JPH0987403A - Improvement of electroconductivity of resin molding and production of coated material made of resin - Google Patents

Improvement of electroconductivity of resin molding and production of coated material made of resin

Info

Publication number
JPH0987403A
JPH0987403A JP7245950A JP24595095A JPH0987403A JP H0987403 A JPH0987403 A JP H0987403A JP 7245950 A JP7245950 A JP 7245950A JP 24595095 A JP24595095 A JP 24595095A JP H0987403 A JPH0987403 A JP H0987403A
Authority
JP
Japan
Prior art keywords
resin
coating
corona discharge
discharge treatment
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7245950A
Other languages
Japanese (ja)
Inventor
Tetsuo Shiraiwa
徹男 白岩
Akinori Iwata
顕範 岩田
Seigo Miyasoi
聖吾 宮副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd, Nippon Paint Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP7245950A priority Critical patent/JPH0987403A/en
Priority to US08/717,736 priority patent/US5858472A/en
Priority to EP96306994A priority patent/EP0764663A3/en
Publication of JPH0987403A publication Critical patent/JPH0987403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electroconductivity of a resin molding in good productivity without using a primer containing an inorganic semiconductor substance by applying a coating material containing a specific nitrogen-containing compound to a resin molding and subjecting the surface of the resultant coating film to corona discharge treatment. SOLUTION: A coating material containing (A) a film-forming component and (B) a nitrogen-containing compound of the formula R<1> -Y R<1> is a 5-21C alkyl or an alkenyl; Y is formula I or formula II [R<2> and R<3> are each a 1-4C alkyl; (m) is 2-3; R<4> is H or CH3 ; A is (CH2 )n or formula III; (n) is 1-5]} is applied to a resin molding (e.g. a molding of a polyethylene, acrylic resin, etc.) and the surface of the resultant coating film is subjected to corona discharge treatment. The component A includes e.g. that comprising a substrate resin such as polyester and a polyisocyanate as a curing agent. The component B includes amineamides such as N, N-dimethylaminopropylhexanamide or fatty acid esters such as hexanoic acid 2-dimethylaminoethanol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂成形体の導電
性改良方法および該方法を利用した樹脂製被塗物の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving the electrical conductivity of a resin molding and a method for producing a resin coated article using the method.

【0002】[0002]

【従来の技術】従来の樹脂成形体の塗装方法としては、
例えば、特開平6−165966号記載のように、ポリ
プロピレン製被塗物に、導電性カーボンブラック、グラ
ファイト等の無機系導電性物質を含有した導電性プライ
マーを塗装し、導電性を持たせてから静電塗装を行なう
方法がある。
2. Description of the Related Art As a conventional method for coating a resin molding,
For example, as described in JP-A-6-165966, a polypropylene-made article to be coated is coated with a conductive primer containing an inorganic conductive material such as conductive carbon black or graphite, and then made conductive. There is a method of electrostatic coating.

【0003】しかしながら、特開平6−165966号
記載のように、ポリプロピレン製被塗物表面に、導電性
カーボンブラック、グラファイト等の導電性物質を均等
に分布させるために、これらの導電性物質をプライマー
に大量に添加する必要がある。このことから、導電性物
質の分散安定性や、コスト面に問題があった。
However, as described in JP-A-6-165966, in order to evenly distribute the conductive substances such as conductive carbon black and graphite on the surface of the polypropylene article, these conductive substances are used as a primer. It is necessary to add a large amount to. Therefore, there are problems in dispersion stability of the conductive material and cost.

【0004】また、最近になって、含窒素化合物を樹脂
成形体原料に練り込み、その混練物を成形し、得られた
成形体の表面を減圧プラズマ処理する方法が開示されて
いる(特開平7−173308号)。
Further, recently, a method has been disclosed in which a nitrogen-containing compound is kneaded into a raw material for a resin molded body, the kneaded product is molded, and the surface of the resulting molded body is subjected to a reduced pressure plasma treatment (Japanese Patent Laid-Open No. Hei 10 (1999) -242242). 7-173308).

【0005】しかしながら、この方法においては、プラ
ズマ処理がバッチ式のため、連続処理には適さなく、大
量生産の生産性には問題が残っていた。
However, in this method, since the plasma treatment is a batch method, it is not suitable for continuous treatment, and there remains a problem in productivity in mass production.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来法の欠点を解消し、無機系導電性物質を含有したプ
ライマーを使用しない、かつ、生産性に優れた、樹脂成
形体の導電性改良方法および該方法を利用した樹脂製被
塗物の製造方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional method, does not use a primer containing an inorganic conductive material, and is excellent in productivity, and the conductivity of the resin molding is improved. An object of the present invention is to provide a property improving method and a method for producing a resin coated article using the method.

【0007】[0007]

【課題を解決するための手段】本発明では、樹脂成形体
に特定の含窒素化合物を含有する塗料を塗布し、得られ
た塗膜の表面をコロナ放電処理することにより、塗膜の
導電性を向上させて該塗膜を静電塗装特性に適したもの
に改質し得ることを見出し、上記課題を解決した。
In the present invention, a resin molded product is coated with a coating material containing a specific nitrogen-containing compound, and the surface of the resulting coating film is subjected to corona discharge treatment to obtain the conductivity of the coating film. The inventors have found that the coating film can be improved to a suitable one for electrostatic coating characteristics, and have solved the above problems.

【0008】すなわち、本願の第1発明は、樹脂成形体
に、皮膜形成成分と下記一般式(1)で表わされる含窒
素化合物とを含有する塗料を塗布し、得られた塗膜の表
面をコロナ放電処理する工程(工程1)を含み、塗膜の
導電性を向上させることにより樹脂成形体の導電性を改
良する方法である。さらに、本願の第2発明は、工程1
で得られた塗膜に、荷電を有する塗料を噴霧、付着させ
て静電塗装する工程(工程2)を含むことを特徴とする
樹脂製被塗物の製造方法である。
That is, in the first invention of the present application, a coating material containing a film-forming component and a nitrogen-containing compound represented by the following general formula (1) is applied to a resin molded article, and the surface of the obtained coating film is coated. The method includes a step (step 1) of corona discharge treatment, and improves the conductivity of the resin molding by improving the conductivity of the coating film. Further, the second invention of the present application is the step 1
The method for producing a resin-coated article is characterized in that it comprises a step (step 2) of spraying and attaching a charged coating material to the coating film obtained in step 2 and performing electrostatic coating.

【化2】 本発明の方法では、塗膜形成後、塗膜表層に存在する一
般式(1)で表わされる含窒素化合物が、コロナ放電処
理によって、より表層に存在しやすくなり、さらに一部
が4級化される等の相乗効果により、塗膜の表面抵抗が
低下すると考えられ、導電性の改良された品質のよい樹
脂成形体を得ることができる。さらに、コロナ放電処理
による表面改質効果も加わって、塗着性に優れた静電塗
装が可能となる。
Embedded image In the method of the present invention, after the coating film is formed, the nitrogen-containing compound represented by the general formula (1) present in the surface layer of the coating film is more likely to be present in the surface layer by the corona discharge treatment, and a part thereof is quaternized. It is considered that the surface resistance of the coating film is lowered due to the synergistic effect of, for example, and a resin molded product having improved conductivity and high quality can be obtained. Furthermore, the effect of surface modification by corona discharge treatment is added, and electrostatic coating with excellent coatability becomes possible.

【0009】また、コロナ放電処理が常圧で行なわれる
ため、連続処理が可能であり、生産性に優れている。
Further, since the corona discharge treatment is carried out at normal pressure, continuous treatment is possible and the productivity is excellent.

【0010】[0010]

【発明の実施の形態】一般式(1)において、Rは炭
素数5〜21のアルキル基またはアルケニル基であり、
好ましくは炭素数7〜17のアルキル基またはアルケニ
ル基であり、特に好ましくは炭素数9〜15のアルキル
基またはアルケニル基である。
BEST MODE FOR CARRYING OUT THE INVENTION In the general formula (1), R 1 is an alkyl group or an alkenyl group having 5 to 21 carbon atoms,
Preferred is an alkyl group or alkenyl group having 7 to 17 carbon atoms, and particularly preferred is an alkyl group or alkenyl group having 9 to 15 carbon atoms.

