • a resin molded body having conductivity is realized by adding a conductivity-imparting material to a resin material in advance, mixing or kneading the resin material, and molding such a resin material into a required shape. are doing.
  • the conductivity-imparting material used at this time is usually an antistatic agent such as a surfactant, or a conductive filler such as a metal material or a carbon material.
  • the antistatic agent such as a surfactant
  • the antistatic agent gradually migrates from the inside of the resin molded product to the surface, so that the resin molded product becomes conductive. It takes a long time to develop.
  • the effect of the antistatic agent differs depending on the type of resin material, it is necessary to select an antistatic agent suitable for the resin material, taking into account the glass transition temperature, crystallinity, and compatibility with the resin material. There is.
  • the antistatic agent that has migrated to the surface of the resin molded body is often removed by friction, as in the case of the above-described coating method, and as a result, contamination can occur in the semiconductor manufacturing process and the like. There is also.
  • the conductive filler can quickly impart conductivity to the resin molded article only by mixing an appropriate amount with the resin material. Unlike the case of the antistatic agent, the conductive filler is not compatible with the resin material. Because there is no need to consider combinations (ie, because it has versatility for various resin materials), it is easier to achieve stable conductivity for molded products than when using an antistatic agent. Can be granted.
  • Japanese Patent Application Laid-Open No. 63-53017 discloses a resin molded product having a volume of 64 to 80 volumes. / 0 resin and 36 to 20% by volume of conductive material It describes a resin molded product obtained by molding a resin composition containing the resin composition, wherein a desired resistance value is achieved by applying a voltage of 1,000 V or less.
  • the conductive substance used here is a particle or fiber of a good electrical conductor such as a metal, a metal oxide, and carbon, or a mixture thereof, and the specific gravity thereof is generally considered to be 1 or more. It is considered that the resin molding contains at least 20% by weight of the conductive substance.
  • Japanese Patent Application Laid-Open No. 62-110117 discloses that a linear body (core) formed of a polymer (a resin material) containing a conductive substance is coated with an insulating polymer. It describes a conductive composite linear body obtained by subjecting a composite linear body on which layers are arranged to a treatment with a high voltage of 10 kV or less, that is, a resin molded body.
  • the conductive substance used here is, for example, carbon black, and its use amount is, for example, 20 to 200% by weight based on the weight of the polymer.
  • the conductive filler is more expensive than the resin material.
  • the prices in Japan of polypropylene resin and modified polyphenylene oxide resin, which are widely used for producing resin molded articles are approximately 100 yen / kg and 1.0 yen, respectively, at the time of filing the present application.
  • the price of pitch-based carbon fiber and carbon black used as conductive materials in Japan during the same period was approximately ⁇ 3,000 / kg and ⁇ 500 / kg, respectively. , 000 yen / kg. Therefore, all of the resin molded articles described in the above-mentioned publications have a large amount of conductive filler mixed with the resin material, and thus can have the required conductivity, but are extremely expensive.
  • the resin molded article described in the above-mentioned Japanese Patent Application Laid-Open No. 63-53017 contains a large amount of conductive filler, its color tone is strongly affected by the color of the conductive filler.
  • the resin molded body described in the examples of this publication contains a large amount of carbon fiber or graphite powder as the conductive filler, the color naturally becomes black, and the desired color itself is obtained. It is extremely difficult to grant freely.
  • the molded article described in Japanese Patent Application Laid-Open No. Sho 62-1100917 has such a structure as to the core in order to realize a color that is in harmony with other non-conductive fibers. As a result of arranging the coating layer for realizing the color, the structure becomes complex with a two-layer structure of the core and the coating layer.
  • An object of the present invention is to increase the conductivity of a resin molded body while suppressing the amount of a conductive filler to be added, and particularly to reduce the surface resistance.
  • Another object of the present invention is to realize a resin molded body which exhibits high conductivity, particularly low surface resistance, and is provided with a color despite the addition amount of the conductive filler being suppressed.
  • the resin molded article according to the present invention includes a matrix made of a resin material and a conductive filler dispersed in the matrix, the conductive filler content is less than 20% by weight, and 20 k A voltage application process of V or more and less than the dielectric breakdown voltage of Matritus has been performed.
  • the content of the conductive filler is, for example, not less than 1.0% by weight and not more than 16% by weight.
  • the filler group electrical resistance 1 0 5 ⁇ cm or more 1 0- 2 ⁇ cm or less belongs to.
  • the conductive 14 filter is, for example, a fibrous material.
  • the average fiber diameter of the conductive filler is, for example, not less than 0.02 ⁇ m and not more than 15 ⁇ m.
  • the average residual flux ratio of the conductive filler in the resin molded body is, for example, 10 or more and 100 or less.
  • the resin molded article of the present invention further includes, for example, a coloring material dispersed in a matrix together with a conductive filler.
  • the conductive filter is, for example, at least one of a carbon fiber and a graphite fiber.
  • a concealing material for concealing the color of the conductive filler, which is dispersed in the matrix together with the conductive filler and the coloring material may be further included.
  • the surface resistance of the resin molded article of the present invention as described above, is usually less than 1 0 5 ⁇ / mouth least 1 0 1 2 ⁇ port.
  • the resin molded article of the present invention Since the resin molded article of the present invention has been subjected to a predetermined voltage application treatment, it can exhibit higher conductivity, especially small surface resistance, than other resin molded articles containing the same amount of conductive filler. In other words, the resin molded body can exhibit higher conductivity than expected normally from the content of the conductive filler contained therein, in particular, small surface resistance. In addition, since the content of the conductive filler is regulated in the above range, the resin molded body may exhibit a color according to the color of the coloring material when the coloring material is dispersed in the matrix. .
  • a resin molded article includes a matrix made of a resin material, and a conductive filler dispersed in the matrix, wherein the content of the conductive filler is less than 20% by weight.
  • the surface resistance after heat treatment of the resin material at the softening point and cooling to room temperature is 100 times or more the surface resistance before heat treatment.
  • the content of the conductive filler is, for example, not less than 1.0% by weight and not more than 16% by weight.
  • the surface resistance of this resin molded body when subjected to a heat treatment followed by a voltage application of 2 OkV or more and less than the dielectric breakdown voltage of the matrix, is usually The surface resistance before application processing is 1 Z 100 or less.
  • the resin molded body further contains, for example, a coloring material dispersed in a matrix together with a conductive filler.
  • the resin molded body may further include a concealing material for concealing the color of the conductive filler dispersed in the matrix together with the conductive filler and the coloring material, for example.
  • the resin molded article according to these aspects has a lower surface resistance and can exhibit higher conductivity than other resin molded articles containing the same amount of conductive filler.
  • the amount of the conductive filler to be added is regulated in the above-described range, the resin molded body can exhibit a color according to the color of the coloring material when the coloring material is dispersed in the matrix. .
  • the method for producing a resin molded article according to the present invention includes the steps of: preparing a molding material containing a resin material and a conductive filler, wherein the content of the conductive filler is set to less than 20% by weight;
  • the method includes a step of molding the molding material into a predetermined shape, and a step of applying a voltage of 20 kV or more and less than the dielectric breakdown voltage of the resin material to the molded molding material.
  • the content of the conductive filler in the molding material is set to, for example, 1.0% by weight or more and 16% by weight or less.
  • the molding material further includes, for example, a coloring material. Further, in this case, the molding material may further include a concealing material for concealing the color of the conductive filler.
  • the same amount of a conductive filler is used by a conventional production method. It is possible to realize a resin molded body having higher conductivity as compared with a manufactured one, particularly, a small surface resistance.
  • the content of the conductive filler in the molding material is regulated to a certain amount or less. Therefore, when the molding material contains a coloring material, the color according to the coloring material is changed to a resin molding. Can be provided.
  • the processing apparatus of the present invention is a resin composition containing a conductive filler in a proportion of less than 20% by weight.
  • a voltage application section for applying a voltage of 20 kV or more and less than the dielectric breakdown voltage to the resin molded article, and a resin molded article directed to the voltage application section.
  • a transport unit for transporting for transporting.
  • a processing apparatus is also for increasing the conductivity of a resin molded product containing a conductive filler in a proportion of less than 20% by weight,
  • An electrode for applying a voltage of 0 kV or more and less than the dielectric breakdown voltage, and a transport means for transporting the resin molded body toward the electrode so that the electrode and the resin molded body are opposed to each other with a space therebetween.
  • the transportation means is grounded.
  • the electrode is an electrode group including, for example, a plurality of needle-shaped electrodes.
  • the processing device further includes, for example, an interval adjusting device for adjusting an interval between the electrode and the resin molded body.
  • the transfer means can, for example, transfer a large number of resin molded articles to the electrodes sequentially and continuously.
  • the apparatus for treating a resin molded article according to the present invention can convey the resin molded article toward the voltage applying section by the conveying means, and apply a predetermined voltage to the resin molded article there.
  • a predetermined voltage to the resin molded article there.
  • FIG. 1 is a schematic configuration diagram of a voltage application device used for manufacturing the resin molded article of the present invention.
  • FIG. 2 is a diagram showing the results of thermogravimetric analysis performed on an example of a resin molded body.
  • FIG. 3 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 1.
  • FIG. 4 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 2.
  • FIG. 5 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 3.
  • FIG. 6 is a graph showing the relationship between the content of the fiber group and the surface resistance of the disk obtained in Example 14 before and after the voltage application treatment. Detailed description of the invention
  • the resin molded body of the present invention mainly includes a matrix and a conductive filler dispersed in the matrix.
  • the matrix is made of a resin material and is formed into a desired shape.
  • the resin material used here is not particularly limited, and is a known thermoplastic resin or thermosetting resin.
  • thermoplastic resin examples include general-purpose plastics such as polyethylene resin, polypropylene resin, polystyrene resin and polyacrylstyrene resin, acrylic-butadiene-styrene resin (ABS), polyphenylether resin, polyacetal resin, and polycarbonate resin.
  • general-purpose plastics such as polyethylene resin, polypropylene resin, polystyrene resin and polyacrylstyrene resin, acrylic-butadiene-styrene resin (ABS), polyphenylether resin, polyacetal resin, and polycarbonate resin.
  • the thermosetting resin include a phenol resin, an epoxy resin, a polyimide resin, and an unsaturated polyester resin.
  • the conductive filler dispersed in the matrix is not suitable for the resin molding.
  • Metal material a carbon material, an organic material coated with a metal material, an inorganic material coated with a metal material, an inorganic material coated with carbon, or graphite. It is a coated inorganic material, or a mixture of two or more arbitrarily selected from these groups.
  • examples of the metal material include silver, copper, nickel, iron, aluminum, stainless steel and tin oxyacid.
  • the carbon material include carbon, carbon black, acetylene black, ketjen black, and graphite obtained by firing a carbon precursor such as polyacrylonitrile resin, pitch, kainol resin, rayon, and lignin.
  • examples of the organic material coated with a metal material include a nickel-coated resin.
  • examples of the inorganic material coated with a metal material include nickel-coated glass, silver-coated glass, aluminum-coated glass, nickel-plated glass, and nickel-plated carbon.
  • Examples of the inorganic material coated with carbon include potassium titanate coated with carbon.
  • An example of the inorganic material coated with graphite is a titanate rim coated with graphite.
  • the above-mentioned conductive fillers are various kinds such as a granular form, a flake form, a whisker form, and a fiber form, or an arbitrary mixture thereof, and the shape is not particularly limited.
  • the granular material silver powder, copper powder, nickel powder, iron powder, and tin oxide powder are used as the metal material, and silver-coated glass beads are used as the inorganic material coated with the metal material.
  • carbon black, acetylene black and ketjen black can be cited as those made of carbon materials.
  • the flakes include aluminum flakes and nickel methanol.
  • the whiskers potassium titanate whiskers coated with carbon as a carbon-coated inorganic material
  • the fibrous materials include long fibers and short fibers such as aluminum, copper, and stainless steel as those made of a metal material, and aluminum-coated glass fibers made of an inorganic material coated with a metal material.
  • nickel-plated glass fiber furthermore, nickel-coated resin fiber as an organic material coated with a metal material, and polyacrylonitrile-based carbon fiber, isotropic pitch-based carbon fiber as a carbon material.
  • carbon fibers such as anisotropic pitch-based carbon fiber, force-inol resin-based carbon fiber, rayon-based carbon fiber and lignin-based carbon fiber, and graphite fiber.
  • a preferable conductive film used in the present invention is that the required electric conductivity, particularly a small surface resistance can be realized in a resin molded body with a smaller amount of use.
  • 5 Omega cm above 10- 2 Omega cm following are more preferably not more than 10 4 Omega cm above 10- 2 ⁇ cm.
  • the group of electrical resistance values of the filler is not the electrical resistance value of the individual pieces of the conductive filler contained in the resin molded product, but the electrical resistance value of the conductive filler group (aggregate). It means something that is required as follows. First, an electric insulator having a through hole with a diameter of 0.8 cm in the center is prepared, and one end of the through hole is sealed with a copper electrode.
  • a group of conductive fillers of 0.5 g is filled in the through-hole, a copper push rod is inserted from the other end of the through-hole, and a pressure of 20 kgf Zcm 2 is applied to raise the group of conductive fillers to a height X. Mold into a column of cm.
  • a measuring instrument is connected between the electrode and the push rod, and the electric resistance value of a group of the conductive filler compressed in the through hole is measured.
  • FILLER group electric resistance the area of the end face of the molded body of the conductive fillers groups measured electrical resistance value (i.e., 0. 4 2 7u cm 2) multiplied by and dividing the value by the height X cm volume It can be obtained as the resistance value ( ⁇ cm).
  • the measuring instrument used to measure the electrical resistance value of a group of conductive fillers is blank It is preferable to be able to cancel the electric resistance of the electrode, that is, the electric resistance when the electrode and the push rod are brought into direct contact.
  • a digital multimeter "R6552" manufactured by Advantest Co., Ltd. be able to.
  • the term “filler group electric resistance value” refers to the volume resistance value of the aggregate of the conductive fillers thus determined.
  • the conductive filler is preferably a fibrous one, particularly an ultrafine fibrous one having an average fiber diameter of not less than 0.02 ⁇ and not more than 15 zm.
  • a fibrous conductive filler When such a fibrous conductive filler is used, the required conductivity, particularly a small surface resistance, can be realized in the resin molded body with a smaller amount of use, and the desired coloring material described later can be used. It becomes easy to freely impart a color, particularly a vivid color, to the resin molded product.
  • an ultrafine fibrous conductive filler having an average fiber diameter of 0.002 ⁇ m or more and 2 ⁇ m or less it is assumed that the conductive filler is carbon fiber or graphite fiber made of a black carbon material. Even if a coloring material described below is used alone, that is, a clear color can be easily imparted to the resin molded body without using a concealing material described later.
  • Ultrafine fibrous conductive filler having an average fiber diameter of about 0.02 ⁇ m is Hyperion (a trade name of Hyperion), which is a kind of carbon fiber.
  • the resin molded product of the present invention has an average residual factor ratio of the conductive filler of 10 or more and 100, 0 or more. It is preferably manufactured so as to be not more than 00, more preferably not less than 15 and not more than 100,000. If the average residual factor ratio becomes less than 10 in the manufacturing process, the desired conductivity, particularly a small surface resistance, may not be achieved unless the amount of the conductive filler added is increased. Conversely, the average residual aspect ratio of the conductive filler exceeds 100,000 Resin moldings are generally difficult to manufacture.
  • the residual aspect ratio here is not the above-described aspect ratio of the conductive filler before mixing with the resin material, but after mixing with the resin material and molding the resin material.
  • this residual factor ratio is determined by, for example, thermally decomposing or dissolving the resin material constituting the resin molded body in a solvent to separate the conductive filler from the resin molded body.
  • the average length and average diameter of 100 pieces are measured with an optical microscope or a scanning electron microscope, it can be determined based on those values.
  • the resin molded article of the present invention may further include a coloring material dispersed in a matrix together with the above-mentioned conductive filler.
  • This coloring material is for imparting a desired color to the molded article of the present invention, and is not particularly limited as long as it is non-conductive. It is an inorganic pigment. Specific examples of organic pigments that are preferably used include azo pigments such as naphthol red, condensed azo yellow and condensed azo red, phthalocyanine pigments such as copper phthalocyanine blue and copper cap cyanine green, and dianthraquinolyl red.
  • condensed polycyclic pigments such as thioindigo, verinone orange, beryllen scarlet, quinatari domagenta, isoindolinone yellow, quinophthalone yellow, and pyrrolinore red.
  • inorganic pigments preferably used include zinc oxide, titanium oxide, red iron oxide, oxide pigments such as chromium oxide, cobaltdeve, and cobalt blue; sulfide pigments such as cadmium yellow and force red; and ultramarine blue.
  • Silicate pigments such as calcium carbonate, and phosphate pigments, such as manganese biorete.
  • these coloring materials are appropriately selected and used in consideration of compatibility with the resin material to be used, and they may be appropriately mixed and used to achieve a desired color.
  • the resin molding of the present invention contains the above-mentioned coloring material
  • the resin molding further contains a concealing material for concealing the color of the conductive filler, which is dispersed in a matrix together with the conductive filler and the coloring material. Is also good.
  • the concealing material used here suppresses the color of the resin molded body given by the colorant from being influenced by the color of the conductive filler, and makes the resin molded body exhibit a vivid color by the colorant.
  • a non-conductive white granular material is preferable.
  • the content of the above-mentioned conductive filler is less than 20% by weight, preferably from 0.01% by weight to less than 20% by weight, more preferably from 0.1% by weight to 1% by weight. It is set so as to be 8% by weight or less, more preferably 1.0% by weight or more and 16% by weight or less. If the content is 20% by weight or more, the resin molded product may become expensive and the conductive filler may fall off from the resin molded product to cause contamination.
  • the color of the resin molded body is strongly affected by the color of the conductive filler, and it is difficult to set the resin molded body to a desired color corresponding to the color of the coloring material even when a concealing material is used. become. Further, when the conductive boiler is granular, the mechanical strength of the resin molded article may be reduced. On the other hand, when the conductive filler is fibrous, easily warped molded resin, also increases the surface roughness of the resin molding, there fear force s surface smoothness is impaired.
  • the content of the coloring material and the concealing material in the matrix is not particularly limited, and can be arbitrarily set according to the saturation and lightness of the color to be applied to the resin molded product. However, it is preferable to set such that the various characteristics of the resin molded body provided by the resin material constituting the matrix are not hindered.
  • the colorant is preferably set to be 0.1% by weight or more and 5.0% by weight or less of the weight of the resin molded body, and more preferably 0.2% by weight or more and 2.0% by weight or less. It is more preferable to set it below.
  • the concealing material is based on the weight of the resin molding.
  • It is preferably set to be 0.1% by weight or more and 10% by weight or less, and more preferably set to be 0.2% by weight or more and 5.0% by weight or less.
  • titanium oxide used as a coloring material or a concealing material can function as a photo-oxidation catalyst, a resin molded article containing a large amount of it tends to be oxidized and deteriorated under light irradiation. Therefore, when titanium oxide is used as a coloring material or a concealing material, its content is preferably kept as small as possible, specifically, about 0.1 to 2.0% by weight of the resin molded body.
  • the resin molding of the present invention has been subjected to a voltage application treatment.
  • This application process is a process for a matrix made of the above-described resin material, which contains the conductive filler and, if necessary, the coloring material and the concealing material, and is formed.
  • the voltage applied in this process is usually 20 kV or more, and the matrix of the resin molded body, that is, less than the dielectric breakdown voltage of the resin material constituting the matrix, preferably 20 kV or more and 50 kV Set to V or less.
  • the conductivity of the resin molded article of the present invention may not be increased to a level higher than the conductivity of 3 ⁇ 4fe depending on the content ratio of the conductive filler. Even if the conductivity can be improved in some cases, there is a problem in its reproducibility.
  • the applied voltage is higher than the dielectric breakdown voltage of the matrix (resin material), the resin molded article may be damaged.
  • the above-mentioned dielectric breakdown voltage is a value specific to each resin material and is described in various handbooks and other documents, and such description can be referred to.
  • the dielectric breakdown voltage shown in various documents is usually expressed in units of MVZm, and is a value for a molded product having a thickness of lm formed using a resin material. It is preferable to appropriately calculate a dielectric breakdown voltage value according to the thickness of the molded body.
  • the time required for this processing is not particularly limited, it is usually 1 About 600 seconds, preferably about 5 to 60 seconds. Even if a voltage is applied for more than 600 seconds, the conductivity of the resin molded body does not increase beyond a certain level, which is rather uneconomical. Next, a method for producing the resin molded article of the present invention will be described.
  • a molding material is prepared by mixing the above-described resin material, conductive filler, and if necessary, a coloring material and a concealing material.
  • the mixing amount of the conductive filler is such that the proportion in the molding material is less than 20% by weight, preferably from 0.01% by weight to less than 20% by weight, more preferably from 0.1% by weight to 18% by weight. % By weight, more preferably from 1.0% by weight to 16% by weight.
  • a coloring material its mixing amount in the molding material is from 0.1% by weight to 5.0% by weight, preferably from 0.2% by weight to 2.0% by weight. /. Set as follows.
  • the concealing material the mixing amount is set so that the proportion in the molding material is 0.1% by weight or more and 10% by weight or less, preferably 0.2% by weight or more and 5.0% by weight or less. .
  • the method of mixing the resin material and the conductive filler is not particularly limited.For example, a method of kneading the resin material by supplying a conductive filler using various known feeders or the like is employed. can do. At this time, the viscosity of the resin material may be adjusted in advance as needed in order to enhance the dispersibility of the conductive filler.
  • the molding material contains a coloring material and a concealing material
  • these can be mixed with the conductive filler and the resin material by the above-described method at the same time.
  • the coloring material and the concealing material are dispersed in the resin material together with the conductive filler, and the molding material is colored in a color corresponding to the type of the coloring material used.
  • the obtained molding material is molded into a desired shape, for example, a plate shape or a fibrous shape, to obtain a resin molded body.
  • various known molding methods such as a pressure molding method, an injection molding method, and an extrusion molding method can be employed.
  • the molding material contains a coloring material
  • the resin molded body obtained here will exhibit a color according to the coloring material used.
  • the molding material contains a concealing material, it effectively covers the color of the conductive filler, so that the resin molded body exhibits a vivid color according to the coloring material used. become.
  • the resin molded body is usually grounded, an electrode is arranged above the resin molded body, and an AC voltage or a DC voltage is applied to the electrode.
  • an AC voltage when an AC voltage is applied, when this frequency is 1 MHz or less, the effect of improving conductivity, particularly the effect of lowering the surface resistance, tends to increase.
  • the polarity of the voltage applied to the electrode may be either positive or negative.However, setting it to positive generally improves the conductivity, especially the surface resistance. easy.
  • FIG. 1 shows a schematic configuration of an example of a voltage applying device used in this case, that is, an example of a resin molded body processing device according to the present invention.
  • a voltage applying device 1 mainly includes a voltage applying section 2 and a conveying device 3 for a resin molded body M, that is, a conveying means.
