WO2014002581A1 - Synthetic resin composition and moulded body - Google Patents

Synthetic resin composition and moulded body Download PDF

Info

Publication number
WO2014002581A1
WO2014002581A1 PCT/JP2013/061061 JP2013061061W WO2014002581A1 WO 2014002581 A1 WO2014002581 A1 WO 2014002581A1 JP 2013061061 W JP2013061061 W JP 2013061061W WO 2014002581 A1 WO2014002581 A1 WO 2014002581A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic resin
resin composition
molded body
surface resistivity
carbon
Prior art date
Application number
PCT/JP2013/061061
Other languages
French (fr)
Japanese (ja)
Inventor
大関実
畠慎也
Original Assignee
株式会社クレファイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレファイン filed Critical 株式会社クレファイン
Priority to JP2014522460A priority Critical patent/JPWO2014002581A1/en
Publication of WO2014002581A1 publication Critical patent/WO2014002581A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a synthetic resin composition, and more specifically, a synthetic resin composition capable of strictly controlling the surface resistivity to a desired value in a semiconductive region and generating a very small amount of foreign particles (particles). Related to things.
  • the present invention also relates to a molded body formed by molding this synthetic resin composition.
  • the molded body formed by molding the synthetic resin composition of the present invention can cope with ESD failures such as electrostatic discharge phenomenon (Electro-Static Discharge) and electrostatic breakdown (Electro-Static Destroy) caused thereby, and Since it is low-polluting, it can be suitably applied to a wide range of fields that require control of static electricity, prevention of charging, electromagnetic shielding, prevention of dust adsorption, and the like. Therefore, the present invention particularly relates to a molded body such as a transfer tray or container for an electronic device such as a semiconductor device.
  • Components used in the manufacturing process of semiconductors such as IC and LSI and mounting parts thereof, components used in the manufacturing process of magnetic heads and hard disk drives and mounting parts thereof, components used in the manufacturing process of liquid crystal displays and the like Resin materials used for molding mounted parts and the like are required to have excellent mechanical properties, heat resistance, chemical resistance, and dimensional stability.
  • These components include, for example, trays and containers used for transportation (including transportation) in the manufacturing process of electronic devices.
  • Such trays and containers include, for example, wafer carriers, cleaning trays, IC chip trays, trays or containers for transporting hard disk drive components, particularly magnetic head trays and head gimbal assemblies (HGA). ) There are trays.
  • polyether ether ketone for example, polyether ether ketone, polyether imide, polysulfone, polyether sulfone, polyphenylene sulfide and the like are excellent in mechanical properties, heat resistance, chemical resistance, etc., so-called engineering plastics Synthetic resins belonging to are used.
  • the method of adding an antistatic agent to the resin material tends to lose the antistatic effect because the antistatic agent present on the surface of the molded body is removed by washing or friction. If the amount of the antistatic agent is increased so that the antistatic agent can easily bleed from the inside of the molded body to the surface, the antistatic effect can be maintained to some extent, but the bleeded antistatic agent can be applied to the surface of the molded body. Electronic devices and the environment are contaminated by dust adhering, and elution and volatilization of the antistatic agent. In addition, when a large amount of the antistatic agent is blended, the heat resistance of the molded product is lowered.
  • the method of blending the resin material with a conductive filler having a volume resistivity of less than 10 2 ⁇ ⁇ cm, such as conductive carbon black or carbon fiber greatly increases the electrical resistivity of the resin material and the conductive filler. For this reason, the surface resistivity of the obtained molded body varies greatly depending on the mixing ratio of the conductive filler and the slight variation in the molding conditions. Therefore, in the method of simply blending the conductive filler, the surface resistivity of the obtained molded body can be strictly and stably controlled so as to be a desired value within the range of 10 5 to 10 12 ⁇ / ⁇ . It is extremely difficult.
  • a molded product with a large variation in surface resistivity has a mixture of places where the surface resistivity is too large and too small. For example, if it is used as a tray or container for transporting electronic device parts, it is sufficiently resistant to ESD damage. I can't respond.
  • Patent Document 1 synthetic resin 1 to 55% by mass, volume resistivity 10 2 to 10 10 ⁇ ⁇ cm of carbon precursor 45 to 99% by mass, and volume resistivity 10 2 ⁇ ⁇
  • a semiconductive resin composition containing 0 to 30% by mass of a conductive filler of less than cm is proposed, and in this field, functions such as static electricity control, antistatic, electromagnetic wave shielding, and dust adsorption prevention are required. It is disclosed that it can be suitably used as various molded articles, parts, members and the like.
  • Patent Document 2 discloses a carbon precursor 5 to 30 to 94% by mass of a thermoplastic resin component containing a crystalline thermoplastic resin and an amorphous thermoplastic resin and having a volume resistivity of 10 2 to 10 10 ⁇ ⁇ cm.
  • An injection molded body formed by molding a resin composition containing 40% by mass and 1 to 30% by mass of a conductive filler having a volume resistivity of less than 10 2 ⁇ ⁇ cm has been proposed.
  • Patent Document 3 synthetic resin 46 to 98.5% by weight, volume resistivity 10 2 to 10 10 ⁇ ⁇ cm of carbon precursor 1 to 40% by weight, and volume resistivity less than 10 2 ⁇ ⁇ cm.
  • a synthetic resin composition containing 0.5 to 14% by weight of carbon fiber and a molded product formed by molding the synthetic resin composition are proposed, whereby the surface resistivity is a desired value in the semiconductive region. It can be strictly controlled, and when a synthetic resin composition is formed into a molded product by blending carbon fibers in a relatively small proportion, a molded product with extremely small variation in surface resistivity depending on the location is obtained. It is disclosed that it is possible.
  • thermoplastic polyesters such as polybutylene terephthalate, polyarylene sulfides such as polyetheretherketone and polyphenylene sulfide, polyolefins such as polypropylene, polycarbonate, polyetherimide, polyethersulfone Polyacetal, fluororesin, epoxy resin and the like are disclosed.
  • Patent Documents 1 and 2 exemplify carbon fiber, graphite, conductive carbon black, metal fiber, metal powder, and the like as the conductive filler having a volume resistivity of less than 10 2 ⁇ ⁇ cm. From the viewpoint of controllability and reproducibility of the rate or surface resistivity, carbon fiber, graphite, conductive carbon black, and mixtures thereof are preferred, and carbon fiber is particularly preferred. Furthermore, as a specific example, Patent Document 1 describes a resin composition containing 30% by mass of polybutylene terephthalate, 65% by mass of a carbon precursor, and 5% by mass of carbon fiber, and Patent Document 2 describes a thermoplastic resin.
  • Patent Document 3 describes a synthetic resin composition containing 65 to 75% by weight of a synthetic resin, 20 to 28% by weight of a carbon precursor, and 5 to 10% by weight of a PAN-based carbon fiber. Yes.
  • the carbon fibers described in these patent documents have an average fiber length of 20 ⁇ m to 0.1 mm.
  • Parts such as transport trays and containers used in the manufacturing process of electronic devices such as hard disk drives (HDD) are used in clean rooms. Become. These parts are often used in a cleaning process with ultrapure water or a solvent after mounting or housing an electronic device or the like, or are used after being cleaned themselves. If the amount of particles generated in these parts is large, the electronic device is contaminated in the cleaning process, or the cleaning liquid is contaminated.
  • HDD hard disk drives
  • the surface resistivity of the molded body that is a component such as a transport tray or container used in the manufacturing process is within the desired range of the semiconductive region.
  • the subject of the present invention is a synthetic resin in which the surface resistivity is strictly controlled within a desired range of the semiconductive region, the variation of the surface resistivity is extremely small, and the generation amount of foreign particles (particles) is extremely small. It is to provide a composition.
  • the subject of this invention is providing the molded object which was excellent in the electrical property formed by shape
  • the present inventors have found that in a synthetic resin composition containing a synthetic resin, a carbon precursor, and a conductive filler, carbon nanotubes and / or as conductive fillers are used.
  • the inventors have found that the problems can be solved by selecting carbon nanofibers and forming a synthetic resin composition containing these in a specific ratio, and the present invention has been completed.
  • the synthetic resin (A) is 46 to 99.4 mass%
  • the volume resistivity is 10 2 to 10 10 ⁇ ⁇ cm
  • the carbon precursor (B) is 0.5 to 40 mass%
  • the volume is There is provided a synthetic resin composition containing 0.1 to 14% by mass of at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers having a resistivity of less than 10 2 ⁇ ⁇ cm.
  • the synthetic resin (A) is a thermoplastic polyester, polyarylene sulfide, polyolefin, polycarbonate, polyether ether ketone, polyacetal, polyether imide, polyether sulfone, fluororesin, And the above synthetic resin composition that is at least one selected from the group consisting of epoxy resins.
  • a molded body obtained by molding any one of the above synthetic resin compositions.
  • the following molded articles (1) to (6) are provided as embodiments.
  • Any one of the above-mentioned molded bodies which is an injection molded body or an extruded molded body.
  • Any one of the above-mentioned molded products wherein the number of particles having a particle size of 0.5 ⁇ m or more measured in pure water is 2,000 particles / cm 3 or less.
  • the molded article according to any one of the above which is a tray or a container for transporting an electronic device.
  • the molded article according to any one of the above which is a transport tray or container for hard disk drive components.
  • HGA head gimbal assembly
  • the surface resistivity is half
  • a synthetic resin composition is provided that is strictly controlled within a desired range of the conductive region, has a very small variation in surface resistivity, and has an extremely small amount of generation of foreign particles (particles).
  • the surface resistivity is strictly controlled within a desired range of the semiconductive region, and the surface resistivity is obtained by molding the synthetic resin composition. Can be obtained, and a molded body with a very small amount of generation of foreign particles can be obtained. Therefore, a tray or container for electronic devices having excellent characteristics, especially a tray for transporting hard disk drive components. Alternatively, it is possible to provide a container, in particular, a magnetic head tray or a head gimbal assembly (HGA) tray.
  • HGA head gimbal assembly
  • the synthetic resin (A) contained in the synthetic resin composition of the present invention is not particularly limited, but is preferably a synthetic resin that can form a molded body such as an injection molded body or an extrusion molded body.
  • thermoplastic polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polypropylene and the like
  • a synthetic resin (A) which is at least one selected from the group consisting of polyolefins, polycarbonates, polyether ether ketones, polyacetals, polyether imides, polyether sulfones, fluororesins, and epoxy resins is more preferably used.
  • synthetic resins can be used alone or in admixture of two or more.
  • the epoxy resin may be an epoxy resin alone or, if necessary, a composition containing a curing agent.
  • Particularly preferred synthetic resin (A) is polyetheretherketone; polyarylene sulfide; polyetherimide; polyethersulfone; polycarbonate; or epoxy resin.
  • these synthetic resins (A) may prepare a polymer, a commercial item may be used and a commercial item may be mixed and used.
  • polyether ether ketone is a trade name “VICTREX (registered trademark) PEEK450P” manufactured by Victrex
  • polyarylene sulfide is a product name “Fortron (registered trademark) W214A” manufactured by Polyplastics Co., Ltd.
  • the polyetherimide is a product name “Ultem (registered trademark) 1010” manufactured by GE Plastics
  • the polyethersulfone is a product name “Sumika Excel (registered trademark) PES3600G” manufactured by Sumitomo Chemical Co., Ltd.
  • Polycarbonate is commercially available under the trade name “Panlite (registered trademark) L-1225W” manufactured by Teijin Chemicals Ltd.
  • epoxy resin is commercially available under the product name “JER (registered trademark) YX4000HK” manufactured by Mitsubishi Chemical Corporation. Goods can be obtained.
  • the content of the synthetic resin (A) is 46 to 99.4% by mass, preferably 70 to 99% by mass, more preferably 74 to 98.5% by mass, and still more preferably. Is 77-98.2 mass%.
  • the total amount of the content rate of a synthetic resin (A), the carbon precursor (B) mentioned later, and an electroconductive filler (C) be 100 mass%.
  • the content ratio of the synthetic resin (A) When the content ratio of the synthetic resin (A) is too large, the surface resistivity of the molded body increases, and it becomes difficult to control the surface resistivity of the desired semiconductive region. On the other hand, if the content ratio of the synthetic resin (A) is too small, the surface resistivity of the molded body becomes too low, and it becomes difficult to control the surface resistivity of the desired semiconductive region. Insulation properties are too low.
  • Carbon precursor (B) The carbon precursor (B) having a volume resistivity of 10 2 to 10 10 ⁇ ⁇ cm contained in the synthetic resin composition of the present invention is obtained by baking an organic substance at a temperature of 400 to 900 ° C. in an inert atmosphere. It can be obtained by doing.
  • the carbon precursor (B) contained in the synthetic resin composition of the present invention includes, for example, (i) heating tar or pitch such as petroleum tar, petroleum pitch, coal tar, coal pitch, etc. Performing grouping and polycondensation, and if necessary, oxidizing and infusifying in an oxidizing atmosphere, followed by heating and firing in an inert atmosphere, (ii) oxidizing thermoplastic resins such as polyacrylonitrile and polyvinyl chloride By a method of infusibilizing in an atmosphere and further heating and baking in an inert atmosphere, (iii) a method of heating and baking a thermosetting resin such as a phenol resin and a furan resin, and then heating and baking in an inert atmosphere Can be manufactured.
  • tar or pitch such as petroleum tar, petroleum pitch, coal tar, coal pitch, etc.
  • oxidizing thermoplastic resins such as polyacrylonitrile and polyvinyl chloride
  • the carbon precursor (B) contained in the synthetic resin composition of the present invention means a substance that is not completely carbonized and has a carbon content of 97% by mass or less obtained by these treatments. When the organic substance is heated and fired in an inert atmosphere, the carbon content of the fired body obtained increases as the firing temperature rises.