【0011】一般式(1)で表わされる含窒素化合物と
しては、例えば、N,N−ジメチルアミノプロピルヘキ
サンアミド、N,N−ジエチルアミノプロピルヘキサン
アミド、N,N−ジエチルアミノエチルヘキサンアミ
ド、N,N−ジメチルアミノプロピルオクタンアミド、
N,N−ジエチルアミノプロピルオクタンアミド、N,
N−ジエチルアミノエチルオクタンアミド、N,N−ジ
ブチルアミノプロピルオクタンアミド、N,N−ジブチ
ルアミノエチルオクタンアミド、N,N−ジメチルアミ
ノプロピルデカンアミド、N,N−ジメチルアミノエチ
ルデカンアミド、N,N−ジエチルアミノプロピルデカ
ンアミド、N,N−ジエチルアミノエチルデカンアミ
ド、N,N−ジブチルアミノプロピルデカンアミド、
N,N−ジメチルアミノプロピルドデカンアミド、N,
N−ジメチルアミノエチルドデカンアミド、N,N−ジ
エチルアミノプロピルドデカンアミド、N,N−ジエチ
ルアミノエチルドデカンアミド、N,N−ジブチルアミ
ノプロピルドデカンアミド、N,N−ジブチルアミノエ
チルドデカンアミド、N,N−ジメチルアミノプロピル
テトラデカンアミド、N,N−ジメチルアミノエチルテ
トラデカンアミド、N,N−ジエチルアミノプロピルテ
トラデカンアミド、N,N−ジエチルアミノエチルテト
ラデカンアミド、N,N−ジブチルアミノプロピルテト
ラデカンアミド、N,N−ジブチルアミノエチルテトラ
デカンアミド、N,N−ジメチルアミノプロピルヘキサ
デカンアミド、N,N−ジエチルアミノプロピルヘキサ
デカンアミド、N,N−ジメチルアミノエチルヘキサデ
カンアミド、N,N−ジエチルアミノエチルヘキサデカ
ンアミド、N,N−ジブチルアミノプロピルヘキサデカ
ンアミド、N,N−ジブチルアミノエチルヘキサデカン
アミド、N,N−ジメチルアミノプロピル−9−オクタ
デセンアミド、N,N−ジメチルアミノプロピルオクタ
デカンアミド、N,N−ジメチルアミノエチルオクタデ
カンアミド、N,N−ジエチルアミノプロピルオクタデ
カンアミド、N,N−ジエチルアミノエチルオクタデカ
ンアミド、N,N−ジブチルアミノプロピルオクタデカ
ンアミド、N,N−ジブチルアミノエチルオクタデカン
アミド等のアミドアミン類、ヘキサン酸2−ジメチルア
ミノエタノール、ヘキサン酸3−ジメチルアミノ−1−
プロパノール、ヘキサン酸1−ジメチルアミノ−2−プ
ロパノール、オクタン酸2−ジメチルアミノエタノー
ル、オクタン酸2−ジエチルアミノエタノール、オクタ
ン酸3−ジメチルアミノ−1−プロパノール、オクタン
酸1−ジエチルアミノ−2−プロパノール、デカン酸2
−ジメチルアミノエタノール、デカン酸2−ジブチルア
ミノエタノール、デカン酸3−ジエチルアミノ−1−プ
ロパノール、デカン酸1−ジブチルアミノ−2−プロパ
ノール、ウンデシル酸2−ジメチルアミノエタノール、
ウンデシル酸3−ジメチルアミノ−1−プロパノール、
ウンデシル酸1−ジメチルアミノ−2−プロパノール、
ウンデシル酸6−ジメチルアミノ−1−ヘキサノール、
ドデカン酸2−ジメチルアミノエタノール、ドデカン酸
2−ジエチルアミノエタノール、ドデカン酸2−ジブチ
ルアミノエタノール、ドデカン酸3−ジメチルアミノ−
1−プロパノール、ドデカン酸1−ジメチルアミノ−2
−プロパノール、ドデカン酸4−ジメチルアミノフェネ
チルアルコール、テトラデカン酸2−ジメチルアミノエ
タノール、テトラデカン酸2−ジエチルアミノエタノー
ル、テトラデカン酸3−ジエチルアミノ−1−プロパノ
ール、テトラデカン酸1−ジメチルアミノ−2−プロパ
ノール、ペンタデカン酸2−ジメチルアミノエタノー
ル、ペンタデカン酸3−ジメチルアミノ−1−プロパノ
ール、ペンタデカン酸1−ジメチルアミノ−2−プロパ
ノール、ヘキサデカン酸2−ジメチルアミノエタノー
ル、ヘキサデカン酸2−ジブチルアミノエタノール、ヘ
キサデカン酸3−ジメチルアミノ−1−プロパノール、
ヘキサデカン酸1−ジメチルアミノ−2−プロパノー
ル、ヘキサデカン酸4−ジメチルアミノ−1−ブタノー
ル、オクタデカン酸2−ジメチルアミノエタノール、オ
クタデカン酸2−ジエチルアミノエタノール、オクタデ
カン酸3−ジメチルアミノ−1−プロパノール、オクタ
デカン酸1−ジメチルアミノ−2−プロパノール、9−
オクタデセン酸2−ジエチルアミノエタノール、9−オ
クタデセン酸3−ジブチルアミノ−1−プロパノール、
ドコサン酸2−ジメチルアミノエタノール、ドコサン酸
3−ジメチルアミノ−1−プロパノール、ドコサン酸1
−ジメチルアミノ−2−プロパノール等の脂肪酸エステ
ル類が挙げられる。
Examples of the nitrogen-containing compound represented by the general formula (1) include N, N-dimethylaminopropylhexanamide, N, N-diethylaminopropylhexanamide, N, N-diethylaminoethylhexanamide and N, N. -Dimethylaminopropyl octanamide,
N, N-diethylaminopropyl octanamide, N,
N-diethylaminoethyloctaneamide, N, N-dibutylaminopropyloctaneamide, N, N-dibutylaminoethyloctaneamide, N, N-dimethylaminopropyldecaneamide, N, N-dimethylaminoethyldecaneamide, N, N -Diethylaminopropyl decanamide, N, N-diethylaminoethyl decanamide, N, N-dibutylaminopropyl decanamide,
N, N-dimethylaminopropyl dodecane amide, N,
N-dimethylaminoethyldodecane amide, N, N-diethylaminopropyl dodecane amide, N, N-diethylaminoethyl dodecane amide, N, N-dibutylaminopropyl dodecane amide, N, N-dibutylaminoethyl dodecane amide, N, N- Dimethylaminopropyl tetradecanoamide, N, N-dimethylaminoethyl tetradecanoamide, N, N-diethylaminopropyl tetradecanoamide, N, N-diethylaminoethyl tetradecanoamide, N, N-dibutylaminopropyl tetradecanoamide, N, N-dibutylamino Ethyl tetradecanoamide, N, N-dimethylaminopropyl hexadecanoamide, N, N-diethylaminopropyl hexadecanoamide, N, N-dimethylaminoethyl hexadecanoamide, N, -Diethylaminoethyl hexadecane amide, N, N-dibutylaminopropyl hexadecane amide, N, N-dibutylaminoethyl hexadecane amide, N, N-dimethylaminopropyl-9-octadecenamide, N, N-dimethylaminopropyl octadecane amide, Amidoamines such as N, N-dimethylaminoethyl octadecane amide, N, N-diethylaminopropyl octadecane amide, N, N-diethylaminoethyl octadecane amide, N, N-dibutylaminopropyl octadecane amide, N, N-dibutylaminoethyl octadecane amide , Hexanoic acid 2-dimethylaminoethanol, hexanoic acid 3-dimethylamino-1-
Propanol, hexanoic acid 1-dimethylamino-2-propanol, octanoic acid 2-dimethylaminoethanol, octanoic acid 2-diethylaminoethanol, octanoic acid 3-dimethylamino-1-propanol, octanoic acid 1-diethylamino-2-propanol, decane Acid 2
-Dimethylaminoethanol, 2-dibutylaminoethanol decanoate, 3-diethylamino-1-propanol decanoate, 1-dibutylamino-2-propanol decanoate, 2-dimethylaminoethanol undecylate,
3-dimethylamino-1-propanol undecylate,
1-dimethylamino-2-propanol undecylate,
6-dimethylamino-1-hexanol undecylate,
Dodecanoic acid 2-dimethylaminoethanol, dodecanoic acid 2-diethylaminoethanol, dodecanoic acid 2-dibutylaminoethanol, dodecanoic acid 3-dimethylamino-
1-propanol, dodecanoic acid 1-dimethylamino-2
-Propanol, 4-dimethylaminophenethyl alcohol dodecanoate, 2-dimethylaminoethanol tetradecanoate, 2-diethylaminoethanol tetradecanoate, 3-diethylamino-1-propanol tetradecanoate, 1-dimethylamino-2-propanol tetradecanoate, pentadecanoic acid 2-dimethylaminoethanol, 3-dimethylamino-1-propanol pentadecanoate, 1-dimethylamino-2-propanol pentadecanoate, 2-dimethylaminoethanol hexadecanoate, 2-dibutylaminoethanol hexadecanoate, 3-dimethylaminohexadecanoate -1-propanol,
Hexadecanoic acid 1-dimethylamino-2-propanol, hexadecanoic acid 4-dimethylamino-1-butanol, octadecanoic acid 2-dimethylaminoethanol, octadecanoic acid 2-diethylaminoethanol, octadecanoic acid 3-dimethylamino-1-propanol, octadecanoic acid 1-dimethylamino-2-propanol, 9-
2-diethylaminoethanol octadecenoic acid, 3-dibutylamino-1-propanol 9-octadecenoate,
Docosanoic acid 2-dimethylaminoethanol, docosanoic acid 3-dimethylamino-1-propanol, docosanoic acid 1
And fatty acid esters such as dimethylamino-2-propanol.