  • the voltage applying unit 2 mainly includes an electrode unit 4 and a high-voltage generator 6 connected to the electrode unit 4.
  • the electrode section 4 includes a housing 5 having an opening on the side of the transfer device 3, and an electrode group 5 a including a plurality of needle-like electrodes provided downward in the housing 5.
  • the housing 5 can be moved up and down by an elevating device 5b, so that the distance between the resin molded body M and the tip of the electrode group 5a can be adjusted.
  • an air suction device connected to an ozone removing device (not shown) is arranged.
  • the high-voltage generator 6 is an AC or DC high-voltage generator having an overcurrent prevention function, has a built-in slidac or thyristor regulator, and is configured to be able to adjust a voltage value that can be generated.
  • the transfer device 3 is for continuously transferring and supplying a large number of resin moldings M below the electrode portion 4 and is configured as a belt conveyor having an endless belt 7.
  • the endless belt 7 is, for example, a metal belt or a conductive resin belt, and is grounded (earthed). Further, the endless belt 7 is set so as to be driven in a direction indicated by an arrow in the figure by, for example, a stepping motor 8 which operates at a constant interval for a constant time.
  • the operation timing of the stepping motor 8 is set to be changeable in accordance with the time during which voltage application processing should be performed on the resin molding M. Further, the stepping motor 8 is connected to the high voltage generator 6 of the voltage applying unit 2 via the controller 9. The control device 9 sends an electric signal (control signal) to the voltage applying unit 2 when the stepping motor 8 transfers the resin molded body M below the electrode unit 4, and operates the high-voltage generator 6 for a certain period of time. It is set as follows.
  • the high voltage generator 6 of the voltage application unit 2 is operated, and the slide duck or thyristor regulator there is operated. Operate to set the generated voltage, that is, the voltage applied to the compact M.
  • the voltage value set here is 20 kV or more and less than the dielectric breakdown voltage of the resin material constituting the resin molded body M, as described above, and preferably 20 kV or more and 50 kV or less.
  • the stepping motor 8 of the transfer device 3 is operated to transfer a large number of the resin moldings M placed on the endless belt 7 continuously and sequentially below the electrode unit 4.
  • the controller 9 sends an operation command to the high-voltage generator 6.
  • the resin molded body M disposed below the electrode section 4 has a predetermined high voltage.
  • the high voltage from the pressure generator 6 is applied by the electrode group 5a for a fixed time, that is, during the above-mentioned stop time of the stepping motor 8. Ozone generated when the voltage is applied is sucked from the housing 5 by an air suction device, and is processed by an ozone removing device.
  • the voltage applying device 1 can apply a voltage application process to a large number of the resin moldings M continuously and sequentially.
  • the distance between the tip of the electrode group 5a and the resin molding M is adjusted by adjusting the vertical position of the housing 5 by the lifting device 5b. It is preferable to set appropriately according to the environment, the applied voltage value, the type and shape of the resin molded body, and the type and amount of the conductive filler contained in the resin molded body. For example, when a voltage of 30,000 V is applied in the air, the interval is usually set in the range of 20 to 100 mm, preferably 30 to 50 mm. If this interval is less than 2 O mm, overcurrent may easily flow. Conversely, if it exceeds 10 O mm, there is a possibility that the effect of the voltage application process hardly appears.
  • the above-described voltage applying device 1 uses an electrode group 5a for applying a voltage to the resin molded body M, which includes a large number of needle-like electrodes.
  • a hemispherical electrode or a plurality of plate-like electrodes may be arranged.
  • the voltage application processing can be similarly performed.
  • the endless belt 7 side is grounded, thereby A voltage is applied from the electrode group 5a to the resin molding M, but a pair of electrodes connected to the high voltage generator 6 and formed between a pair of flat electrodes or a plurality of needle-like electrodes.
  • the present invention can be implemented in the same manner even when the resin molded body M conveyed by the endless belt 7 is sandwiched between the groups in a non-contact state.
  • the high voltage generator 6 of the voltage applying device 1 can be configured by diverting a high voltage pulse generator, an impact voltage generator, or the like, for example.
  • the resin molded article of the present invention obtained through the above-described process has a smaller amount of the conductive filler contained therein when compared with other resin molded articles in which a conductive filler is dispersed in a matrix made of a resin material. It exhibits high conductivity, which is usually difficult to achieve, and particularly low surface resistance. That is, the resin molded article of the present invention, despite containing chromatic amount of the conductive filler is suppressed to be less than 2 0%, 1 0 5 07 b or is sought generally Te semiconductor manufacturing field odor 1 0 1 2 Omega / mouth the range surface resistance of, or 1 0- 2 Omega / mouth least 1 0 1 3 may indicate ⁇ port following surface resistance.
  • the conductive few weight percent content than that of the filler usually 3-5 wt. / 0 approximately
  • resin It can exhibit the same conductivity or surface resistance as the molded article.
  • the reason why the resin molded article of the present invention exhibits the above-described high conductivity as compared with a normal molded article can be considered, for example, as follows.
  • a resin molded body in which conductive fillers are dispersed in a matrix made of a resin material a large number or an infinite number of capacitors composed of the conductive fillers and a matrix (that is, a resin material) interposed therebetween. It is considered that the aggregate is formed inside.
  • the resin molded body of the present invention is subjected to a voltage application process, such a capacitor is constituted. It is presumed that the matrix dielectric breakdown occurred between the conductive filters, and as a result, a current path was formed to increase the conductivity.
  • the resin molded article of the present invention can exhibit high conductivity that cannot be normally achieved with such an added amount of the conductive filler while suppressing the amount of the expensive conductive filler to be added.
  • the resin molded body can exhibit higher conductivity than can normally be expected from the content of the conductive filler. Therefore, this resin molded body can be provided at a lower cost than other resin molded bodies exhibiting the same conductivity.
  • the resin molded article of the present invention exhibiting such a specific effect, it is possible to realize an electric resistance value that is difficult to achieve with a conventional resin molded article including a conductive filler.
  • a conductive filler For example, when carbon fiber is used as the conductive filler, if the amount added to the luster material is gradually increased, the resin molded product has a surface resistance of 1 to a certain amount.
  • Runode in addition to setting the amount Runode can achieve normal higher conductivity than conductive achievable by the addition amount of its, surface resistance 1 0 5 ⁇ 1 0 1 2 ⁇ opening degree range or 1, 0 _ 2-1 to set the range of 0 1 3 ⁇ opening becomes relatively easy.
  • the resin molded article of the present invention is provided with conductivity by the conductive filler as described above, the resin molded article is required to have an antistatic property and a dust prevention property. It can be used for various purposes such as body manufacturing jigs, IC trays, and carriers. In this case, since the resin molded body can be given various colors by the coloring material as described above, the use and the type can be distinguished by the color. For example, there are cases where a variety of IC trays having different surface resistances are prepared depending on the purpose of use. This makes it possible to easily identify, based on colors, necessary components from among various types in the manufacturing process of electric and electronic components. Further, the resin molded article of the present invention can be recycled and recycled again to a similar resin molded article.
  • the resin molded article of the present invention when the resin molded article of the present invention is formed into a desired shape again after pulverization and further subjected to a voltage application process under the above-described conditions, it can be regenerated into a similar resin molded article having a small surface resistance. .
  • the resin molded body when the resin molded body is given a color by the coloring material, a similar color can be reflected on the resin molded body after the reproduction.
  • a conventional resin molded body subjected to a voltage application treatment in particular, a resin molded body according to Japanese Patent Application Laid-Open No. Sho 62-119117, Since it has a two-layer structure, it is substantially difficult to recycle and regenerate a similar resin molded article.
  • the above-described voltage applying apparatus 1 used for manufacturing the resin molded article of the present invention is used for treating an existing resin molded article made of a resin material containing a conductive filler in a proportion of less than 20% by weight. Can also. That is, the above-described voltage application processing to the existing resin molded body using the voltage application device 1 can be a processing method for increasing the conductivity of the existing resin molded body.
  • the existing resin molded body is transported by the transport device 3, and the same applied voltage as described above at the electrode section 4 of the voltage applying section 2, that is, 2 OkV or more, the resin material constituting the resin molded body
  • the applied voltage is applied to the resin molded body at an applied voltage lower than the dielectric breakdown voltage, preferably at an applied voltage of 20 kV or more and 50 kV or less.
  • the existing The resin molded body will exhibit higher conductivity than that before treatment, especially low surface resistance.
  • the resin molded article of the present invention does not differ from other resin molded articles in appearance and the like, it is difficult to distinguish it from other resin molded articles based on the appearance. For example, it can be distinguished from other resin molded articles by the following method. (Method 1)
  • thermogravimetric analysis is performed on the resin molded body whose surface resistance has been measured in advance, and the amount and type of the conductive filler contained in the resin molded body are analyzed.
  • the amount of the conductive filler determined from the result of the thermogravimetric analysis is less than 20% by weight, and the surface resistance of the resin molded body measured in advance is a level that cannot be normally achieved with the amount of the conductive filler. In this case (that is, when the surface resistance is smaller than the normally achievable surface resistance), the resin molded body can be determined to be the resin molded body of the present invention.
  • the resin molded product When performing thermogravimetric analysis on a resin molded product, the resin molded product is usually heated from room temperature to 1000 ° C. in air at a rate of about 10 ° C. Examine the change in weight. When the resin matrix after heating does not leave carbon, heating of the resin molded body during thermogravimetric analysis can be performed in an inert gas such as nitrogen.
  • the residual at 800 ° C. was approximately 15%, which indicates that it substantially coincides with the amount of the non-conductive inorganic substance contained in the resin molded product. From the results of the thermogravimetric analysis, it is understood that the resin molded article to be analyzed contains about 15% by weight of the carbon material-based conductive filler and about 15% by weight of the non-conductive inorganic material.
  • the weight loss of 29.5% in the range of 549.5 to 6377.6 ° C is due to the carbonization of the polysulfone resin constituting the matrix of the resin molded product, and the combustion rate is lower than that of carbon. Since it is significantly faster than fibers and other carbon-based conductive fillers, it can be easily determined that the problem is not caused by carbon fibers, which are conductive fillers.
  • the resin molded body contains a metallic material-based conductive filler.
  • thermogravimetric analysis instead of thermogravimetric analysis, analysis using ESCA (Electron Spectroscopy for Chemical Analysis) or EPMA (Electron Probe Microanalyzer) is carried out, and the conductive filler contained in the resin molded product is analyzed. In the case where the type and amount of are estimated, it can be carried out similarly.
  • ESCA Electrode Spectroscopy for Chemical Analysis
  • EPMA Electro Probe Microanalyzer
  • the resin molded body is heated to the softening point or higher of the resin material constituting the resin molded body, then cooled to room temperature, and the surface resistance of the resin molded body is measured.
  • a dielectric breakdown portion is cured by such a heat treatment, and the surface resistance after the heat treatment is smaller than the surface resistance before the heat treatment. It becomes bigger. More specifically, in the resin molded article of the present invention, the surface resistance after the heat treatment is usually 100 times or more the surface resistance before the heat treatment.
  • a resin molded body different from that of the present invention Since the resin molded body having no history of the application treatment does not have a dielectric breakdown portion, the surface resistance does not easily increase even if the above-described heat treatment is performed.
  • the surface resistance becomes 1/1000 of that before the voltage application process. It can be:
  • the resin molded body has a color other than black series, it is substantially uniformly appeared its colors over the entire cross-section of Kitsuki effect moldings, moreover its surface resistance of 1 0 5-1 0 1 2 ⁇ opening degree range or 1 0- 2 ⁇ 1 0 1 3 ⁇ is Noro If, the resin molded article is likely resin molding of the present invention. Incidentally, since the resin molded body containing 20% by weight or more of the carbon material-based conductive filler used in the present invention has a black color as a whole, even if the coloring material is contained, It cannot exhibit the appropriate color.
  • Example 1 It consists of short polyacrylonitrile-based carbon fibers with an average fiber diameter of 7 ⁇ and an average aspect ratio of 857 (trade name “Paiguchi Fill” of Mitsubishi Rayon Co., Ltd.). Fiber group (conductive filler) was prepared.
  • polyphenylene oxide resin (trade name “Noryl P PO 534” of Nippon General Electric Co., Ltd.), the above-mentioned fiber group and yellow colorant (trade name of Toyo Kasei Co., Ltd.) CB 116 "), concealment material titanium oxide (trade name” CR60 “of Ishihara Sangyo Co., Ltd.) and talc (trade name”# 1000 "of Fuji Talc Co., Ltd.) are supplied and mixed using a feeder. Then, a pellet (molding material) composed of a resin material including a fiber group, a coloring material and a concealing material was prepared. The mixing ratio of the fiber group was set so as to be 6.0% by weight in the pellet.
  • coloring materials Sani ⁇ titanium and the mixing ratio of talc, their respective 1.0 wt 0/0, was set to be 0.2 wt% and 3.0 wt%.
  • the pellets had a yellow color due to the coloring material.
  • the pellet was molded using a PROM AT injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. at a resin temperature of 240 ° C, an injection pressure of 1,200 kg / cm 2 and a mold temperature of 60 ° C.
  • a yellow disk having a diameter of 50 mm and a thickness of 3 mm, that is, a resin molded body was obtained.
  • a pair of electrodes was formed using silver paste on the surface of the obtained disk, and the electrical resistance between the electrodes was measured to determine the surface resistance ( ⁇ b) of the disk. As a result, 4 ⁇ 10 15 ⁇ / Was the mouth.
  • the term “surface resistance” refers to the resistance measured in this manner.
  • the average residual ratio of the polyacrylonitrile-based carbon fibers in the disc was 28.6. Incidentally, this average residual aspect ratio was determined by dissolving a disk in methylene chloride, separating polyacrylonitrile-based carbon short fibers, and measuring the average length and average diameter of 400 of them using an optical microscope. It is calculated. Next, the obtained disk was placed on a grounded plate, and an electrode group including a large number of needle-like electrodes was arranged above the disk. The distance between the plate and the electrode group was set to 4 Omm so that the electrode group did not directly touch the disk. Then, a DC voltage of 30,000 V was applied to the electrode group for 10 seconds so that the polarity became positive.
  • the surface resistance of the disc (resin molded body according to the present invention) subjected to the voltage application treatment in this manner is 1 ⁇ 10 12 ports, which is significantly lower than that before the voltage application treatment. It was confirmed that. Also, the color of the disc did not change even after the voltage application process.
  • Fig. 3 shows the results of thermogravimetric analysis of this disk.
  • the results of the thermogravimetric analysis were obtained by using the TG / DTA32 brand name of Seiko Instruments Inc. as a thermogravimetric analyzer.
  • the thermogravimetric analysis results show that the weight of the fiber group in the disk is 5.8% by weight, which is almost consistent with the mixing ratio of the fiber group used in manufacturing the disk. ing. In addition, this result indicates that 5.3% by weight of non-combustible residue remains, which is considered to be derived from the concealing material and the like.
  • Polyacrylonitrile-based carbon short fiber (Mitsubishi Rayon Co., Ltd.) with an average fiber diameter of 7 ⁇ and an average aspect ratio of 857 compared to polypropylene resin (product name “Novatec BC3B” of Nippon Polychem Co., Ltd.)
  • Example 2 “200HK”) as in Example 1 And mixed to obtain a pellet.
  • the mixing ratio of the fiber group was set so as to be 5.0% by weight in the pellet.
  • the mixing ratios of the coloring material, titanium oxide and my strength were 0.6% by weight, 0.2% by weight and 1.0% by weight, respectively. / 0 was set.
  • the pellets had a bright yellow colorant.
  • a disc was manufactured from the obtained pellets through the same forming process as in Example 1. This disk had a bright yellow color.
  • the average residual aspect ratio of the polyacrylonitrile-based carbon short fibers in the disc was 51.1. The average residual aspect ratio was determined in the same manner as in Example 1 except that hot decalin was used as a solvent for dissolving the disc.
  • the surface resistance of the obtained disk was measured before and after applying a voltage.
  • the conditions for applying the voltage were set in the same manner as in Example 1 except that an AC voltage of 30 kV was used.
  • the surface resistance of the disc was 2.6 ⁇ 10 14 ⁇ before the voltage application, but decreased to 3.3 ⁇ 10 5 ⁇ / cm after the voltage application.
  • the color of the disc did not change even after the voltage application process.
  • Figure 4 shows the results of thermogravimetric analysis performed on the disc before the voltage application process.
  • the results of the thermogravimetric analysis were obtained by using the product name “TGZDTA32” of Seiko Instruments Inc. as a thermogravimetric analyzer, and analyzing the analysis conditions at a measurement temperature range of 20 to 1,000 ° C and a heating rate of 10 ° C.
  • thermogravimetric analysis result shown in Fig. 4 shows that the weight of the fiber group in the disk is 4.9% by weight, which is the value of the fiber group used in manufacturing the disk. It turns out that it is almost in agreement with the ratio. In addition, this result shows that 2.1% by weight of the non-combustible residue remains, which is considered to be derived from the shielding material and the like.
  • Example 3 The mixing ratio of the fiber group and the colorant was changed to 6.0% by weight and 1.0% by weight, respectively, and in the same manner as in Example 2 except that titanium oxide and my power were not used. A yellow disk was produced. The average residual aspect ratio of the polyacrylonitrile-based carbon short fibers in the disk was 52.3. After measuring the surface resistance of the disk, a voltage application process was performed on the disk under the same conditions as in Example 2. The surface resistance of the disk was 8 ⁇ 10 13 ⁇ square before the voltage application treatment, but decreased to 4 ⁇ 10 5 ⁇ square after the voltage application treatment. The color of the disc did not change even after the voltage application process.
  • FIG. 5 shows the results of thermogravimetric analysis performed on the disc before the voltage application treatment in the same manner as in Example 2.
  • the thermogravimetric analysis results shown in FIG. 5 indicate that the weight of the fiber group in the disk is 6.1% by weight, which is the value of the fiber group used in manufacturing the disk. It turns out that it is almost in agreement with the mixing ratio. In addition, this result indicates that 0.5% by weight of the non-combustible residue remains, which is considered to be due to impurities contained in the disc.
  • a pitch-based carbon fiber with an average fiber diameter of 12 ⁇ and an average aspect ratio of 250 A fiber group consisting of fibers (trade name “Xy 1 us GCA03 J 431” of Osaka Gas Co., Ltd.) with a resistance value of 6080 ⁇ cm, a green coloring material (trade name “NO. 41 "), and titanium oxide (trade name” CR 60 "of Ishihara Sangyo Co., Ltd.) and my strength (Kuraray Co., Ltd. name” Kuraray Mai Riki 200HK “), which are concealing materials, were mixed in the same manner as in Example 1. Then, a pellet was obtained.
  • the mixing ratio of the fiber group was set to 16% by weight in the pellet, and the mixing ratios of the coloring material, titanium oxide, and my strength were 1.0% by weight, 1.0% by weight, and 1.0% by weight, respectively. And 5.0% by weight.
  • the obtained pellet had a green color due to the coloring material.
  • a disc was manufactured from the obtained pellets through the same forming process as in Example 1. This disk had a green color due to the coloring material.
  • the average residual aspect ratio of the pitch carbon short fibers in the disc was 18.8. This average residual factor ratio was determined in the same manner as in Example 1. Further, the surface resistance of this disc was measured before application of voltage and after application of voltage in the same manner as in Example 1, and it was 3 ⁇ 10 10 ⁇ and 5 ⁇ 10 8 ⁇ , respectively. Was. The color of the disc did not change even after the voltage application treatment.
  • Polyacrylonitrile-based short carbon fibers (Mitsubishi Rayon Co., Ltd.) with an average fiber diameter of 7 ⁇ and an average aspect ratio of 857 were compared to polypropylene resin (Nova Tech BC3B, trade name of Nippon Polychem Co., Ltd.).
  • the fiber group consisting of the product name "Pyrofil"), the fiber group having an electrical resistance of 0.06 ⁇ cm, a red coloring material (trade name of Toyo Kasei Co., Ltd. "CB 328”), and a titanium oxide concealment material ( Pellets were obtained by mixing Ishihara Sangyo Co., Ltd. product name "CR60") and talc (Fuji Talc Co., Ltd.
  • Example 1 The mixing ratio of the fiber groups was set as shown in Table 1 in the pellet. Further, the mixing ratio of the coloring material and the oxidized titanium oxide talc was set to be 1.0% by weight, 0.2% by weight and 3.0% by weight, respectively, in each of the examples.
  • a disk was manufactured from the obtained pellets through the same forming process as in Example 1, and the surface resistance was measured. Then, after applying a voltage to the obtained disc under the conditions shown in Table 1, the surface resistance was measured.
  • the voltage application processing conditions shown in Table 1 are as follows. Table 1 shows the results. The circle obtained in each example The plate exhibited a bright red colorant, and its color did not change even after the voltage application process.
  • a pair of electrode groups consisting of a large number of needle-like electrodes extending in the vertical direction were arranged vertically at intervals of 35 mm, and the lower electrode group was grounded. Then, a disk was placed on the lower electrode group, and a DC voltage of +30 kV was applied between the electrode groups for 30 seconds.
  • a pair of electrode groups consisting of a large number of needle-like electrodes extending in the vertical direction were arranged vertically at intervals of 35 mm, and the lower electrode group was grounded. Then, a disk was placed on the lower electrode group, and a DC voltage of 130 kV was applied between the electrode groups for 30 seconds.
  • a pair of electrode groups consisting of a large number of needle-like electrodes extending in the vertical direction were arranged vertically at an interval of 30 mm, and the lower electrode group was grounded. Then, several cylindrical supports were vertically arranged on the lower electrode group side, and the disk was placed horizontally on the supports. Thus, the disk was horizontally arranged between the pair of electrode groups, and a DC voltage of +50 kV was applied between the electrode groups for 30 seconds.
  • a pair of electrode groups consisting of a large number of needle-like electrodes extending in the vertical direction were arranged vertically at intervals of 30 mm, and the lower electrode group was grounded. Then, several cylindrical supports are vertically arranged on the lower electrode group side, and the disk is placed horizontally on the support. Thus, the disk is placed between the pair of electrode groups. They were placed horizontally and a DC voltage of 150 kV was applied between the electrode groups for 30 seconds.
  • Example 2 With respect to the disk obtained in Example 2 after the voltage application treatment, the surface resistance after the heat treatment was examined. Here, the disk was heated at the temperature shown in Table 2 for 30 minutes, and then subjected to four heating-cooling cycles at each temperature for cooling to room temperature over 10 minutes, and then the surface resistance was measured. Table 2 shows the results. When the range of the heat treatment temperature was 95 to 165 ° C, the surface resistance after the heat treatment was almost the same as before the heat treatment, and no significant change was observed. It can be seen that after the heat treatment at 175 ° C, which is the softening point of the resin, the surface resistance has risen significantly to the level before the voltage application treatment. Table 2
  • Example 2 Using only the same polypropylene resin and fiber group as those used in Example 2, a disk was manufactured in the same manner as in Example 2. Here, six types of discs were manufactured with the fiber group content set to 5 wt%, 6 wt%, 7 wt%, 8 wt%, 9 wt% and 10 wt%, respectively.
  • Figure 6 shows the results of measuring the surface resistance of each disk. Next, the same voltage application processing as in Example 2 was applied to the disks in which the content of the fiber group was set to 5% by weight, 6% by weight, 7% by weight, and 8% by weight, respectively. Then, the surface resistance was measured. Fig. 6 shows the results.
  • Example 1 the mixing ratio of the fiber group, the coloring material and the titanium oxide was changed to 20% by weight, 3.0% by weight and 1.0% by weight, respectively, and 5.0% by weight instead of talc.
  • a pellet was prepared in the same manner as in Example 1 except that a My power of / 0 (Kuraray Co., Ltd., trade name "Kuraray My power 200H K") was used.
  • a disk was manufactured using this pellet in the same manner as in Example 1, the disk was dark gray, and the color of the coloring material added to the pellet was not reflected. In addition, this disk had a surface resistance of 2.0 ⁇ 10 2 ⁇ / port before applying the voltage application treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A resin molded product exhibiting a higher conductivity than that which can ordinarily be expected of the content of a conductive filler, especially a low surface resistance. This resin molded product contains a matrix of a resin material and a conductive filler dispersed in the matrix. The content of the conductive filler is set to less than 20 wt. %, and a voltage of 20 kV or higher and lower than a breakdown voltage of the matrix is applied. The conductive filler is made of fibers such as carbon fibers or graphite fibers having an average diameter of 0.002 to 15 microns, for example. This resin molded product usually contains a coloring agent dispersed in the matrix together with the conductive filler and presents a color according to that coloring agent.