  • the carbon content of the carbon precursor (B) contained in the synthetic resin composition can be controlled by appropriately setting the firing temperature.
  • the carbon precursor (B) having a volume resistivity of 10 2 to 10 10 ⁇ ⁇ cm used in the present invention preferably has a carbon content of preferably 80 to 97% by mass, more preferably 85 to 96.5% by mass. It can be obtained as a carbon precursor (B) that is not carbonized.
  • the volume resistivity of the carbon precursor (B) is 10 2 to 10 10 ⁇ ⁇ cm, preferably 10 3 to 10 9 ⁇ ⁇ cm.
  • Carbon precursor (B) is usually used in the form of particles or fibers.
  • the average particle diameter of the carbon precursor (B) particles contained in the synthetic resin composition of the present invention is preferably 1 mm or less. When the average particle diameter of the carbon precursor (B) is too large, it is difficult to obtain a molded article having a good appearance when molding the synthetic resin composition.
  • the average particle diameter of the carbon precursor (B) particles is usually 0.1 ⁇ m to 1 mm, preferably 0.5 to 500 ⁇ m, more preferably 1 to 100 ⁇ m. In many cases, good results can be obtained by using the carbon precursor (B) having an average particle diameter of about 5 to 50 ⁇ m.
  • the average diameter of the fibrous carbon precursor (B) used in the present invention is preferably 0.1 mm or less.
  • the fibrous carbon precursor (B) is preferably a short fiber from the viewpoint of dispersibility in the synthetic resin composition.
  • the content of the carbon precursor (B) is 0.5 to 40% by mass, preferably 1 to 30% by mass, more preferably 5 to 25% by mass, and still more preferably. 10 to 20% by mass.
  • the content ratio of the carbon precursor (B) is too large, the mechanical properties of a molded body obtained by molding the synthetic resin composition may be deteriorated.
  • the content ratio of the carbon precursor (B) is too small, it is difficult to sufficiently reduce the surface resistivity of the molded product obtained by molding the synthetic resin composition, or there is variation due to the location of the surface resistivity. There is a tendency to become larger.
  • a sufficient effect may be obtained when the content of the carbon precursor (B) is about 1.2 to 5% by mass.
  • Conductive filler (C) Synthetic resin composition of the present invention is characterized in that it contains a predetermined amount of at least one conductive filler (C) is selected from carbon nanotubes and carbon nanofibers is less than a volume resistivity of 10 2 ⁇ ⁇ cm.
  • the carbon nanotubes and carbon nanofibers used as the conductive filler (C) belong to carbon fine fibers, and the carbon layer is a single layer whose carbon hexagonal mesh surface is closed in a cylindrical shape.
  • the carbon layer is a single layer whose carbon hexagonal mesh surface is closed in a cylindrical shape.
  • the carbon nanotubes and carbon nanofibers used in the present invention have an average fiber diameter of usually 0.5 to 200 nm, preferably 2 to 50 nm, more preferably 5 to 20 nm, and an average fiber length of usually 100 nm to 15 ⁇ m, The thickness is preferably from 150 nm to 10 ⁇ m.
  • the average fiber diameter is less than 0.5 nm, uniform dispersion in the synthetic resin composition is difficult, and when preparing the synthetic resin composition or forming a molded body from the synthetic resin composition, shearing is performed. May be damaged by stress. If the average fiber diameter exceeds 200 nm, the fine dispersion effect that is characteristic of fine fibers may not be obtained.
  • the aspect ratio (L / D) obtained by dividing the average fiber length (L) by the average fiber diameter (D) is preferably 10 or more, more preferably 50 or more, and still more preferably 100 or more.
  • the method for producing carbon nanotubes and carbon nanofibers used in the present invention is not particularly limited, and a method of causing arc discharge between the carbon electrodes to grow on the cathode surface of the discharge electrode, or irradiating silicon carbide with a laser beam.
  • the carbon nanotube obtained by the manufacturing method are different.
  • the graphite layer is substantially parallel to the fiber axis.
  • carbon fine fibers produced by the vapor phase method are not hollow, or have a structure in which the graphite layer is inclined with respect to the fiber axis, and those substantially perpendicular to the fiber axis.
  • blurry ones which are called carbon nanofibers.
  • Carbon nanotubes and carbon nanofibers are, for example, VGCF (registered trademark) series manufactured by Showa Denko KK, Nanocyl (registered trademark) series manufactured by Nanosil, AMC (registered trademark) series manufactured by Ube Industries, Ltd., Bayer Commercially available products such as BAYTUBE (registered trademark) series are available.
  • VGCF registered trademark
  • Nanocyl registered trademark
  • AMC registered trademark
  • BAYTUBE registered trademark
  • the synthetic resin composition of the present invention contains at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers having a volume resistivity of less than 10 2 ⁇ ⁇ cm. is there.
  • the conductive filler (C) has a volume resistivity of less than 10 2 ⁇ ⁇ cm
  • the carbon precursor (B) has a volume resistivity of 10 2 to 10 10 ⁇ ⁇ cm. Yes).
  • the carbon fiber that has been widely used as a conductive filler conventionally has an average fiber length of 20 ⁇ m or more, so the conductive filler (C) contained in the synthetic resin composition of the present invention, that is, At least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers having a volume resistivity of less than 10 2 ⁇ ⁇ cm can also be distinguished from the carbon fibers.
  • the conductive filler (C) can be distinguished from graphite and conductive carbon black, which have been widely used as a conductive filler.
  • the content of the conductive filler (C) is 0.1 to 14% by mass, preferably 0.15 to 10% by mass, more preferably 0.2 to 8% by mass. %, More preferably 0.3 to 6% by mass.
  • the synthetic resin composition of the present invention can contain one or both of carbon nanotubes or carbon nanofibers having a volume resistivity of less than 10 2 ⁇ ⁇ cm.
  • Synthetic resin composition of the present invention when containing both carbon nanofiber carbon than nanotubes and a volume resistivity of 10 2 ⁇ ⁇ cm under a volume resistivity of 10 2 ⁇ ⁇ cm, the conductive filler ( The content ratio of C) means the total content ratio of carbon nanotubes and carbon nanofibers.
  • the content ratio of the conductive filler (C) is too large, i) the surface resistivity of the molded body formed by molding the synthetic resin composition becomes too low, and the surface resistivity of the molded body is reduced within the semiconductive region. It is difficult to control the surface resistivity of the molded body, ii) the surface resistivity varies depending on the location on the surface of the molded body, iii) and the molded body formed by molding the synthetic resin composition. Mechanical properties may be degraded. When the content ratio of the conductive filler (C) is too small, it becomes difficult to control the surface resistivity of the molded body formed by molding the synthetic resin composition to the surface resistivity in the semiconductive region.
  • the synthetic resin composition of the present invention contains at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers having a volume resistivity of less than 10 2 ⁇ ⁇ cm, for example, 0.4 to 5.5 mass. %, And in combination with a carbon precursor (B) having a volume resistivity of 10 2 to 10 10 ⁇ ⁇ cm, a molding formed by molding the synthetic resin composition
  • the body can have excellent surface resistivity controllability and mechanical properties. Therefore, according to this invention, it becomes possible to increase content of the synthetic resin (A) contained in the synthetic resin composition and the molded body formed by molding the synthetic resin composition.
  • the synthetic resin composition of the present invention and the molded article formed by molding the synthetic resin composition can sufficiently exhibit the mechanical characteristics and other characteristics of the synthetic resin (A). This increases the degree of freedom in product design and contributes to cost reduction.
  • filler In the synthetic resin composition of the present invention, the purpose is to further increase the mechanical strength and heat resistance of a molded article obtained by molding the synthetic resin composition within the range not impairing the object of the present invention.
  • Various other fillers can be contained.
  • the filler include inorganic fibers such as glass fiber, asbestos fiber, silica fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber; polyamide, fluororesin, polyester
  • fibrous fillers such as high melting point organic fibrous materials such as resins and acrylic resins.
  • the fibrous filler is preferably a non-conductive material such as glass fiber from the viewpoint of electrical insulation.
  • filler examples include mica, silica, talc, alumina, kaolin, calcium sulfate, calcium carbonate, titanium oxide, ferrite, clay, glass powder, zinc oxide, nickel carbonate, iron oxide, quartz powder, magnesium carbonate, A granular or powder filler such as barium sulfate can be used.
  • fillers can be used alone or in combination of two or more.
  • the filler may be treated with a sizing agent or a surface treatment agent as necessary.
  • the sizing agent or surface treatment agent include functional compounds such as epoxy compounds, isocyanate compounds, silane compounds, and titanate compounds. These functional compounds may be used after being subjected to surface treatment or focusing treatment on the filler in advance, or may be added simultaneously when preparing the synthetic resin composition. Since these other fillers are contained in the synthetic resin composition within a range not impairing the object of the present invention, the content thereof is usually within 5% by mass, and often within 1% by mass. In most cases, the amount is within 0.5% by mass, and the synthetic resin composition may contain no other filler.
  • an impact modifier such as an epoxy group-containing ⁇ -olefin copolymer, within the range not impairing the object of the present invention
  • Resin modifiers such as ethylene glycidyl methacrylate
  • Mold corrosion inhibitors such as zinc carbonate and nickel carbonate
  • Lubricants such as pentaerythritol tetrastearate
  • Thermosetting resins Antioxidants
  • Ultraviolet absorbers Cores such as boron nitride Agents; flame retardants; colorants such as dyes and pigments; and the like
  • the content of these other additives is usually within 5% by mass, in many cases within 1% by mass, and in most cases within 0.5% by mass, and it does not matter if it is not contained.
  • the synthetic resin composition of the present invention may have any shape or form as long as it contains a predetermined amount of each component of the synthetic resin (A), the carbon precursor (B), and the conductive filler (C). Absent.
  • it may be a molded body, a laminate, a liquid such as a melt, or may be in the form of pellets, particles, powder, granules, aggregates, or the like.
  • the pellet which is the synthetic resin composition of the present invention can be prepared by facilities and methods generally used in the preparation of the synthetic resin composition.
  • each component is premixed with a Henschel mixer, tumbler, etc., and if necessary, other fillers such as glass fibers are added and further mixed, and then kneaded using a single or twin screw extruder. Then, the pellets for molding can be obtained by extruding. At that time, a part of the necessary components is made into a master batch and then mixed with the remaining components. In addition, in order to improve the dispersibility of each component, a part of the raw materials to be used is pulverized and mixed with a uniform particle size. It is also possible to employ a method of melt extrusion.
  • Molded body formed by molding synthetic resin composition and method for producing the same The molded body formed by molding the synthetic resin composition of the present invention includes the synthetic resin (A), carbon precursor (B), and conductive filler.
  • the synthetic resin composition containing a predetermined amount of each component of (C) can be obtained by molding by a molding method usually employed as a molding method of the synthetic resin composition.
  • the synthetic resin composition is preferably used in the form of pellets described above.
  • a molding method for obtaining a molded body formed by molding the synthetic resin composition injection molding, extrusion molding, compression molding, vacuum molding, pressure molding, blow molding, stretch molding, melt spinning, etc. can be employed. . Therefore, as a molded body formed by molding the synthetic resin composition of the present invention, an injection molded body, an extrusion molded body, a compression molded body, a vacuum molded body, a compressed air molded body, a blow molded body, a stretch molded body, or a fiber , Yarn or fabric.
  • the molded body formed by molding the synthetic resin composition of the present invention may have, for example, a through hole or a concave hole on the surface for mounting or mounting the electronic device.
  • the diameter of the through hole or the concave hole is usually about 0.1 to 1.0 mm, preferably about 0.2 to 0.8 mm, more preferably about 0.3 to 0.7 mm, and the number is the area of the molded body. It is about 100 to 2,000, preferably 200 to 1,500, and more preferably about 300 to 750 in terms of 50 mm ⁇ 50 mm.
  • the molded body having a through-hole or a concave hole is a mold in which a large number of pins are implanted on a cavity surface or a metal in which a large number of convex portions are engraved.
  • a mold By using a mold, it can be easily manufactured.
  • an injection molded article or an extruded molded article is preferably selected from the viewpoint of utilizing excellent electrical characteristics such as surface resistivity and mechanical characteristics.
  • the injection molding or extrusion molding method for obtaining an injection molded body or an extrusion molded body can be performed according to normal molding conditions. For example, injection molding can be performed by appropriately adjusting the cylinder temperature, mold temperature, etc. of the injection molding machine according to the type of synthetic resin to be used in accordance with general injection molding conditions.
  • a molded body formed by molding the synthetic resin composition of the present invention is a molding in which the number of particles generated with a particle size of 0.5 ⁇ m or more measured in pure water is 2,000 particles / cm 3 or less. More preferably 1,700 pieces / cm 3 or less, still more preferably 1,500 pieces / cm 3 or less, particularly preferably 1,000 pieces / cm 3 or less, Depending on the selection of the synthetic resin (A), it can be 600 pieces / cm 3 or less, so that contamination due to generation of particles (that is, foreign particles) can be remarkably suppressed.
  • the amount of particles having a particle diameter of 0.5 ⁇ m or more measured in pure water is not particularly limited and is most preferably 0 / cm 3 , but is usually about 2 / cm 3 , and in many cases 5 / It can be about cm 3 .
  • the amount of particles generated in pure water of a molded product obtained by molding the synthetic resin composition is a value measured by the following measurement method (hereinafter, simply referred to as “particle generation amount of molded product”). . That is, after 500 cm 3 of pure water is poured into a 500 cm 3 beaker in advance, it is vibrated for 1 minute with an ultrasonic oscillator (1,200 W). The amount of particles generated in the pure water after the vibration treatment is measured using a submerged particle counter to obtain a ground value.