【0012】前記アミドアミン類は、炭素数6〜22の
脂肪族モノカルボン酸と、N,N−ジメチルアミノプロ
ピルアミン、N,N−ジメチルアミノエチルアミン、
N,N−ジエチルアミノプロピルアミン、N,N−ジエ
チルアミノエチルアミン、N,N−ジブチルアミノプロ
ピルアミン、N,N−ジブチルアミノエチルアミン等の
N,N−ジアルキルアミノアルキルアミンとの反応によ
り得られる。その反応は、公知のアミド生成の反応方法
により行なわれる。すなわち、140〜200℃の温度
下にて加熱することにより、反応は進行する。反応の進
行度合いは、全アミン値、三級アミン値および酸価の測
定によりチェックする。
The amidoamines include aliphatic monocarboxylic acids having 6 to 22 carbon atoms, N, N-dimethylaminopropylamine, N, N-dimethylaminoethylamine,
It is obtained by a reaction with N, N-dialkylaminoalkylamine such as N, N-diethylaminopropylamine, N, N-diethylaminoethylamine, N, N-dibutylaminopropylamine, N, N-dibutylaminoethylamine. The reaction is performed by a known reaction method for amide formation. That is, the reaction proceeds by heating at a temperature of 140 to 200 ° C. The progress of the reaction is checked by measuring the total amine value, the tertiary amine value and the acid value.

【0013】前記脂肪酸エステル類は、炭素数6〜22
の脂肪族モノカルボン酸と、2−ジメチルアミノエタノ
ール、2−ジエチルアミノエタノール、2−ジブチルア
ミノエタノール、3−ジメチルアミノ−1−プロパノー
ル、3−ジエチルアミノ−1−プロパノール、3−ジブ
チルアミノ−1−プロパノール、1−ジメチルアミノ−
2−プロパノール、1−ジエチルアミノ−2−プロパノ
ール、1−ジブチルアミノ−2−プロパノール、4−ジ
メチルアミノ−1−ブタノール、6−ジメチルアミノ−
1−ヘキサノール、4−ジメチルアミノフェネチルアル
コール等のN,N−ジアルキルアミノアルコールとの反
応により得られる。その反応は、公知のエステル生成の
反応方法により行なわれる。すなわち、140〜230
℃の温度下にて加熱することにより、反応は進行する。
反応の進行度合いは、酸価の測定によりチェックする。
The fatty acid ester has 6 to 22 carbon atoms.
With an aliphatic monocarboxylic acid of 2-dimethylaminoethanol, 2-diethylaminoethanol, 2-dibutylaminoethanol, 3-dimethylamino-1-propanol, 3-diethylamino-1-propanol, 3-dibutylamino-1-propanol , 1-dimethylamino-
2-propanol, 1-diethylamino-2-propanol, 1-dibutylamino-2-propanol, 4-dimethylamino-1-butanol, 6-dimethylamino-
Obtained by reaction with N, N-dialkylamino alcohols such as 1-hexanol and 4-dimethylaminophenethyl alcohol. The reaction is carried out by a known reaction method for ester formation. That is, 140 to 230
The reaction proceeds by heating at a temperature of ° C.
The degree of progress of the reaction is checked by measuring the acid value.

【0014】本発明の方法にて使用する塗料は、皮膜形
成成分を含有している。この皮膜形成成分は、基体樹脂
と硬化剤からなるものである。ただし、硬化剤を含有し
ていない、熱可塑性樹脂や、自己硬化性の基体樹脂を含
む塗料では、皮膜形成成分は、基体樹脂そのものとな
る。
The paint used in the method of the present invention contains a film-forming component. This film forming component is composed of a base resin and a curing agent. However, in a coating material containing a thermoplastic resin or a self-curing base resin that does not contain a curing agent, the film forming component is the base resin itself.

【0015】基体樹脂の具体例としては、塩素化ポリオ
レフィン、アクリル、ポリエステル、アルキッド、エポ
キシ、ウレタン、ポリアクリレート等の塗料に通常用い
られているものが挙げられる。
Specific examples of the base resin include those usually used for paints such as chlorinated polyolefin, acrylic, polyester, alkyd, epoxy, urethane and polyacrylate.

【0016】硬化剤の具体例としては、ポリイソシアネ
ート、ポリアミン、メラミン、多塩基酸およびポリエポ
キシなどの多官能性の化合物または樹脂が挙げられる。
なお、上述した自己硬化性の基体樹脂では、例えばポリ
アクリレートのように、基体樹脂中に硬化剤の部分を有
する。
Specific examples of the curing agent include polyisocyanates, polyamines, melamines, polybasic acids, and polyfunctional compounds or resins such as polyepoxy.
The self-curing base resin described above has a curing agent portion in the base resin, such as polyacrylate.

【0017】塗料は、溶剤、顔料、触媒および添加剤を
必要に応じて含有することができる。一般に塗料におい
て、これらの成分は、その形態や目的により、含んだり
含まなかったりすることが知られている。なお、溶剤と
しては、特に限定されることなく、例えば汎用の有機溶
剤及び水を使用できる。また、顔料、触媒および添加剤
についても特にその種類が限定されるものではない。
The coating material may contain a solvent, a pigment, a catalyst and an additive as required. It is generally known that in paints, these components may or may not be included depending on their form and purpose. The solvent is not particularly limited and, for example, a general-purpose organic solvent and water can be used. Also, the types of pigments, catalysts and additives are not particularly limited.

【0018】一般式(1)で表わされる含窒素化合物の
使用量は、皮膜形成成分100重量部に対して0.01
〜10重量部、好ましくは0.05〜7重量部、特に好
ましくは0.1〜5重量部である。0.01重量部未満
の場合は、できあがった樹脂成形体表面の塗膜の導電性
が充分でない。また、10重量部を超える添加は、導電
性の向上には好ましいが、塗料塗膜の物性劣化および塗
膜表面でブリードを生じるので、大きな利点はない。
The amount of the nitrogen-containing compound represented by the general formula (1) used is 0.01 with respect to 100 parts by weight of the film-forming component.
-10 parts by weight, preferably 0.05 to 7 parts by weight, particularly preferably 0.1 to 5 parts by weight. When the amount is less than 0.01 part by weight, the electrical conductivity of the coating film on the surface of the resin molded body is insufficient. Further, the addition of more than 10 parts by weight is preferable for improving the electroconductivity, but it has no great advantage because it deteriorates the physical properties of the paint film and causes bleeding on the surface of the paint film.