Description

樹脂成形体  Resin molding
技術分野  Technical field
本発明は、 成形体、 特に、 樹脂成形体に関する c The present invention, moldings, in particular, c relates to a resin molded product
背景技術 Background art
樹脂材料からなる成形体は、 一明般に優れた電気絶縁性を示すことから、 電気 •電子部品分野において広く用いられている。 ところが、 樹脂材料そのものを 書  Molded bodies made of resin materials are widely used in the field of electrical and electronic components because they generally exhibit excellent electrical insulation properties. However, writing the resin material itself
成形して得られた電気 ·電子部品材料は、 一般に高い電気絶縁性を有するため に帯電し易く、 塵埃の付着或いは放電により集積回路などの電子部品へダメー ジを与える場合がある等の不具合がある。 このため、 半導体製造分野等におい て用いられる樹脂成形体は、 通常、 各種の手法により微弱な導電性が付与され ている。 Electric and electronic component materials obtained by molding are generally easily charged due to their high electrical insulation properties, and are liable to damage electronic components such as integrated circuits due to adhesion or discharge of dust. is there. For this reason, a resin molded body used in the semiconductor manufacturing field or the like is usually given weak conductivity by various methods.
樹脂成形体に対して導電性を付与するための最も簡易な手法として、 樹脂成 形体に対して界面活性剤溶液を塗布する手法が知られている。 し力、し、 この手 法は、 既に製造された樹脂成形体に対して別工程で界面活性剤溶液を別途塗布 することになるため、 樹脂材料の成形工程に加えて界面活性剤溶液の塗布工程 が追加的に必要になる。 また、 このような手法により得られる樹脂成形体の導 電性は、 湿度の影響を受けやすく、 樹脂成形体の表面が湿り易い状態 (即ち、 高湿状態) 下では所要の導電性を発揮し易いものの、 表面が湿り難い状態 (即 ち、 乾燥状態) 下では必要な導電性を発揮しにくい。 さらに、 この手法により 得られた樹脂成形体は、 塗布された界面活性剤が成形体の内部に吸収されたり 摩擦によって表面から除去されてしまうことが多く、 経時的な導電性の低下が 避けられない。 このため、 このような樹脂成形体は、 導電性を長期間維持する のが困難であるばかり力、、 除去された界面活性剤により半導体製造工程におい てコンタミネーションを引き起こす可能性もある。 As a simplest method for imparting conductivity to a resin molded body, a method of applying a surfactant solution to the resin molded body is known. In this method, a surfactant solution is separately applied to the already manufactured resin molded body in a separate step, so the surfactant solution is applied in addition to the resin material molding step. An additional process is required. In addition, the conductivity of the resin molded body obtained by such a method is easily affected by humidity, and exhibits the required conductivity under conditions where the surface of the resin molded body is easily wet (that is, in a high humidity state). Although it is easy, it does not easily exhibit the required conductivity under conditions where the surface is hardly wet (ie, dry). Furthermore, in the resin molded body obtained by this method, the applied surfactant is often absorbed into the molded body or removed from the surface by friction, so that a decrease in conductivity over time is avoided. Absent. For this reason, such a resin molded body maintains conductivity for a long time. As difficult as possible, the surfactants removed can cause contamination in the semiconductor manufacturing process.
そこで、 最近は、 上述のような界面活性剤溶液の塗布による事後的な導電性 付与手法に代えて、 樹脂成形体そのものに当初から導電性を付与する試みがな されている。 ここでは、 樹脂材料に対して予め導電性付与材を添カ卩して混合ま たは練和し、 そのような樹脂材料を所要の形状に成形することにより導電性を 有する樹脂成形体を実現している。 この際に用いられる導電性付与材は、 通常、 界面活性剤などの帯電防止剤、 または金属材料や炭素材料などの導電性フィラ 一である。  Therefore, recently, attempts have been made to impart conductivity to the resin molded article itself from the beginning instead of the above-described method of imparting conductivity later by applying a surfactant solution. Here, a resin molded body having conductivity is realized by adding a conductivity-imparting material to a resin material in advance, mixing or kneading the resin material, and molding such a resin material into a required shape. are doing. The conductivity-imparting material used at this time is usually an antistatic agent such as a surfactant, or a conductive filler such as a metal material or a carbon material.
ここで、 導電性付与材として界面活性剤などの帯電防止剤を選択した場合は、 帯電防止剤が徐々に樹脂成形体の内部から表面に移行することになるため、 樹 脂成形体が導電性を発現するまでに長時間を要する。 また、 帯電防止剤による 効果は樹脂材料の種類により異なるため、 樹脂材料のガラス転移温度や結晶性 および樹脂材料との相溶性などを考慮しつつ樹脂材料に適した帯電防止剤を選 択する必要がある。 さらに、 樹脂成形体の表面に移行した帯電防止剤は、 上述 のような塗布手法の場合と同様に、 摩擦により除去されてしまうことが多く、 結果的に半導体製造工程などにおいてコンタミネーションを引き起こす可能性 もある。  Here, when an antistatic agent such as a surfactant is selected as the conductivity-imparting material, the antistatic agent gradually migrates from the inside of the resin molded product to the surface, so that the resin molded product becomes conductive. It takes a long time to develop. In addition, since the effect of the antistatic agent differs depending on the type of resin material, it is necessary to select an antistatic agent suitable for the resin material, taking into account the glass transition temperature, crystallinity, and compatibility with the resin material. There is. Furthermore, the antistatic agent that has migrated to the surface of the resin molded body is often removed by friction, as in the case of the above-described coating method, and as a result, contamination can occur in the semiconductor manufacturing process and the like. There is also.
これに対し、 導電性フイラ一は、 適量を樹脂材料と混合するだけで樹脂成形 体に対して速やかに導電性を付与することができ、 また、 帯電防止剤の場合と は異なり樹脂材料との組合せを考慮する必要が無いため (すなわち、 各種の樹 脂材料に対して汎用性を有するため) 、 帯電防止剤を用いる場合に比べて樹月旨 成形体に対して安定な導電性を容易に付与することができる。  On the other hand, the conductive filler can quickly impart conductivity to the resin molded article only by mixing an appropriate amount with the resin material. Unlike the case of the antistatic agent, the conductive filler is not compatible with the resin material. Because there is no need to consider combinations (ie, because it has versatility for various resin materials), it is easier to achieve stable conductivity for molded products than when using an antistatic agent. Can be granted.
ところで、 導電性フィラーを含む樹脂成形体として、 特開昭 6 3— 5 3 0 1 7号公報には、 6 4〜 8 0体積。 /0の樹脂と 3 6〜 2 0体積%の導電性物質とを 含む樹脂組成物を成形して得られる樹脂成形体であって、 1, 0 0 0 V以下の 電圧を印加することにより所望の抵抗値を達成したものが記載されている。 こ こで用いられる導電性物質は、 金属、 金属酸化物および炭素等の電気良伝導体 の粒子若しくは繊維あるいはこれらの混合物であり、 その比重は通常 1以上で あるものと考えられることから、 その樹脂成形体は少なくとも 2 0重量%の導 電性物質を含むものと考えられる。 Incidentally, as a resin molded product containing a conductive filler, Japanese Patent Application Laid-Open No. 63-53017 discloses a resin molded product having a volume of 64 to 80 volumes. / 0 resin and 36 to 20% by volume of conductive material It describes a resin molded product obtained by molding a resin composition containing the resin composition, wherein a desired resistance value is achieved by applying a voltage of 1,000 V or less. The conductive substance used here is a particle or fiber of a good electrical conductor such as a metal, a metal oxide, and carbon, or a mixture thereof, and the specific gravity thereof is generally considered to be 1 or more. It is considered that the resin molding contains at least 20% by weight of the conductive substance.
また、 特開昭 6 2—1 1 0 9 1 7号には、 導電性物質を含有する重合体 (樹 脂材料) から形成される線状体 (芯体) に絶縁性重合体からなる被覆層を配置 した複合線状体に対して 1 0 k V以下の高電圧による処理を施した導電性複合 線状体、 すなわち樹脂成形体が記載されている。 ここで用いられている導電性 物質は、 例えばカーボンブラックであり、 その使用量は、 例えば重合体重量に 対して 2 0〜 2 0 0重量%である。  Also, Japanese Patent Application Laid-Open No. 62-110117 discloses that a linear body (core) formed of a polymer (a resin material) containing a conductive substance is coated with an insulating polymer. It describes a conductive composite linear body obtained by subjecting a composite linear body on which layers are arranged to a treatment with a high voltage of 10 kV or less, that is, a resin molded body. The conductive substance used here is, for example, carbon black, and its use amount is, for example, 20 to 200% by weight based on the weight of the polymer.
しかしながら、 導電性フイラ一は樹脂材料に比べて高価である。 例えば、 榭 脂成形体を製造するために広く用いられているポリプロピレン樹脂および変性 ポリフエ二レンォキサイド樹脂の日本国内における価格は、 本願出願時頃にお いてそれぞれ概ね 1 0 0円/ k gおよび 1, 0 0 0円/ k gであるのに対し、 導電性物質として用いられるピッチ系炭素繊維およびカーボンブラックの同時 期における日本国内における価格は、 それぞれ概ね 3, 0 0 0円/ k gおよび 5 0 0〜1, 0 0 0円/ k gである。 したがって、 上述の各公報に記載された 樹脂成形体は、 いずれも樹脂材料に対して多量の導電性フィラーを混合してい るため、 所要の導電性が付与され得るものの極めて高価になる。 特に、 樹脂成 形体に対して金属に近い導電性を付与し、 電磁波に対するシールド性を高める 必要がある場合は、 樹脂材料に対して添加すべき導電性フィラーの量が多量に なるため、 そのような樹脂成形体は他のものに比べて著しく高価になる。 また、 この場合は、 樹脂成形体に含まれる多量の導電性フィラーが樹脂材料によって 本来的に達成される各種の特性を阻害する可能性があり、 また、 樹脂成形体か ら導電性フィラーが脱落し易くなつてコンタミネーシヨンを引き起こすおそれ もある。 However, the conductive filler is more expensive than the resin material. For example, the prices in Japan of polypropylene resin and modified polyphenylene oxide resin, which are widely used for producing resin molded articles, are approximately 100 yen / kg and 1.0 yen, respectively, at the time of filing the present application. The price of pitch-based carbon fiber and carbon black used as conductive materials in Japan during the same period was approximately ¥ 3,000 / kg and ¥ 500 / kg, respectively. , 000 yen / kg. Therefore, all of the resin molded articles described in the above-mentioned publications have a large amount of conductive filler mixed with the resin material, and thus can have the required conductivity, but are extremely expensive. In particular, when it is necessary to impart conductivity close to that of a metal to the resin molded body and to enhance the shielding property against electromagnetic waves, the amount of conductive filler to be added to the resin material becomes large. Such a resin molded product is significantly more expensive than other products. Also, in this case, a large amount of conductive filler contained in the resin molded body depends on the resin material. There is a possibility that various properties originally attained may be impaired, and the conductive filler may easily fall off from the resin molded article, which may cause contamination.
さらに、 上述の特開昭 6 3 - 5 3 0 1 7号公報に記載の樹脂成形体は、 多量 の導電性フィラーを含んでいるため、 その色調が導電性フィラーの色彩の影響 を強く受ける。 特に、 当該公報の実施例に記載されている樹脂成形体は、 導電 性フイラ一として多量のカーボンファイバーやグラフアイトパウダーを含んで いるため、 色彩が自ずと黒色になり、 それ自体に所望の色彩を自由に付与する のは極めて困難である。 一方、 特開昭 6 2 - 1 1 0 9 1 7号公報に記載の樹月旨 成形体は、 他の非導電性繊維と調和する色彩を実現するために、 芯体に対して そのような色彩を実現するための被覆層を配置している結果、 芯体と被覆層と の 2層構造になり、 構成が複雑である。  Furthermore, since the resin molded article described in the above-mentioned Japanese Patent Application Laid-Open No. 63-53017 contains a large amount of conductive filler, its color tone is strongly affected by the color of the conductive filler. In particular, since the resin molded body described in the examples of this publication contains a large amount of carbon fiber or graphite powder as the conductive filler, the color naturally becomes black, and the desired color itself is obtained. It is extremely difficult to grant freely. On the other hand, the molded article described in Japanese Patent Application Laid-Open No. Sho 62-1100917 has such a structure as to the core in order to realize a color that is in harmony with other non-conductive fibers. As a result of arranging the coating layer for realizing the color, the structure becomes complex with a two-layer structure of the core and the coating layer.
本発明の目的は、 導電性フィラーの添加量を抑制しつつ、 樹脂成形体の導電 性を高めること、 特に、 表面抵抗を低下させることにある。  An object of the present invention is to increase the conductivity of a resin molded body while suppressing the amount of a conductive filler to be added, and particularly to reduce the surface resistance.
本発明の他の目的は、 導電性フィラ一の添加量が抑制されているにも拘わら ず高い導電性、 特に小さな表面抵抗を示し、 しかも色彩を付与された樹脂成形 体を実現することにある。 発明の開示  Another object of the present invention is to realize a resin molded body which exhibits high conductivity, particularly low surface resistance, and is provided with a color despite the addition amount of the conductive filler being suppressed. . Disclosure of the invention
本発明に係る樹脂成形体は、 樹脂材料からなるマトリックスと、 当該マトリ ックス内に分散された導電性フィラーとを含み、 導電性フィラーの含有量が 2 0重量%未満であり、 かつ 2 0 k V以上マトリツタスの絶縁破壊電圧未満の電 圧の印加処理が施されている。 なお、 導電性フィラーの含有量は、 例えば、 1 . 0重量%以上 1 6重量%以下である。 また、 ここで用いられる導電性フィラー は、 例えば、 そのフィラー群電気抵抗値が 1 0 5 Ω c m以上 1 0— 2 Ω c m以下 のものである。 また、 導電 14フイラ一は、 例えば繊維状のものである。 この場 合、 導電性フィラーの平均繊維径は、 例えば 0 . 0 0 2 μ m以上 1 5 μ m以下 である。 また、 樹脂成形体中におけるこの導電性フィラーの平均残存ァスぺク ト比は、 例えば 1 0以上 1 0 0, 0 0 0以下である。 また、 本発明の樹脂成形 体は、 例えば、 導電性フィラーと共にマトリックス内に分散された着色材をさ らに含んでいる。 この場合、 導電性フイラ一は、 例えば炭素繊維および黒鉛繊 維のうちの少なくとも一つである。 また、 この場合は、 導電性フィラーおよび 着色材と共にマトリックス内に分散された、 導電性フィラーの色彩を隠蔽する ための隠蔽材をさらに含んでいてもよい。 The resin molded article according to the present invention includes a matrix made of a resin material and a conductive filler dispersed in the matrix, the conductive filler content is less than 20% by weight, and 20 k A voltage application process of V or more and less than the dielectric breakdown voltage of Matritus has been performed. The content of the conductive filler is, for example, not less than 1.0% by weight and not more than 16% by weight. Further, where a conductive filler to be used, for example, the filler group electrical resistance 1 0 5 Ω cm or more 1 0- 2 Ω cm or less belongs to. The conductive 14 filter is, for example, a fibrous material. In this case, the average fiber diameter of the conductive filler is, for example, not less than 0.02 μm and not more than 15 μm. The average residual flux ratio of the conductive filler in the resin molded body is, for example, 10 or more and 100 or less. Further, the resin molded article of the present invention further includes, for example, a coloring material dispersed in a matrix together with a conductive filler. In this case, the conductive filter is, for example, at least one of a carbon fiber and a graphite fiber. Further, in this case, a concealing material for concealing the color of the conductive filler, which is dispersed in the matrix together with the conductive filler and the coloring material, may be further included.
このような本発明の樹脂成形体の表面抵抗は、 通常、 1 0 5 Ω /口以上 1 0 1 2 ΩΖ口以下である。 The surface resistance of the resin molded article of the present invention as described above, is usually less than 1 0 5 Ω / mouth least 1 0 1 2 ΩΖ port.
本発明の樹脂成形体は、 所定の電圧の印加処理が施されているため、 同量の 導電性フィラーを含む他の樹脂成形体に比べて高い導電性、 特に、 小さな表面 抵抗を示し得る。 換言すると、 この樹脂成形体は、 そこに含まれる導電性フィ ラーの含有量から通常期待できるよりも高い導電性、 特に、 小さな表面抵抗を 示し得る。 また、 この樹脂成形体は、 導電性フィラーの含有量が上述の範囲に 規制されているため、 マトリックス内に着色材が分散されている場合は当該着 色材の色彩に応じた色彩を呈し得る。  Since the resin molded article of the present invention has been subjected to a predetermined voltage application treatment, it can exhibit higher conductivity, especially small surface resistance, than other resin molded articles containing the same amount of conductive filler. In other words, the resin molded body can exhibit higher conductivity than expected normally from the content of the conductive filler contained therein, in particular, small surface resistance. In addition, since the content of the conductive filler is regulated in the above range, the resin molded body may exhibit a color according to the color of the coloring material when the coloring material is dispersed in the matrix. .
本発明の他の見地に係る樹脂成形体は、 樹脂材料からなるマトリックスと、 当該マトリッタス内に分散された導電性フイラ一とを含み、 導電性フイラ一の 含有量が 2 0重量%未満であり、 かつ樹脂材料の軟ィ匕点に加熱処理して室温ま で冷却した後の表面抵抗が加熱処理する前の表面抵抗の 1 0 0倍以上である。 なお、 導電性フィラーの含有量は、 例えば 1 . 0重量%以上 1 6重量%以下で ある。 また、 この樹脂成形体は、 加熱処理の後に、 2 O k V以上マトリックス の絶縁破壊電圧未満の電圧の印加処理をさらに施した場合の表面抵抗が、 通常、 印加処理を施す前の表面抵抗の 1 Z 1 0 0以下である。 A resin molded article according to another aspect of the present invention includes a matrix made of a resin material, and a conductive filler dispersed in the matrix, wherein the content of the conductive filler is less than 20% by weight. In addition, the surface resistance after heat treatment of the resin material at the softening point and cooling to room temperature is 100 times or more the surface resistance before heat treatment. The content of the conductive filler is, for example, not less than 1.0% by weight and not more than 16% by weight. In addition, the surface resistance of this resin molded body, when subjected to a heat treatment followed by a voltage application of 2 OkV or more and less than the dielectric breakdown voltage of the matrix, is usually The surface resistance before application processing is 1 Z 100 or less.
また、 この樹脂成形体は、 例えば、 導電性フィラーと共にマトリックス内に 分散された着色材をさらに含んでいる。 この場合、 樹脂成形体は、 例えば、 導 電性フイラ一および着色材と共にマトリックス内に分散された、 導電性フィラ 一の色彩を隠蔽するための隠蔽材をさらに含んでいてもよい。  The resin molded body further contains, for example, a coloring material dispersed in a matrix together with a conductive filler. In this case, the resin molded body may further include a concealing material for concealing the color of the conductive filler dispersed in the matrix together with the conductive filler and the coloring material, for example.
これらの見地に係る樹脂成形体は、 同量の導電性フィラーを含む他の樹脂成 形体に比べて表面抵抗が小さく、 高い導電性を示し得る。 また、 この樹脂成形 体は、 導電性フィラーの添加量が上述の範囲に規制されているため、 マトリツ クス内に着色材が分散されている場合は当該着色材の色彩に応じた色彩を呈し 得る。  The resin molded article according to these aspects has a lower surface resistance and can exhibit higher conductivity than other resin molded articles containing the same amount of conductive filler. In addition, since the amount of the conductive filler to be added is regulated in the above-described range, the resin molded body can exhibit a color according to the color of the coloring material when the coloring material is dispersed in the matrix. .
本発明に係る樹脂成形体の製造方法は、 樹脂材料と導電性フイラ一とを含み 力、つ導電性フィラーの含有量が 2 0重量%未満に設定された成形材料を調製す る工程と、 成形材料を所定の形状に成形する工程と、 成形された成形材料に対 して 2 0 k V以上樹脂材料の絶縁破壊電圧未満の電圧を印加する工程とを含ん でいる。 ここで、 成形材料における導電性フィラーの含有量は、 例えば 1 . 0 重量%以上 1 6重量%以下に設定されている。 また、 成形材料は、 例えば着色 材をさらに含んでいる。 また、 この場合、 成形材料は、 導電性フィラーの色彩 を隠蔽するための隠蔽材をさらに含んでいてもよい。  The method for producing a resin molded article according to the present invention includes the steps of: preparing a molding material containing a resin material and a conductive filler, wherein the content of the conductive filler is set to less than 20% by weight; The method includes a step of molding the molding material into a predetermined shape, and a step of applying a voltage of 20 kV or more and less than the dielectric breakdown voltage of the resin material to the molded molding material. Here, the content of the conductive filler in the molding material is set to, for example, 1.0% by weight or more and 16% by weight or less. The molding material further includes, for example, a coloring material. Further, in this case, the molding material may further include a concealing material for concealing the color of the conductive filler.
このような本発明の製造方法は、 導電性フィラーを含みかつ成形された成形 材料に対して所定の電圧を印加しているため、 従来の製造方法により同量の導 電性フイラ一を用いて製造されたものに比べて高い導電性、 特に、 小さな表面 抵抗を示す樹脂成形体を実現し得る。 また、 この方法では、 成形材料中の導電 性フイラ一の含有量を一定量以下に規制しているので、 成形材料が着色材を含 む場合は、 当該着色材に応じた色彩を樹脂成形体に付与することができる。 本発明の処理装置は、 2 0重量%未満の割合で導電性フィラーを含む樹脂成 形体の導電性を高めるためのものであり、 樹脂成形体に対して 2 0 k V以上そ の絶縁破壊電圧未満の電圧を印加するための電圧印加部と、 電圧印加部に向け て樹脂成形体を搬送するための搬送手段とを備えている。 In such a production method of the present invention, since a predetermined voltage is applied to a molded material containing a conductive filler and is molded, the same amount of a conductive filler is used by a conventional production method. It is possible to realize a resin molded body having higher conductivity as compared with a manufactured one, particularly, a small surface resistance. In addition, in this method, the content of the conductive filler in the molding material is regulated to a certain amount or less. Therefore, when the molding material contains a coloring material, the color according to the coloring material is changed to a resin molding. Can be provided. The processing apparatus of the present invention is a resin composition containing a conductive filler in a proportion of less than 20% by weight. A voltage application section for applying a voltage of 20 kV or more and less than the dielectric breakdown voltage to the resin molded article, and a resin molded article directed to the voltage application section. And a transport unit for transporting.
本発明の他の見地に係る処理装置は、 同様に 2 0重量%未満の割合で導電'性 フィラーを含む樹脂成形体の導電性を高めるためのものであって、 樹脂成形体 に対して 2 0 k V以上その絶縁破壊電圧未満の電圧を印加するための電極と、 電極と樹脂成形体とが間隔を設けて対向するよう樹脂成形体を電極に向けて搬 送するための搬送手段とを備えており、 搬送手段が接地されている。  A processing apparatus according to another aspect of the present invention is also for increasing the conductivity of a resin molded product containing a conductive filler in a proportion of less than 20% by weight, An electrode for applying a voltage of 0 kV or more and less than the dielectric breakdown voltage, and a transport means for transporting the resin molded body toward the electrode so that the electrode and the resin molded body are opposed to each other with a space therebetween. Provided, and the transportation means is grounded.
ここで、 電極は、 例えば複数の針状電極からなる電極群である。 この場合、 処理装置は、 例えば、 電極と樹脂成形体との間隔を調整するための間隔調整装 置をさらに備えている。 一方、 搬送手段は、 例えば、 多数の樹脂成形体を順次 連続的に電極に向けて搬送可能である。  Here, the electrode is an electrode group including, for example, a plurality of needle-shaped electrodes. In this case, the processing device further includes, for example, an interval adjusting device for adjusting an interval between the electrode and the resin molded body. On the other hand, the transfer means can, for example, transfer a large number of resin molded articles to the electrodes sequentially and continuously.
本発明に係るこのような樹脂成形体の処理装置は、 搬送手段により電圧印加 部に向けて樹脂成形体を搬送し、 そこで樹脂成形体に対して所定の電圧を印加 することができるため、 上述のような一定量以下の少量の導電性フイラ一しか 含まない樹脂成形体の導電性を容易に高めること、 特に、 表面抵抗を容易に低 下させることができる。  The apparatus for treating a resin molded article according to the present invention can convey the resin molded article toward the voltage applying section by the conveying means, and apply a predetermined voltage to the resin molded article there. Thus, it is possible to easily increase the conductivity of a resin molded body containing only a small amount of a conductive filler of a certain amount or less, and particularly to easily lower the surface resistance.
本発明の他の目的および効果は、 以下の詳細な説明から明らかになるであろ Ό ο 図面の簡単な説明  Other objects and advantages of the present invention will become apparent from the following detailed description.