  • the injection molded plate and the synthetic resin composition was prepared by injection molding (50mm ⁇ 50mm ⁇ 2mm thick), placed in a 500 cm 3 beaker, deionized water 500 cm 3 injected, vibrated at the same conditions as the above-described processing
  • the amount of particles generated in the pure water after the measurement is measured using a submerged particle counter, and the ground value is subtracted to obtain the amount of particles generated in the molded body.
  • the number of particles having a particle size of 0.5 ⁇ m or more, the number of particles having a particle size of 1.0 ⁇ m or more, and the number of particles having a particle size of 2.0 ⁇ m or more are obtained.
  • the unit is expressed in pieces / cm 3 .
  • a molded body formed by molding the synthetic resin composition of the present invention has a surface resistivity of 10 5 to 10 12 ⁇ / ⁇ , which is a semiconductive region, and preferably 1.1 ⁇ . 10 5 to 9.9 ⁇ 10 11 ⁇ / ⁇ , more preferably 1.2 ⁇ 10 5 to 9 ⁇ 10 11 ⁇ / ⁇ , more preferably 1.5 ⁇ 10 5 to 8 ⁇ 10 11 ⁇ / ⁇ Has resistivity.
  • the surface resistivity represents the resistance per unit surface area, and the unit is ⁇ . However, in order to distinguish it from mere resistance, in the present invention, it is expressed by ⁇ / ⁇ (ohm per square).
  • the surface resistivity of a molded article formed by molding the synthetic resin composition is measured by the following measurement method. That is, for an injection-molded plate (50 mm ⁇ 50 mm ⁇ 2 mm thickness) prepared by injection molding a synthetic resin composition, the surface resistivity of five points is measured at an applied voltage of 100 V in accordance with JIS K6911. Let the average value of the measured value of the surface resistivity of 5 points
  • the molded body formed by molding the synthetic resin composition of the present invention has a surface resistivity (that is, an average value of measured values of surface resistivity at 5 points) of 10 5 as described above.
  • the maximum value [maximum surface resistivity (Max)] and the minimum value [minimum surface resistivity (Min) among the measured values of the surface resistivity at five points are included in the range of ⁇ 10 12 ⁇ / ⁇ . )] Is preferably included in the range of 10 5 to 10 12 ⁇ / ⁇ , which is the semiconductive region described above.
  • the molded body formed by molding the synthetic resin composition of the present invention has extremely small variation in surface resistivity due to the difference in the location of the molded body.
  • the variation in the surface resistivity of the molded body can be expressed by the ratio (Max / Min) between the maximum surface resistivity (Max) and the minimum surface resistivity (Min) of the molded body formed by molding the synthetic resin composition.
  • the molded product obtained by molding the synthetic resin composition of the present invention has a surface resistivity variation (Max / Min) of preferably 1,000 or less, more preferably 800 or less, still more preferably. Is 500 or less, particularly preferably 200 or less.
  • molded product formed by molding synthetic resin composition may be used as it is or after being subjected to secondary processing such as cutting, drilling or cutting. it can.
  • secondary processing such as cutting, drilling or cutting. it can.
  • charging members such as charging rolls, transfer rolls, and developing rolls in image forming apparatuses such as electrophotographic copying machines and electrostatic recording apparatuses, transfer drums for recording apparatuses, printed circuit board cassettes, bushes, paper, Bill transport parts, paper feed rails, font cartridges, ink ribbon canisters, guide pins, trays, rollers, gears, sprockets, computer housings, modem housings, monitor housings, CD-ROM housings, printer housings, connectors, computer slots, etc. Can be mentioned.
  • the molded body formed by molding the synthetic resin composition of the present invention in particular, components used in the manufacturing process of semiconductors such as IC and LSI, components for mounting the components, magnetic heads and hard disks It can be suitably used as a component used in the manufacturing process of the drive and its mounting component, a component used in the manufacturing process of the liquid crystal display, and its mounting component.
  • a molded body formed by molding the synthetic resin composition of the present invention is suitably used as a molded body that is a transport tray or container for electronic devices.
  • the electronic device transfer tray or container include a wafer carrier, a cleaning tray, an IC chip tray, a magnetic head tray for transferring hard disk drive components, and a head gimbal assembly (HGA) tray.
  • the molded body formed by molding the synthetic resin composition of the present invention can be suitably applied as a transport tray or container for hard disk drive (HDD) parts that are required to avoid contamination extremely.
  • HDD hard disk drive
  • it can be suitably applied as a magnetic head tray or a head gimbal assembly (HGA) tray.
  • These trays have, for example, a general-purpose shape such as a thin plate-shaped molded body provided with a large number of through-holes or a planar structure (peripheral portions may be erected so that they can be stacked).
  • a large number of magnetic heads and HGAs are mounted thereon, and are configured to be transported while being fixed by through holes.
  • burrs are likely to occur in each part including a through hole, and the amount of generated particles increases.
  • the conventional tray is formed by molding a resin composition containing a large amount of conductive carbon black alone, and the surface resistivity is reduced due to poor dispersion of the conductive carbon black. The variation is large.
  • the molded product obtained by molding the synthetic resin composition of the present invention has a small variation in surface resistivity even with a tray having such a shape, and the generation amount of particles and generation of burrs are remarkable. Will be suppressed.
  • the measuring method of the physical property or characteristic of a synthetic resin and a molded object is as showing below.
  • melting point or glass transition temperature of synthetic resin The melting point or glass transition temperature of the synthetic resin was measured using a differential scanning calorimeter (DSC).
  • the surface resistivity of a molded article formed by molding the synthetic resin composition was measured by the following measurement method. That is, an injection-molded plate (50 mm ⁇ 50 mm ⁇ 2 mm thickness) prepared by injection molding a synthetic resin composition was applied at a applied voltage of 100 V using Hiresta UP manufactured by Mitsubishi Chemical Analytech Co., Ltd. according to JIS K6911. The surface resistivity at 5 points was measured. The average value of the measured values of the surface resistivity at 5 points was defined as the surface resistivity of the molded body. Further, the ratio (Max / Min) was calculated from the maximum value [maximum surface resistivity (Max)] and the minimum value [minimum surface resistivity (Min)] among the measured values of the surface resistivity at five points.
  • the amount of particles generated in pure water of a molded product formed by molding the synthetic resin composition was measured by the following measurement method. That is, after 500 cm 3 of pure water is poured into a 500 cm 3 beaker in advance, it is vibrated for 1 minute with an ultrasonic oscillator (1,200 W). The amount of particles generated in the pure water after the vibration treatment was measured using a submerged particle counter (KL-30AX, manufactured by Rion Co., Ltd.), and used as a ground value.
  • KL-30AX manufactured by Rion Co., Ltd.
  • the injection molded plate and the synthetic resin composition was prepared by injection molding (50mm ⁇ 50mm ⁇ 2mm thick), placed in a 500 cm 3 beaker, deionized water 500 cm 3 injected, vibrated at the same conditions as the above-described processing
  • the amount of particles generated in the pure water later was measured using an in-liquid particle counter, and the ground value was subtracted to obtain the amount of particles generated in the molded body.
  • the number of particles having a particle size of 0.5 ⁇ m or more, the number of particles having a particle size of 1.0 ⁇ m or more, and the number of particles having a particle size of 2.0 ⁇ m or more were determined.
  • the unit was expressed in pieces / cm 3 .
  • this string-like molded body was pulverized so that the ratio of diameter to length was about 1.5, and the obtained pulverized product was heated to a temperature of 93 ° C. to a polyvinyl alcohol (kenken) having a concentration of 0.53% by mass. (Degree of conversion 88%) was dropped in an aqueous solution, stirred and dispersed, and then cooled to obtain a spherical pitch formed body.
  • filtration was performed to remove moisture, and naphthalene remaining in the pitch formed body was extracted and removed with about 6 times as much n-hexane as the spherical pitch formed body.
  • the resulting spherical pitch formed body was oxidized for 1 hour while being heated air at a temperature of 260 ° C. to obtain an oxidized pitch.
  • This oxidized pitch was heat treated (baked) at a temperature of 580 ° C. for 1 hour in a nitrogen stream, and then pulverized to obtain carbon precursor particles having an average particle diameter of about 25 ⁇ m.
  • the carbon content of the carbon precursor particles was 91.0% by mass.
  • the volume resistivity of the carbon precursor was measured by the following method. That is, after the oxidized pitch was pulverized into particles, the particles having a diameter of 100 ⁇ m or more were removed by sieving with a mesh having an opening of about 100 ⁇ m. 13 g of oxidized pitch powder that passed through the sieve was filled into a cylindrical mold having a cross-sectional area of 80 cm 2 and molded at a pressure of 196 MPa to obtain a cylindrical molded body. The cylindrical shaped body was heat treated in a nitrogen stream at a temperature of 580 ° C., which is the same as the heat treatment temperature in the carbon precursor particle production method, for 1 hour, and a volume resistivity measurement sample of the carbon precursor ( Molded body) was obtained. When the volume resistivity of this sample was measured according to JIS K7194, the volume resistivity of the carbon precursor was 3 ⁇ 10 7 ⁇ ⁇ cm.
  • Example 1 As shown in Table 1, polyether ether ketone [PEEK; manufactured by Victrex, trade name “VICTREX (registered trademark) PEEK450P”, melting point 334 ° C.] 80.5% by mass, carbon precursor produced by the above production example (volume Resistivity 3 ⁇ 10 7 ⁇ ⁇ cm, carbon content 91.0% by mass, hereinafter referred to simply as “carbon precursor” 17.5% by mass, and carbon nanotubes (average fiber diameter 9.5 nm, average fiber
  • a synthetic resin composition consisting of 2.0% by mass (1.5 ⁇ m in length) is uniformly dry blended with a tumbler mixer and supplied to a 45 mm ⁇ twin-screw kneading extruder (PCM-45, manufactured by Ikegai Co., Ltd.). To make pellets.
  • injection molding is performed using an injection molding machine (“IS-75” manufactured by Toshiba Machine Co., Ltd.) to form a large number of through holes formed by molding the synthetic resin composition.
  • a thin plate-like injection molded body (50 mm ⁇ 50 mm ⁇ 2 mm thick injection molded plate) was produced.
  • the injection-molded body had 400 through holes in the thickness direction having a diameter of 0.5 mm per 50 mm ⁇ 50 mm area of the injection-molded body.
  • the surface resistivity [average value, ie, the surface resistivity of the molded product, the maximum surface resistivity (Max), the minimum surface resistivity (Min), and the ratio (Max / Min)] and the amount of particles generated Table 1 shows the results of measurement (particle sizes of 0.5 ⁇ m or more, 1.0 ⁇ m or more, and 2.0 ⁇ m or more were counted, respectively).
  • Example 2 and 3 An injection molded article formed by molding the synthetic resin composition was produced in the same manner as in Example 1 except that the content ratio of each component in the synthetic resin composition was changed as shown in Table 1. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • Examples 4 to 6 instead of carbon nanotubes, carbon nanofibers (average fiber diameter of 10 to 15 nm, average fiber length of 3 ⁇ m) were used, and the content ratio of each component in the synthetic resin composition was changed as shown in Table 1. Except for this, an injection-molded article formed by molding a synthetic resin composition was produced in the same manner as in Example 1. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • Example 7 instead of PEEK, polyphenylene sulfide [PPS; manufactured by Polyplastics Co., Ltd., trade name “Fortron (registered trademark) W214A”] was used, and the content ratio of each component in the synthetic resin composition An injection molded article formed by molding the synthetic resin composition was produced in the same manner as in Example 1 except that the change was made as shown in 1. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • PPS polyphenylene sulfide
  • Example 8 instead of PEEK, polyetherimide [PEI; manufactured by GE Plastics, trade name “Ultem (registered trademark) 1010”, glass transition temperature 217 ° C.] was used, and each component in the synthetic resin composition was used.
  • An injection molded article formed by molding the synthetic resin composition was produced in the same manner as in Example 1 except that the content ratio was changed as shown in Table 1.
  • Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • Example 9 instead of PEEK, polyether sulfone [PES; manufactured by Sumitomo Chemical Co., Ltd., trade name “Sumika Excel (registered trademark) PES3600G”, glass transition temperature 225 ° C.] was used, and each component in the synthetic resin composition
  • An injection molded body formed by molding a synthetic resin composition was produced in the same manner as in Example 1 except that the content ratio was changed as shown in Table 1.
  • Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • Example 10 instead of PEEK, polycarbonate [PC; manufactured by Teijin Chemicals Ltd., trade name “Panlite (registered trademark) L-1225W”, glass transition temperature 150 ° C.] was used, and each component in the synthetic resin composition
  • An injection molded body formed by molding a synthetic resin composition was produced in the same manner as in Example 1 except that the content ratio was changed as shown in Table 1.
  • Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • Example 11 instead of PEEK, epoxy resin [Mitsubishi Chemical Corporation, trade name “JER (registered trademark) YX4000HK”] 52 mass% and curing agent [Maywa Kasei Co., Ltd. epoxy resin curing agent DL-92 Synthetic resin in the same manner as in Example 1 except that the composition comprising 48% by mass was used, and the content ratio of each component in the synthetic resin composition was changed as shown in Table 1. An injection molded article formed by molding the composition was produced. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • Example 1 A synthetic resin composition was molded in the same manner as in Example 1 except that it did not contain a carbon precursor and the content ratio of each component in the synthetic resin composition was changed as shown in Table 2. An injection molded body was manufactured. Table 2 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • Example 3 A synthetic resin composition was molded in the same manner as in Example 4 except that it did not contain a carbon precursor and the content ratio of each component in the synthetic resin composition was changed as shown in Table 2. An injection molded body was manufactured. Table 2 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • Comparative Example 6 It is the same as that of the comparative example 4 except having replaced with PEEK and having used the mixture of this PEEK and said PES, and having changed the content rate of each component in a synthetic resin composition as shown in Table 2. Thus, an injection molded article formed by molding the synthetic resin composition was produced. Table 2 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
  • the synthetic resin (A) 46 to 99.4% by mass, the volume resistivity 10 2 to 10 10 ⁇ ⁇ cm of the carbon precursor (B) 0.5 to 40% by mass, and the volume resistance
  • the synthetic resin compositions of Examples 1 to 11 containing 0.1 to 14% by mass of a conductive filler (C) that is a carbon nanotube and / or carbon nanofiber with a rate of less than 10 2 ⁇ ⁇ cm are formed.
  • the molded body is i) Since the surface resistivity of the compact is 4.6 ⁇ 10 5 ⁇ / ⁇ to 7.3 ⁇ 10 11 ⁇ / ⁇ and is in the range of 10 5 to 10 12 ⁇ / ⁇ , the electronic device It can be confirmed that it has semi-conductive electrical characteristics suitable for the transport tray or container of ii) Since the ratio (Max / Min) between the maximum surface resistivity and the minimum surface resistivity is extremely small, 2 to 176, there is very little variation in the surface resistivity in the molded product, and the tray or container for transporting electronic devices. It can be seen that there is no risk of surface resistivity fluctuations, in some cases, semiconductive breakdown, etc.
  • the generation amount of particles (particle size 0.5 ⁇ m or more) in pure water is as small as 260 to 1,460 particles / cm 3, and the generation amount of particles having a particle size of 1.0 ⁇ m or more is particularly 32 to 165. pieces / cm 3, generation of higher particle size 2.0 ⁇ m particles is extremely small 4 to 31 / cm 3, coarse since particles falling off is close almost no, the transport trays or containers of electronic devices When used in the above-mentioned applications, it was found that the material is resistant to contamination without causing contamination by dropped particles, fluctuation of surface resistivity, and in some cases, destruction of semiconductivity.
  • the synthetic resin compositions of Examples 1 to 11 in which the content of the carbon nanotubes or carbon nanofibers as the conductive filler (C) is as small as 0.5 to 5.0% by mass were molded.
  • a synthetic resin (A) such as PEEK, PPS, PEI, PES, PC, or epoxy resin, Since it can be contained in a large amount of 77.5 to 98.0% by mass, the excellent mechanical and electrical properties of the synthetic resin (A) itself can be exhibited as desired, and the economy It turned out that it is excellent also in property.
  • Comparative Examples 1 to 3 which contain carbon nanotubes or carbon nanofibers as the conductive filler (C) but do not contain a carbon precursor (B) having a volume resistivity of 10 2 to 10 10 ⁇ ⁇ cm.
  • the molded product obtained by molding the synthetic resin composition has a ratio of maximum surface resistivity to minimum surface resistivity (Max / Min) as large as 1,600 to 120,000, and the surface resistivity of the molded product is high. It was found that due to the large variation, there was a risk of fluctuations in surface resistivity, and in some cases, semiconductive breakdown.
  • the synthetic resins of Comparative Examples 4 to 6 which do not contain carbon nanotubes or carbon nanofibers as the conductive filler and contain a large amount of carbon fiber as the conductive filler at 22.0 to 24.5% by mass.
  • molded body obtained by molding a synthetic resin composition containing the PEEK or PES as the particle generation amount is 2,932 pieces / cm 3, 4,230 pieces / cm 3 or 10,000 / cm 3 greater than in Therefore, when used in applications such as electronic device transport trays or containers, it may cause contamination by dropped particles, fluctuations in surface resistivity, and in some cases, destruction of semiconductivity. I found out.
  • the synthetic resin composition of the present invention containing 0.1 to 14% by mass of at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers of less than cm is the carbon precursor (B).
  • the reason why the synthetic resin composition of the present invention has a very small variation in surface resistivity in the molded body and a very small amount of particles generated is not necessarily clear, but can be presumed as follows.
  • the carbon precursor of at least one conductive filler (C) and a volume resistivity of 10 2 ⁇ 10 10 ⁇ ⁇ cm selected from a predetermined amount of carbon nanotubes and carbon nanofibers having a volume resistivity of less than 10 2 Omega ⁇ cm By using together with (B), as compared with the carbon fiber that has been used as a conventional conductive filler, the equivalent semiconductivity can be realized with a very small amount of the conductive filler, resulting in dropout. It is considered that the amount of generated particles is reduced and the uniformity of the surface resistivity in the molded body is maintained.
  • the surface resistivity is half
  • a synthetic resin composition that is strictly controlled within a desired range of the conductive region, has a very small variation in surface resistivity, and generates a very small amount of foreign particles (particles). High availability.
  • the surface resistivity is strictly controlled within a desired range of the semiconductive region, and the surface resistivity is obtained by molding the synthetic resin composition.
  • the synthetic resin composition As a result, it is possible to obtain a molded product with extremely small variation in the generation amount of foreign particles (particles). Therefore, a transport tray or container for electronic devices having excellent characteristics, especially a transport tray for hard disk drive components.
  • a container, among others, a magnetic head tray or a head gimbal assembly (HGA) tray can be provided, which has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Packaging Frangible Articles (AREA)

Abstract

A synthetic resin composition containing: 46-99.4 mass% of synthetic resin (A); 0.5-40 mass% of a carbon precursor (B) having a volume resistivity of 102-1010Ω∙cm; and 0.1-14 mass% of at least one type of conductive filler (C) selected from carbon nanotubes and carbon nanofibres having a volume resistivity of less than 102Ω∙cm. A moulded body formed by moulding the synthetic resin composition, and a moulded body which serves as a tray or vessel for conveying an electronic device.

Description

合成樹脂組成物及び成形体Synthetic resin composition and molded body
 本発明は、合成樹脂組成物に関し、更に詳しくは、表面抵抗率を半導電性領域内の所望の値に厳密に制御可能で、かつ、異物微粒子(パーティクル)の発生量が著しく少ない合成樹脂組成物に関する。 The present invention relates to a synthetic resin composition, and more specifically, a synthetic resin composition capable of strictly controlling the surface resistivity to a desired value in a semiconductive region and generating a very small amount of foreign particles (particles). Related to things.
 また、本発明は、この合成樹脂組成物を成形してなる成形体に関する。本発明の合成樹脂組成物を成形してなる成形体は、静電気による放電現象(Electro-Static Discharge)やそれによる静電破壊(Electro-Static Destroy)などのESD障害に対応することができ、かつ低汚染性であるため、静電気の制御、帯電防止、電磁波シールド、塵埃吸着防止などが要求される広範な分野に好適に適用することができる。したがって、本発明は、特に、半導体デバイスなどの電子デバイスの搬送用トレーや容器などの成形体に関する。 The present invention also relates to a molded body formed by molding this synthetic resin composition. The molded body formed by molding the synthetic resin composition of the present invention can cope with ESD failures such as electrostatic discharge phenomenon (Electro-Static Discharge) and electrostatic breakdown (Electro-Static Destroy) caused thereby, and Since it is low-polluting, it can be suitably applied to a wide range of fields that require control of static electricity, prevention of charging, electromagnetic shielding, prevention of dust adsorption, and the like. Therefore, the present invention particularly relates to a molded body such as a transfer tray or container for an electronic device such as a semiconductor device.
 ICやLSIなどの半導体の製造工程で使用される部品及びその実装用部品、磁気ヘッドやハードディスクドライブの製造工程で使用される部品及びその実装部品、液晶ディスプレイの製造工程で使用される部品及びその実装部品などの成形に使用される樹脂材料には、機械的特性、耐熱性、耐薬品性、寸法安定性に優れることが求められている。これらの部品としては、例えば、電子デバイスの製造工程において、搬送(輸送を含む)に用いられるトレーや容器なども含まれる。このようなトレーや容器としては、例えば、ウェハキャリア、洗浄用トレー、ICチップトレー、ハードディスクドライブ部品の搬送用トレーまたは容器、特に、磁気ヘッド用トレーやヘッド・ジンバル・アセンブリー(Head Gimbal Assembly;HGA)トレーなどがある。 Components used in the manufacturing process of semiconductors such as IC and LSI and mounting parts thereof, components used in the manufacturing process of magnetic heads and hard disk drives and mounting parts thereof, components used in the manufacturing process of liquid crystal displays and the like Resin materials used for molding mounted parts and the like are required to have excellent mechanical properties, heat resistance, chemical resistance, and dimensional stability. These components include, for example, trays and containers used for transportation (including transportation) in the manufacturing process of electronic devices. Such trays and containers include, for example, wafer carriers, cleaning trays, IC chip trays, trays or containers for transporting hard disk drive components, particularly magnetic head trays and head gimbal assemblies (HGA). ) There are trays.
 従来、この技術分野での樹脂材料としては、例えば、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド等の機械的特性、耐熱性、耐薬品性などに優れる、いわゆるエンジニアリングプラスチックに属する合成樹脂が使用されている。 Conventionally, as a resin material in this technical field, for example, polyether ether ketone, polyether imide, polysulfone, polyether sulfone, polyphenylene sulfide and the like are excellent in mechanical properties, heat resistance, chemical resistance, etc., so-called engineering plastics Synthetic resins belonging to are used.
 近年、ハードディスクドライブの驚異的な高記録密度化を始めとして、電子デバイスの高密度ピッチ化が急速に進展している。電子デバイスの製造工程において、表面抵抗率が1013Ω/□を超える樹脂材料で形成された部品を使用すると、部品の摩擦帯電の影響により、電子デバイスが帯電しやすくなる。帯電して静電気を蓄積した電子デバイスは、静電気の放電により損傷を受けたり、空中に浮遊している塵埃を静電吸着したりすることが原因となって、トラブルを発生することがある。一方、表面抵抗率が10Ω/□未満の樹脂材料で形成された部品を使用すると、樹脂部品中での電荷の移動速度が速すぎて、静電気の放電の際に発生する強い電流や高い電圧により、電子デバイスに障害を与えることがある。 In recent years, high-density pitches of electronic devices have been rapidly developed, including the remarkable increase in recording density of hard disk drives. In the electronic device manufacturing process, when a component formed of a resin material having a surface resistivity exceeding 10 13 Ω / □ is used, the electronic device is easily charged due to the effect of frictional charging of the component. An electronic device that is charged and accumulates static electricity may cause trouble due to damage caused by electrostatic discharge or electrostatic adsorption of dust floating in the air. On the other hand, if a part made of a resin material having a surface resistivity of less than 10 5 Ω / □ is used, the charge movement speed in the resin part is too high, and a strong current generated during electrostatic discharge or high Voltage can cause damage to electronic devices.
 電子デバイスを静電気障害から保護し、また、塵埃を寄せ付けずに高いクリーン度を保つという観点から、これらの技術分野で使用される部品には、表面抵抗率を半導電性領域である10~1012Ω/□の範囲内に制御することが求められている。そこで、従来から、帯電防止剤や導電性充填材を配合した樹脂材料を用いて、半導電性領域の表面抵抗率を有する成形体を得る方法が提案されている。 From the standpoint of protecting electronic devices from electrostatic disturbances and maintaining a high degree of cleanliness without bringing in dust, the parts used in these technical fields have a surface resistivity of 10 5 ˜ Control within the range of 10 12 Ω / □ is required. Therefore, conventionally, there has been proposed a method for obtaining a molded body having a surface resistivity in a semiconductive region by using a resin material containing an antistatic agent or a conductive filler.
 しかしながら、樹脂材料に帯電防止剤を配合する方法は、成形体の表面に存在する帯電防止剤が洗浄や摩擦により除去されて、帯電防止効果が失われやすい。帯電防止剤の配合量を多くして、帯電防止剤が成形体の内部から表面にブリードしやすくすると、帯電防止効果をある程度持続させることができるものの、ブリードした帯電防止剤により成形体の表面に塵埃が粘着したり、帯電防止剤の溶出や揮発により電子デバイスや環境が汚染される。また、帯電防止剤を多量に配合すると、成形体の耐熱性が低下する。 However, the method of adding an antistatic agent to the resin material tends to lose the antistatic effect because the antistatic agent present on the surface of the molded body is removed by washing or friction. If the amount of the antistatic agent is increased so that the antistatic agent can easily bleed from the inside of the molded body to the surface, the antistatic effect can be maintained to some extent, but the bleeded antistatic agent can be applied to the surface of the molded body. Electronic devices and the environment are contaminated by dust adhering, and elution and volatilization of the antistatic agent. In addition, when a large amount of the antistatic agent is blended, the heat resistance of the molded product is lowered.