【0019】本発明で用いる塗料を得る方法は特に限定
されない。一般的には、帯電防止性を有しない塗料(以
下、原料塗料という。)に、一般式(1)で表わされる
含窒素化合物の所定量をそのまま又は溶剤に溶解もしく
は分散させたものを加えることにより得られる。もちろ
ん、基体樹脂や硬化剤などの塗料原料と一般式(1)で
現わされる含窒素化合物とを一緒に加えて塗料を製造す
ることも可能である。
The method for obtaining the coating material used in the present invention is not particularly limited. Generally, to a coating material having no antistatic property (hereinafter referred to as a raw material coating material), a predetermined amount of a nitrogen-containing compound represented by the general formula (1) is added as it is or dissolved or dispersed in a solvent. Is obtained by Of course, it is also possible to manufacture a coating material by adding the coating material such as the base resin and the curing agent together with the nitrogen-containing compound represented by the general formula (1).

【0020】一般式(1)で表わされる含窒素化合物を
含有する塗料の塗装方法としては、スプレー塗装、刷毛
塗り塗装、浸漬塗装、ロール塗装、流し塗装等の公知の
方法を用いる。
As a coating method of the coating material containing the nitrogen-containing compound represented by the general formula (1), known methods such as spray coating, brush coating coating, dip coating, roll coating and flow coating are used.

【0021】樹脂成形体の塗装に使用する塗料形態とし
ては、常温硬化タイプ、ラッカータイプ、熱硬化タイプ
で、有機溶剤系塗料、水性塗料、粉体塗料等の通常用い
られている塗料形態がいずれも使用できる。場合によっ
ては、塗膜の付着強度を上げるために、塗装前に樹脂成
形体に前処理をしておいてもよい。この前処理として
は、水洗、溶剤洗浄、火炎処理、コロナ放電処理、減圧
プラズマ処理等の公知の方法が挙げられる。
As the paint form used for coating the resin molded body, there are room temperature curing type, lacquer type, thermosetting type, and commonly used paint forms such as organic solvent type paints, water-based paints and powder paints. Can also be used. In some cases, the resin molded body may be pretreated before coating in order to increase the adhesion strength of the coating film. Examples of this pretreatment include known methods such as water washing, solvent washing, flame treatment, corona discharge treatment, and reduced pressure plasma treatment.

【0022】樹脂成形体に塗装する際の塗装膜厚および
乾燥条件は、それぞれの原料塗料の乾燥条件に準ずる。
例えば、塩素化ポリオレフィンを基体樹脂とした、硬化
剤を含まないプライマー塗料として使用する場合には、
膜厚が5〜15μmで、乾燥は50〜80℃で10分程
度である。また、未乾燥のプライマーにトップコートを
塗装し一体で加熱する、いわゆるウェットオンウェット
による塗装の場合も同様の条件である。基体樹脂として
アクリルまたはポリエステルを用い、硬化剤としてポリ
イソシアネートを用いた塗料では、膜厚が20〜40μ
mで、乾燥は80〜90℃で20〜40分程度である。
基体樹脂としてアクリルまたはポリエステルを用い、硬
化剤としてメラミンを用いた塗料では、膜厚が20〜4
0μmで、乾燥は100〜120℃で20〜40分程度
である。
The coating film thickness and the drying conditions when the resin molded product is coated are in accordance with the drying conditions of the respective raw material paints.
For example, when using a chlorinated polyolefin as a base resin and using a curing agent-free primer coating,
The film thickness is 5 to 15 μm, and the drying is at 50 to 80 ° C. for about 10 minutes. The same conditions are applied to so-called wet-on-wet coating, in which the top coat is applied to the undried primer and the heating is performed integrally. In the coating using acrylic or polyester as the base resin and polyisocyanate as the curing agent, the film thickness is 20 to 40 μm.
m, and the drying is at 80 to 90 ° C. for about 20 to 40 minutes.
In the coating using acrylic or polyester as the base resin and melamine as the curing agent, the film thickness is 20 to 4
The drying is performed at 100 to 120 ° C. for about 20 to 40 minutes.

【0023】樹脂成形体としては、ポリエチレン、ポリ
プロピレン、エチレン−プロピレン系共重合ゴム含有ポ
リプロピレン等のポリオレフィン樹脂、ABS樹脂、ア
クリル樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポ
リカーボネート樹脂、ポリアセタール樹脂、ポリスチレ
ン樹脂、フェノール樹脂等の表面抵抗値の高い樹脂の成
形体がいずれも使用できる。あるいは、金属、セラミッ
ク、木材に前記樹脂をコーティングしたものもよい。
The resin moldings include polyolefin resins such as polyethylene, polypropylene and polypropylene containing ethylene-propylene copolymer rubber, ABS resins, acrylic resins, polyamide resins, polyvinyl chloride resins, polycarbonate resins, polyacetal resins, polystyrene resins, Any molded product of a resin having a high surface resistance value such as phenol resin can be used. Alternatively, metal, ceramic, or wood coated with the resin may be used.

【0024】また、上記樹脂に帯電防止剤等を練り込
み、成形した後、場合によってコロナ放電処理や減圧プ
ラズマ処理、火炎処理等の表面処理をして表面抵抗が1
13Ω未満にならしめた樹脂成形体も使用できる。
After the resin is kneaded with an antistatic agent and the like, the resin is molded, and then subjected to a surface treatment such as a corona discharge treatment, a reduced pressure plasma treatment, a flame treatment or the like so that the surface resistance is 1 or less.
It is also possible to use a resin molded body which is less than 0 13 Ω.

【0025】この表面抵抗が1013Ω未満の樹脂成形体
を使用する場合、工程1において、一般式(1)で表わ
される含窒素化合物を含有する塗料の塗装方法として
は、静電塗装を実施してもよい。
When a resin molded body having a surface resistance of less than 10 13 Ω is used, in step 1, electrostatic coating is used as a method for coating the coating material containing the nitrogen-containing compound represented by the general formula (1). You may.

【0026】樹脂成形体の形状としては、3次元形状を
有する成形体、シート、フィルム等のいずれの形状であ
ってもよい。
The shape of the resin molded body may be any shape such as a molded body having a three-dimensional shape, a sheet or a film.

【0027】前記樹脂成形体として、具体的には、自動
車用部品、家電用ハウジング等が挙げられる。
Specific examples of the resin molded body include automobile parts and household appliances housings.

【0028】自動車用部品としては、サイドモール、バ
ンパー、マットガード等が挙げられる。
Examples of automobile parts include side moldings, bumpers and mat guards.

【0029】コロナ放電処理方法としては、常圧におい
て、2つの導体間に高電圧を印加すると発生するコロナ
を、被処理物(成形体)の表面に接触させる方法を用い
る。その処理条件は、コロナ放電が発生する条件であれ
ばよく、例えば、印加電圧が10〜300KV程度で、
処理時間が1〜600秒間であればよい。
As the corona discharge treatment method, there is used a method in which a corona generated when a high voltage is applied between two conductors is brought into contact with the surface of an object to be treated (molded body) at normal pressure. The treatment condition may be any condition that causes corona discharge, for example, an applied voltage of about 10 to 300 KV,
The processing time may be 1 to 600 seconds.

【0030】特に、バンパー等の大型成形品をコロナ放
電処理する場合には、例えば、図1に示すような、高電
圧パルスを利用するコロナ放電処理装置を用いればよ
い。この装置は図2に示す高電圧パルス回路を使用する
ため、スパークが起こりにくく、電極間の距離を大きく
することができるので、大型成形品の処理が可能であ
る。
In particular, when a large molded article such as a bumper is subjected to corona discharge treatment, for example, a corona discharge treatment apparatus utilizing a high voltage pulse as shown in FIG. 1 may be used. Since this apparatus uses the high-voltage pulse circuit shown in FIG. 2, sparks are unlikely to occur and the distance between the electrodes can be increased, so that large molded products can be processed.