図 1は、 本発明の樹脂成形体を製造するために用いられる電圧印加装置の概 略構成図である。 図 2は、 樹脂成形体の一例について実施した熱重量分析の結 果を示す図である。 図 3は、 実施例 1で得られた円板の熱重量分析結果を示す 図である。 図 4は、 実施例 2で得られた円板の熱重量分析結果を示す図である。 図 5は、 実施例 3で得られた円板の熱重量分析結果を示す図である。 図 6は、 実施例 1 4で得られた円板について、 繊維群の含有量と表面抵抗との関係を電 圧印加処理前後のそれぞれについて示したグラフである。 発明の詳細な説明 FIG. 1 is a schematic configuration diagram of a voltage application device used for manufacturing the resin molded article of the present invention. FIG. 2 is a diagram showing the results of thermogravimetric analysis performed on an example of a resin molded body. FIG. 3 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 1. FIG. 4 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 2. FIG. 5 is a diagram showing a thermogravimetric analysis result of the disk obtained in Example 3. FIG. 6 is a graph showing the relationship between the content of the fiber group and the surface resistance of the disk obtained in Example 14 before and after the voltage application treatment. Detailed description of the invention
本発明の樹脂成形体は、 主に、 マトリックスと、 当該マトリックス内に分散 された導電性フィラーとを含んでいる。  The resin molded body of the present invention mainly includes a matrix and a conductive filler dispersed in the matrix.
マトリックスは、 樹脂材料からなるものであって所望の形状に成形されたも のである。 ここで用いられる樹脂材料は、 特に限定されるものではなく、 公知 の熱可塑性樹脂や熱硬化性樹脂である。  The matrix is made of a resin material and is formed into a desired shape. The resin material used here is not particularly limited, and is a known thermoplastic resin or thermosetting resin.
ここで、 熱可塑性樹脂としては、 例えば、 ポリエチレン樹脂, ポリプロピレ ン樹脂, ポリスチレン樹脂およびポリアクリルスチレン樹脂などの汎用プラス チック、 アクリル一ブタジエン一スチレン樹脂 (A B S ) , ポリフエニルエー テル樹脂, ポリアセタール樹脂, ポリカーボネート樹脂, ポリブチレンテレフ タレート樹脂, ポリエチレンテレフタレート樹脂, ナイロン 6およびナイロン 6, 6などのエンジニアリングプラスチック、 並びにポリエーテルエーテルケ トン樹脂, ポリアミ ド樹脂, ポリイミ ド樹脂, ポリスルホン樹脂, 4—フッ化 エチレン一エチレン共重合体樹脂, ポリフッ化ビニリデン樹脂, 4—フッ化工 チレン—パーフルォロアルキルビニルエーテル共重合体樹脂, ポリエーテルィ ミ ド樹脂, ポリエーテルサルフォン樹脂, ポリフエ二レンサルファイド樹脂, 変性ポリフエ二レンォキサイド樹脂, ポリフエ二レンエーテル樹脂および液晶 ポリマーなどの超エンジニアリングプラスチックなどを挙げることができる。 また、 熱硬化性樹脂としては、 例えば、 フエノール樹脂、 エポキシ樹脂、 ポリ ィミ ド樹脂および不飽和ポリエステル樹脂などを挙げることができる。  Here, examples of the thermoplastic resin include general-purpose plastics such as polyethylene resin, polypropylene resin, polystyrene resin and polyacrylstyrene resin, acrylic-butadiene-styrene resin (ABS), polyphenylether resin, polyacetal resin, and polycarbonate resin. , Polybutylene terephthalate resin, polyethylene terephthalate resin, engineering plastics such as nylon 6 and nylon 6,6, as well as polyether ether ketone resin, polyamide resin, polyimide resin, polysulfone resin, and 4-fluoroethylene-ethylene Polymer resin, polyvinylidene fluoride resin, 4-fluoroethylene-perfluoroalkylvinyl ether copolymer resin, polyetherimide resin, polyether resin Examples include super engineering plastics such as a sulfone resin, a polyphenylene sulfide resin, a modified polyphenylene oxide resin, a polyphenylene ether resin, and a liquid crystal polymer. Examples of the thermosetting resin include a phenol resin, an epoxy resin, a polyimide resin, and an unsaturated polyester resin.
一方、 マトリックス中に分散されている導電性フイラ一は、 樹脂成形体に対 して導電性を付与するために通常用いられるものであり、 金属材料、 炭素材料、 金属材料がコートされた有機材料、 金属材料がコートされた無機材料、 炭素が コートされた無機材料または黒鉛がコートされた無機材料、 若しくはこれらの 群から任意に選択された 2種以上のものの混合物である。 On the other hand, the conductive filler dispersed in the matrix is not suitable for the resin molding. Metal material, a carbon material, an organic material coated with a metal material, an inorganic material coated with a metal material, an inorganic material coated with carbon, or graphite. It is a coated inorganic material, or a mixture of two or more arbitrarily selected from these groups.
ここで、 金属材料としては、 銀、 銅、 ニッケル、 鉄、 アルミニウム、 ステン レスおよび酸ィヒ錫などを例示することができる。 炭素材料としては、 ポリアク リロ二トリノレ樹脂, ピッチ, カイノール樹脂, レーヨンおよびリグニンなどの 炭素前駆体を焼成して得られる炭素、 カーボンブラック、 アセチレンブラック、 ケッチェンブラック並びに黒鉛を例示することができる。 金属材料がコートさ れた有機材料としては、 ニッケルコートされた樹脂を例示することができる。 金属材料がコートされた無機材料としては、 ニッケルコートマイ力、 銀コート ガラス、 アルミコートガラス、 ニッケルメツキガラスおよびニッケルメツキ炭 素などを例示することができる。 炭素がコートされた無機材料としては、 炭素 がコートされたチタン酸カリウムを例示することができる。 黒鉛がコートされ た無機材料としては、 黒鉛がコートされたチタン酸力リゥムを例示することが できる。  Here, examples of the metal material include silver, copper, nickel, iron, aluminum, stainless steel and tin oxyacid. Examples of the carbon material include carbon, carbon black, acetylene black, ketjen black, and graphite obtained by firing a carbon precursor such as polyacrylonitrile resin, pitch, kainol resin, rayon, and lignin. Examples of the organic material coated with a metal material include a nickel-coated resin. Examples of the inorganic material coated with a metal material include nickel-coated glass, silver-coated glass, aluminum-coated glass, nickel-plated glass, and nickel-plated carbon. Examples of the inorganic material coated with carbon include potassium titanate coated with carbon. An example of the inorganic material coated with graphite is a titanate rim coated with graphite.
また、 上述の導電性フイラ一は、 粒状、 フレーク状、 ゥイスカー状おょぴ繊 維状などの各種のもの、 またはこれらの任意の混合物であり、 形状が特に限定 されるものではない。 例えば、 粒状のものとしては、 金属材料からなるものと して銀粉、 銅粉、 ニッケル粉、 鉄粉、 酸化錫粉を、 また、 金属材料がコートさ れた無機材料として銀コートガラスビーズを、 さらに、 炭素材料からなるもの としてカーボンブラック、 アセチレンブラック、 ケッチェンブラックを挙げる ことができる。 また、 フレーク状のものとして、 アルミフレークやニッケルコ 一トマイカを挙げることができる。 さらに、 ゥイスカー状のものとしては、 炭 素がコートされた無機材料として炭素がコートされたチタン酸カリウムゥイス カーを、 また、 炭素材料からなるものとして黒鉛ウイスカーを挙げることがで きる。 さらに、 繊維状のものとしては、 金属材料からなるものとしてアルミ二 ゥム, 銅およびステンレスなどの長繊維や短繊維を、 また、 金属材料がコート された無機材料からなるものとしてアルミコートガラス繊維や二ッケルメッキ ガラス繊維を、 さらに、 金属材料がコートされた有機材料からなるものとして ニッケルコートされた樹脂繊維を、 さらに、 炭素材料からなるものとしてポリ アクリロニトリル系炭素繊維, 等方性ピッチ系炭素繊維, 異方性ピッチ系炭素 繊維, 力イノール樹脂系炭素繊維, レーョン系炭素繊維およびリグニン系炭素 繊維等の炭素繊維並びに黒鉛繊維をそれぞれ例示することができる。 In addition, the above-mentioned conductive fillers are various kinds such as a granular form, a flake form, a whisker form, and a fiber form, or an arbitrary mixture thereof, and the shape is not particularly limited. For example, as the granular material, silver powder, copper powder, nickel powder, iron powder, and tin oxide powder are used as the metal material, and silver-coated glass beads are used as the inorganic material coated with the metal material. Further, carbon black, acetylene black and ketjen black can be cited as those made of carbon materials. Examples of the flakes include aluminum flakes and nickel methanol. Further, as the whiskers, potassium titanate whiskers coated with carbon as a carbon-coated inorganic material Graphite whiskers can be cited as examples of the car made of carbon material. Further, the fibrous materials include long fibers and short fibers such as aluminum, copper, and stainless steel as those made of a metal material, and aluminum-coated glass fibers made of an inorganic material coated with a metal material. Or nickel-plated glass fiber, furthermore, nickel-coated resin fiber as an organic material coated with a metal material, and polyacrylonitrile-based carbon fiber, isotropic pitch-based carbon fiber as a carbon material. And carbon fibers such as anisotropic pitch-based carbon fiber, force-inol resin-based carbon fiber, rayon-based carbon fiber and lignin-based carbon fiber, and graphite fiber.
なお、 本発明で用いられる導電性フイラ一として好ましいものは、 より少な い使用量で所要の導電性、 特に小さい表面抵抗を樹脂成形体に実現することが できることから、 フイラ一群電気抵抗値が 105Ω cm以上 10— 2Ω cm以下 のもの、 より好ましくは 104Ω cm以上 10— 2Ω cm以下のものである。 こ こで、 フイラ一群電気抵抗値とは、 樹脂成形体に含まれる導電性フィラーの 個々の片の電気抵抗値ではなく、 導電性フィラーの群 (集合体) としての電気 抵抗値であり、 次のようにして求められるものをいう。 先ず、 中心部に直径 0. 8 cmの貫通孔を有する電気絶縁体を用意し、 その貫通孔の一端を銅製の電極 で封止する。 そして、 貫通孔内に 0. 5 gの導電性フイラ一群を充填し、 貫通 孔の他端から銅製の押し棒を挿入して 20 k g f Zcm2の圧力を加えて導電 性フイラ一群を高さ X cmの円柱状に成形する。 この状態で電極と押し棒との 間に測定器を接続し、 貫通孔内で圧縮された導電性フイラ一群の電気抵抗値を 測定する。 フイラ一群電気抵抗値は、 測定された電気抵抗値に導電性フィラー 群の成形体の端面の面積 (すなわち、 0. 427u cm2) を掛け、 その値を高 さ X cmで割ると体積抵抗値 (Ω cm) として求めることができる。 なお、 導 電性フイラ一群の電気抵抗値を測定する際に用いられる測定器は、 ブランク時 の電気抵抗値、 すなわち、 電極と押し棒とを直接に接触させた場合の電気抵抗 値をキャンセルできるものが好ましく、 例えば、 ァドバンテスト株式会社のデ ジタルマルチメータ一 "R 6 5 5 2 " を挙げることができる。 以下、 フィラー 群電気抵抗値と言う場合は、 このようにして求めた導電性フィラーの集合体の 体積抵抗値を言うものとする。 In addition, a preferable conductive film used in the present invention is that the required electric conductivity, particularly a small surface resistance can be realized in a resin molded body with a smaller amount of use. 5 Omega cm above 10- 2 Omega cm following are more preferably not more than 10 4 Omega cm above 10- 2 Ω cm. Here, the group of electrical resistance values of the filler is not the electrical resistance value of the individual pieces of the conductive filler contained in the resin molded product, but the electrical resistance value of the conductive filler group (aggregate). It means something that is required as follows. First, an electric insulator having a through hole with a diameter of 0.8 cm in the center is prepared, and one end of the through hole is sealed with a copper electrode. Then, a group of conductive fillers of 0.5 g is filled in the through-hole, a copper push rod is inserted from the other end of the through-hole, and a pressure of 20 kgf Zcm 2 is applied to raise the group of conductive fillers to a height X. Mold into a column of cm. In this state, a measuring instrument is connected between the electrode and the push rod, and the electric resistance value of a group of the conductive filler compressed in the through hole is measured. FILLER group electric resistance, the area of the end face of the molded body of the conductive fillers groups measured electrical resistance value (i.e., 0. 4 2 7u cm 2) multiplied by and dividing the value by the height X cm volume It can be obtained as the resistance value (Ω cm). The measuring instrument used to measure the electrical resistance value of a group of conductive fillers is blank It is preferable to be able to cancel the electric resistance of the electrode, that is, the electric resistance when the electrode and the push rod are brought into direct contact. For example, a digital multimeter "R6552" manufactured by Advantest Co., Ltd. be able to. Hereinafter, the term “filler group electric resistance value” refers to the volume resistance value of the aggregate of the conductive fillers thus determined.
また、 導電性フイラ一として好ましいものは、 繊維状のもの、 特に、 平均繊 維径が 0 . 0 0 2 μ πι以上 1 5 z m以下の極細繊維状のものである。 このよう な繊維状の導電性フィラーを用いた場合は、 より少ない使用量で所要の導電性、 特に小さい表面抵抗を樹脂成形体に実現することができ、 しかも、 後述する着 色材による所望の色彩、 特に鮮明な色彩を樹脂成形体に対して自由に付与し易 くなる。 なお、 平均繊維径が 0 . 0 0 2 μ m以上 2 μ m以下の超極細繊維状の 導電性フィラーを用いた場合は、 仮にそれが黒色の炭素材料からなる炭素繊維 や黒鉛繊維などであったとしても、 後述する着色材のみにより、 すなわち、 後 述する隠蔽材を用いなくても、 鮮明な色彩を樹脂成形体に対して付与し易くな る。  Also, the conductive filler is preferably a fibrous one, particularly an ultrafine fibrous one having an average fiber diameter of not less than 0.02 μπι and not more than 15 zm. When such a fibrous conductive filler is used, the required conductivity, particularly a small surface resistance, can be realized in the resin molded body with a smaller amount of use, and the desired coloring material described later can be used. It becomes easy to freely impart a color, particularly a vivid color, to the resin molded product. When an ultrafine fibrous conductive filler having an average fiber diameter of 0.002 μm or more and 2 μm or less is used, it is assumed that the conductive filler is carbon fiber or graphite fiber made of a black carbon material. Even if a coloring material described below is used alone, that is, a clear color can be easily imparted to the resin molded body without using a concealing material described later.
なお、 平均繊維径が 0 . 0 0 2 μ m程度の超極細繊維状の導電性フイラ一と しては、 例えば炭素繊維の一種であるハイペリオン (ハイペリオン社の商品 名) を挙げることができる。  An example of the ultrafine fibrous conductive filler having an average fiber diameter of about 0.02 μm is Hyperion (a trade name of Hyperion), which is a kind of carbon fiber.
導電性フィラーとして、 上述のような繊維状のものが用いられている場合、 本発明の樹脂成形体は、 当該導電性フィラーの平均残存ァスぺクト比が 1 0以 上 1 0 0, 0 0 0以下になるよう製造されているのが好ましく、 1 5以上 1 0, 0 0 0以下になるよう製造されているのがより好ましい。 この平均残存ァスぺ クト比が製造過程において 1 0未満になった場合は、 導電性フイラ一の添加量 を増やさないと所望の導電性、 特に、 小さな表面抵抗を達成できないおそれが ある。 逆に、 導電性フィラーの平均残存アスペクト比が 1 0 0, 0 0 0を超え る樹脂成形体は、 一般に製造が困難である。 なお、 ここでいう残存アスペクト 比は、 上述の樹脂材料に対して混合する前の導電性フイラ一のァスぺクト比で はなく、 樹脂材料に対して混合されかつ樹脂材料が成形された後の導電性フィ ラーのアスペクト比 (繊維長/繊維径) を意味している。 因みに、 この残存ァ スぺクト比は、 例えば、 樹脂成形体を構成する樹脂材料を熱分解させるか又は 溶媒に溶解させることにより、 樹脂成形体から導電性フィラーを分離し、 通常 はそのうちの数百本の平均長さおよび平均径を光学顕微鏡または走査型電子顕 微鏡で測定すると、 それらの値に基づいて求めることができる。 When the fibrous material as described above is used as the conductive filler, the resin molded product of the present invention has an average residual factor ratio of the conductive filler of 10 or more and 100, 0 or more. It is preferably manufactured so as to be not more than 00, more preferably not less than 15 and not more than 100,000. If the average residual factor ratio becomes less than 10 in the manufacturing process, the desired conductivity, particularly a small surface resistance, may not be achieved unless the amount of the conductive filler added is increased. Conversely, the average residual aspect ratio of the conductive filler exceeds 100,000 Resin moldings are generally difficult to manufacture. The residual aspect ratio here is not the above-described aspect ratio of the conductive filler before mixing with the resin material, but after mixing with the resin material and molding the resin material. Means the aspect ratio (fiber length / fiber diameter) of the conductive filler. Incidentally, this residual factor ratio is determined by, for example, thermally decomposing or dissolving the resin material constituting the resin molded body in a solvent to separate the conductive filler from the resin molded body. When the average length and average diameter of 100 pieces are measured with an optical microscope or a scanning electron microscope, it can be determined based on those values.
また、 本発明の樹脂成形体は、 上述の導電性フィラーと共にマトリックス中 に分散された着色材をさらに含んでいてもよい。 この着色材は、 本発明の樹月旨 成形体に所望の色彩を付与するためのものであって非導電性のものであれば種 類が特に限定されるものではなく、 各種の有機顔料や無機顔料である。 好まし く用いられる有機顔料の具体例としては、 ナフトールレツド、 縮合ァゾエロー および縮合ァゾレツドなどのァゾ系顔料、 銅フタロシアニンブルーや銅フタ口 シアニングリーンなどのフタロシアニン系顔料、 ジアンスラキノリルレツド、 チォインジゴ、 ベリノンオレンジ、 ベリレンスカーレット、 キナタリ ドンマゼ ンタ、 イソインドリノンエロー、 キノフタロンエロー、 ピロ一ノレレッドなどの 縮合多環顔料等を例示することができる。 また、 好ましく用いられる無機顔料 の具体例としては、 亜鉛華、 酸化チタン、 弁柄、 酸ィ匕クロム、 コバルトダリー ン、 コバルトブルーなどの酸化物顔料、 カドミゥムエローや力ドミゥムレッド などの硫化物顔料、 群青などの珪酸塩顔料、 炭酸カルシウムなどの炭酸塩顔料、 マンガンバイオレツトなどのりん酸塩顔料等を例示することができる。 これら の着色材は、 禾拥する樹脂材料との適合性を考慮しつつ適宜選択して用いられ るのが好ましく、 また、 所望の色彩を達成するために適宜混合して用いられて もよい。 さらに、 本発明の樹脂成形体は、 上述の着色材を含む場合、 導電性フィラー および着色材と共にマトリックス中に分散された、 導電性フィラーの色彩を隠 蔽するための隠蔽材をさらに含んでいてもよい。 ここで用いられる隠蔽材は、 着色材により付与される樹脂成形体の色彩が導電性フィラーの色彩により影響 を受けるのを抑制し、 樹脂成形体が着色材による鮮やかな色彩を呈するように するためのものであり、 通常、 非導電性で白色の粒状のものが好ましい。 具体 的には、 例えば、 酸化チタン、 マイ力、 タルク、 炭酸カルシウムが用いられる。 本発明の樹脂成形体において、 上述の導電性フィラーの含有量は、 2 0重 量%未満、 好ましくは 0 . 0 1重量%以上 2 0重量%未満、 より好ましくは 0 . 1重量%以上 1 8重量%以下、 さらに好ましくは 1 . 0重量%以上 1 6重量% 以下になるよう設定されている。 この含有量が 2 0重量%以上の場合は、 樹脂 成形体がコスト高となるばかり力、、 樹脂成形体から導電性フィラーが脱落して コンタミネーシヨンを引き起こすおそれがある。 また、 樹脂成形体の色彩が導 電性フイラ一の色彩に強く影響され、 隠蔽材を用いた場合であっても樹脂成形 体を着色材の色彩に対応した所望の色彩に設定するのが困難になる。 さらに、 導電性ブイラ一が粒状の場合は、 樹脂成形体の機械的強度が低下するおそれが ある。 一方、 導電性フィラーが繊維状の場合は、 樹脂成形体に反りが生じ易く なり、 また、 樹脂成形体の表面粗度が高まり、 表面平滑性が損なわれるおそれ 力 sある。 Further, the resin molded article of the present invention may further include a coloring material dispersed in a matrix together with the above-mentioned conductive filler. This coloring material is for imparting a desired color to the molded article of the present invention, and is not particularly limited as long as it is non-conductive. It is an inorganic pigment. Specific examples of organic pigments that are preferably used include azo pigments such as naphthol red, condensed azo yellow and condensed azo red, phthalocyanine pigments such as copper phthalocyanine blue and copper cap cyanine green, and dianthraquinolyl red. And condensed polycyclic pigments such as thioindigo, verinone orange, beryllen scarlet, quinatari domagenta, isoindolinone yellow, quinophthalone yellow, and pyrrolinore red. Specific examples of inorganic pigments preferably used include zinc oxide, titanium oxide, red iron oxide, oxide pigments such as chromium oxide, cobalt darine, and cobalt blue; sulfide pigments such as cadmium yellow and force red; and ultramarine blue. Silicate pigments, such as calcium carbonate, and phosphate pigments, such as manganese biorete. It is preferable that these coloring materials are appropriately selected and used in consideration of compatibility with the resin material to be used, and they may be appropriately mixed and used to achieve a desired color. Further, when the resin molding of the present invention contains the above-mentioned coloring material, the resin molding further contains a concealing material for concealing the color of the conductive filler, which is dispersed in a matrix together with the conductive filler and the coloring material. Is also good. The concealing material used here suppresses the color of the resin molded body given by the colorant from being influenced by the color of the conductive filler, and makes the resin molded body exhibit a vivid color by the colorant. Usually, a non-conductive white granular material is preferable. Specifically, for example, titanium oxide, My power, talc, and calcium carbonate are used. In the resin molded article of the present invention, the content of the above-mentioned conductive filler is less than 20% by weight, preferably from 0.01% by weight to less than 20% by weight, more preferably from 0.1% by weight to 1% by weight. It is set so as to be 8% by weight or less, more preferably 1.0% by weight or more and 16% by weight or less. If the content is 20% by weight or more, the resin molded product may become expensive and the conductive filler may fall off from the resin molded product to cause contamination. In addition, the color of the resin molded body is strongly affected by the color of the conductive filler, and it is difficult to set the resin molded body to a desired color corresponding to the color of the coloring material even when a concealing material is used. become. Further, when the conductive boiler is granular, the mechanical strength of the resin molded article may be reduced. On the other hand, when the conductive filler is fibrous, easily warped molded resin, also increases the surface roughness of the resin molding, there fear force s surface smoothness is impaired.
また、 マトリックス中における着色材および隠蔽材の含有量は、 特に限定さ れるものではなく、 樹脂成形体に付与する色彩の彩度や明度等に応じて任意に 設定することができるが、 通常は、 マトリックスを構成する樹脂材料により付 与される樹脂成形体の各種特性が阻害されない程度に設定するのが好ましい。 具体的には、 着色材については樹脂成形体重量の 0 . 1重量%以上 5 . 0重 量%以下になるよう設定するのが好ましく、 0 . 2重量%以上 2 . 0重量%以 下になるよう設定するのがより好ましい。 また、 隠蔽材は、 樹脂成形体重量のFurther, the content of the coloring material and the concealing material in the matrix is not particularly limited, and can be arbitrarily set according to the saturation and lightness of the color to be applied to the resin molded product. However, it is preferable to set such that the various characteristics of the resin molded body provided by the resin material constituting the matrix are not hindered. Specifically, the colorant is preferably set to be 0.1% by weight or more and 5.0% by weight or less of the weight of the resin molded body, and more preferably 0.2% by weight or more and 2.0% by weight or less. It is more preferable to set it below. Also, the concealing material is based on the weight of the resin molding.
0 . 1重量%以上 1 0重量%以下になるよう設定するのが好ましく、 0 . 2重 量%以上 5 . 0重量%以下になるよう設定するのがより好ましい。 It is preferably set to be 0.1% by weight or more and 10% by weight or less, and more preferably set to be 0.2% by weight or more and 5.0% by weight or less.
因みに、 着色材または隠蔽材として用いられる酸ィ匕チタンは、 光酸化触媒と して機能し得るので、 それを多量に含む樹脂成形体は、 光の照射下で酸化劣化 し易くなる。 したがって、 酸化チタンを着色材または隠蔽材として用いる場合、 その含有量は可能な限り少量に、 具体的には樹脂成形体重量の 0 . 1〜2 . 0 重量%程度に留めるのが好ましい。  Incidentally, since titanium oxide used as a coloring material or a concealing material can function as a photo-oxidation catalyst, a resin molded article containing a large amount of it tends to be oxidized and deteriorated under light irradiation. Therefore, when titanium oxide is used as a coloring material or a concealing material, its content is preferably kept as small as possible, specifically, about 0.1 to 2.0% by weight of the resin molded body.
本発明の樹脂成形体は、 電圧の印加処理が施されている。 この印加処理は、 導電性フィラー並びに必要に応じて着色材および隠蔽材を含みかつ成形された、 上述の樹脂材料からなるマトリックスに対する処理である。  The resin molding of the present invention has been subjected to a voltage application treatment. This application process is a process for a matrix made of the above-described resin material, which contains the conductive filler and, if necessary, the coloring material and the concealing material, and is formed.
この処理で印加される電圧は、 通常、 2 0 k V以上、 樹脂成形体のマトリツ クス、 すなわち当該マトリックスを構成する樹脂材料の絶縁破壊電圧未満、 好 ましくは 2 0 k V以上 5 0 k V以下に設定する。 印加電圧が 2 0 k V未満の場 合は、 本発明の樹脂成形体の導電性が導電性フィラーの含有割合に応じた程度 の導電 ¾fe以上に高まらない場合がある。 また、 導電性を高めることができる場 合があるとしても、 その再現性の点において問題がある。 逆に、 印加電圧がマ トリックス (樹脂材料) の絶縁破壊電圧以上の場合は、 樹脂成形体が損壊して しまうおそれがある。 なお、 上述の絶縁破壊電圧は、 各樹脂材料に固有の値で あって各種の便覧などの文献に記載されており、 そのような記載内容を参考に することができる。 因みに、 各種文献に示されている絶縁破壊電圧は、 単位が 通常 MVZmで示されており、 樹脂材料を用いて形成した厚さ l mの成形体に ついての値であるため、 本発明では、 樹脂成形体の厚さに応じた絶縁破壊電圧 値を適宜計算するのが好ましい。  The voltage applied in this process is usually 20 kV or more, and the matrix of the resin molded body, that is, less than the dielectric breakdown voltage of the resin material constituting the matrix, preferably 20 kV or more and 50 kV Set to V or less. When the applied voltage is less than 20 kV, the conductivity of the resin molded article of the present invention may not be increased to a level higher than the conductivity of ¾fe depending on the content ratio of the conductive filler. Even if the conductivity can be improved in some cases, there is a problem in its reproducibility. Conversely, if the applied voltage is higher than the dielectric breakdown voltage of the matrix (resin material), the resin molded article may be damaged. The above-mentioned dielectric breakdown voltage is a value specific to each resin material and is described in various handbooks and other documents, and such description can be referred to. Incidentally, the dielectric breakdown voltage shown in various documents is usually expressed in units of MVZm, and is a value for a molded product having a thickness of lm formed using a resin material. It is preferable to appropriately calculate a dielectric breakdown voltage value according to the thickness of the molded body.