 また、樹脂材料に、導電性カーボンブラックや炭素繊維等の体積抵抗率が10Ω・cm未満の導電性充填材を配合する方法は、樹脂材料と導電性充填材の電気抵抗率が大きくかけ離れているために、導電性充填材の配合割合や成形条件の僅かな変動によって、得られる成形体の表面抵抗率が大きく変動する。そのため、単に導電性充填材を配合する方法では、得られる成形体の表面抵抗率を10~1012Ω/□の範囲内の所望の値となるように厳密かつ安定的に制御することが極めて困難である。しかも、導電性充填材を配合する方法では、成形体の場所ごとの表面抵抗率に大きなバラツキが生じやすい。表面抵抗率のバラツキが大きな成形体は、表面抵抗率が大きすぎる場所と小さすぎる場所とが混在しているため、例えば、電子デバイス部品の搬送用トレーや容器として使用すると、ESD障害に十分に対応することができない。 In addition, the method of blending the resin material with a conductive filler having a volume resistivity of less than 10 2 Ω · cm, such as conductive carbon black or carbon fiber, greatly increases the electrical resistivity of the resin material and the conductive filler. For this reason, the surface resistivity of the obtained molded body varies greatly depending on the mixing ratio of the conductive filler and the slight variation in the molding conditions. Therefore, in the method of simply blending the conductive filler, the surface resistivity of the obtained molded body can be strictly and stably controlled so as to be a desired value within the range of 10 5 to 10 12 Ω / □. It is extremely difficult. Moreover, in the method of blending the conductive filler, large variations are likely to occur in the surface resistivity at each location of the molded body. A molded product with a large variation in surface resistivity has a mixture of places where the surface resistivity is too large and too small. For example, if it is used as a tray or container for transporting electronic device parts, it is sufficiently resistant to ESD damage. I can't respond.
 上記問題を解決するために、特許文献1として、合成樹脂1~55質量%、体積抵抗率10~1010Ω・cmの炭素前駆体45~99質量%、及び体積抵抗率10Ω・cm未満の導電性充填材0~30質量%を含有する半導電性樹脂組成物が提案され、これにより、静電気の制御、帯電防止、電磁波シールド、塵埃吸着防止などの機能が要求される分野における、各種成形品、部品、部材などとして好適に使用することができることが開示されている。 In order to solve the above problem, as Patent Document 1, synthetic resin 1 to 55% by mass, volume resistivity 10 2 to 10 10 Ω · cm of carbon precursor 45 to 99% by mass, and volume resistivity 10 2 Ω · A semiconductive resin composition containing 0 to 30% by mass of a conductive filler of less than cm is proposed, and in this field, functions such as static electricity control, antistatic, electromagnetic wave shielding, and dust adsorption prevention are required. It is disclosed that it can be suitably used as various molded articles, parts, members and the like.
 また、特許文献2として、結晶性熱可塑性樹脂と非晶性熱可塑性樹脂とを含有する熱可塑性樹脂成分30~94質量%、体積抵抗率10~1010Ω・cmの炭素前駆体5~40質量%、及び体積抵抗率10Ω・cm未満の導電性充填材1~30質量%を含有する樹脂組成物を成形してなる射出成形体が提案されており、パーティクルの発生量が著しく少なく、表面抵抗率のバラツキが小さい低汚染性の射出成形体が開示されている。 Patent Document 2 discloses a carbon precursor 5 to 30 to 94% by mass of a thermoplastic resin component containing a crystalline thermoplastic resin and an amorphous thermoplastic resin and having a volume resistivity of 10 2 to 10 10 Ω · cm. An injection molded body formed by molding a resin composition containing 40% by mass and 1 to 30% by mass of a conductive filler having a volume resistivity of less than 10 2 Ω · cm has been proposed. There are disclosed low-contamination injection-molded articles with little variation in surface resistivity.
 さらに、特許文献3として、合成樹脂46~98.5重量%、体積抵抗率が10~1010Ω・cmの炭素前駆体1~40重量%、及び体積抵抗率が10Ω・cm未満の炭素繊維0.5~14重量%を含有する合成樹脂組成物、並びに、合成樹脂組成物を成形してなる成形物が提案され、これにより、表面抵抗率を半導電性領域の所望の値に厳密に制御することが可能であり、炭素繊維を比較的小割合で配合することにより、合成樹脂組成物を成形物とした場合に、場所による表面抵抗率のバラツキが極めて小さな成形物を得ることができることが開示されている。 Further, as Patent Document 3, synthetic resin 46 to 98.5% by weight, volume resistivity 10 2 to 10 10 Ω · cm of carbon precursor 1 to 40% by weight, and volume resistivity less than 10 2 Ω · cm. A synthetic resin composition containing 0.5 to 14% by weight of carbon fiber and a molded product formed by molding the synthetic resin composition are proposed, whereby the surface resistivity is a desired value in the semiconductive region. It can be strictly controlled, and when a synthetic resin composition is formed into a molded product by blending carbon fibers in a relatively small proportion, a molded product with extremely small variation in surface resistivity depending on the location is obtained. It is disclosed that it is possible.
 これらの特許文献では、合成樹脂または熱可塑性樹脂として、ポリブチレンテレフタレート等の熱可塑性ポリエステル、ポリエーテルエーテルケトン、ポリフェニレンスルフィド等のポリアリーレンスルフィド、ポリプロピレン等のポリオレフィン、ポリカーボネート、ポリエーテルイミド、ポリエーテルスルホン、ポリアセタール、フッ素樹脂、エポキシ樹脂などが開示されている。 In these patent documents, as synthetic resins or thermoplastic resins, thermoplastic polyesters such as polybutylene terephthalate, polyarylene sulfides such as polyetheretherketone and polyphenylene sulfide, polyolefins such as polypropylene, polycarbonate, polyetherimide, polyethersulfone Polyacetal, fluororesin, epoxy resin and the like are disclosed.
 また、特許文献1及び2には、体積抵抗率が10Ω・cm未満の導電性充填材としては、炭素繊維、黒鉛、導電性カーボンブラック、金属繊維、金属粉末等が例示され、体積抵抗率または表面抵抗率の制御性や再現性などの観点から、炭素繊維、黒鉛、導電性カーボンブラック、及びこれらの混合物等が好ましいとされ、特に炭素繊維が好ましいとされている。さらに、具体例として、特許文献1には、ポリブチレンテレフタレート30質量%、炭素前駆体65質量%及び炭素繊維5質量%を含有する樹脂組成物が記載され、特許文献2には、熱可塑性樹脂成分59.0~66.0質量%、炭素前駆体15.0~16.0質量%、及びPAN系炭素繊維18.0~25.0質量%を含有する樹脂組成物を成形してなる射出成形体が記載され、特許文献3には、合成樹脂65~75重量%、炭素前駆体20~28重量%、及びPAN系炭素繊維5~10重量%を含有する合成樹脂組成物が記載されている。なお、これら特許文献に記載される炭素繊維は、平均繊維長20μm~0.1mmのものである。 Patent Documents 1 and 2 exemplify carbon fiber, graphite, conductive carbon black, metal fiber, metal powder, and the like as the conductive filler having a volume resistivity of less than 10 2 Ω · cm. From the viewpoint of controllability and reproducibility of the rate or surface resistivity, carbon fiber, graphite, conductive carbon black, and mixtures thereof are preferred, and carbon fiber is particularly preferred. Furthermore, as a specific example, Patent Document 1 describes a resin composition containing 30% by mass of polybutylene terephthalate, 65% by mass of a carbon precursor, and 5% by mass of carbon fiber, and Patent Document 2 describes a thermoplastic resin. Injection formed by molding a resin composition containing 59.0 to 66.0% by mass of component, 15.0 to 16.0% by mass of carbon precursor, and 18.0 to 25.0% by mass of PAN-based carbon fiber A molded article is described, and Patent Document 3 describes a synthetic resin composition containing 65 to 75% by weight of a synthetic resin, 20 to 28% by weight of a carbon precursor, and 5 to 10% by weight of a PAN-based carbon fiber. Yes. The carbon fibers described in these patent documents have an average fiber length of 20 μm to 0.1 mm.
 本発明者らは、上記の特許文献に開示された樹脂組成物を、射出成形等により成形体とすることにより、表面抵抗率を所望の範囲内に制御した成形体を得ることができるものの、成形体からの異物微粒子(パーティクル)の発生量が多いという問題があることを見いだした。 Although the present inventors can obtain a molded body in which the surface resistivity is controlled within a desired range by making the resin composition disclosed in the above patent document into a molded body by injection molding or the like, It has been found that there is a problem that the amount of foreign particles (particles) generated from the molded body is large.
 電子デバイス、例えばハードディスクドライブ(HDD)の製造工程などで用いられる搬送用トレーや容器などの部品は、クリーンルーム内で使用されるため、パーティクルの発生量が多いと、クリーンルームや電子デバイスの汚染原因となる。また、これらの部品は、電子デバイス等を搭載または収納して超純水や溶媒での洗浄工程で用いられたり、それ自体が洗浄されてから使用されることが多い。これらの部品のパーティクル発生量が多いと、洗浄工程で電子デバイスを汚染したり、洗浄液を汚染したりする。 Parts such as transport trays and containers used in the manufacturing process of electronic devices such as hard disk drives (HDD) are used in clean rooms. Become. These parts are often used in a cleaning process with ultrapure water or a solvent after mounting or housing an electronic device or the like, or are used after being cleaned themselves. If the amount of particles generated in these parts is large, the electronic device is contaminated in the cleaning process, or the cleaning liquid is contaminated.
 電子デバイスがパーティクルにより汚染されると、電子デバイスの電気的諸特性、信頼性、製品収率などに悪影響を及ぼす。洗浄液がパーティクルにより汚染されると、洗浄液を繰り返し使用することが困難になり、洗浄液の精製を頻繁に行う必要がある。 When an electronic device is contaminated with particles, it adversely affects the electrical characteristics, reliability, product yield, etc. of the electronic device. When the cleaning liquid is contaminated with particles, it becomes difficult to repeatedly use the cleaning liquid, and it is necessary to frequently purify the cleaning liquid.
 電子デバイスの高密度化に加えて、製造工程の高速化に伴い、製造工程で使用される搬送用トレーや容器等の部品である成形体について、表面抵抗率が半導電性領域の所望の範囲内に厳密に制御され、かつ、表面抵抗率のバラツキが極めて小さいなどの電気的特性の一層の向上が求められ、更にパーティクルの発生量を一層減少させる低汚染性の向上が求められるようになってきた。 In addition to increasing the density of electronic devices, as the manufacturing process speeds up, the surface resistivity of the molded body that is a component such as a transport tray or container used in the manufacturing process is within the desired range of the semiconductive region. In addition, there is a need for further improvement in electrical characteristics such as strictly controlled and extremely small variation in surface resistivity, and further improvement in low pollution that further reduces the amount of particles generated. I came.
特開2002-121402号公報Japanese Patent Laid-Open No. 2002-121402 特開2005-290328号公報JP 2005-290328 A 特表2002-531660号公報(国際公開第00/34369号対応)JP-T 2002-53660 (corresponding to International Publication No. 00/34369)
 本発明の課題は、表面抵抗率が半導電性領域の所望の範囲内に厳密に制御されるとともに、表面抵抗率のバラツキが極めて小さく、更に異物微粒子(パーティクル)の発生量が著しく少ない合成樹脂組成物を提供することにある。 The subject of the present invention is a synthetic resin in which the surface resistivity is strictly controlled within a desired range of the semiconductive region, the variation of the surface resistivity is extremely small, and the generation amount of foreign particles (particles) is extremely small. It is to provide a composition.
 また、本発明の課題は、この合成樹脂組成物を成形してなる電気的特性に優れた成形体、特に、半導体デバイス等の電子デバイスの搬送用トレーや容器等である成形体を提供することにある。 Moreover, the subject of this invention is providing the molded object which was excellent in the electrical property formed by shape | molding this synthetic resin composition, especially the molded object which is a tray, a container, etc. for electronic devices, such as a semiconductor device. It is in.
 本発明者らは、前記課題を達成するために鋭意研究した結果、合成樹脂と炭素前駆体と導電性充填材とを含有する合成樹脂組成物において、導電性充填材として、カーボンナノチューブ及び/またはカーボンナノファイバーを選択し、これらを特定割合で含有する合成樹脂組成物とすることによって、課題を解決できることを見いだし、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that in a synthetic resin composition containing a synthetic resin, a carbon precursor, and a conductive filler, carbon nanotubes and / or as conductive fillers are used. The inventors have found that the problems can be solved by selecting carbon nanofibers and forming a synthetic resin composition containing these in a specific ratio, and the present invention has been completed.
 すなわち、本発明によれば、合成樹脂(A)46~99.4質量%、体積抵抗率10~1010Ω・cmの炭素前駆体(B)0.5~40質量%、並びに、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)0.1~14質量%を含有する合成樹脂組成物が提供される。 That is, according to the present invention, the synthetic resin (A) is 46 to 99.4 mass%, the volume resistivity is 10 2 to 10 10 Ω · cm, the carbon precursor (B) is 0.5 to 40 mass%, and the volume is There is provided a synthetic resin composition containing 0.1 to 14% by mass of at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers having a resistivity of less than 10 2 Ω · cm.
 また、本発明によれば、実施の態様として、合成樹脂(A)が、熱可塑性ポリエステル、ポリアリーレンスルフィド、ポリオレフィン、ポリカーボネート、ポリエーテルエーテルケトン、ポリアセタール、ポリエーテルイミド、ポリエーテルスルホン、フッ素樹脂、及びエポキシ樹脂からなる群より選ばれる少なくとも一種である前記の合成樹脂組成物が提供される。 According to the present invention, as an embodiment, the synthetic resin (A) is a thermoplastic polyester, polyarylene sulfide, polyolefin, polycarbonate, polyether ether ketone, polyacetal, polyether imide, polyether sulfone, fluororesin, And the above synthetic resin composition that is at least one selected from the group consisting of epoxy resins.
 さらに、本発明によれば、前記のいずれかの合成樹脂組成物を成形してなる成形体が提供される。 Furthermore, according to the present invention, there is provided a molded body obtained by molding any one of the above synthetic resin compositions.