【0031】このコロナ放電処理装置について、以下に
説明する。
The corona discharge treatment device will be described below.

【0032】図1は、コロナ放電処理装置の外観構造を
表わしている。樹脂成形品10として、概略コ字形をな
す自動車用のバンパーを用い、この樹脂成形品10の表
面にコロナ放電処理を施す。多数の樹脂成形品10が、
2本のレール状に敷設されたローラコンベア70の上を
並んで送られる。ローラコンベア70は、対向電極20
の上に設置されており、絶縁性樹脂などで形成されてい
る。対向電極20は、樹脂成形品10の下端形状に沿う
断面コ字形をなす板材からなり、対向電極20の上面は
誘電体60で覆われている。
FIG. 1 shows an external structure of a corona discharge treatment device. As the resin molded product 10, an automobile bumper having a substantially U-shape is used, and the surface of the resin molded product 10 is subjected to corona discharge treatment. Many resin molded products 10
It is sent side by side on a roller conveyor 70 laid in the shape of two rails. The roller conveyor 70 includes the counter electrode 20.
It is installed on top of and is made of insulating resin. The counter electrode 20 is made of a plate material having a U-shaped cross section along the lower end shape of the resin molded product 10, and the upper surface of the counter electrode 20 is covered with a dielectric 60.

【0033】樹脂成形品10の走行経路の上方には、コ
字形に屈曲した細い帯板状をなす放電電極40が一定間
隔毎に並んでいる。放電電極40の下端縁形状は、樹脂
成形品10の上端縁形状とおおまかに対応している程度
であり、放電電極40の下端縁と対向電極20の表面は
ほぼ平行に配置され、数10cm程度の間隔があいてい
る。放電電極40の上部は、細帯状の接続金具42で支
持されるとともに電気的に一体連結されている。放電電
極40は、接続金具42にボルト等で着脱自在に取り付
けられ、必要に応じて、放電電極40の取付ピッチを変
更できるようになっている。接続金具42は、その両端
がフレーム44に取り付けられている。また、接続金具
42には、高圧ケーブルなどを経て、高電圧パルス発生
装置500が接続されている。
Discharge electrodes 40 in the shape of a thin strip bent in a U shape are arranged at regular intervals above the traveling path of the resin molded product 10. The shape of the lower end edge of the discharge electrode 40 roughly corresponds to the shape of the upper end edge of the resin molded product 10, and the lower end edge of the discharge electrode 40 and the surface of the counter electrode 20 are arranged substantially parallel to each other, and are about several tens cm. Are spaced. The upper portion of the discharge electrode 40 is supported by a strip-shaped connecting fitting 42 and is electrically connected integrally. The discharge electrode 40 is detachably attached to the connection fitting 42 with a bolt or the like, and the attachment pitch of the discharge electrode 40 can be changed as necessary. Both ends of the connection fitting 42 are attached to the frame 44. The high-voltage pulse generator 500 is connected to the connection fitting 42 via a high-voltage cable or the like.

【0034】したがって、対向電極20の上で、ローラ
コンベア70に搭載された樹脂成形品10が、放電電極
40の下を移送されるとともに、放電電極40と対向電
極20の間に高電圧パルスを印加して、コロナ放電を発
生させ、樹脂成形品10の表面にコロナ放電処理を施す
ことができる。
Therefore, on the counter electrode 20, the resin molded product 10 mounted on the roller conveyor 70 is transferred under the discharge electrode 40, and a high voltage pulse is applied between the discharge electrode 40 and the counter electrode 20. Corona discharge can be applied to generate corona discharge, and the surface of the resin molded product 10 can be subjected to corona discharge treatment.

【0035】図2は、コロナ放電処理装置の回路構造を
表わしている。樹脂成形品10は対向電極20の上に誘
電体60を介して搭載され、樹脂成形品10の上方には
放電電極40が配置されている。放電電極40と対向電
極20の間の距離Wが極間距離となる。放電電極40と
対向電極20につながる回路には、パルス形成回路52
と高電圧電源50が設けられている。高電圧電源50
は、通常の各種高電圧装置と同様に、低圧の直流電源か
ら所望の高電圧電流が生成できるものである。パルス形
成回路52の回路定数などの条件を適当に設定すること
により、所望の特性を示す高電圧パルスが、放電電極4
0と対向電極20の間に加えられることになる。
FIG. 2 shows a circuit structure of the corona discharge treatment device. The resin molded product 10 is mounted on the counter electrode 20 via the dielectric 60, and the discharge electrode 40 is arranged above the resin molded product 10. The distance W between the discharge electrode 40 and the counter electrode 20 is the inter-electrode distance. A pulse forming circuit 52 is provided in the circuit connecting the discharge electrode 40 and the counter electrode 20.
And a high voltage power supply 50. High voltage power supply 50
Is a device that can generate a desired high-voltage current from a low-voltage DC power source, as in various ordinary high-voltage devices. By appropriately setting conditions such as the circuit constant of the pulse forming circuit 52, a high voltage pulse exhibiting desired characteristics can be generated by the discharge electrode 4.
It will be added between 0 and the counter electrode 20.

【0036】高電圧パルスにより発生させるコロナ放電
処理方法の処理条件は、(特開平5−339397号記
載のように)パルス幅が1μsec以上、[印加電圧
(波高値)/放電電極と対向電極との電極間の距離]で
表わされる平均電界強度が4〜20KV/cm、パルス
頻度が10pps以上の高電圧パルスである。処理時間
は、1〜600秒間であればよい。
The treatment conditions of the corona discharge treatment method generated by a high voltage pulse are as follows (as described in JP-A-5-339397): [Applied voltage (peak value) / discharge electrode and counter electrode Is a high voltage pulse having an average electric field strength of 4 to 20 KV / cm and a pulse frequency of 10 pps or more. The processing time may be 1 to 600 seconds.

【0037】本発明において、場合によって、工程1の
後にさらに一般式(1)で表わされる含窒素化合物を含
有する塗料を塗布し、得られた塗膜の表面をコロナ放電
処理してもよい。その際の塗装方法として、静電塗装も
可能である。
In the present invention, a coating containing a nitrogen-containing compound represented by the general formula (1) may be further applied after step 1 and the surface of the obtained coating film may be subjected to corona discharge treatment. Electrostatic coating is also possible as a coating method at that time.

【0038】次に、工程2における静電塗装方法として
は、電気遠心力エア、エアレス霧化式塗装機等による方
法がいずれも使用でき、印加電圧は−30KV〜−12
0KV程度である。また、静電塗装に使用する塗料の種
類は、ウレタン系、アクリル系、アルキッド系、メラミ
ン系等の通常用いられている塗料がいずれも使用でき
る。
Next, as the electrostatic coating method in step 2, any method using an electric centrifugal force air, an airless atomizing type coating machine or the like can be used, and the applied voltage is from -30 KV to -12.
It is about 0 KV. As the type of paint used for electrostatic coating, any of commonly used paints such as urethane type, acrylic type, alkyd type and melamine type can be used.

【0039】[0039]

【実施例】実施例1〜23 (工程1)表1に示すように、一般式(1)で表わされ
る含窒素化合物の所定量を含有する塗料を調製し、該塗
料をイソプロピルアルコールで洗浄・脱脂したポリプロ
ピレン樹脂成形体(三井石油化学製、M−4800、1
50mm×60mm×3mm)に塗装、乾燥した後、こ
の樹脂成形体の表面をコロナ放電処理して、テストピー
スを得た。直ちに、このテストピースの表面抵抗を測定
し、塗膜状態を観察した。さらに、得られた塗膜の耐衝
撃性を測定した。
EXAMPLES Examples 1 to 23 (Step 1) As shown in Table 1, a paint containing a predetermined amount of a nitrogen-containing compound represented by the general formula (1) was prepared, and the paint was washed with isopropyl alcohol. Degreased polypropylene resin molding (M-4800, Mitsui Petrochemical, 1
After coating on 50 mm × 60 mm × 3 mm) and drying, the surface of this resin molding was subjected to corona discharge treatment to obtain a test piece. Immediately, the surface resistance of this test piece was measured and the state of the coating film was observed. Furthermore, the impact resistance of the obtained coating film was measured.