また、 この処理に要する時間は特に限定されるものではないが、 通常は、 1 〜 6 0 0秒程度、 好ましくは 5〜 6 0秒程度である。 6 0 0秒を超えて電圧を 印加しても、 樹脂成形体の導電性は一定以上に高まらず、 却って不経済である。 次に、 本発明の樹脂成形体の製造方法について説明する。 Although the time required for this processing is not particularly limited, it is usually 1 About 600 seconds, preferably about 5 to 60 seconds. Even if a voltage is applied for more than 600 seconds, the conductivity of the resin molded body does not increase beyond a certain level, which is rather uneconomical. Next, a method for producing the resin molded article of the present invention will be described.
先ず、 上述の樹脂材料、 導電性フィラー並びに必要に応じて着色材および隠 蔽材を混合し、 成形材料を調製する。 ここで、 導電性フィラーの混合量は、 成 形材料中における割合が 2 0重量%未満、 好ましくは 0 . 0 1重量%以上 2 0 重量%未満、 より好ましくは 0. 1重量%以上 1 8重量%以下、 さらに好まし くは 1 . 0重量%以上 1 6重量%以下になるよう設定する。 また、 着色材を用 いる場合、 その混合量は、 成形材料中における割合が 0 . 1重量%以上 5 . 0 重量%以下、 好ましくは 0 . 2重量%以上 2 . 0重量。 /。以下になるよう設定す る。 さらに、 隠蔽材を用いる場合、 その混合量は、 成形材料中における割合が 0 . 1重量%以上 1 0重量%以下、 好ましくは 0 . 2重量%以上 5 . 0重量% 以下になるよう設定する。  First, a molding material is prepared by mixing the above-described resin material, conductive filler, and if necessary, a coloring material and a concealing material. Here, the mixing amount of the conductive filler is such that the proportion in the molding material is less than 20% by weight, preferably from 0.01% by weight to less than 20% by weight, more preferably from 0.1% by weight to 18% by weight. % By weight, more preferably from 1.0% by weight to 16% by weight. When a coloring material is used, its mixing amount in the molding material is from 0.1% by weight to 5.0% by weight, preferably from 0.2% by weight to 2.0% by weight. /. Set as follows. Further, when the concealing material is used, the mixing amount is set so that the proportion in the molding material is 0.1% by weight or more and 10% by weight or less, preferably 0.2% by weight or more and 5.0% by weight or less. .
樹脂材料と導電性フイラ一との混合方法は、 特に限定されるものではなく、 例えば、 樹脂材料に対し、 公知の各種のフィーダ一等を用いて導電性フィラー を供給して混練する方法を採用することができる。 この際、 樹脂材料は、 導電 性フイラ一の分散性を高めるため、 必要に応じて予め粘度調整されていてもよ レ、。  The method of mixing the resin material and the conductive filler is not particularly limited.For example, a method of kneading the resin material by supplying a conductive filler using various known feeders or the like is employed. can do. At this time, the viscosity of the resin material may be adjusted in advance as needed in order to enhance the dispersibility of the conductive filler.
なお、 成形材料が着色材および隠蔽材を含む場合、 これらは導電性フィラー と同時に、 上述の方法により榭脂材料に対して混合することができる。 この場 合、 着色材および隠蔽材は、 導電性フィラーと共に樹脂材料中に分散し、 成形 材料を、 利用した着色材の種類に応じた色彩に着色することになる。  When the molding material contains a coloring material and a concealing material, these can be mixed with the conductive filler and the resin material by the above-described method at the same time. In this case, the coloring material and the concealing material are dispersed in the resin material together with the conductive filler, and the molding material is colored in a color corresponding to the type of the coloring material used.
次に、 得られた成形材料を所望の形状、 例えば板状や繊維状等に成形し、 樹 脂成形体を得る。 ここでは、 加圧成形法、 射出成形法、 押出し成形法等の公知 の各種の成形法を採用することができる。 なお、 成形材料が着色材を含む場合、 ここで得られる樹脂成形体は、 利用した着色材に応じた色彩を呈することにな る。 特に、 成形材料が隠蔽材を含む場合は、 それが導電性フィラーの色彩を効 果的に隠蔽することになるので、 樹脂成形体は、 利用した着色材に応じた鮮ゃ かな色彩を呈することになる。 Next, the obtained molding material is molded into a desired shape, for example, a plate shape or a fibrous shape, to obtain a resin molded body. Here, various known molding methods such as a pressure molding method, an injection molding method, and an extrusion molding method can be employed. If the molding material contains a coloring material, The resin molded body obtained here will exhibit a color according to the coloring material used. In particular, when the molding material contains a concealing material, it effectively covers the color of the conductive filler, so that the resin molded body exhibits a vivid color according to the coloring material used. become.
次に、 得られた樹脂成形体に対し、 電圧の印加処理を施す。 ここでは、 通常、 樹脂成形体を接地し、 その樹脂成形体の上方に電極を配置して、 当該電極に交 流電圧または直流電圧を印加する。 因みに、 交流電圧を印加する場合、 この周 波数は 1 MH z以下である場合に導電性の改善効果、 特に、 表面抵抗の低下効 果が高まり易い。 一方、 直流電圧を印加する場合、 電極に印加する電圧の極性 は、 正または負のいずれでもよいが、 一般には正に設定する方が導電性の改善 効果、 特に、 表面抵抗の低下効果が高まり易い。  Next, a voltage application process is performed on the obtained resin molded body. Here, the resin molded body is usually grounded, an electrode is arranged above the resin molded body, and an AC voltage or a DC voltage is applied to the electrode. Incidentally, when an AC voltage is applied, when this frequency is 1 MHz or less, the effect of improving conductivity, particularly the effect of lowering the surface resistance, tends to increase. On the other hand, when a DC voltage is applied, the polarity of the voltage applied to the electrode may be either positive or negative.However, setting it to positive generally improves the conductivity, especially the surface resistance. easy.
図 1に、 この際に用いられる電圧印加装置、 すなわち、 本発明に係る樹脂成 形体の処理装置の一例の概略構成を示す。 図において、 電圧印加装置 1は、 電 圧印加部 2と、 樹脂成形体 Mの搬送装置 3、 すなわち搬送手段とを主に備えて いる。  FIG. 1 shows a schematic configuration of an example of a voltage applying device used in this case, that is, an example of a resin molded body processing device according to the present invention. In the figure, a voltage applying device 1 mainly includes a voltage applying section 2 and a conveying device 3 for a resin molded body M, that is, a conveying means.
電圧印加部 2は、 電極部 4と、 電極部 4に接続された高電圧発生装置 6とを 主に備えている。 電極部 4は、 搬送装置 3側が開口するハウジング 5と、 ハウ ジング 5内において下方に向けて設けられた複数の針状電極からなる電極群 5 aとを有している。 ハウジング 5は、 昇降装置 5 bにより上下方向に移動可能 であり、 これにより樹脂成形体 Mと電極群 5 aの先端部との間隔を調整可能に 設定されている。 また、 ハウジング 5内には、 図示しないオゾン除去装置に繋 がるエア吸引装置が配置されている。  The voltage applying unit 2 mainly includes an electrode unit 4 and a high-voltage generator 6 connected to the electrode unit 4. The electrode section 4 includes a housing 5 having an opening on the side of the transfer device 3, and an electrode group 5 a including a plurality of needle-like electrodes provided downward in the housing 5. The housing 5 can be moved up and down by an elevating device 5b, so that the distance between the resin molded body M and the tip of the electrode group 5a can be adjusted. In the housing 5, an air suction device connected to an ozone removing device (not shown) is arranged.
高電圧発生装置 6は、 過電流防止機能を備えた交流または直流の高電圧発生 装置であってスライダックまたはサイリスタレギュレーターを内蔵しており、 発生可能な電圧値を調整可能に構成されている。 一方、 搬送装置 3は、 電極部 4の下方に多数の樹脂成形体 Mを連続的に順次 移送して供給するためのものであり、 無端ベルト 7を備えたベルトコンベア式 に構成されている。 無端ベルト 7は、 例えば金属ベルトや導電性を有する樹脂 ベルトであり、 接地 (アース) されている。 また、 無端ベルト 7は、 例えば、 一定時間毎に一定量作動するステッビングモーター 8によつて図の矢印方向に 駆動可能に設定されており、 移送中の樹脂成形体 Mを一定時間 (通常は 1〜6 0 0秒程度、 好ましくは 5〜 6 0秒程度の間) 電極部 4の下方に止めることが できる。 なお、 ステッピングモーター 8は、 樹脂成形体 Mに対して電圧の印加 処理を施すべき時間に応じて作動タイミングが変更可能に設定されている。 また、 ステッピングモーター 8は、 制御装置 9を介して電圧印加部 2の高電 圧発生装置 6に接続されている。 この制御装置 9は、 ステッピングモーター 8 が樹脂成形体 Mを電極部 4の下方に移送したときに電気信号 (制御信号) を電 圧印加部 2に送り、 高電圧発生装置 6を一定時間作動させるように設定されて いる。 The high-voltage generator 6 is an AC or DC high-voltage generator having an overcurrent prevention function, has a built-in slidac or thyristor regulator, and is configured to be able to adjust a voltage value that can be generated. On the other hand, the transfer device 3 is for continuously transferring and supplying a large number of resin moldings M below the electrode portion 4 and is configured as a belt conveyor having an endless belt 7. The endless belt 7 is, for example, a metal belt or a conductive resin belt, and is grounded (earthed). Further, the endless belt 7 is set so as to be driven in a direction indicated by an arrow in the figure by, for example, a stepping motor 8 which operates at a constant interval for a constant time. 1 to 600 seconds, preferably about 5 to 60 seconds). The operation timing of the stepping motor 8 is set to be changeable in accordance with the time during which voltage application processing should be performed on the resin molding M. Further, the stepping motor 8 is connected to the high voltage generator 6 of the voltage applying unit 2 via the controller 9. The control device 9 sends an electric signal (control signal) to the voltage applying unit 2 when the stepping motor 8 transfers the resin molded body M below the electrode unit 4, and operates the high-voltage generator 6 for a certain period of time. It is set as follows.
このような電圧印加装置 1を用いて樹脂成形体 Mに対して電圧の印加処理を 施す場合は、 先ず、 電圧印加部 2の高電圧発生装置 6を作動させ、 そこのスラ イダックまたはサイリスタレギュレーターを操作して発生電圧、 すなわち樹月旨 成形体 Mに対する印加電圧を設定する。 ここで設定する電圧値は、 上述の通り 2 0 k V以上樹脂成形体 Mを構成する樹脂材料の絶縁破壊電圧未満、 好ましく は 2 0 k V以上 5 0 k V以下である。  When applying a voltage application process to the resin molded body M using such a voltage application device 1, first, the high voltage generator 6 of the voltage application unit 2 is operated, and the slide duck or thyristor regulator there is operated. Operate to set the generated voltage, that is, the voltage applied to the compact M. The voltage value set here is 20 kV or more and less than the dielectric breakdown voltage of the resin material constituting the resin molded body M, as described above, and preferably 20 kV or more and 50 kV or less.
また、 搬送装置 3のステッピングモーター 8を作動させ、 無端ベルト 7上に 載置された多数の樹脂成形体 Mを連続的にかつ順に電極部 4の下方に移送する。 ステツビングモーター 8の作動により、 樹脂成形体 Mが電極部 4の下方に移送 されると、 制御装置 9が高電圧発生装置 6に対して作動指令を送る。 これによ り、 電極部 4の下方に配置された樹脂成形体 Mには、 予め設定しておいた高電 圧発生装置 6からの高電圧が一定時間、 すなわち、 ステッピングモーター 8の 上述の停止時間の間、 電極群 5 aにより印加される。 この電圧印加時に発生す るオゾンは、 ハウジング 5からエア吸引装置により吸引され、 オゾン除去装置 により処理される。 Further, the stepping motor 8 of the transfer device 3 is operated to transfer a large number of the resin moldings M placed on the endless belt 7 continuously and sequentially below the electrode unit 4. When the resin molded body M is transferred below the electrode section 4 by the operation of the stepping motor 8, the controller 9 sends an operation command to the high-voltage generator 6. As a result, the resin molded body M disposed below the electrode section 4 has a predetermined high voltage. The high voltage from the pressure generator 6 is applied by the electrode group 5a for a fixed time, that is, during the above-mentioned stop time of the stepping motor 8. Ozone generated when the voltage is applied is sucked from the housing 5 by an air suction device, and is processed by an ozone removing device.
ステツビングモーター 8が次に作動すると、 電圧の印加処理が施された樹月旨 成形体 Mは無端べノレト 7により電極部 4外 (図の右方) に移送され、 電極部 4 の下方には処理された樹脂成形体 Mの次に位置する樹脂成形体 Mが続けて配置 される。 これにより、 電圧印加装置 1は、 多数の樹脂成形体 Mに対し、 連続的 にかつ順に電圧の印加処理を施すことができることになる。  When the stepping motor 8 is operated next time, the molded body M to which the voltage is applied is transferred to the outside of the electrode unit 4 (to the right in the figure) by the endless velvet 7, and is moved below the electrode unit 4. , A resin molded body M located next to the processed resin molded body M is continuously arranged. Thus, the voltage applying device 1 can apply a voltage application process to a large number of the resin moldings M continuously and sequentially.
上述のような電圧の印加処理時において、 電極群 5 aの先端部と樹脂成形体 Mとの間隔は、 昇降装置 5 bによってハウジング 5の上下方向の位置を調整す ることにより、 電圧の印加環境、 印加電圧値、 樹脂成形体の種類や形状および 樹脂成形体中に含まれる導電性フィラーの種類や量などに応じて適宜設定する のが好ましい。 例えば、 空気中において 3 0, 0 0 0 Vの電圧を印加する場合、 当該間隔は、 通常、 2 0〜1 0 0 mm、 好ましくは 3 0〜 5 0 mmの範囲に設 定される。 この間隔が 2 O mm未満の場合は、 過電流が流れ易くなるおそれが ある。 逆に、 1 0 O mmを超えると、 電圧の印加処理による効果が殆ど発現し なくなる可能性がある。  During the voltage application process described above, the distance between the tip of the electrode group 5a and the resin molding M is adjusted by adjusting the vertical position of the housing 5 by the lifting device 5b. It is preferable to set appropriately according to the environment, the applied voltage value, the type and shape of the resin molded body, and the type and amount of the conductive filler contained in the resin molded body. For example, when a voltage of 30,000 V is applied in the air, the interval is usually set in the range of 20 to 100 mm, preferably 30 to 50 mm. If this interval is less than 2 O mm, overcurrent may easily flow. Conversely, if it exceeds 10 O mm, there is a possibility that the effect of the voltage application process hardly appears.
なお、 上述の電圧印加装置 1は、 樹脂成形体 Mに対して電圧を印加するため の電極群 5 aとして多数の針状電極からなるものを用いているが、 当該電極群 5 aは、 複数の半球状の電極や複数の平板状電極が配列されたものであっても よい。 また、 電極群 5 aに代えて、 樹脂成形体 Mの形状 (大きさ) に合わせた 1枚の平板状電極を用いた場合も同様に電圧の印加処理を実施することができ る。  The above-described voltage applying device 1 uses an electrode group 5a for applying a voltage to the resin molded body M, which includes a large number of needle-like electrodes. A hemispherical electrode or a plurality of plate-like electrodes may be arranged. Also, in the case where a single plate-like electrode according to the shape (size) of the resin molded body M is used instead of the electrode group 5a, the voltage application processing can be similarly performed.
また、 上述の電圧印加装置 1では、 無端ベルト 7側を接地し、 それによつて 電極群 5 aから樹脂成形体 Mに対して電圧を印加しているが、 高電圧発生装置 6に接続された、 一対の平板状の電極間または複数の針状電極等かならる一対 の電極群間に無端ベルト 7によって搬送される樹脂成形体 Mを非接触状態で挟 み込むように構成した場合も本発明を同様に実施することができる。 In the voltage applying device 1 described above, the endless belt 7 side is grounded, thereby A voltage is applied from the electrode group 5a to the resin molding M, but a pair of electrodes connected to the high voltage generator 6 and formed between a pair of flat electrodes or a plurality of needle-like electrodes. The present invention can be implemented in the same manner even when the resin molded body M conveyed by the endless belt 7 is sandwiched between the groups in a non-contact state.
さらに、 電圧印加装置 1の高圧発生装置 6は、 例えば、 高圧パルス発生器や 衝撃電圧発生装置などを転用して構成することもできる。  Further, the high voltage generator 6 of the voltage applying device 1 can be configured by diverting a high voltage pulse generator, an impact voltage generator, or the like, for example.
以上の工程を経て得られる本発明の樹脂成形体は、 樹脂材料からなるマトリ ックス内に導電性フィラーが分散された他の樹脂成形体と比較した場合、 そこ に含まれる導電性フィラー量からは通常達成しにくい高い導電性、 特に、 小さ な表面抵抗値を示す。 すなわち、 本発明の樹脂成形体は、 導電性フィラーの含 有量が 2 0重量%未満に抑制されているにも拘わらず、 半導体製造分野におい て一般に求められている 1 0 5 07ロ以上1 0 1 2 Ω /口以下の範囲の表面抵抗、 若しくは 1 0— 2 Ω /口以上 1 0 1 3 ΩΖ口以下の表面抵抗を示し得る。 具体的 には、 例えばポリアクリロニトリル系炭素短繊維を導電性フィラーとして用い る場合は、 その導電性フィラーの含有量がそれよりも数重量% (通常は 3〜 5 重量。 /0程度) 多い樹脂成形体と同等の導電性または表面抵抗を示し得る。 The resin molded article of the present invention obtained through the above-described process has a smaller amount of the conductive filler contained therein when compared with other resin molded articles in which a conductive filler is dispersed in a matrix made of a resin material. It exhibits high conductivity, which is usually difficult to achieve, and particularly low surface resistance. That is, the resin molded article of the present invention, despite containing chromatic amount of the conductive filler is suppressed to be less than 2 0%, 1 0 5 07 b or is sought generally Te semiconductor manufacturing field odor 1 0 1 2 Omega / mouth the range surface resistance of, or 1 0- 2 Omega / mouth least 1 0 1 3 may indicate ΩΖ port following surface resistance. Specifically, for example, If you store the products for a long using polyacrylonitrile-based carbon short fibers as the conductive filler, the conductive few weight percent content than that of the filler (usually 3-5 wt. / 0 approximately) often resin It can exhibit the same conductivity or surface resistance as the molded article.
樹脂成形体は、 通常、 導電性フィラー同士が接触し得る確率が高い程導電性 が高まり、 導電性フィラーの含有量が少ないとその確率が小さくなるため導電 性を発現しにくくなるのであるが、 それにも拘わらず本発明の樹脂成形体が通 常のものに比べて上述のような高い導電性を発揮する理由は、 例えば、 次のよ うに考えることができる。 樹脂材料からなるマトリックス内に導電性フィラー が分散された樹脂成形体においては、 導電性フィラーと、 その間に存在するマ トリックス (すなわち樹脂材料) とから構成される多数の、 若しくは無数のコ ンデンサの集合体が内部に形成されているものと考えられる。 本発明の樹脂成 形体は、 電圧の印加処理が施されているため、 このようなコンデンサを構成す る導電性フイラ一間においてマトリックスの絶縁破壊が生じ、 その結果、 電流 の通路が形成されて導電性が高まっているものと推察される。 Generally, the higher the probability that the conductive fillers can come into contact with each other, the higher the conductivity of the resin molded body, and the lower the content of the conductive filler, the lower the probability. Nevertheless, the reason why the resin molded article of the present invention exhibits the above-described high conductivity as compared with a normal molded article can be considered, for example, as follows. In a resin molded body in which conductive fillers are dispersed in a matrix made of a resin material, a large number or an infinite number of capacitors composed of the conductive fillers and a matrix (that is, a resin material) interposed therebetween. It is considered that the aggregate is formed inside. Since the resin molded body of the present invention is subjected to a voltage application process, such a capacitor is constituted. It is presumed that the matrix dielectric breakdown occurred between the conductive filters, and as a result, a current path was formed to increase the conductivity.
このため、 本発明の樹脂成形体は、 高価な導電性フィラーの添加量を抑制し つつ、 そのような導電性フィラーの添加量では通常達成できない高い導電性を 発揮することができる。 換言すると、 この樹脂成形体は、 導電性フィラーの含 有量から通常期待できる導電性よりも高い導電性を発揮することができる。 し たがって、 この樹脂成形体は、 同等の導電性を発揮する他の樹脂成形体に比べ て安価に提供することができる。  Therefore, the resin molded article of the present invention can exhibit high conductivity that cannot be normally achieved with such an added amount of the conductive filler while suppressing the amount of the expensive conductive filler to be added. In other words, the resin molded body can exhibit higher conductivity than can normally be expected from the content of the conductive filler. Therefore, this resin molded body can be provided at a lower cost than other resin molded bodies exhibiting the same conductivity.
本発明の樹脂成形体は、 このような特有の効果を発揮する結果、 導電性フィ ラ一を含むこれまでの樹脂成形体では達成しにくかつた電気抵抗値を実現する こともできる。 例えば、 導電性フイラ一として炭素繊維を用いる場合、 樹月旨材 料に対するその添加量を徐々に増加させて行くと、 樹脂成形体は、 添加量があ る程度の量までは表面抵抗が 1 0 1 4〜 1 0 1 5 Ω/口程度であって電気絶縁性 を維持しているが、 ある一定の添加量を超えると、 添加量がごく僅かに変化し ただけで樹脂成形体の導電性が極端に高まってしまい (すなわち、 表面抵抗が 極端に小さくなつてしまい) 、 樹脂成形体の表面抵抗を半導体製造分野におい て一般に求められている 1 0 5〜1 0 1 2 Ω /口程度の範囲に設定するのが極め て困難なことが知られている。 本発明の樹脂成形体は、 このような現象を発現 する炭素繊維のような導電性フィラーを用いる場合であっても、 その添加量と 導電性との関係が緩やかに変化する範囲内でその添加量を設定するだけで、 そ の添加量により通常達成できる導電性よりも高い導電性を実現することができ るので、 表面抵抗を 1 0 5〜1 0 1 2 ΩΖ口程度の範囲、 若しくは 1 0 _ 2〜1 0 1 3 ΩΖ口の範囲に設定するのが比較的容易になる。 As a result of the resin molded article of the present invention exhibiting such a specific effect, it is possible to realize an electric resistance value that is difficult to achieve with a conventional resin molded article including a conductive filler. For example, when carbon fiber is used as the conductive filler, if the amount added to the luster material is gradually increased, the resin molded product has a surface resistance of 1 to a certain amount. 0 1 4 ~ 1 0 1 5 Ω / but be about mouth maintains the electric insulation, exceeds a certain amount in the conductive resin molding just added amount is changed very slightly sex will increasingly extreme (i.e., cause the surface resistance is summer extremely small), 1 0 5 ~1 0 1 2 Ω / mouth about the surface resistance of the resin molding Te semiconductor manufacturing field smell is demanded in general It is known that it is extremely difficult to set the range. In the resin molded article of the present invention, even when a conductive filler such as carbon fiber that exhibits such a phenomenon is used, the addition of the conductive filler within a range in which the relationship between the added amount and the conductivity gradually changes. in addition to setting the amount Runode can achieve normal higher conductivity than conductive achievable by the addition amount of its, surface resistance 1 0 5 ~1 0 1 2 ΩΖ opening degree range or 1, 0 _ 2-1 to set the range of 0 1 3 ΩΖ opening becomes relatively easy.
なお、 本発明の樹脂成形体は、 上述のような導電性フィラーによる導電性が 付与されているため、 帯電防止や埃の付着防止が求められる分野、 例えば半導 体製造用治具、 I Cトレー、 キヤリヤーなどの各種の用途に利用することがで きる。 この場合、 樹脂成形体は、 上述のように着色材による各種の色彩が付与 され得るので、 色彩により用途や種類を区別することができる。 例えば、 I C トレーは、 利用目的に応じて表面抵抗の異なる多種類のものを用意する場合が あるが、 本発明の樹脂成形体からなる I Cトレーは、 表面抵抗の種類毎に色彩 を変化させることができるので、 電気 ·電子部品の製造工程等において多種類 のものの中から必要なものを色彩に基づいて容易に識別することができる。 また、 本発明の樹脂成形体は、 リサイクルして再度同様の樹脂成形体に再生 することもできる。 すなわち、 本発明の樹脂成形体は、 粉砕後に再度所望の形 状に成形し、 さらに既述の条件による電圧の印加処理を施すと、 表面抵抗が小 さな同様の樹脂成形体に再生され得る。 因みに、 樹脂成形体が着色材による色 彩を付与されている場合、 再生後の樹脂成形体には同様の色彩が反映され得る。 なお、 電圧の印加処理が施されている従来の樹脂成形体、 特に、 特開昭 6 2— 1 1 0 9 1 7号に係る樹脂成形体は、 上述のように芯体と被覆層との 2層構造 を有しているため、 リサイクノレして再度同様の樹脂成形体に再生するのは実質 的に困難である。 Since the resin molded article of the present invention is provided with conductivity by the conductive filler as described above, the resin molded article is required to have an antistatic property and a dust prevention property. It can be used for various purposes such as body manufacturing jigs, IC trays, and carriers. In this case, since the resin molded body can be given various colors by the coloring material as described above, the use and the type can be distinguished by the color. For example, there are cases where a variety of IC trays having different surface resistances are prepared depending on the purpose of use. This makes it possible to easily identify, based on colors, necessary components from among various types in the manufacturing process of electric and electronic components. Further, the resin molded article of the present invention can be recycled and recycled again to a similar resin molded article. That is, when the resin molded article of the present invention is formed into a desired shape again after pulverization and further subjected to a voltage application process under the above-described conditions, it can be regenerated into a similar resin molded article having a small surface resistance. . Incidentally, when the resin molded body is given a color by the coloring material, a similar color can be reflected on the resin molded body after the reproduction. It should be noted that a conventional resin molded body subjected to a voltage application treatment, in particular, a resin molded body according to Japanese Patent Application Laid-Open No. Sho 62-119117, Since it has a two-layer structure, it is substantially difficult to recycle and regenerate a similar resin molded article.