 そして、本発明によれば、実施の態様として、以下(1)~(6)の成形体が提供される。
(1)射出成形体または押出成形体である前記のいずれかの成形体。
(2)純水中で測定した粒径0.5μm以上のパーティクル発生量が2,000個/cm以下である前記のいずれかの成形体。
(3)最大表面抵抗率(Max)と最小表面抵抗率(Min)との比(Max/Min)で表される表面抵抗率のバラツキが1,000以下である前記のいずれかの成形体。
(4)電子デバイスの搬送用トレーまたは容器である前記のいずれかの成形体。
(5)ハードディスクドライブ部品の搬送用トレーまたは容器である前記のいずれかの成形体。
(6)磁気ヘッド用トレーまたはヘッド・ジンバル・アセンブリー(HGA)トレーである前記のいずれかの成形体。
According to the present invention, the following molded articles (1) to (6) are provided as embodiments.
(1) Any one of the above-mentioned molded bodies which is an injection molded body or an extruded molded body.
(2) Any one of the above-mentioned molded products, wherein the number of particles having a particle size of 0.5 μm or more measured in pure water is 2,000 particles / cm 3 or less.
(3) The molded article according to any one of the above, wherein the variation in the surface resistivity represented by the ratio (Max / Min) between the maximum surface resistivity (Max) and the minimum surface resistivity (Min) is 1,000 or less.
(4) The molded article according to any one of the above, which is a tray or a container for transporting an electronic device.
(5) The molded article according to any one of the above, which is a transport tray or container for hard disk drive components.
(6) The molded article according to any one of the above, which is a magnetic head tray or a head gimbal assembly (HGA) tray.
 本発明によれば、合成樹脂(A)46~99.4質量%、体積抵抗率10~1010Ω・cmの炭素前駆体(B)0.5~40質量%、並びに、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)0.1~14質量%を含有する合成樹脂組成物であることにより、表面抵抗率が半導電性領域の所望の範囲内に厳密に制御されるとともに、表面抵抗率のバラツキが極めて小さく、更に異物微粒子(パーティクル)の発生量が著しく少ない合成樹脂組成物が提供されるという効果が奏される。 According to the present invention, the synthetic resin (A) 46 to 99.4 mass%, the volume resistivity 10 2 to 10 10 Ω · cm of the carbon precursor (B) 0.5 to 40 mass%, and the volume resistivity By being a synthetic resin composition containing 0.1 to 14% by mass of at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers of less than 10 2 Ω · cm, the surface resistivity is half There is an effect that a synthetic resin composition is provided that is strictly controlled within a desired range of the conductive region, has a very small variation in surface resistivity, and has an extremely small amount of generation of foreign particles (particles). The
 また、本発明によれば、前記の合成樹脂組成物を成形してなる成形体であることによって、表面抵抗率が半導電性領域の所望の範囲内に厳密に制御されるとともに、表面抵抗率のバラツキが極めて小さく、更に異物微粒子(パーティクル)の発生量が著しく少ない成形体を得ることができるので、優れた特性を備える電子デバイスの搬送用トレーまたは容器、特に、ハードディスクドライブ部品の搬送用トレーまたは容器、中でも、磁気ヘッド用トレーまたはヘッド・ジンバル・アセンブリー(HGA)トレーを提供することができるという効果が奏される。 Further, according to the present invention, the surface resistivity is strictly controlled within a desired range of the semiconductive region, and the surface resistivity is obtained by molding the synthetic resin composition. Can be obtained, and a molded body with a very small amount of generation of foreign particles can be obtained. Therefore, a tray or container for electronic devices having excellent characteristics, especially a tray for transporting hard disk drive components. Alternatively, it is possible to provide a container, in particular, a magnetic head tray or a head gimbal assembly (HGA) tray.
1.合成樹脂(A)
 本発明の合成樹脂組成物に含有される合成樹脂(A)は、特に限定されないが、射出成形体または押出成形体等の成形体を形成することができる合成樹脂であることが好ましく、例えば、ポリアミド、ポリアセタール、熱可塑性ポリエステル、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリイソブチレン等)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ-p-キシレン、ポリカーボネート、変性ポリフェニレンエーテル、ポリウレタン、ポリジメチルシロキサン、ポリスチレン、ABS樹脂、ポリメタクリル酸メチル、ポリアリーレンスルフィド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレンスルフィドケトン、ポリアリーレンスルフィドスルホン、ポリエーテルニトリル、全芳香族ポリエステル、フッ素樹脂、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリアミノビスマレイミド、ジアリルテレフタレート樹脂、トリアジン樹脂、エポキシ樹脂、フェノール樹脂、これらの変性物などが挙げられる。
1. Synthetic resin (A)
The synthetic resin (A) contained in the synthetic resin composition of the present invention is not particularly limited, but is preferably a synthetic resin that can form a molded body such as an injection molded body or an extrusion molded body. Polyamide, polyacetal, thermoplastic polyester, polyolefin (eg, polyethylene, polypropylene, polybutene, polyisobutylene, etc.), polyvinyl chloride, polyvinylidene chloride, poly-p-xylene, polycarbonate, modified polyphenylene ether, polyurethane, polydimethylsiloxane, polystyrene , ABS resin, polymethyl methacrylate, polyarylene sulfide, polyether ether ketone, polyether ketone, polyarylene sulfide ketone, polyarylene sulfide sulfone, polyether nitrile, wholly aromatic Riesuteru, fluororesin, polyarylate, polysulfone, polyether sulfone, polyetherimide, polyamideimide, polyimide, polyaminobismaleimide, diallyl terephthalate resin, triazine resin, epoxy resin, phenol resin, etc. modified products thereof.
 パーティクルの発生量が著しく少なく、かつ、表面抵抗率のバラツキが極めて小さい成形体を得ることができる観点から、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の熱可塑性ポリエステル;ポリフェニレンスルフィド等のポリアリーレンスルフィド;ポリプロピレン等のポリオレフィン;ポリカーボネート;ポリエーテルエーテルケトン;ポリアセタール;ポリエーテルイミド;ポリエーテルスルホン;フッ素樹脂;及びエポキシ樹脂;からなる群より選ばれる少なくとも一種である合成樹脂(A)が、より好ましく用いられる。これらの合成樹脂は、それぞれ単独で、または2種以上を混合して使用することができる。なお、エポキシ樹脂は、エポキシ樹脂単独であってもよいし、必要により硬化剤を含有する組成物であってもよい。 From the viewpoint of obtaining a molded product with extremely small particle generation and extremely small variation in surface resistivity, thermoplastic polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polypropylene and the like A synthetic resin (A) which is at least one selected from the group consisting of polyolefins, polycarbonates, polyether ether ketones, polyacetals, polyether imides, polyether sulfones, fluororesins, and epoxy resins is more preferably used. These synthetic resins can be used alone or in admixture of two or more. Note that the epoxy resin may be an epoxy resin alone or, if necessary, a composition containing a curing agent.
 特に好ましい合成樹脂(A)は、ポリエーテルエーテルケトン;ポリアリーレンスルフィド;ポリエーテルイミド;ポリエーテルスルホン;ポリカーボネート;またはエポキシ樹脂;である。これらの合成樹脂(A)は、重合体を調製してもよいが、市販品を使用してもよいし、市販品を混合して使用してもよい。例えば、ポリエーテルエーテルケトンは、ビクトレックス社製の商品名「VICTREX(登録商標)PEEK450P」等として、ポリアリーレンスルフィドは、ポリプラスチックス株式会社製の商品名「フォートロン(登録商標)W214A」等として、ポリエーテルイミドは、GEプラスチックス社製の商品名「ウルテム(登録商標)1010」等として、ポリエーテルスルホンは、住友化学株式会社製の商品名「スミカエクセル(登録商標)PES3600G」等として、ポリカーボネートは、帝人化成株式会社製の商品名「パンライト(登録商標)L-1225W」等として、エポキシ樹脂は、三菱化学株式会社製の商品名「JER(登録商標)YX4000HK」等として、市販品を入手することができる。 Particularly preferred synthetic resin (A) is polyetheretherketone; polyarylene sulfide; polyetherimide; polyethersulfone; polycarbonate; or epoxy resin. Although these synthetic resins (A) may prepare a polymer, a commercial item may be used and a commercial item may be mixed and used. For example, polyether ether ketone is a trade name “VICTREX (registered trademark) PEEK450P” manufactured by Victrex, and polyarylene sulfide is a product name “Fortron (registered trademark) W214A” manufactured by Polyplastics Co., Ltd. The polyetherimide is a product name “Ultem (registered trademark) 1010” manufactured by GE Plastics, and the polyethersulfone is a product name “Sumika Excel (registered trademark) PES3600G” manufactured by Sumitomo Chemical Co., Ltd. Polycarbonate is commercially available under the trade name “Panlite (registered trademark) L-1225W” manufactured by Teijin Chemicals Ltd., and epoxy resin is commercially available under the product name “JER (registered trademark) YX4000HK” manufactured by Mitsubishi Chemical Corporation. Goods can be obtained.
 本発明の合成樹脂組成物において、合成樹脂(A)の含有割合は、46~99.4質量%であり、好ましくは70~99質量%、より好ましくは74~98.5質量%、更に好ましくは77~98.2質量%である。なお、合成樹脂(A)、後述する炭素前駆体(B)及び導電性充填材(C)の含有割合の合計量を100質量%とする。 In the synthetic resin composition of the present invention, the content of the synthetic resin (A) is 46 to 99.4% by mass, preferably 70 to 99% by mass, more preferably 74 to 98.5% by mass, and still more preferably. Is 77-98.2 mass%. In addition, let the total amount of the content rate of a synthetic resin (A), the carbon precursor (B) mentioned later, and an electroconductive filler (C) be 100 mass%.
 合成樹脂(A)の含有割合が大きすぎると、成形体の表面抵抗率が高くなり、所望の半導電性領域の表面抵抗率に制御することが困難になる。他方、合成樹脂(A)の含有割合が小さすぎると、成形体の表面抵抗率が低くなりすぎて、所望の半導電性領域の表面抵抗率に制御することが困難になり、成形体の電気絶縁性が低下しすぎたりする。 When the content ratio of the synthetic resin (A) is too large, the surface resistivity of the molded body increases, and it becomes difficult to control the surface resistivity of the desired semiconductive region. On the other hand, if the content ratio of the synthetic resin (A) is too small, the surface resistivity of the molded body becomes too low, and it becomes difficult to control the surface resistivity of the desired semiconductive region. Insulation properties are too low.
2.炭素前駆体(B)
 本発明の合成樹脂組成物に含有される体積抵抗率が10~1010Ω・cmである炭素前駆体(B)は、有機物質を不活性雰囲気中で、400~900℃の温度で焼成することにより得ることができるものである。
2. Carbon precursor (B)
The carbon precursor (B) having a volume resistivity of 10 2 to 10 10 Ω · cm contained in the synthetic resin composition of the present invention is obtained by baking an organic substance at a temperature of 400 to 900 ° C. in an inert atmosphere. It can be obtained by doing.
 より具体的に、本発明の合成樹脂組成物に含有される炭素前駆体(B)は、例えば、(i)石油タール、石油ピッチ、石炭タール、石炭ピッチ等のタールまたはピッチを加熱し、芳香族化と重縮合を行い、必要に応じて、酸化雰囲気中において酸化・不融化し、更に不活性雰囲気において加熱・焼成する方法、(ii)ポリアクリロニトリル、ポリ塩化ビニル等の熱可塑性樹脂を酸化雰囲気中において不融化し、更に不活性雰囲気中で加熱・焼成する方法、(iii)フェノール樹脂、フラン樹脂等の熱硬化性樹脂を加熱硬化後、不活性雰囲気中で加熱・焼成する方法などにより製造することができる。 More specifically, the carbon precursor (B) contained in the synthetic resin composition of the present invention includes, for example, (i) heating tar or pitch such as petroleum tar, petroleum pitch, coal tar, coal pitch, etc. Performing grouping and polycondensation, and if necessary, oxidizing and infusifying in an oxidizing atmosphere, followed by heating and firing in an inert atmosphere, (ii) oxidizing thermoplastic resins such as polyacrylonitrile and polyvinyl chloride By a method of infusibilizing in an atmosphere and further heating and baking in an inert atmosphere, (iii) a method of heating and baking a thermosetting resin such as a phenol resin and a furan resin, and then heating and baking in an inert atmosphere Can be manufactured.
 本発明の合成樹脂組成物に含有される炭素前駆体(B)とは、これらの処理によって得られる炭素の含有量が97質量%以下の完全には炭素化していない物質を意味する。有機物を不活性雰囲気中で加熱・焼成すると、焼成温度が上昇するにつれて、得られる焼成体の炭素含有量が上昇する。合成樹脂組成物に含有される炭素前駆体(B)の炭素含有量は、焼成温度を適正に設定することによって、制御することができる。本発明で使用する体積抵抗率が10~1010Ω・cmの炭素前駆体(B)は、炭素含有量が好ましくは80~97質量%、より好ましくは85~96.5質量%の完全に炭化していない状態の炭素前駆体(B)として得ることができる。 The carbon precursor (B) contained in the synthetic resin composition of the present invention means a substance that is not completely carbonized and has a carbon content of 97% by mass or less obtained by these treatments. When the organic substance is heated and fired in an inert atmosphere, the carbon content of the fired body obtained increases as the firing temperature rises. The carbon content of the carbon precursor (B) contained in the synthetic resin composition can be controlled by appropriately setting the firing temperature. The carbon precursor (B) having a volume resistivity of 10 2 to 10 10 Ω · cm used in the present invention preferably has a carbon content of preferably 80 to 97% by mass, more preferably 85 to 96.5% by mass. It can be obtained as a carbon precursor (B) that is not carbonized.