【0040】(工程2)次に、上記で得たテストピース
をアースし、静電圧−40KV、レシプロストローク4
00mm、吹き付け距離300mm、コンベア速度2.
2m/分の塗装機(ランズバーグ・ゲマ社製、μμBE
L30φ)で、メラミン系塗料(日本ビーケミカル社
製、R−320)を静電塗装し、120℃で30分間乾
燥後、膜厚、塗着効率および付着性を測定した。
(Step 2) Next, the test piece obtained above is grounded, static voltage -40 KV, reciprocating stroke 4
00 mm, spraying distance 300 mm, conveyor speed 2.
2m / min coating machine (Ransburg Gemma, μμBE
A melamine-based paint (R-320, manufactured by Nippon Bee Chemical Co., Ltd.) was electrostatically coated with L30φ), and after drying at 120 ° C. for 30 minutes, the film thickness, coating efficiency and adhesion were measured.

【0041】比較例1〜10 実施例1〜23と同様にして行なった。 Comparative Examples 1 to 10 The same procedure as in Examples 1 to 23 was carried out.

【0042】次に、実施例1〜23および比較例1〜1
0の結果を、表1および表2にそれぞれ示す。これらの
表から明らかなように、本発明における塗膜物性、導電
性および塗着効率の優れた効果が確認された。さらに、
実施例1〜23においては、塗膜の耐衝撃性が優れるこ
とが分った。
Next, Examples 1 to 23 and Comparative Examples 1 to 1
The results of 0 are shown in Table 1 and Table 2, respectively. As is clear from these tables, excellent effects of the coating film physical properties, conductivity and coating efficiency in the present invention were confirmed. further,
In Examples 1 to 23, the impact resistance of the coating film was found to be excellent.

【0043】[0043]

【表1】 *1 A:N,N−ジメチルアミノプロピルヘキサンア
ミド B:N,N−ジエチルアミノプロピルオクタンアミド C:オクタン酸2−ジエチルアミノエタノール D:N,N−ジエチルアミノエチルデカンアミド E:デカン酸2−ジブチルアミノエタノール F:N,N−ジエチルアミノプロピルドデカンアミド G:ドデカン酸2−ジメチルアミノエタノール H:N,N−ジメチルアミノプロピルドデカンアミド I:ドデカン酸2−ジブチルアミノエタノール J:テトラデカン酸3−ジエチルアミノ−1−プロパノ
ール K:N,N−ジブチルアミノエチルヘキサデカンアミド L:ヘキサデカン酸4−ジメチルアミノ−1−ブタノー
ル M:N,N−ジエチルアミノプロピルオクタデカンアミ
ド N:M/9−オクタデセン酸2−ジエチルアミノエタノ
ール=1/1(wt/wt)の混合物 O:ドコサン酸2−ジメチルアミノエタノール *2 塗料中の、皮膜形成成分100重量部に対する重
量部 *3 T−1:日本ビーケミカル社製プライマー塗料R
B−195 基体樹脂:塩素化ポリオレフィン 硬化剤 :なし なお、この場合、塗装は、乾燥膜厚約10μmとなるよ
うにエアスプレーで行ない、乾燥は、50℃で10分間
行なった。 T−2:日本ビーケミカル社製塗料R−215 基体樹脂:ポリエステルとアクリル 硬化剤 :ポリイソシアネート なお、この場合、塗装は、乾燥膜厚約20μmとなるよ
うにエアスプレーで行ない、乾燥は、約10分間セッテ
ィングした後、80℃で30分間行なった。 T−3:日本ビーケミカル社製塗料R−207 基体樹脂:アクリル 硬化剤 :メラミン なお、この場合、塗装は、乾燥膜厚約20μmとなるよ
うにエアスプレーで行ない、乾燥は、約10分間セッテ
ィングした後、120℃で30分間行なった。 *4 S−1:コロナ放電処理 (処理条件):樹脂成形体表面の塗膜面を、印加電圧3
0KVで、20秒間コロナ放電処理をした。なお、電極
間距離は1cmである。(高周波電源:春日電気社製、
高周波電源装置HFS−203) S−2:高電圧パルスを利用するコロナ放電処理 (処理条件):樹脂成形体表面の塗膜面を、印加電圧1
90KVで、20秒間コロナ放電処理をした。なお、電
極間距離は35cmである。(図1のコロナ放電処理装
置を使用した。) *5 コロナ処理直後の表面抵抗は、アドバンテスト社
製の超高抵抗計R8340型を用いて、印加電圧500
Vで電圧をかけてから1分後に測定した。(湿度65
%、気温20℃) *6 塗膜状態は、目視で、肌、つや、塗膜異常(ハジ
キ、ヘコミ、色むら)を調べた。 ○:異常なし ×:異常あり *7 耐衝撃性は、デュポン式衝撃試験器を用いて、荷
重1kg、撃芯の直径1/2インチの条件で試験片の塗
膜面に衝撃を与え、塗膜に異常を生じない落下距離を調
べた。塗膜に異常を生じない落下距離と評価基準は以下
の通り。
[Table 1] * 1 A: N, N-dimethylaminopropylhexanamide B: N, N-diethylaminopropyl octanamide C: Octanoic acid 2-diethylaminoethanol D: N, N-Diethylaminoethyl decanamide E: Decanoic acid 2-dibutylaminoethanol F: N, N-diethylaminopropyl dodecanoamide G: dodecanoic acid 2-dimethylaminoethanol H: N, N-dimethylaminopropyl dodecanoamide I: dodecanoic acid 2-dibutylaminoethanol J: tetradecanoic acid 3-diethylamino-1-propanol K: N, N-dibutylaminoethylhexadecanoamide L: Hexadecanoic acid 4-dimethylamino-1-butanol M: N, N-diethylaminopropyl octadecanoamide N: M / 9-octadecenoic acid 2-diethylamido Mixture of ethanol = 1/1 (wt / wt) O: docosanoate 2- dimethyl aminoethanol * 2 in the paint, parts by weight with respect to film forming component 100 parts by weight * 3 T-1: Nippon Bee Chemical Co., Ltd. primer coating R
B-195 Base resin: chlorinated polyolefin Curing agent: None In this case, coating was performed by air spraying so that the dry film thickness was about 10 μm, and drying was performed at 50 ° C. for 10 minutes. T-2: Paint by Nippon Bee Chemical Co., Ltd. R-215 Base resin: Polyester and acrylic Curing agent: Polyisocyanate In this case, the coating is performed by air spraying so that the dry film thickness is about 20 μm, and the drying is about After setting for 10 minutes, it was performed at 80 ° C. for 30 minutes. T-3: Nippon Bee Chemical Co., Ltd. paint R-207 Base resin: Acrylic curing agent: Melamine In this case, the coating is performed by air spraying so that the dry film thickness is about 20 μm, and the drying is set for about 10 minutes. After that, it was performed at 120 ° C. for 30 minutes. * 4 S-1: Corona discharge treatment (Treatment conditions): Apply the applied voltage 3 to the coating film surface of the resin molding.
Corona discharge treatment was performed at 0 KV for 20 seconds. The distance between the electrodes is 1 cm. (High frequency power supply: manufactured by Kasuga Electric
High-frequency power supply device HFS-203) S-2: Corona discharge treatment using high voltage pulse (treatment condition): coating film surface of resin molded body is applied voltage 1
Corona discharge treatment was performed at 90 KV for 20 seconds. The distance between the electrodes is 35 cm. (The corona discharge treatment device of FIG. 1 was used.) * 5 The surface resistance immediately after the corona treatment was measured by using an ultra high resistance meter R8340 type manufactured by Advantest Co.
It measured 1 minute after applying a voltage with V. (Humidity 65
%, Temperature 20 ° C.) * 6 The state of the coating film was visually inspected for skin, gloss, and coating film abnormalities (repelling, dents, color unevenness). ◯: No abnormality X: Abnormality * 7 Impact resistance was measured by applying a shock to the coating surface of the test piece under the conditions of a load of 1 kg and a diameter of the hammer of 1/2 inch using a DuPont impact tester. The drop distance at which the film did not become abnormal was examined. The drop distances and evaluation criteria that do not cause abnormalities in the coating film are as follows.