本発明の樹脂成形体を製造するために用いられる上述の電圧印加装置 1は、 2 0重量%未満の割合で導電性フィラーを含む樹脂材料からなる既存の樹脂成 形体を処理するために用いることもできる。 すなわち、 電圧印加装置 1を用い た、 既存の樹脂成形体に対する上述のような電圧の印加処理は、 当該既存の樹 脂成形体の導電性を高めるための処理方法となり得る。 この場合は、 既存の樹 脂成形体を搬送装置 3により搬送し、 電圧印加部 2の電極部 4において上述と 同様の印加電圧、 すなわち、 2 O k V以上当該樹脂成形体を構成する樹脂材料 の絶縁破壊電圧未満の印加電圧、 好ましくは 2 0 k V以上 5 0 k V以下の印加 電圧で当該樹脂成形体に対して電圧の印加処理を施す。 この結果、 当該既存の 樹脂成形体は、 処理前に示していた導電性よりも高い導電性、 特に、 小さな表 面抵抗を示すようになる。 The above-described voltage applying apparatus 1 used for manufacturing the resin molded article of the present invention is used for treating an existing resin molded article made of a resin material containing a conductive filler in a proportion of less than 20% by weight. Can also. That is, the above-described voltage application processing to the existing resin molded body using the voltage application device 1 can be a processing method for increasing the conductivity of the existing resin molded body. In this case, the existing resin molded body is transported by the transport device 3, and the same applied voltage as described above at the electrode section 4 of the voltage applying section 2, that is, 2 OkV or more, the resin material constituting the resin molded body The applied voltage is applied to the resin molded body at an applied voltage lower than the dielectric breakdown voltage, preferably at an applied voltage of 20 kV or more and 50 kV or less. As a result, the existing The resin molded body will exhibit higher conductivity than that before treatment, especially low surface resistance.
本発明の樹脂成形体は、 外観形態等にぉレ、て他の樹脂成形体と特に異なるこ とが無いため、 外観形態に基づいて他の樹脂成形体から識別するのは困難であ るが、 例えば次のような方法で他の樹脂成形体から判別することができる。 (方法 1 )  Since the resin molded article of the present invention does not differ from other resin molded articles in appearance and the like, it is difficult to distinguish it from other resin molded articles based on the appearance. For example, it can be distinguished from other resin molded articles by the following method. (Method 1)
予め表面抵抗が測定された樹脂成形体に対して熱重量分析を実施し、 当該樹 脂成形体に含まれる導 ¾性フイラ一の量と種類を分析する。 そして、 熱重量分 析結果から判明した導電性フィラーの量が 2 0重量%未満であり、 しかも予め 測定された樹脂成形体の表面抵抗がそのような導電性フィラー量では通常達成 できないレベルである場合 (すなわち、 通常達成できる表面抵抗よりも小さい 場合) 、 当該樹脂成形体は、 本発明の樹脂成形体であると判定することができ る。  A thermogravimetric analysis is performed on the resin molded body whose surface resistance has been measured in advance, and the amount and type of the conductive filler contained in the resin molded body are analyzed. The amount of the conductive filler determined from the result of the thermogravimetric analysis is less than 20% by weight, and the surface resistance of the resin molded body measured in advance is a level that cannot be normally achieved with the amount of the conductive filler. In this case (that is, when the surface resistance is smaller than the normally achievable surface resistance), the resin molded body can be determined to be the resin molded body of the present invention.
樹脂成形体に対して熱重量分析を実施する際は、 通常、 空気中において 1 0 °CZ分程度の昇温速度で室温から 1, 0 0 0°Cまで樹脂成形体を加熱し、 その 間の重量変化を調べる。 加熱後の樹脂マトリックスが炭素を残さない場合、 熱 重量分析時における樹脂成形体の加熱は、 窒素等の不活性ガス中で実施するこ ともできる。  When performing thermogravimetric analysis on a resin molded product, the resin molded product is usually heated from room temperature to 1000 ° C. in air at a rate of about 10 ° C. Examine the change in weight. When the resin matrix after heating does not leave carbon, heating of the resin molded body during thermogravimetric analysis can be performed in an inert gas such as nitrogen.
図 2に、 1 5重量。 /0の炭素繊維と 1 5重量%の非導電性無機物とを含む、 表 面抵抗が 1 . 4 Χ 1 0 3 ΩΖ口のポリスルホン樹脂 (加熱処理後に炭素を残す 樹脂) からなる樹脂成形体についての熱重量分析結果を示す。 なお、 非導電性 無機物は、 隠蔽材として用いられる酸化チタンを含む、 数種類の無機物の混合 物である。 図 2に%で表示された数値は、 変曲点間の重量減少を示している。 図において、 6 3 7. 6〜7 6 3 . 5 °Cの範囲で 1 4. 4 %の重量減少が認め られ、 これは樹脂成形体に含まれる炭素繊維の量と略一致していることがわか る。 また、 8 0 0 °Cでの残留分は略 1 5 %であり、 これは樹脂成形体に含まれ る非導電性無機物の量と略一致していることがわかる。 このような熱重量分析 結果により、 分析対象である樹脂成形体は、 約 1 5重量%の炭素材料系導電性 フィラーと、 約 1 5重量%の非導電十生無機物とを含むことがわかる。 In Figure 2, 15 weight. / Including 0 and carbon fibers and 1 5 wt% of the non-conductive inorganic material, the front surface resistance 1. 4 chi 1 0 3 consists ΩΖ port of polysulfone resin (resin leaving the carbon after heat treatment) molded resin 2 shows the results of thermogravimetric analysis of the sample. The non-conductive inorganic substance is a mixture of several kinds of inorganic substances including titanium oxide used as a concealing material. The numerical value shown in% in FIG. 2 indicates the weight loss between the inflection points. In the figure, a weight loss of 14.4% was observed in the range of 637.6 to 763.5 ° C, which is almost the same as the amount of carbon fibers contained in the resin molded product. I know You. In addition, the residual at 800 ° C. was approximately 15%, which indicates that it substantially coincides with the amount of the non-conductive inorganic substance contained in the resin molded product. From the results of the thermogravimetric analysis, it is understood that the resin molded article to be analyzed contains about 15% by weight of the carbon material-based conductive filler and about 15% by weight of the non-conductive inorganic material.
因みに、 5 4 9 . 5〜6 3 7 . 6 °Cの範囲における 2 9 . 5 %の重量減少は、 樹脂成形体のマトリックスを構成するポリスルホン樹脂の炭化によるものであ り、 燃焼速度が炭素繊維や他の炭素材料系の導電性フィラーに比べて著しく速 いため、 導電性フィラーである炭素繊維に起因するものでないことが容易に判 別できる。  Incidentally, the weight loss of 29.5% in the range of 549.5 to 6377.6 ° C is due to the carbonization of the polysulfone resin constituting the matrix of the resin molded product, and the combustion rate is lower than that of carbon. Since it is significantly faster than fibers and other carbon-based conductive fillers, it can be easily determined that the problem is not caused by carbon fibers, which are conductive fillers.
なお、 樹脂成形体に含まれる導電性フィラーが金属材料系のものである場合 は、 その導電性ブイラ一の酸ィ匕による重量増加が観測されることになる。 した がって、 熱重量分析結果において重量増加が認められた場合は、 樹脂成形体が 金属材料系の導電性フィラーを含んでいるものと推測することができる。  When the conductive filler contained in the resin molded body is of a metal material type, an increase in weight due to oxidation of the conductive boiler is observed. Therefore, when a weight increase is observed in the thermogravimetric analysis results, it can be assumed that the resin molded body contains a metallic material-based conductive filler.
この方法は、 熱重量分析に代えて E S C A (エレクトロンスぺクトロスコピ 一フォーケミカルアナリシス) や E PMA (エレクトロンプローブマイクロア ナライザ一) を用いた分析を実施して樹脂成形体中に含まれる導電性フィラー の種類や量を推測した場合も同様に実施することができる。  In this method, instead of thermogravimetric analysis, analysis using ESCA (Electron Spectroscopy for Chemical Analysis) or EPMA (Electron Probe Microanalyzer) is carried out, and the conductive filler contained in the resin molded product is analyzed. In the case where the type and amount of are estimated, it can be carried out similarly.
(方法 2 )  (Method 2)
樹脂成形体を、 それを構成する樹脂材料の軟化点またはそれ以上に加熱処理 した後に室温まで冷却し、 当該樹脂成形体について表面抵抗を測定する。 本発 明の樹脂成形体または本発明の方法により処理された樹脂成形体は、 このよう な加熱処理により絶縁破壊部分が治癒され、 加熱処理後の表面抵抗が加熱処理 する前の表面抵抗に比べて大きくなる。 より具体的には、 本発明の樹脂成形体 は、 通常、 加熱処理後の表面抵抗が加熱処理する前の表面抵抗の 1 0 0倍以上 になる。 これに対し、 本発明のものとは異なる樹脂成形体、 すなわち、 電圧の 印加処理の履歴が無い樹脂成形体は、 絶縁破壊部分を有していないため、 上述 のような加熱処理を施しても、 表面抵抗が増加し難い。 The resin molded body is heated to the softening point or higher of the resin material constituting the resin molded body, then cooled to room temperature, and the surface resistance of the resin molded body is measured. In the resin molded article of the present invention or the resin molded article treated by the method of the present invention, a dielectric breakdown portion is cured by such a heat treatment, and the surface resistance after the heat treatment is smaller than the surface resistance before the heat treatment. It becomes bigger. More specifically, in the resin molded article of the present invention, the surface resistance after the heat treatment is usually 100 times or more the surface resistance before the heat treatment. On the other hand, a resin molded body different from that of the present invention, Since the resin molded body having no history of the application treatment does not have a dielectric breakdown portion, the surface resistance does not easily increase even if the above-described heat treatment is performed.
なお、 上述のようにして加熱処理された本発明の樹脂成形体は、 その後、 既 述の条件でさらに電圧の印加処理を施すと、 表面抵抗が当該電圧の印加処理前 の 1 / 1 0 0以下になり得る。  When the resin molded body of the present invention that has been subjected to the heat treatment as described above is further subjected to a voltage application process under the above-described conditions, the surface resistance becomes 1/1000 of that before the voltage application process. It can be:
(方法 3 )  (Method 3)
樹脂成形体が黒色系以外の色彩を有している場合において、 その色彩が樹月旨 成形体の断面全体に渡って実質的に均一に現れており、 しかもその表面抵抗が 1 0 5〜1 0 1 2 ΩΖ口程度の範囲、 若しくは 1 0— 2〜1 0 1 3 Ωノロである場 合、 その樹脂成形体は本発明の樹脂成形体の可能性がある。 因みに、 本発明で 用いられるような炭素材料系の導電性フィラーを 2 0重量%以上含む樹脂成形 体は、 全体が黒色を呈することになるため、 着色材を含んでいても、 当該着色 材に応じた色彩を呈し得ない。 また、 樹脂成形体の表面部分にのみ色彩が付与 されている場合 (例えば、 先に挙げた特開昭 6 2 - 1 1 0 9 1 7号公報に記載 の樹脂成形体のような場合) は、 当該樹脂成形体の断面全体に渡って均一な色 彩は現れ得ない。 In the case where the resin molded body has a color other than black series, it is substantially uniformly appeared its colors over the entire cross-section of Kitsuki effect moldings, moreover its surface resistance of 1 0 5-1 0 1 2 ΩΖ opening degree range or 1 0- 2 ~1 0 1 3 Ω is Noro If, the resin molded article is likely resin molding of the present invention. Incidentally, since the resin molded body containing 20% by weight or more of the carbon material-based conductive filler used in the present invention has a black color as a whole, even if the coloring material is contained, It cannot exhibit the appropriate color. Further, when color is given only to the surface portion of the resin molded body (for example, in the case of the resin molded body described in Japanese Patent Application Laid-Open No. 62-110177). However, a uniform color cannot appear over the entire cross section of the resin molded body.
(方法 4 )  (Method 4)
樹脂成形体をアセトンや水で十分洗浄し、 洗浄の前後の表面抵抗を比較する。 本発明の樹脂成形体は、 表面抵抗が洗浄の前後で変化しにくいが、 他の樹脂成 形体、 特に、 界面活性剤を用いて導電性が付与された樹脂成形体は、 洗浄後の 表面抵抗が著しく高くなる。 したがって、 樹脂成形体の洗浄前後の表面抵抗を 測定することにより、 樹脂成形体が本発明の樹脂成形体であるか否かを判別す ることができる。  Wash the resin molded article sufficiently with acetone or water and compare the surface resistance before and after washing. Although the surface resistance of the resin molded article of the present invention hardly changes before and after washing, other resin molded articles, particularly resin molded articles to which conductivity is imparted by using a surfactant, have a surface resistance after washing. Is significantly higher. Therefore, by measuring the surface resistance of the resin molded body before and after washing, it can be determined whether or not the resin molded body is the resin molded body of the present invention.
以下、 本発明を実施例に基づいてより詳細に説明する。  Hereinafter, the present invention will be described in more detail based on examples.
実施例 1 平均繊維径が 7 μπιでありかつ平均ァスぺクト比が 857のポリアクリロニ トリル系炭素短繊維 (三菱レーヨン株式会社の商品名 "パイ口フィル" ) から なる、 フイラ一群電気抵抗値が 0. 06Qcniの繊維群 (導電性フィラー) を 用意した。 Example 1 It consists of short polyacrylonitrile-based carbon fibers with an average fiber diameter of 7 μπι and an average aspect ratio of 857 (trade name “Paiguchi Fill” of Mitsubishi Rayon Co., Ltd.). Fiber group (conductive filler) was prepared.
次に、 樹脂材料であるポリフエ二レンオキサイド樹脂 (日本ゼネラルエレク トリック株式会社の商品名 "ノリル P PO 534" ) に対して上述の繊維群、 黄色の着色材 (東洋化成株式会社の商品名 "CB 116" ) 、 隠蔽材である酸 化チタン (石原産業株式会社の商品名 "CR60" ) およびタルク (富士タル ク株式会社の商品名 "# 1000" ) をフィーダ一を用いて供給して混合し、 繊維群、 着色材および隠蔽材を含む樹脂材料からなるペレツト (成形材料) を 調製した。 なお、 繊維群の混合割合は、 ペレット中において 6. 0重量%にな るよう設定した。 また、 着色材、 酸ィ匕チタンおよびタルクの混合割合は、 それ ぞれ 1. 0重量0 /0、 0. 2重量%および 3. 0重量%になるよう設定した。 こ のペレットは、 着色材による黄色を呈していた。 Next, for the resin material, polyphenylene oxide resin (trade name “Noryl P PO 534” of Nippon General Electric Co., Ltd.), the above-mentioned fiber group and yellow colorant (trade name of Toyo Kasei Co., Ltd.) CB 116 "), concealment material titanium oxide (trade name" CR60 "of Ishihara Sangyo Co., Ltd.) and talc (trade name"# 1000 "of Fuji Talc Co., Ltd.) are supplied and mixed using a feeder. Then, a pellet (molding material) composed of a resin material including a fiber group, a coloring material and a concealing material was prepared. The mixing ratio of the fiber group was set so as to be 6.0% by weight in the pellet. Further, coloring materials, Sani匕titanium and the mixing ratio of talc, their respective 1.0 wt 0/0, was set to be 0.2 wt% and 3.0 wt%. The pellets had a yellow color due to the coloring material.
このペレツトを、 樹脂温度 240°C、 射出圧力 1, 200 k g/cm2およ び金型温度 60 °Cの条件で住友重機械工業株式会社製の P R OM A T射出成形 機を用いて成形し、 直径 50mm、 厚さ 3mmの黄色の円板、 すなわち樹脂成 形体を得た。 得られた円板の表面に銀ペーストを用いて一対の電極を形成し、 当該電極間の電気抵抗を測定して円板の表面抵抗 (Ω ロ) を求めたところ、 4 X 1015Ω/口であった。 なお、 以下、 「表面抵抗」 と言う場合は、 この ようにして測定した抵抗を言うものとする。 The pellet was molded using a PROM AT injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. at a resin temperature of 240 ° C, an injection pressure of 1,200 kg / cm 2 and a mold temperature of 60 ° C. A yellow disk having a diameter of 50 mm and a thickness of 3 mm, that is, a resin molded body was obtained. A pair of electrodes was formed using silver paste on the surface of the obtained disk, and the electrical resistance between the electrodes was measured to determine the surface resistance (Ωb) of the disk. As a result, 4 × 10 15 Ω / Was the mouth. Hereinafter, the term “surface resistance” refers to the resistance measured in this manner.
また、 円板中におけるポリアクリロニトリル系炭素繊維の平均残存ァスぺク ト比は 28. 6であった。 因みに、 この平均残存アスペク ト比は、 円板を塩ィ匕 メチレンに溶解してポリアクリロ二トリル系炭素短繊維を分離し、 そのうちの 400本の平均長さと平均径とを光学顕微鏡で測定して算出したものである。 次に、 接地されたプレート上に得られた円板を載置し、 当該円板の上方に多 数の針状電極からなる電極群を配置した。 なお、 プレートと電極群との間隔は 4 Ommに設定し、 電極群が円板に直接触れないようにした。 そして、 電極群 に対し、 その極性がプラスになるよう 30, 000 Vの直流電圧を 10秒間印 加した。 このようにして電圧の印加処理が施された円板 (本発明に係る樹脂成 形体) の表面抵抗は 1 X 1012 口であり、 電圧の印加処理前に比べて大 幅に低下していることが確認された。 また、 円板の色彩は、 電圧の印加処理後 であっても変化しなかつた。 The average residual ratio of the polyacrylonitrile-based carbon fibers in the disc was 28.6. Incidentally, this average residual aspect ratio was determined by dissolving a disk in methylene chloride, separating polyacrylonitrile-based carbon short fibers, and measuring the average length and average diameter of 400 of them using an optical microscope. It is calculated. Next, the obtained disk was placed on a grounded plate, and an electrode group including a large number of needle-like electrodes was arranged above the disk. The distance between the plate and the electrode group was set to 4 Omm so that the electrode group did not directly touch the disk. Then, a DC voltage of 30,000 V was applied to the electrode group for 10 seconds so that the polarity became positive. The surface resistance of the disc (resin molded body according to the present invention) subjected to the voltage application treatment in this manner is 1 × 10 12 ports, which is significantly lower than that before the voltage application treatment. It was confirmed that. Also, the color of the disc did not change even after the voltage application process.
また、 この円板について熱重量分析を実施した結果を図 3に示す。 この熱重 量分析結果は、 熱重量分析器としてセィコーィンスツルメント株式会社の商品 名 "TG/DTA32" を用い、 分析条件を測定温度範囲 =20〜1, 000 °C、 昇温速度 = 10°C/分および空気流量二 200. 0m l Z分にそれぞれ設 定して得られたものであり、 そこに%で表示された数値は重量の残存率である。 この熱重量分析結果は、 円板中の繊維群重量が 5. 8重量%であることを示し ており、 この値は、 円板を製造する際に用いた繊維群の混合割合と概ね一致し ている。 また、 この結果は、 不燃残查が 5. 3重量%残留していることを示し ているが、 これは、 隠蔽材等に由来するものと考えられる。  Fig. 3 shows the results of thermogravimetric analysis of this disk. The results of the thermogravimetric analysis were obtained by using the TG / DTA32 brand name of Seiko Instruments Inc. as a thermogravimetric analyzer. The analysis conditions were as follows: measurement temperature range = 20 to 1,000 ° C; = 10 ° C / min and an air flow rate of 20.0 ml / z, respectively, and the percentage value is the residual rate of weight. The thermogravimetric analysis results show that the weight of the fiber group in the disk is 5.8% by weight, which is almost consistent with the mixing ratio of the fiber group used in manufacturing the disk. ing. In addition, this result indicates that 5.3% by weight of non-combustible residue remains, which is considered to be derived from the concealing material and the like.
実施例 2 Example 2
樹脂材料であるポリプロピレン樹脂 (日本ポリケム株式会社の商品名 "ノバ テック BC3B" ) に対し、 平均繊 ϋ隹径が 7 μηιでありかつ平均アスペク ト比 が 857のポリアクリロニトリル系炭素短繊維 (三菱レーョン株式会社の商品 名" パイ口フィル" ) からなる、 フイラ一群電気抵抗値が 0. 06 Q cmの繊 維群、 黄色の着色材 (東洋化成株式会社の商品名 "CB 1 16" ) 、 隠蔽材で ある酸化チタン (石原産業株式会社の商品名 "CR60" ) およびマイ力 (ク ラレ株式会社の商品名 "クラレマイ力 200HK" ) を実施例 1の場合と同様 にして混合し、 ペレットを得た。 なお、 繊維群の混合割合は、 ペレット中にお いて 5. 0重量%になるよう設定した。 また、 着色材、 酸化チタンおよびマイ 力の混合割合は、 それぞれ 0. 6重量%、 0. 2重量%および 1. 0重量。 /0に なるよう設定した。 このペレットは、 着色材による鮮やかな黄色を呈していた。 得られたぺレットから実施例 1の場合と同様の成形過程を経て円板を製造し た。 この円板は、 鮮やかな黄色を呈していた。 また、 円板中におけるポリアク リロ二トリル系炭素短繊維の平均残存ァスぺクト比は 51. 1であった。 この 平均残存ァスぺクト比は、 円板を溶解するための溶媒として熱デカリンを用い た点を除き、 実施例 1の場合と同様にして求めたものである。 Polyacrylonitrile-based carbon short fiber (Mitsubishi Rayon Co., Ltd.) with an average fiber diameter of 7 μηι and an average aspect ratio of 857 compared to polypropylene resin (product name “Novatec BC3B” of Nippon Polychem Co., Ltd.) A group of fibers with an electrical resistance of 0.06 Q cm, consisting of a fiber group consisting of “Paiguchi Fill” (trade name of Co., Ltd.), yellow coloring material (trade name “CB 1 16” of Toyo Kasei Co., Ltd.), concealment Titanium oxide (trade name “CR60” of Ishihara Sangyo Co., Ltd.) and My Power (trade name of Kuraray Co., Ltd. “200HK”) as in Example 1 And mixed to obtain a pellet. The mixing ratio of the fiber group was set so as to be 5.0% by weight in the pellet. The mixing ratios of the coloring material, titanium oxide and my strength were 0.6% by weight, 0.2% by weight and 1.0% by weight, respectively. / 0 was set. The pellets had a bright yellow colorant. A disc was manufactured from the obtained pellets through the same forming process as in Example 1. This disk had a bright yellow color. The average residual aspect ratio of the polyacrylonitrile-based carbon short fibers in the disc was 51.1. The average residual aspect ratio was determined in the same manner as in Example 1 except that hot decalin was used as a solvent for dissolving the disc.
得られた円板の表面抵抗を電圧の印加処理を施す前後について測定した。 電 圧の印加処理条件は、 30k Vの交流電圧を用いた点を除き、 実施例 1の場合 と同様に設定した。 円板の表面抵抗は、 電圧の印加処理前が 2. 6 X 1014 Ωノロであつたのに対し、 電圧の印加処理後は 3. 3X 105ΩΖ口に低下し ていた。 なお、 円板の色彩は、 電圧の印加処理後であっても変化しなかった。 また、 電圧の印加処理前の円板について熱重量分析を実施した結果を図 4に 示す。 この熱重量分析結果は、 熱重量分析器としてセィコーィンスツルメント 株式会社の商品名 "TGZDTA32" を用い、 分析条件を測定温度範囲 = 2 0〜1, 000°C, 昇温速度 = 10°CZ分および空気流量 =200. 0ml / 分にそれぞれ設定して得られたものであり、 そこに%で表示された数値は重量 の残存率である。 図 4に示された熱重量分析結果は、 円板中の繊維群重量が 4. 9重量%であることを示しており、 この値は、 円板を製造する際に用いた繊維 群の混合割合と概ね一致していることが分かる。 また、 この結果は、 不燃残查 が 2. 1重量%残留していることを示しているが、 これは隠蔽材等に由来する ものと考えられる。 The surface resistance of the obtained disk was measured before and after applying a voltage. The conditions for applying the voltage were set in the same manner as in Example 1 except that an AC voltage of 30 kV was used. The surface resistance of the disc was 2.6 × 10 14 Ω before the voltage application, but decreased to 3.3 × 10 5 Ω / cm after the voltage application. The color of the disc did not change even after the voltage application process. Figure 4 shows the results of thermogravimetric analysis performed on the disc before the voltage application process. The results of the thermogravimetric analysis were obtained by using the product name “TGZDTA32” of Seiko Instruments Inc. as a thermogravimetric analyzer, and analyzing the analysis conditions at a measurement temperature range of 20 to 1,000 ° C and a heating rate of 10 ° C. These values were obtained by setting ° CZ and air flow rate to 200.0 ml / min, respectively, and the numerical value shown in% is the residual ratio of weight. The thermogravimetric analysis result shown in Fig. 4 shows that the weight of the fiber group in the disk is 4.9% by weight, which is the value of the fiber group used in manufacturing the disk. It turns out that it is almost in agreement with the ratio. In addition, this result shows that 2.1% by weight of the non-combustible residue remains, which is considered to be derived from the shielding material and the like.