 炭素前駆体(B)の炭素含有量が少なすぎると、体積抵抗率が大きくなりすぎて、合成樹脂組成物から得られる成形体の表面抵抗率を1013Ω/□以下にすることが困難となる。したがって、炭素前駆体(B)の体積抵抗率は、10~1010Ω・cm、好ましくは10~10Ω・cmである。 When the carbon content of the carbon precursor (B) is too small, the volume resistivity becomes too high, and it is difficult to make the surface resistivity of the molded body obtained from the synthetic resin composition 10 13 Ω / □ or less. Become. Therefore, the volume resistivity of the carbon precursor (B) is 10 2 to 10 10 Ω · cm, preferably 10 3 to 10 9 Ω · cm.
 炭素前駆体(B)は、通常、粒子または繊維の形状で使用される。本発明の合成樹脂組成物に含有される炭素前駆体(B)粒子の平均粒子径は、1mm以下であることが好ましい。炭素前駆体(B)の平均粒子径が大きすぎると、合成樹脂組成物を成形する場合に、良好な外観の成形体を得ることが困難になる。炭素前駆体(B)粒子の平均粒子径は、通常0.1μm~1mm、好ましくは0.5~500μm、より好ましくは1~100μmである。多くの場合、5~50μm程度の平均粒子径の炭素前駆体(B)を使用することにより、良好な結果を得ることができる。本発明で使用する繊維状炭素前駆体(B)の平均直径は、0.1mm以下であることが好ましい。繊維状炭素前駆体(B)の平均直径が0.1mmを超えると、良好な外観の成形体を得ることが難しくなる。繊維状炭素前駆体(B)は、合成樹脂組成物中への分散性の観点から、短繊維であることが好ましい。 Carbon precursor (B) is usually used in the form of particles or fibers. The average particle diameter of the carbon precursor (B) particles contained in the synthetic resin composition of the present invention is preferably 1 mm or less. When the average particle diameter of the carbon precursor (B) is too large, it is difficult to obtain a molded article having a good appearance when molding the synthetic resin composition. The average particle diameter of the carbon precursor (B) particles is usually 0.1 μm to 1 mm, preferably 0.5 to 500 μm, more preferably 1 to 100 μm. In many cases, good results can be obtained by using the carbon precursor (B) having an average particle diameter of about 5 to 50 μm. The average diameter of the fibrous carbon precursor (B) used in the present invention is preferably 0.1 mm or less. If the average diameter of the fibrous carbon precursor (B) exceeds 0.1 mm, it is difficult to obtain a molded article having a good appearance. The fibrous carbon precursor (B) is preferably a short fiber from the viewpoint of dispersibility in the synthetic resin composition.
 本発明の合成樹脂組成物において、炭素前駆体(B)の含有割合は、0.5~40質量%であり、好ましくは1~30質量%、より好ましくは5~25質量%、更に好ましくは10~20質量%である。炭素前駆体(B)の含有割合が大きすぎると、合成樹脂組成物を成形してなる成形体の機械的特性が低下することがある。他方、炭素前駆体(B)の含有割合が小さすぎると、合成樹脂組成物を成形してなる成形体の表面抵抗率を十分に下げることが困難となったり、表面抵抗率の場所によるバラツキが大きくなったりする傾向がみられる。合成樹脂の種類等によっては、炭素前駆体(B)の含有割合が、1.2~5質量%程度で十分な効果を奏する場合もある。 In the synthetic resin composition of the present invention, the content of the carbon precursor (B) is 0.5 to 40% by mass, preferably 1 to 30% by mass, more preferably 5 to 25% by mass, and still more preferably. 10 to 20% by mass. When the content ratio of the carbon precursor (B) is too large, the mechanical properties of a molded body obtained by molding the synthetic resin composition may be deteriorated. On the other hand, if the content ratio of the carbon precursor (B) is too small, it is difficult to sufficiently reduce the surface resistivity of the molded product obtained by molding the synthetic resin composition, or there is variation due to the location of the surface resistivity. There is a tendency to become larger. Depending on the type of the synthetic resin, a sufficient effect may be obtained when the content of the carbon precursor (B) is about 1.2 to 5% by mass.
3.導電性充填材(C)
 本発明の合成樹脂組成物は、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)を所定量含有することに特徴を有する。
3. Conductive filler (C)
Synthetic resin composition of the present invention is characterized in that it contains a predetermined amount of at least one conductive filler (C) is selected from carbon nanotubes and carbon nanofibers is less than a volume resistivity of 10 2 Ω · cm.
 本発明において、導電性充填材(C)として使用するカーボンナノチューブ及びカーボンナノファイバーは、炭素微細繊維に属するものであり、その炭素層は、炭素六角網面が円筒状に閉じた単層のものや円筒状の炭素層が入れ子状になった多層のものがあり、いずれかに限定されない。合成樹脂組成物を調製したり、合成樹脂組成物から成形体を形成したりする際に、せん断応力によって破損しにくいことから、曲げ強度の高い多層のカーボンナノチューブが好ましい場合が多い。本発明において使用するカーボンナノチューブ及びカーボンナノファイバーは、平均繊維径が、通常0.5~200nm、好ましくは2~50nm、より好ましくは5~20nmであり、平均繊維長が、通常100nm~15μm、好ましくは150nm~10μmのものである。平均繊維径が0.5nm未満であると、合成樹脂組成物中での均一分散が難しく、また合成樹脂組成物を調製したり、合成樹脂組成物から成形体を形成したりする際に、せん断応力で破損することがある。平均繊維径が200nmを超えると、微細繊維の特徴である微分散効果が得られないことがある。また、平均繊維長が100nm未満であったり、15μmを超えたりすると、合成樹脂組成物中での均一分散が難しくなり、所望の電気特性を得られないことがある。平均繊維長(L)を平均繊維径(D)で除したアスペクト比(L/D)は10以上が好ましく、50以上がより好ましく、100以上が更に好ましい。本発明に使用されるカーボンナノチューブやカーボンナノファイバーの製造法は、特に限定されず、炭素電極間にアーク放電し、放電用電極の陰極表面に成長させる方法や、シリコンカーバイドにレーザービームを照射して、加熱昇華させる方法、遷移金属触媒を使用して、炭化水素を還元雰囲気下の気相で炭化する方法などによって製造される。製造方法により得られるカーボンナノチューブの形状やサイズは異なる。カーボンナノチューブは、繊維軸に対して、黒鉛層はほぼ平行である。一方、気相法により製造される炭素微細繊維には、製造方法により、中空でないものや、繊維軸に対して、黒鉛層が傾いている構造のものと、繊維軸に対してほぼ直角なものや、不鮮明なものがあり、これらはカーボンナノファイバーと呼ばれる。カーボンナノチューブ及びカーボンナノファイバーは、例えば、昭和電工株式会社製のVGCF(登録商標)シリーズ、ナノシル社製のNanocyl(登録商標)シリーズ、宇部興産株式会社製のAMC(登録商標)シリーズ、バイエル社製のBAYTUBE(登録商標)シリーズなどとして、市販品を入手することができる。 In the present invention, the carbon nanotubes and carbon nanofibers used as the conductive filler (C) belong to carbon fine fibers, and the carbon layer is a single layer whose carbon hexagonal mesh surface is closed in a cylindrical shape. There is a multilayer structure in which a cylindrical carbon layer is nested, and the structure is not limited to any one. When preparing a synthetic resin composition or forming a molded body from a synthetic resin composition, multi-walled carbon nanotubes with high bending strength are often preferred because they are not easily damaged by shear stress. The carbon nanotubes and carbon nanofibers used in the present invention have an average fiber diameter of usually 0.5 to 200 nm, preferably 2 to 50 nm, more preferably 5 to 20 nm, and an average fiber length of usually 100 nm to 15 μm, The thickness is preferably from 150 nm to 10 μm. When the average fiber diameter is less than 0.5 nm, uniform dispersion in the synthetic resin composition is difficult, and when preparing the synthetic resin composition or forming a molded body from the synthetic resin composition, shearing is performed. May be damaged by stress. If the average fiber diameter exceeds 200 nm, the fine dispersion effect that is characteristic of fine fibers may not be obtained. On the other hand, if the average fiber length is less than 100 nm or exceeds 15 μm, uniform dispersion in the synthetic resin composition becomes difficult, and desired electrical characteristics may not be obtained. The aspect ratio (L / D) obtained by dividing the average fiber length (L) by the average fiber diameter (D) is preferably 10 or more, more preferably 50 or more, and still more preferably 100 or more. The method for producing carbon nanotubes and carbon nanofibers used in the present invention is not particularly limited, and a method of causing arc discharge between the carbon electrodes to grow on the cathode surface of the discharge electrode, or irradiating silicon carbide with a laser beam. Thus, it is produced by a method of heating and sublimation, a method of carbonizing a hydrocarbon in a gas phase under a reducing atmosphere using a transition metal catalyst, and the like. The shape and size of the carbon nanotube obtained by the manufacturing method are different. In the carbon nanotube, the graphite layer is substantially parallel to the fiber axis. On the other hand, carbon fine fibers produced by the vapor phase method are not hollow, or have a structure in which the graphite layer is inclined with respect to the fiber axis, and those substantially perpendicular to the fiber axis. There are also blurry ones, which are called carbon nanofibers. Carbon nanotubes and carbon nanofibers are, for example, VGCF (registered trademark) series manufactured by Showa Denko KK, Nanocyl (registered trademark) series manufactured by Nanosil, AMC (registered trademark) series manufactured by Ube Industries, Ltd., Bayer Commercially available products such as BAYTUBE (registered trademark) series are available.
 カーボンナノチューブ及びカーボンナノファイバーは、炭素の含有量が97質量%を超えるほぼ完全に炭素化した物質であることから、通常、体積抵抗率が10Ω・cm未満である(多くの場合、10-2Ω・cmまたはそれ以下であることが周知である。)。したがって、本発明の合成樹脂組成物は、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)を含有することを特徴とするものである。そして、前記の導電性充填材(C)は、体積抵抗率が10Ω・cm未満である点において、前記の炭素前駆体(B)(体積抵抗率が10~1010Ω・cmである。)と、区別することができる。 Since carbon nanotubes and carbon nanofibers are almost completely carbonized substances having a carbon content exceeding 97% by mass, the volume resistivity is usually less than 10 2 Ω · cm (in many cases 10% -2 Ω · cm or less is well known). Therefore, the synthetic resin composition of the present invention contains at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers having a volume resistivity of less than 10 2 Ω · cm. is there. The conductive filler (C) has a volume resistivity of less than 10 2 Ω · cm, and the carbon precursor (B) has a volume resistivity of 10 2 to 10 10 Ω · cm. Yes).
 また、従来、導電性充填材として広く使用されてきた炭素繊維は、平均繊維長が20μm以上であることから、本発明の合成樹脂組成物に含有される導電性充填材(C)、すなわち、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)は、該炭素繊維とも区別することができる。さらに、同様に、導電性充填材(C)は、従来、導電性充填材として広く使用されてきた黒鉛や導電性カーボンブラックとも区別することができる。 In addition, the carbon fiber that has been widely used as a conductive filler conventionally has an average fiber length of 20 μm or more, so the conductive filler (C) contained in the synthetic resin composition of the present invention, that is, At least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers having a volume resistivity of less than 10 2 Ω · cm can also be distinguished from the carbon fibers. Furthermore, similarly, the conductive filler (C) can be distinguished from graphite and conductive carbon black, which have been widely used as a conductive filler.
 本発明の合成樹脂組成物において、導電性充填材(C)の含有割合は、0.1~14質量%であり、好ましくは0.15~10質量%、より好ましくは0.2~8質量%、更に好ましくは0.3~6質量%である。本発明の合成樹脂組成物は、体積抵抗率10Ω・cm未満のカーボンナノチューブまたはカーボンナノファイバーの一方または両方を含有することができる。本発明の合成樹脂組成物が、体積抵抗率10Ω・cm未満のカーボンナノチューブ及び体積抵抗率10Ω・cm未満のカーボンナノファイバーの両方を含有する場合は、前記の導電性充填材(C)の含有割合は、カーボンナノチューブ及びカーボンナノファイバーの合計の含有割合を意味する。導電性充填材(C)の含有割合が大きすぎると、i)合成樹脂組成物を成形してなる成形体の表面抵抗率が低くなりすぎて、成形体の表面抵抗率を半導電性領域内の表面抵抗率に制御することが困難となったり、ii)成形体の表面において、場所による表面抵抗率のバラツキが大きくなったり、iii)また、合成樹脂組成物を成形してなる成形体の機械的特性が低下することがある。導電性充填材(C)の含有割合が小さすぎると、合成樹脂組成物を成形してなる成形体の表面抵抗率を半導電性領域内の表面抵抗率に制御することが困難になる。 In the synthetic resin composition of the present invention, the content of the conductive filler (C) is 0.1 to 14% by mass, preferably 0.15 to 10% by mass, more preferably 0.2 to 8% by mass. %, More preferably 0.3 to 6% by mass. The synthetic resin composition of the present invention can contain one or both of carbon nanotubes or carbon nanofibers having a volume resistivity of less than 10 2 Ω · cm. Synthetic resin composition of the present invention, when containing both carbon nanofiber carbon than nanotubes and a volume resistivity of 10 2 Ω · cm under a volume resistivity of 10 2 Ω · cm, the conductive filler ( The content ratio of C) means the total content ratio of carbon nanotubes and carbon nanofibers. If the content ratio of the conductive filler (C) is too large, i) the surface resistivity of the molded body formed by molding the synthetic resin composition becomes too low, and the surface resistivity of the molded body is reduced within the semiconductive region. It is difficult to control the surface resistivity of the molded body, ii) the surface resistivity varies depending on the location on the surface of the molded body, iii) and the molded body formed by molding the synthetic resin composition. Mechanical properties may be degraded. When the content ratio of the conductive filler (C) is too small, it becomes difficult to control the surface resistivity of the molded body formed by molding the synthetic resin composition to the surface resistivity in the semiconductive region.