【0044】◎;優良(>50cm) ○;良好(50cm) △;実用上問題なし(45cm) ×;不良(<45cm) *8 膜厚は、樹脂成形体表面の顕微鏡観察により、肉
眼で測定した。 *9 塗着効率は、塗装前後の重量差と吐出した塗料の
絶乾重量との関係より、以下の式で求めた。
⊚: excellent (> 50 cm) ◯: good (50 cm) Δ: practically no problem (45 cm) ×: poor (<45 cm) * 8 The film thickness is visually measured by observing the surface of the resin molded body under a microscope. did. * 9 The coating efficiency was calculated by the following formula from the relationship between the weight difference before and after coating and the absolutely dry weight of the discharged coating material.

【数1】 *10 片刃カミソリを用い、静電塗装されたテストピ
ース表面に2mm間隔のゴバン目を100個作り、その
上にセロハン粘着テープ(JIS Z1522)を充分
圧着し、90°方向に一気に引き剥し、剥離状態を調べ
た。
[Equation 1] * 10 Using a single-edged razor, make 100 goggles at 2 mm intervals on the surface of the electrostatically-coated test piece, and sufficiently adhere the cellophane adhesive tape (JIS Z1522) on it, then peel it off at once in the 90 ° direction and peel it off. I checked the condition.

【0045】○:剥がれず ×:剥がれあり *11 静電塗装されたテストピースを40℃の水中に
240時間浸漬した後、 *10と同様の方法にて、剥離状態を調べた。 ○:剥がれず ×:剥がれあり
◯: Not peeled off ×: Peeled off * 11 After the electrostatically coated test piece was immersed in water at 40 ° C for 240 hours, the peeled state was examined by the same method as * 10. ◯: Not peeled off ×: Peeled off

【表2】 *1〜*11:表1と同じ。[Table 2] * 1 to * 11: Same as Table 1.

【0046】実施例24〜29 (工程1)表3に示すように、一般式(1)で表わされ
る含窒素化合物の所定量を含有する塗料を調製し、該塗
料を自動車用ポリプロピレン製バンパー(表面抵抗;
1.0×1016Ω)に塗装、乾燥した後、該表面をコロ
ナ放電処理した。直ちに、該表面の表面抵抗を測定し、
塗膜状態を観察した。さらに、得られた塗膜の耐衝撃性
を測定した。
Examples 24 to 29 (Step 1) As shown in Table 3, a paint containing a predetermined amount of the nitrogen-containing compound represented by the general formula (1) was prepared, and the paint was used as a bumper made of polypropylene for automobiles ( Surface resistance;
It was applied to 1.0 × 10 16 Ω) and dried, and then the surface was subjected to corona discharge treatment. Immediately, measure the surface resistance of the surface,
The state of the coating film was observed. Furthermore, the impact resistance of the obtained coating film was measured.

【0047】(工程2)次に、上記で得た自動車用ポリ
プロピレン製バンパーをアースし、静電圧−40KV、
レシプロストローク400mm、吹き付け距離300m
m、コンベア速度2.2m/分の塗装機(ランズバーグ
・ゲマ社製、μμBEL30φ)で、メラミン系塗料
(日本ビーケミカル社製、R−320)を静電塗装し、
120℃で30分間乾燥後、膜厚、塗着効率および付着
性を測定した。
(Process 2) Next, the polypropylene bumper for automobiles obtained above is grounded to a static voltage of -40 KV.
Reciprocating stroke 400mm, spraying distance 300m
m, a conveyor speed of 2.2 m / min, a melamine-based paint (R-320, manufactured by Nippon Bee Chemical Co., Ltd.) was electrostatically coated with a coating machine (manufactured by Randsburg Gema, μμBEL30φ).
After drying at 120 ° C. for 30 minutes, the film thickness, coating efficiency and adhesiveness were measured.

【0048】実施例30 (工程1)表3に示すように、一般式(1)で表わされ
る含窒素化合物の所定量を含有する塗料を調製し、該塗
料を添加剤入り自動車用ポリプロピレン製バンパー(表
面抵抗;5.2×1011Ω)に静電塗装、乾燥した後、
該表面をコロナ放電処理した。直ちに、該表面の表面抵
抗を測定し、塗膜状態を観察した。さらに、得られた塗
膜の耐衝撃性を測定した。
Example 30 (Step 1) As shown in Table 3, a coating material containing a predetermined amount of a nitrogen-containing compound represented by the general formula (1) was prepared, and the coating material was added to the polypropylene bumper for automobiles. After electrostatic coating on (surface resistance: 5.2 × 10 11 Ω) and drying,
The surface was subjected to corona discharge treatment. Immediately, the surface resistance of the surface was measured and the state of the coating film was observed. Furthermore, the impact resistance of the obtained coating film was measured.

【0049】ここで、添加剤入り自動車用ポリプロピレ
ン製バンパーとは、一般式(1)で表わされる含窒素化
合物(F)を0.5%含有する自動車用ポリプロピレン
製バンパー(表面抵抗;3.1×1015Ω)を、イソプ
ロピルアルコールで洗浄・脱脂処理した後、コロナ放電
処理(S−2)したものである。
Here, the automotive polypropylene bumper containing an additive means an automotive polypropylene bumper containing 0.5% of the nitrogen-containing compound (F) represented by the general formula (1) (surface resistance: 3.1). X10 15 Ω) was washed and degreased with isopropyl alcohol and then subjected to corona discharge treatment (S-2).

【0050】(工程2)実施例24〜29と同様にして
行なった。
(Step 2) The same procedure as in Examples 24 to 29 was carried out.

【0051】実施例31 (工程1)表3に示すように、一般式(1)で表わされ
る含窒素化合物の所定量を含有する塗料を調製し、該塗
料を添加剤入り自動車用ポリプロピレン製バンパー(表
面抵抗;4.5×1011Ω)に静電塗装、乾燥した後、
該表面をコロナ放電処理した。直ちに、該表面の表面抵
抗を測定し、塗膜状態を観察した。さらに、得られた塗
膜の耐衝撃性を測定した。
Example 31 (Step 1) As shown in Table 3, a coating material containing a predetermined amount of a nitrogen-containing compound represented by the general formula (1) was prepared, and the coating material was added to the polypropylene bumper for automobiles. After electrostatic coating on (surface resistance; 4.5 × 10 11 Ω) and drying,
The surface was subjected to corona discharge treatment. Immediately, the surface resistance of the surface was measured and the state of the coating film was observed. Furthermore, the impact resistance of the obtained coating film was measured.

【0052】ここで、添加剤入り自動車用ポリプロピレ
ン製バンパーとは、一般式(1)で表わされる含窒素化
合物(I)を0.5%含有する自動車用ポリプロピレン
製バンパー(表面抵抗;3.1×1015Ω)を、コロナ
放電処理(S−2)したものである。
The additive-added automotive polypropylene bumper as used herein means an automotive polypropylene bumper containing 0.5% of the nitrogen-containing compound (I) represented by the general formula (1) (surface resistance: 3.1). X10 15 Ω) was subjected to corona discharge treatment (S-2).

【0053】(工程2)実施例24〜29と同様にして
行なった。
(Step 2) The same procedure as in Examples 24 to 29 was carried out.

【0054】比較例11〜14 実施例24〜29と同様にして行なった。 Comparative Examples 11-14 The same procedure as in Examples 24-29 was carried out.

【0055】次に、実施例24〜31及び比較例11〜
14の結果を、表3及び表4にそれぞれ示す。これらの
表から明らかなように、自動車用バンパー等の大型成形
品の場合は、高電圧パルスを利用するコロナ放電処理
が、塗膜物性、導電性及び塗着効率において優れた効果
が確認された。また、実施例24〜31においては塗膜
の耐衝撃性が優れることが分った。
Next, Examples 24 to 31 and Comparative Examples 11 to 11
The results of 14 are shown in Tables 3 and 4, respectively. As is clear from these tables, in the case of large molded articles such as automobile bumpers, corona discharge treatment using high voltage pulse was confirmed to have excellent effects on coating film physical properties, conductivity and coating efficiency. . Moreover, it was found that the impact resistance of the coating film was excellent in Examples 24 to 31.