実施例 3 繊維群および着色材の混合割合をそれぞれ 6. 0重量および 1. 0重量%に 変更し、 また、 酸化チタンとマイ力とを用いなかった点を除いて実施例 2の場 合と同様にして黄色の円板を製造した。 円板中におけるポリアクリロニトリル 系炭素短繊維の平均残存アスペクト比は 52. 3であった。 この円板の表面抵 抗を測定した後、 この円板に対して実施例 2と同様の条件による電圧の印加処 理を施した。 円板の表面抵抗は、 電圧の印加処理前が 8 X 1013 ΩΖ口であ つたのに対し、 電圧の印加処理後は 4 X 105ΩΖ口に低下していた。 なお、 円板の色彩は、 電圧の印加処理後であっても変化しなかった。 Example 3 The mixing ratio of the fiber group and the colorant was changed to 6.0% by weight and 1.0% by weight, respectively, and in the same manner as in Example 2 except that titanium oxide and my power were not used. A yellow disk was produced. The average residual aspect ratio of the polyacrylonitrile-based carbon short fibers in the disk was 52.3. After measuring the surface resistance of the disk, a voltage application process was performed on the disk under the same conditions as in Example 2. The surface resistance of the disk was 8 × 10 13 Ω square before the voltage application treatment, but decreased to 4 × 10 5 Ω square after the voltage application treatment. The color of the disc did not change even after the voltage application process.
また、 電圧の印加処理前の円板について、 実施例 2の場合と同様に熱重量分 析を実施した結果を図 5に示す。 図 5に示された熱重量分析結果は、 円板中の 繊維群重量が 6. 1重量%であることを示しており、 この値は、 円板を製造す る際に用いた繊維群の混合割合と概ね一致していることが分かる。 また、 この 結果は、 不燃残查が 0. 5重量%残留していることを示しているが、 これは円 板中に含まれる不純物によるものと考えられる。  In addition, FIG. 5 shows the results of thermogravimetric analysis performed on the disc before the voltage application treatment in the same manner as in Example 2. The thermogravimetric analysis results shown in FIG. 5 indicate that the weight of the fiber group in the disk is 6.1% by weight, which is the value of the fiber group used in manufacturing the disk. It turns out that it is almost in agreement with the mixing ratio. In addition, this result indicates that 0.5% by weight of the non-combustible residue remains, which is considered to be due to impurities contained in the disc.
実施例 4 Example 4
樹月旨材料であるポリフエ二レンォキサイド樹脂 (日本ゼネラルエレクトリツ ク株式会社の商品名 "ノリル ΡΡ0534" ) に対し、 平均繊維径が 12μπι でありかつ平均ァスぺクト比が 250のピッチ系炭素短繊維 (大阪瓦斯株式会 社の商品名 "Xy 1 u s GCA03 J 431 " ) からなる、 フイラ一群電気 抵抗値が 6080 Ω c mの繊維群、 緑色の着色材 (大日精化株式会社の商品名 "NO 41" ) 、 隠蔽材である酸化チタン (石原産業株式会社の商品名 "CR 60" ) およびマイ力 (クラレ株式会社の商品名 "クラレマイ力 200HK" ) を実施例 1の場合と同様にして混合し、 ペレットを得た。 なお、 繊維群の混 合割合はペレット中において 16重量%になるよう設定し、 また、 着色材、 酸 化チタンおよびマイ力の混合割合は、 それぞれ 1. 0重量%、 1. 0重量%お よび 5. 0重量%になるよう設定した。 得られたペレッ トは、 着色材による緑 色を呈していた。 Compared to polyphenylene oxide resin (trade name “Noryl No. 0534” of Nippon General Electric Co., Ltd.), a pitch-based carbon fiber with an average fiber diameter of 12μπι and an average aspect ratio of 250 A fiber group consisting of fibers (trade name “Xy 1 us GCA03 J 431” of Osaka Gas Co., Ltd.) with a resistance value of 6080 Ωcm, a green coloring material (trade name “NO. 41 "), and titanium oxide (trade name" CR 60 "of Ishihara Sangyo Co., Ltd.) and my strength (Kuraray Co., Ltd. name" Kuraray Mai Riki 200HK "), which are concealing materials, were mixed in the same manner as in Example 1. Then, a pellet was obtained. The mixing ratio of the fiber group was set to 16% by weight in the pellet, and the mixing ratios of the coloring material, titanium oxide, and my strength were 1.0% by weight, 1.0% by weight, and 1.0% by weight, respectively. And 5.0% by weight. The obtained pellet had a green color due to the coloring material.
得られたぺレットから実施例 1の場合と同様の成形過程を経て円板を製造し た。 この円板は、 着色材による緑色を呈していた。 また、 円板中におけるピッ チ系炭素短繊維の平均残存アスペク ト比は 18. 8であった。 この平均残存ァ スぺクト比は、 実施例 1の場合と同様にして求めたものである。 さらに、 この 円板は、 電圧の印加処理前および実施例 1の場合と同様の電圧印加処理後の表 面抵抗を測定したところ、 それぞれ 3 X 1010ΩΖ口および 5 X 108ΩΖ口 であった。 円板の色彩は、 電圧の印加処理後であっても変化しなかった。 A disc was manufactured from the obtained pellets through the same forming process as in Example 1. This disk had a green color due to the coloring material. The average residual aspect ratio of the pitch carbon short fibers in the disc was 18.8. This average residual factor ratio was determined in the same manner as in Example 1. Further, the surface resistance of this disc was measured before application of voltage and after application of voltage in the same manner as in Example 1, and it was 3 × 10 10 Ω and 5 × 10 8 Ω, respectively. Was. The color of the disc did not change even after the voltage application treatment.
実施例 5〜 12 Examples 5 to 12
樹脂材料であるポリプロピレン樹脂 (日本ポリケム株式会社の商品名 "ノバ テック BC3B" ) に対し、 平均繊維径が 7 μπιでありかつ平均アスペクト比 が 857のポリアクリロニトリル系炭素短繊維 (三菱レーョン株式会社の商品 名" パイロフィル" ) からなる、 繊維群電気抵抗値が 0. 06 Ω c mの繊維群、 赤色の着色材 (東洋化成株式会社の商品名 "CB 328" ) 、 隠蔽材である酸 化チタン (石原産業株式会社の商品名 "CR60" ) およびタルク (富士タル ク株式会社の商品名 "# 1000" ) を実施例 1の場合と同様にして混合し、 ペレッ トを得た。 なお、 繊維群の混合割合は、 ペレッ ト中において表 1に示す ようになるよう設定した。 また、 着色材、 酸ィ匕チタンおょぴタルクの混合割合 は、 いずれの実施例についても、 それぞれ 1. 0重量%、 0. 2重量%および 3. 0重量%になるよう設定した。  Polyacrylonitrile-based short carbon fibers (Mitsubishi Rayon Co., Ltd.) with an average fiber diameter of 7 μπι and an average aspect ratio of 857 were compared to polypropylene resin (Nova Tech BC3B, trade name of Nippon Polychem Co., Ltd.). The fiber group consisting of the product name "Pyrofil"), the fiber group having an electrical resistance of 0.06 Ω cm, a red coloring material (trade name of Toyo Kasei Co., Ltd. "CB 328"), and a titanium oxide concealment material ( Pellets were obtained by mixing Ishihara Sangyo Co., Ltd. product name "CR60") and talc (Fuji Talc Co., Ltd. product name "# 1000") in the same manner as in Example 1. The mixing ratio of the fiber groups was set as shown in Table 1 in the pellet. Further, the mixing ratio of the coloring material and the oxidized titanium oxide talc was set to be 1.0% by weight, 0.2% by weight and 3.0% by weight, respectively, in each of the examples.
得られたぺレットから実施例 1の場合と同様の成形過程を経て円板を製造し、 その表面抵抗を測定した。 そして、 得られた円板に対して表 1に示す条件で電 圧の印加処理を施した後、 その表面抵抗を測定した。 表 1に示す電圧の印加処 理条件は下記の通りである。 結果を表 1に示す。 なお、 各実施例で得られた円 板は、 着色材による鮮やかな赤色を呈し、 その色彩は、 電圧の印加処理後であ つても変化しなかった。 A disk was manufactured from the obtained pellets through the same forming process as in Example 1, and the surface resistance was measured. Then, after applying a voltage to the obtained disc under the conditions shown in Table 1, the surface resistance was measured. The voltage application processing conditions shown in Table 1 are as follows. Table 1 shows the results. The circle obtained in each example The plate exhibited a bright red colorant, and its color did not change even after the voltage application process.
(電圧印加処理条件)  (Conditions for applying voltage)
条件 A: Condition A:
上下方向に延びる多数の針状電極かならる一対の電極群を 3 5 mmの間隔を 設けて上下に配置し、 下側の電極群を接地した。 そして、 下側の電極群上に円 板を載置し、 電極群間に + 3 0 k Vの直流電圧を 3 0秒間印加した。  A pair of electrode groups consisting of a large number of needle-like electrodes extending in the vertical direction were arranged vertically at intervals of 35 mm, and the lower electrode group was grounded. Then, a disk was placed on the lower electrode group, and a DC voltage of +30 kV was applied between the electrode groups for 30 seconds.
条件 B: Condition B:
上下方向に延びる多数の針状電極かならる一対の電極群を 3 5 mmの間隔を 設けて上下に配置し、 下側の電極群を接地した。 そして、 下側の電極群上に円 板を載置し、 電極群間に一 3 0 k Vの直流電圧を 3 0秒間印加した。  A pair of electrode groups consisting of a large number of needle-like electrodes extending in the vertical direction were arranged vertically at intervals of 35 mm, and the lower electrode group was grounded. Then, a disk was placed on the lower electrode group, and a DC voltage of 130 kV was applied between the electrode groups for 30 seconds.
条件 C: Condition C:
上下方向に延びる多数の針状電極からなる一対の電極群を 3 O mmの間隔を 設けて上下に配置し、 下側の電極群を接地した。 そして、 下側の電極群側に円 筒状の支持具を上下方向に数本配置し、 当該支持具上に円板を水平に載置した。 このようにして一対の電極群間に円板を水平に配置し、 電極群間に + 5 0 k V の直流電圧を 3 0秒間印加した。  A pair of electrode groups consisting of a large number of needle-like electrodes extending in the vertical direction were arranged vertically at an interval of 30 mm, and the lower electrode group was grounded. Then, several cylindrical supports were vertically arranged on the lower electrode group side, and the disk was placed horizontally on the supports. Thus, the disk was horizontally arranged between the pair of electrode groups, and a DC voltage of +50 kV was applied between the electrode groups for 30 seconds.
条件 D: Condition D:
上下方向に延びる多数の針状電極からなる一対の電極群を 3 0 mmの間隔を 設けて上下に配置し、 下側の電極群を接地した。 そして、 下側の電極群側に円 筒状の支持具を上下方向に数本配置し、 当該支持具上に円板を水平に載置した このようにして一対の電極群間に円板を水平に配置し、 電極群間に一 5 0 k V の直流電圧を 3 0秒間印加した。 表 1 A pair of electrode groups consisting of a large number of needle-like electrodes extending in the vertical direction were arranged vertically at intervals of 30 mm, and the lower electrode group was grounded. Then, several cylindrical supports are vertically arranged on the lower electrode group side, and the disk is placed horizontally on the support. Thus, the disk is placed between the pair of electrode groups. They were placed horizontally and a DC voltage of 150 kV was applied between the electrode groups for 30 seconds. table 1
Figure imgf000033_0001
実施例 1 3
Figure imgf000033_0001
Example 13
実施例 2で得られた電圧の印加処理後の円板について、 加熱処理後の表面抵 抗を調べた。 ここでは、 円板を表 2に示す温度で 3 0分間加熱し、 その後 1 0 分かけて室温まで冷却する加熱一冷却サイクルを各温度について 4サイクル実 施し、 その後に表面抵抗を測定した。 結果を表 2に示す。 加熱処理温度のレン ジが 9 5〜1 6 5 °Cの場合は、 加熱処理後の表面抵抗は加熱処理前と略同じで あって大幅な変化は見られなかったが、 実施例 2で用いた樹脂の軟化点である 1 7 5 °Cでの加熱処理後は、 表面抵抗が電圧の印加処理前のレベルまで大幅に 上昇していることがわかる。 表 2 With respect to the disk obtained in Example 2 after the voltage application treatment, the surface resistance after the heat treatment was examined. Here, the disk was heated at the temperature shown in Table 2 for 30 minutes, and then subjected to four heating-cooling cycles at each temperature for cooling to room temperature over 10 minutes, and then the surface resistance was measured. Table 2 shows the results. When the range of the heat treatment temperature was 95 to 165 ° C, the surface resistance after the heat treatment was almost the same as before the heat treatment, and no significant change was observed. It can be seen that after the heat treatment at 175 ° C, which is the softening point of the resin, the surface resistance has risen significantly to the level before the voltage application treatment. Table 2
Figure imgf000034_0001
実施例 1 4
Figure imgf000034_0001
Example 14
実施例 2で用いたものと同じポリプロピレン樹脂および繊維群のみを用い、 実施例 2の場合と同様にして円板を製造した。 ここでは、 繊維群の含有量が 5 重量%、 6重量%、 7重量%、 8重量%、 9重量%および 1 0重量%にそれぞ れ設定された 6種類の円板を製造した。 各円板の表面抵抗を測定した結果を図 6に示す。 次に、 繊維群の含有量が 5重量%、 6重量%、 7重量%および 8重量%にそ れぞれ設定された円板について、 実施例 2の場合と同様の電圧の印加処理を施 し、 その後の表面抵抗を測定した。 結果を図 6に示す。 Using only the same polypropylene resin and fiber group as those used in Example 2, a disk was manufactured in the same manner as in Example 2. Here, six types of discs were manufactured with the fiber group content set to 5 wt%, 6 wt%, 7 wt%, 8 wt%, 9 wt% and 10 wt%, respectively. Figure 6 shows the results of measuring the surface resistance of each disk. Next, the same voltage application processing as in Example 2 was applied to the disks in which the content of the fiber group was set to 5% by weight, 6% by weight, 7% by weight, and 8% by weight, respectively. Then, the surface resistance was measured. Fig. 6 shows the results.
比較例 1 Comparative Example 1
実施例 1において、 繊維群、 着色材および酸化チタンの混合割合をそれぞれ 20重量%、 3. 0重量%および 1. 0重量%に変更し、 また、 タルクに代え て 5. 0重量。 /0のマイ力 (クラレ株式会社の商品名 "クラレマイ力 200H K" ) を利用した点を除いて実施例 1の場合と同様のペレットを調製した。 こ のペレツトを用いて実施例 1の場合と同様の方法で円板を製造したところ、 当 該円板は、 濃灰色を呈し、 ペレットに添加した着色材による色彩は反映されな かった。 また、 この円板は、 電圧の印加処理を施す前から、 既に 2. 0X 10 2 Ω /口の表面抵抗を示した。 In Example 1, the mixing ratio of the fiber group, the coloring material and the titanium oxide was changed to 20% by weight, 3.0% by weight and 1.0% by weight, respectively, and 5.0% by weight instead of talc. A pellet was prepared in the same manner as in Example 1 except that a My power of / 0 (Kuraray Co., Ltd., trade name "Kuraray My power 200H K") was used. When a disk was manufactured using this pellet in the same manner as in Example 1, the disk was dark gray, and the color of the coloring material added to the pellet was not reflected. In addition, this disk had a surface resistance of 2.0 × 10 2 Ω / port before applying the voltage application treatment.
比較例 2 Comparative Example 2
実施例 2で用いたものと同じポリプロピレン樹脂 67重量%、 カーボンブラ ック (ァクゾ社の商品名 "ケッチェンブラック EC" ) 20重量%、 赤色の着 色材 (東洋化成株式会社の商品名 "CB 328" ) 3. 0重量%、 酸化チタン 67% by weight of the same polypropylene resin as used in Example 2, 20% by weight of carbon black (trade name of “Ketjen Black EC” by Axo Co.), red coloring material (trade name of Toyo Kasei Co., Ltd.) CB 328 ") 3.0% by weight, titanium oxide
(石原産業株式会社の商品名 "CR60" ) 5. 0重量。 /0およびタルク (富士 タルク株式会社の商品名 " # 1000" ) 5. 0重量%を実施例 1の場合と同 様に混合してペレットを得、 さらに、 このペレットから実施例 1の場合と同様 にして円板を得た。 得られた円板は、 黒色であり、 着色材による色彩は反映さ れなかった。 また、 この円板の表面抵抗は、 電圧の印加処理を施す前から、 既 に 4 Ωノロであった。 本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろ な形で実施することができる。 そのため、 上述の実施例はあらゆる点で単なる 例示に過ぎず、 限定的に解釈してはならない。 本発明の範囲は、 請求の範囲に よって示すものであって、 明細書本文にはなんら拘束されない。 さらに、 請求 の範囲の均等範囲に属する変形や変更は、 すべて本発明の範囲内のものである。 (Ishihara Sangyo Co., Ltd. product name "CR60") 5.0 weight. / 0 and talc (trade name of Fuji Talc Co., Ltd. "# 1000") 5.0% by weight was mixed in the same manner as in Example 1 to obtain pellets. A disk was obtained in the same manner. The obtained disk was black, and the color of the coloring material was not reflected. The surface resistance of this disk was already 4 Ω before the voltage was applied. The present invention may be embodied in various other forms without departing from its spirit or essential characteristics. Therefore, the above embodiments are merely mere in all respects. It is merely an example and should not be construed as limiting. The scope of the present invention is defined by the appended claims, and is not restricted by the description. Furthermore, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1 . 樹脂材料からなるマトリ ックスと、 1. Matrix made of resin material,
前記マトリックス内に分散された導電性フィラーとを含み、  Comprising a conductive filler dispersed in the matrix,
前記導電性フィラーの含有量が 2 0重量。 /。未満であり、 かつ 2 0 k V以上前 記マトリックスの絶縁破壊電圧未満の電圧の印加処理が施されている、 樹脂成形体。  The content of the conductive filler is 20% by weight. /. A resin molded body having a voltage of less than 20 kV and a voltage lower than the dielectric breakdown voltage of the matrix.
2. 前記導電性フィラーの含有量が 1 . 0重量%以上 1 6重量%以下である、 請求の範囲 1に記載の樹脂成形体。  2. The resin molded article according to claim 1, wherein the content of the conductive filler is from 1.0% by weight to 16% by weight.
3 . 前記導電性フイラ一は、 そのフイラ一群電気抵抗値が 1 0 5 Ω c m以上 13. The conductive FILLER scratch, the FILLER group electrical resistance 1 0 5 Omega cm or 1
0— 2 Ω c m以下のものである、 請求の範囲 1に記載の樹脂成形体。 2. The resin molded article according to claim 1, which has a diameter of 0 to 2 Ωcm or less.
4. 前記導電性フィラーが繊維状のものである、 請求の範囲 1に記載の樹脂成 形体。  4. The resin molded article according to claim 1, wherein the conductive filler is fibrous.
5 . 前記導電性フィラーの平均繊維径が 0 . 0 0 2 μ m以上 1 5 μ m以下であ る、 請求の範囲 4に記載の樹脂成形体。  5. The resin molded article according to claim 4, wherein the average fiber diameter of the conductive filler is from 0.02 μm to 15 μm.
6 . 前記導電性フィラーの平均残存アスペク ト比が 1 0以上 1 0 0, 0 0 0以 下である、 請求の範囲 5に記載の樹脂成形体。  6. The resin molded article according to claim 5, wherein an average residual aspect ratio of the conductive filler is 10 or more and 100 or less.
7. 前記導電性フイラ一と共に前記マトリックス内に分散された着色材をさら に含む、 請求の範囲 1に記載の樹脂成形体。  7. The resin molded article according to claim 1, further comprising a colorant dispersed in the matrix together with the conductive filler.
8 . 前記導電性フィラーが炭素繊維および黒鉛繊維のうちの少なくとも一つで ある、 請求の範囲 7に記載の樹脂成形体。  8. The resin molded article according to claim 7, wherein the conductive filler is at least one of a carbon fiber and a graphite fiber.
9 . 前記導電性フィラーおよび前記着色材と共に前記マトリックス内に分散さ れた、 前記導電性フィラーの色彩を隠蔽するための隠蔽材をさらに含む、 請求 の範囲 8に記載の樹脂成形体。  9. The resin molded article according to claim 8, further comprising a concealing material for concealing the color of the conductive filler, dispersed in the matrix together with the conductive filler and the coloring material.
1 0. 表面抵抗が 1 0 5 ΩΖ口以上 1 0 1 2 Ω/口以下である、 請求の範囲 1に 記載の樹脂成形体。 1 0. a surface resistance of less than 1 0 5 ΩΖ port least 1 0 1 2 Omega / mouth, to claim 1, wherein The resin molded article according to the above.
1 1 . 樹脂材料からなるマトリックスと、  1 1. A matrix made of resin material,
前記マトリックス内に分散された導電性フィラーとを含み、  Comprising a conductive filler dispersed in the matrix,
前記導電性フィラーの含有量が 2 0重量%未満であり、 かつ前記樹脂材料の 軟ィ匕点に加熱処理して室温まで冷却した後の表面抵抗が加熱処理する前の表面 抵抗の 1 0 0倍以上である、  The content of the conductive filler is less than 20% by weight, and the surface resistance after heating to the softening point of the resin material and cooling to room temperature is 100% of the surface resistance before the heating treatment. More than twice,
樹脂成形体。 Resin molding.
1 2 . 前記導電性フィラーの含有量が 1 . 0重量%以上 1 6重量%以下である、 請求の範囲 1 1に記載の樹脂成形体。  12. The resin molded article according to claim 11, wherein the content of the conductive filler is from 1.0% by weight to 16% by weight.
1 3 . 前記加熱処理の後に、 2 0 k V以上前記マトリツタスの絶縁破壊電圧未 満の電圧の印加処理をさらに施した場合の表面抵抗が、 前記印加処理を施す前 の表面抵抗の 1 Z 1 0 0以下である、 請求の範囲 1 1に記載の樹脂成形体。 13. After the heat treatment, the surface resistance when further applying a voltage of 20 kV or more and a voltage less than the dielectric breakdown voltage of the Matritus is 1 Z 1 of the surface resistance before applying the application treatment. 12. The resin molded article according to claim 11, which is not more than 00.
1 . 前記導電性フィラーと共に前記マトリックス内に分散された着色材をさ らに含む、 請求の範囲 1 3に記載の樹脂成形体。 13. The resin molded article according to claim 13, further comprising a coloring material dispersed in the matrix together with the conductive filler.
1 5 . 前記導電性フィラーおよび前記着色材と共に前記マトリックス内に分散 された、 前記導電性フィラーの色彩を隠蔽するための隠蔽材をさらに含む、 請 求の範囲 1 4に記載の樹脂成形体。  15. The resin molded article according to claim 14, further comprising a concealing material for concealing the color of the conductive filler, dispersed in the matrix together with the conductive filler and the coloring material.
1 6 . 樹脂材料と導電性フィラーとを含みかつ前記導電性フィラーの含有量が 2 0重量%未満に設定された成形材料を調製する工程と、  16. A step of preparing a molding material containing a resin material and a conductive filler, and the content of the conductive filler is set to less than 20% by weight;
前記成形材料を所定の形状に成形する工程と、  Molding the molding material into a predetermined shape,
成形された前記成形材料に対して 2 0 k V以上前記樹脂材料の絶縁破壊電圧 未満の電圧を印加する工程と、  Applying a voltage of 20 kV or more and less than the dielectric breakdown voltage of the resin material to the molded material,
を含む樹脂成形体の製造方法。 A method for producing a resin molded article comprising:
1 7 . 前記成形材料における前記導電性フィラ一の含有量が 1 . 0重量%以上 1 6重量%以下に設定されている、 請求の範囲 1 6に記載の樹脂成形体の製造 方法。 17. The production of the resin molded product according to claim 16, wherein the content of the conductive filler in the molding material is set to be 1.0% by weight or more and 16% by weight or less. Method.
1 8 . 前記成形材料が着色材をさらに含んでいる、 請求の範囲 1 6に記載の樹 脂成形体の製造方法。  18. The method for producing a resin molded article according to claim 16, wherein the molding material further contains a coloring material.
1 9 . 前記成形材料が前記導電性フィラーの色彩を隠蔽するための隠蔽材をさ らに含んでいる、 請求の範囲 1 8に記載の樹脂成形体の製造方法。  19. The method for manufacturing a resin molded product according to claim 18, wherein the molding material further includes a concealing material for concealing the color of the conductive filler.
2 0 . 2 0重量%未満の割合で導電性フィラーを含む樹脂成形体の導電性を高 めるための処理装置であって、  A processing apparatus for increasing the conductivity of a resin molded body containing a conductive filler in a proportion of less than 20.20% by weight,
前記樹脂成形体に対して 2 0 k V以上その絶縁破壊電圧未満の電圧を印加す るための電圧印加部と、  A voltage applying unit for applying a voltage of 20 kV or more and less than the dielectric breakdown voltage to the resin molded body,
前記電圧印加部に向けて前記樹脂成形体を搬送するための搬送手段と、 を備えた樹脂成形体の処理装置。  And a conveying unit for conveying the resin molded body toward the voltage applying unit.
2 1 . 2 0重量%未満の割合で導電性フィラーを含む樹脂成形体の導電性を高 めるための処理装置であつて、  A processing apparatus for increasing the conductivity of a resin molded article containing a conductive filler in a proportion of less than 21.2% by weight,
前記樹脂成形体に対して 2 0 k V以上その絶縁破壊電圧未満の電圧を印加す るための電極と、  An electrode for applying a voltage of 20 kV or more and less than the dielectric breakdown voltage to the resin molded body,
前記電極と前記樹脂成形体とが間隔を設けて対向するよう前記樹脂成形体を 前記電極に向けて搬送するための搬送手段とを備え、  And a transport unit for transporting the resin molded body toward the electrode so that the electrode and the resin molded body face each other with a space therebetween,
前記搬送手段は接地されている、  The conveying means is grounded;
樹脂成形体の処理装置。 Processing equipment for resin moldings.
2 2. 前記電極は、 複数の針状電極からなる電極群である、 請求の範囲 2 1に 記載の樹脂成形体の処理装置。  22. The apparatus for processing a resin molded product according to claim 21, wherein the electrode is an electrode group including a plurality of needle-shaped electrodes.
2 3 . 前記電極と前記樹脂成形体との間隔を調整するための間隔調整装置をさ らに備えている、 請求の範囲 2 2に記載の樹脂成形体の処理装置。  23. The processing apparatus for a resin molded product according to claim 22, further comprising an interval adjusting device for adjusting an interval between the electrode and the resin molded product.
2 4. 前記搬送手段は、 多数の前記樹脂成形体を順次連続的に前記電極に向け て搬送可能である、 請求の範囲 2 1に記載の樹脂成形体の処理装置。  22. The apparatus for processing a resin molded body according to claim 21, wherein the transporting means is capable of sequentially and continuously transporting a large number of the resin molded bodies toward the electrode.
PCT/JP1999/006090 1998-12-28 1999-11-01 Resin molded product WO2000040642A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/869,262 US7049362B2 (en) 1998-12-28 1999-11-01 Resin molded product
JP2000592348A JP3634752B2 (en) 1998-12-28 1999-11-01 Resin molding
MYPI99005749A MY135326A (en) 1998-12-28 1999-12-27 Resin molded product