【0056】[0056]

【表3】 *1〜*11:表1と同じ。[Table 3] * 1 to * 11: Same as Table 1.

【0057】[0057]

【表4】 *1〜*11:表1と同じ。[Table 4] * 1 to * 11: Same as Table 1.

【0058】[0058]

【発明の効果】本発明によれば、導電性の低い樹脂か
ら、著しく導電性を改良した樹脂成形体を、高い生産性
で得ることができ、さらに、塗着効率に優れた静電塗装
が可能であり、かつ該静電塗装により、表面外観に優れ
た樹脂成形体を得ることができる。また、予期せぬ効果
として、得られる塗膜の耐衝撃性が向上する。
According to the present invention, a resin molded product having significantly improved conductivity can be obtained from a resin having low conductivity with high productivity, and electrostatic coating excellent in coating efficiency can be obtained. It is possible to obtain a resin molding having an excellent surface appearance by the electrostatic coating. Further, as an unexpected effect, the impact resistance of the obtained coating film is improved.

【0059】樹脂成形体の中で、特に、バンパー等の自
動車用部品等に有効である。
Among the resin moldings, it is particularly effective for automobile parts such as bumpers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で用いるコロナ放電処理装置
の全体斜視図である。
FIG. 1 is an overall perspective view of a corona discharge treatment device used in an embodiment of the present invention.

【図2】高電圧パルス発生装置の回路構成を表わす回路
図である。
FIG. 2 is a circuit diagram showing a circuit configuration of a high voltage pulse generator.

【符号の説明】[Explanation of symbols]

10 樹脂成形品 20 対向電極 40 放電電極 60 誘電体 70 ローラコンベア 500 高電圧パルス発生装置 10 Resin Molded Product 20 Counter Electrode 40 Discharge Electrode 60 Dielectric 70 Roller Conveyor 500 High Voltage Pulse Generator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B05D 7/24 303 B05D 7/24 303E C08J 7/04 C08J 7/04 D (72)発明者 宮副 聖吾 大阪府寝屋川市池田中町19番17号 日本ペ イント株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B05D 7/24 303 B05D 7/24 303E C08J 7/04 C08J 7/04 D (72) Inventor Miyazoe Shogo 19-17 Ikedanaka-cho, Neyagawa-shi, Osaka Japan Paint Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 樹脂成形体に、皮膜形成成分と下記一般
式(1)で表わされる含窒素化合物とを含有する塗料を
塗布し、得られた塗膜の表面をコロナ放電処理すること
を特徴とする樹脂成形体の導電性改良方法。 【化1】
1. A resin molding is coated with a coating material containing a film-forming component and a nitrogen-containing compound represented by the following general formula (1), and the surface of the coating film obtained is subjected to corona discharge treatment. And a method for improving the electrical conductivity of a resin molding. Embedded image
【請求項2】 一般式(1)で表わされる含窒素化合物
の配合量が、前記皮膜形成成分100重量部に対して、
0.01〜10重量部であることを特徴とする請求項1
記載の方法。
2. The blending amount of the nitrogen-containing compound represented by the general formula (1) is 100 parts by weight of the film-forming component.
The amount is 0.01 to 10 parts by weight.
The described method.
【請求項3】 コロナ放電処理が高電圧パルスを利用す
るコロナ放電処理であることを特徴とする請求項1また
は2に記載の方法。
3. The method according to claim 1, wherein the corona discharge treatment is a corona discharge treatment using a high voltage pulse.
【請求項4】 請求項1〜3のいずれか1項に記載の方
法で得られた樹脂成形体の塗膜に、荷電を有する塗料を
噴霧、付着させて静電塗装することを特徴とする樹脂製
被塗物の製造方法。
4. A coating material having a charge is sprayed and adhered to the coating film of the resin molded product obtained by the method according to claim 1, and electrostatic coating is performed. A method for producing a resin coated article.
【請求項5】 樹脂成形体が自動車用部品であることを
特徴とする請求項1〜4のいずれか1項に記載の方法。
5. The method according to claim 1, wherein the resin molded body is an automobile part.
JP7245950A 1995-09-25 1995-09-25 Improvement of electroconductivity of resin molding and production of coated material made of resin Pending JPH0987403A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7245950A JPH0987403A (en) 1995-09-25 1995-09-25 Improvement of electroconductivity of resin molding and production of coated material made of resin
US08/717,736 US5858472A (en) 1995-09-25 1996-09-20 Method of improving the electrical conductivity of a molding article of resin, method of coating a molding article of resin, and coating composition
EP96306994A EP0764663A3 (en) 1995-09-25 1996-09-25 Method of improving the electrical conductivity of a molding artcile of resin, method of coating a molding article of resin, and coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7245950A JPH0987403A (en) 1995-09-25 1995-09-25 Improvement of electroconductivity of resin molding and production of coated material made of resin

Publications (1)

Publication Number Publication Date
JPH0987403A true JPH0987403A (en) 1997-03-31

Family

ID=17141272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7245950A Pending JPH0987403A (en) 1995-09-25 1995-09-25 Improvement of electroconductivity of resin molding and production of coated material made of resin

Country Status (1)

Country Link
JP (1) JPH0987403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759733A (en) * 1987-11-28 1998-06-02 Ricoh Company, Ltd. Liquid developer for electrostatic electrophotography
WO2000040642A1 (en) * 1998-12-28 2000-07-13 Osaka Gas Co., Ltd. Resin molded product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759733A (en) * 1987-11-28 1998-06-02 Ricoh Company, Ltd. Liquid developer for electrostatic electrophotography
WO2000040642A1 (en) * 1998-12-28 2000-07-13 Osaka Gas Co., Ltd. Resin molded product

Similar Documents

Publication Publication Date Title
US5135773A (en) Method of chemically etching an article of thermoplastic resin and conductive filler, rinsing the article, and electrostatically spray coating it
CN101353876B (en) Paper surface electrostatic painting process and special high pressure electrostatic painting system therefor
NZ505036A (en) Powder coating process using a fluidized bed effecting tribostatic charging of powder coating composition
SK16362003A3 (en) Powder coating process with electrostatically charged fluidised bed
JPH0756012B2 (en) Coating composition and coating method for plastic members
WO2013081029A1 (en) Electrostatic coating method
JPH0987403A (en) Improvement of electroconductivity of resin molding and production of coated material made of resin
US5858472A (en) Method of improving the electrical conductivity of a molding article of resin, method of coating a molding article of resin, and coating composition
JPH0995548A (en) Method for improving conductivity of molded resin and production of coated material made of resin
US5571472A (en) Method of improving the electrical conductivity of shaped resin articles and an electrostatic coating process
EP0732706B1 (en) Method of improving the electrical conductivity of a shaped resin article and an electrostatic coating process
KR100660499B1 (en) Electrically Conductive Coatings Applied by Internally Charged Electrostatic Sprayers
JP2001029879A (en) Structure of coating film and coating method
JPS596705B2 (en) Electrostatic coating method for defective conductive articles
JP3315141B2 (en) Electrostatic coating method for plastic members
JPH07265788A (en) Static coating method for resin molding
JPS61271059A (en) Method for electrostatically coating resinous part
JPH10309513A (en) Electrostatic coating method of formed body with polyamide resin
JPH0987548A (en) Antistatic coating composition
JPS581689B2 (en) Method of manufacturing permanently antistatic coated plastic products
JPH10147748A (en) Conductive primer composition for electrostatic coating and method for electrostatic coating
JPH04293564A (en) Electrostatic coating apparatus for plastic molded product
JP2660351B2 (en) Polymer composite and method for producing the same
JP2005177686A (en) Electrostatic coating method
JPH08333459A (en) Method for improving conductivity of and method for electrostatic coating of resin molding