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP37327098 1998-12-28
JP10/373270 1998-12-28
JP37320398 1998-12-28
JP10/373203 1998-12-28
JPPCT/JP99/03027 1999-06-04
JP9903027 1999-06-04

Publications (1)

Publication Number Publication Date
WO2000040642A1 true WO2000040642A1 (en) 2000-07-13

Family

ID=27308828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006090 WO2000040642A1 (en) 1998-12-28 1999-11-01 Resin molded product

Country Status (3)

Country Link
JP (1) JP3634752B2 (en)
MY (1) MY135326A (en)
WO (1) WO2000040642A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098091A (en) * 1999-07-23 2001-04-10 Osaka Gas Co Ltd Conductive resin sheet and method for production thereof
JP2002121304A (en) * 2000-10-12 2002-04-23 Osaka Gas Co Ltd Resin molding and its production method
US20040016912A1 (en) * 2002-07-23 2004-01-29 Sumanda Bandyopadhyay Conductive thermoplastic composites and methods of making
WO2006049193A1 (en) * 2004-11-08 2006-05-11 National Institute Of Advanced Industrial Science And Technology Destaticizing molded article
JP2014051604A (en) * 2012-09-07 2014-03-20 Yuka Denshi Co Ltd Electroconductive thermoplastic resin composition and molded article thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166039A (en) * 1980-05-26 1981-12-19 Toyota Central Res & Dev Lab Inc Method of producing electrically-conductive plastic material
JPH03296537A (en) * 1990-04-13 1991-12-27 Toyoda Gosei Co Ltd Corona discharge treatment
JPH06215618A (en) * 1993-01-12 1994-08-05 Tokai Carbon Co Ltd Manufacture of conductive resin composition containing tic whiskers
JPH07268124A (en) * 1994-03-30 1995-10-17 Dai Ichi Kogyo Seiyaku Co Ltd Method for improving electrical conductivity of resin molding
JPH0873655A (en) * 1994-09-07 1996-03-19 Denki Kagaku Kogyo Kk Electrically conductive resin composition and its production
JPH08253606A (en) * 1995-03-15 1996-10-01 Dai Ichi Kogyo Seiyaku Co Ltd Improvement of electroconductivity of resin molding and electrostatic coating
JPH0987403A (en) * 1995-09-25 1997-03-31 Nippon Paint Co Ltd Improvement of electroconductivity of resin molding and production of coated material made of resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166039A (en) * 1980-05-26 1981-12-19 Toyota Central Res & Dev Lab Inc Method of producing electrically-conductive plastic material
JPH03296537A (en) * 1990-04-13 1991-12-27 Toyoda Gosei Co Ltd Corona discharge treatment
JPH06215618A (en) * 1993-01-12 1994-08-05 Tokai Carbon Co Ltd Manufacture of conductive resin composition containing tic whiskers
JPH07268124A (en) * 1994-03-30 1995-10-17 Dai Ichi Kogyo Seiyaku Co Ltd Method for improving electrical conductivity of resin molding
JPH0873655A (en) * 1994-09-07 1996-03-19 Denki Kagaku Kogyo Kk Electrically conductive resin composition and its production
JPH08253606A (en) * 1995-03-15 1996-10-01 Dai Ichi Kogyo Seiyaku Co Ltd Improvement of electroconductivity of resin molding and electrostatic coating
JPH0987403A (en) * 1995-09-25 1997-03-31 Nippon Paint Co Ltd Improvement of electroconductivity of resin molding and production of coated material made of resin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098091A (en) * 1999-07-23 2001-04-10 Osaka Gas Co Ltd Conductive resin sheet and method for production thereof
JP2002121304A (en) * 2000-10-12 2002-04-23 Osaka Gas Co Ltd Resin molding and its production method
US20040016912A1 (en) * 2002-07-23 2004-01-29 Sumanda Bandyopadhyay Conductive thermoplastic composites and methods of making
US8999200B2 (en) * 2002-07-23 2015-04-07 Sabic Global Technologies B.V. Conductive thermoplastic composites and methods of making
WO2006049193A1 (en) * 2004-11-08 2006-05-11 National Institute Of Advanced Industrial Science And Technology Destaticizing molded article
JPWO2006049193A1 (en) * 2004-11-08 2008-05-29 独立行政法人産業技術総合研究所 Static elimination molded body
JP4746556B2 (en) * 2004-11-08 2011-08-10 独立行政法人産業技術総合研究所 Static elimination molded body
JP2014051604A (en) * 2012-09-07 2014-03-20 Yuka Denshi Co Ltd Electroconductive thermoplastic resin composition and molded article thereof

Also Published As

Publication number Publication date
JP3634752B2 (en) 2005-03-30
MY135326A (en) 2008-03-31

Similar Documents

Publication Publication Date Title
JP4643007B2 (en) Synthetic resin composition
Hu et al. Surface‐modification effect of MgO nanoparticles on the electrical properties of polypropylene nanocomposite
EP2218682B1 (en) Carbon nanotube assembly and process for producing the same
Chen et al. Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles
EP1425166B1 (en) Method of forming conductive polymeric nanocomposite materials and materials produced thereby
EP2594613A2 (en) Conductive coating composition and method for manufacturing a conductive layer using same
US20100267883A1 (en) Nanotube Polymer Composite Composition and Methods of Making
Abdel‐Gawad et al. PVC nanocomposites for cable insulation with enhanced dielectric properties, partial discharge resistance and mechanical performance
Zheng et al. Improved dielectric properties of PVDF nanocomposites with core–shell structured BaTiO3@ polyurethane nanoparticles
Ponomarenko et al. Formation processes and properties of conducting polymer composites
KR20090055521A (en) Semiconductive resin composition
WO2013013070A9 (en) Nanotube and finely milled carbon fiber polymer composite compositions and methods of making
JP2010006663A (en) Carbon nanotube assembly, method for producing the same, shaped body, composition and composite
US7049362B2 (en) Resin molded product
WO2014002581A1 (en) Synthetic resin composition and moulded body
WO2000040642A1 (en) Resin molded product
Yu et al. Enhanced electromechanical performance of natural rubber dielectric elastomers achieved by in situ synthesis of silver nanoparticles on TiO2 nanoparticles
Yuan et al. Non‐linearly conductive ZnO microvaristors/epoxy resin composite prepared by wet winding with polyester fibre cloth
KR101272483B1 (en) Manufacturing Method of Transparent Conducting Plate using Carbon Nanotubes-Conducting Polymer Hybrid Multilayer
JP4548922B2 (en) Semiconductive resin composition
KR100627247B1 (en) Conductive hybrid film and fabrication method thereof
JP2001098092A (en) Resin molding to be electrostatically coated and method for production thereof
JP4503758B2 (en) Conductive resin sheet and manufacturing method thereof
KR101890849B1 (en) High energy density polymer composite film via sandwich structure and the method for preparing thereof
KR101065741B1 (en) A conductivity blowing flim and it's manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99815149.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2000 592348

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09869262

Country of ref document: US

122 Ep: pct application non-entry in european phase