 本発明の合成樹脂組成物は、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)を、例えば、0.4~5.5質量%という少ない量で含有し、かつ、体積抵抗率が10~1010Ω・cmである炭素前駆体(B)と併用して含有することによって、該合成樹脂組成物を成形してなる成形体が優れた表面抵抗率の制御可能性と機械的特性を備えることができるものである。したがって、本発明によれば、合成樹脂組成物及び合成樹脂組成物を成形してなる成形体に含有される合成樹脂(A)の含有量を多くすることが可能となる。その結果、本発明の合成樹脂組成物及び該合成樹脂組成物を成形してなる成形体は、合成樹脂(A)の機械的特性その他の諸特性を十分に発揮させることができるので、成形体の製品設計の自由度が増大するとともに、コストの低減にも寄与することができる。 The synthetic resin composition of the present invention contains at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers having a volume resistivity of less than 10 2 Ω · cm, for example, 0.4 to 5.5 mass. %, And in combination with a carbon precursor (B) having a volume resistivity of 10 2 to 10 10 Ω · cm, a molding formed by molding the synthetic resin composition The body can have excellent surface resistivity controllability and mechanical properties. Therefore, according to this invention, it becomes possible to increase content of the synthetic resin (A) contained in the synthetic resin composition and the molded body formed by molding the synthetic resin composition. As a result, the synthetic resin composition of the present invention and the molded article formed by molding the synthetic resin composition can sufficiently exhibit the mechanical characteristics and other characteristics of the synthetic resin (A). This increases the degree of freedom in product design and contributes to cost reduction.
4.その他の充填材
 本発明の合成樹脂組成物においては、本発明の目的を阻害しない範囲内において、更に合成樹脂組成物を成形してなる成形体の機械的強度や耐熱性を上げることを目的として、その他の各種充填材を含有させることができる。充填材としては、例えば、ガラス繊維、アスベスト繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維などの無機繊維状物;ポリアミド、フッ素樹脂、ポリエステル樹脂、アクリル樹脂などの高融点有機質繊維状物質;等の繊維状充填材が挙げられる。繊維状充填材としては、電気絶縁性の観点から、ガラス繊維などの導電性を持たないものが好ましい。
4). Other fillers In the synthetic resin composition of the present invention, the purpose is to further increase the mechanical strength and heat resistance of a molded article obtained by molding the synthetic resin composition within the range not impairing the object of the present invention. Various other fillers can be contained. Examples of the filler include inorganic fibers such as glass fiber, asbestos fiber, silica fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber; polyamide, fluororesin, polyester Examples thereof include fibrous fillers such as high melting point organic fibrous materials such as resins and acrylic resins. The fibrous filler is preferably a non-conductive material such as glass fiber from the viewpoint of electrical insulation.
 また、充填材としては、例えば、マイカ、シリカ、タルク、アルミナ、カオリン、硫酸カルシウム、炭酸カルシウム、酸化チタン、フェライト、クレー、ガラス粉、酸化亜鉛、炭酸ニッケル、酸化鉄、石英粉末、炭酸マグネシウム、硫酸バリウム等の粒状または粉末状充填材を用いることができる。 Examples of the filler include mica, silica, talc, alumina, kaolin, calcium sulfate, calcium carbonate, titanium oxide, ferrite, clay, glass powder, zinc oxide, nickel carbonate, iron oxide, quartz powder, magnesium carbonate, A granular or powder filler such as barium sulfate can be used.
 これらの充填材は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。充填材は、必要に応じて、集束剤または表面処理剤により処理されていてもよい。集束剤または表面処理剤としては、例えば、エポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物などの官能性化合物が挙げられる。これら官能性化合物は、充填材に対してあらかじめ表面処理または集束処理を施して用いてもよいし、合成樹脂組成物を調製する際に同時に添加してもよい。これらその他の充填材は、本発明の目的を阻害しない範囲内において、合成樹脂組成物に含有されるものであることから、その含有量は、通常5質量%以内、多くの場合1質量%以内、ほとんどの場合0.5質量%以内であり、合成樹脂組成物は、その他の充填材を含有しなくても差し支えない。 These fillers can be used alone or in combination of two or more. The filler may be treated with a sizing agent or a surface treatment agent as necessary. Examples of the sizing agent or surface treatment agent include functional compounds such as epoxy compounds, isocyanate compounds, silane compounds, and titanate compounds. These functional compounds may be used after being subjected to surface treatment or focusing treatment on the filler in advance, or may be added simultaneously when preparing the synthetic resin composition. Since these other fillers are contained in the synthetic resin composition within a range not impairing the object of the present invention, the content thereof is usually within 5% by mass, and often within 1% by mass. In most cases, the amount is within 0.5% by mass, and the synthetic resin composition may contain no other filler.
5.その他の添加剤
 本発明の合成樹脂組成物には、本発明の目的を阻害しない範囲内において、その他の添加剤として、例えば、エポキシ基含有α-オレフィン共重合体のような衝撃改質材;エチレングリシジルメタクリレート等の樹脂改良剤;炭酸亜鉛、炭酸ニッケル等の金型腐食防止剤;ペンタエリスリトールテトラステアレート等の滑剤;熱硬化性樹脂;酸化防止剤;紫外線吸収剤;ボロンナイトライド等の核剤;難燃剤;染料や顔料等の着色剤;などを適宜添加して含有させることができる。これらその他の添加剤の含有量は、通常5質量%以内、多くの場合1質量%以内、ほとんどの場合0.5質量%以内であり、含有しなくても差し支えない。
5. Other Additives In the synthetic resin composition of the present invention, as other additives, for example, an impact modifier such as an epoxy group-containing α-olefin copolymer, within the range not impairing the object of the present invention; Resin modifiers such as ethylene glycidyl methacrylate; Mold corrosion inhibitors such as zinc carbonate and nickel carbonate; Lubricants such as pentaerythritol tetrastearate; Thermosetting resins; Antioxidants; Ultraviolet absorbers; Cores such as boron nitride Agents; flame retardants; colorants such as dyes and pigments; and the like can be added as appropriate. The content of these other additives is usually within 5% by mass, in many cases within 1% by mass, and in most cases within 0.5% by mass, and it does not matter if it is not contained.
6.合成樹脂組成物
 本発明の合成樹脂組成物は、前記合成樹脂(A)、炭素前駆体(B)及び導電性充填材(C)の各成分を所定量含有する限り、その形状や形態を問わない。例えば、成形体、積層体、溶融物等の液状体などでもよいし、ペレット、粒子、粉末、造粒物、集合体その他の状態のものでもよい。また、例えば、本発明の合成樹脂組成物であるペレットは、一般に合成樹脂組成物の調製において用いられている設備と方法により調製することができる。すなわち、各成分をヘンシェルミキサー、タンブラー等により予備混合し、必要があればガラス繊維等のその他の充填材などを加えて、更に混合した後、1軸または2軸の押出機を使用して混練し、押し出すことによって、成型用ペレットを得ることができる。その際、必要成分の一部をマスターバッチとしてから、残りの成分と混合する方法、また、各成分の分散性を高めるために、使用する原料の一部を粉砕し、粒径を揃えて混合し溶融押出する方法も採用することが可能である。
6). Synthetic Resin Composition The synthetic resin composition of the present invention may have any shape or form as long as it contains a predetermined amount of each component of the synthetic resin (A), the carbon precursor (B), and the conductive filler (C). Absent. For example, it may be a molded body, a laminate, a liquid such as a melt, or may be in the form of pellets, particles, powder, granules, aggregates, or the like. For example, the pellet which is the synthetic resin composition of the present invention can be prepared by facilities and methods generally used in the preparation of the synthetic resin composition. That is, each component is premixed with a Henschel mixer, tumbler, etc., and if necessary, other fillers such as glass fibers are added and further mixed, and then kneaded using a single or twin screw extruder. Then, the pellets for molding can be obtained by extruding. At that time, a part of the necessary components is made into a master batch and then mixed with the remaining components. In addition, in order to improve the dispersibility of each component, a part of the raw materials to be used is pulverized and mixed with a uniform particle size. It is also possible to employ a method of melt extrusion.
7.合成樹脂組成物を成形してなる成形体、及びその製造方法
 本発明の合成樹脂組成物を成形してなる成形体は、前記合成樹脂(A)、炭素前駆体(B)及び導電性充填材(C)の各成分を所定量含有する合成樹脂組成物を、合成樹脂組成物の成形方法として通常採用されている成形方法により成形することによって得ることができる。合成樹脂組成物としては、前述したペレットの形態で用いることが好ましい。
7). Molded body formed by molding synthetic resin composition and method for producing the same The molded body formed by molding the synthetic resin composition of the present invention includes the synthetic resin (A), carbon precursor (B), and conductive filler. The synthetic resin composition containing a predetermined amount of each component of (C) can be obtained by molding by a molding method usually employed as a molding method of the synthetic resin composition. The synthetic resin composition is preferably used in the form of pellets described above.
 合成樹脂組成物を成形してなる成形体を得るための成形方法としては、射出成形、押出成形、圧縮成形、真空成形、圧空成形、ブロー成形、延伸成形、溶融紡糸などを採用することができる。したがって、本発明の合成樹脂組成物を成形してなる成形体としては、射出成形体、押出成形体、圧縮成形体、真空成形体、圧空成形体、ブロー成形体、延伸成形体、または、繊維、糸若しくは布帛などが挙げられる。 As a molding method for obtaining a molded body formed by molding the synthetic resin composition, injection molding, extrusion molding, compression molding, vacuum molding, pressure molding, blow molding, stretch molding, melt spinning, etc. can be employed. . Therefore, as a molded body formed by molding the synthetic resin composition of the present invention, an injection molded body, an extrusion molded body, a compression molded body, a vacuum molded body, a compressed air molded body, a blow molded body, a stretch molded body, or a fiber , Yarn or fabric.
 さらに、本発明の合成樹脂組成物を成形してなる成形体は、例えば、電子デバイスを収載または載置するために、貫通孔を設けたり、表面に凹孔を有するものであってもよい。その場合、貫通孔や凹孔の形状、大きさ、及び数は、使用目的によって適宜設定することができる。貫通孔や凹孔の径は、通常0.1~1.0mm、好ましくは0.2~0.8mm、より好ましくは0.3~0.7mm程度であり、その数は、成形体の面積50mm×50mm当たりに換算して100~2,000個、好ましくは200~1,500個、より好ましくは300~750個程度である。貫通孔や凹孔を有する成形体は、例えば、本発明の合成樹脂組成物を射出成形する場合、キャビティ面に、多数のピンを植設した金型や、多数の凸部を刻設した金型を使用することにより、容易に製造することができる。 Furthermore, the molded body formed by molding the synthetic resin composition of the present invention may have, for example, a through hole or a concave hole on the surface for mounting or mounting the electronic device. In that case, the shape, size, and number of the through holes and the recessed holes can be appropriately set depending on the purpose of use. The diameter of the through hole or the concave hole is usually about 0.1 to 1.0 mm, preferably about 0.2 to 0.8 mm, more preferably about 0.3 to 0.7 mm, and the number is the area of the molded body. It is about 100 to 2,000, preferably 200 to 1,500, and more preferably about 300 to 750 in terms of 50 mm × 50 mm. For example, when the synthetic resin composition of the present invention is injection-molded, the molded body having a through-hole or a concave hole is a mold in which a large number of pins are implanted on a cavity surface or a metal in which a large number of convex portions are engraved. By using a mold, it can be easily manufactured.
 本発明の合成樹脂組成物を成形してなる成形体としては、表面抵抗率等の優れた電気的特性や機械的特性を活用する観点から、射出成形体または押出成形体が好ましく選択される。射出成形体または押出成形体を得るための射出成形または押出成形の方法は、通常の成形条件に準じて行うことができる。例えば、射出成形は、一般の射出成形条件に従って、使用する合成樹脂の種類に応じて、射出成形機のシリンダー温度、金型温度などを適宜調整することにより行うことができる。 As the molded article formed by molding the synthetic resin composition of the present invention, an injection molded article or an extruded molded article is preferably selected from the viewpoint of utilizing excellent electrical characteristics such as surface resistivity and mechanical characteristics. The injection molding or extrusion molding method for obtaining an injection molded body or an extrusion molded body can be performed according to normal molding conditions. For example, injection molding can be performed by appropriately adjusting the cylinder temperature, mold temperature, etc. of the injection molding machine according to the type of synthetic resin to be used in accordance with general injection molding conditions.
8.成形体のパーティクル発生量
 本発明の合成樹脂組成物を成形してなる成形体は、純水中で測定した粒径0.5μm以上のパーティクル発生量が2,000個/cm以下である成形体とすることができ、より好ましくは1,700個/cm以下、更に好ましくは1,500個/cm以下、特に好ましくは1,000個/cm以下とすることができ、さらに、合成樹脂(A)の選択によっては、600個/cm以下とすることができるので、パーティクル(すなわち、異物微粒子)の発生による汚染を顕著に抑制することができる。純水中で測定した粒径0.5μm以上のパーティクル発生量は、特に下限がなく、0個/cmであることが最も好ましいが、通常2個/cm程度、多くの場合5個/cm程度でも差し支えない。
8). Particle Generation Amount of Molded Body A molded body formed by molding the synthetic resin composition of the present invention is a molding in which the number of particles generated with a particle size of 0.5 μm or more measured in pure water is 2,000 particles / cm 3 or less. More preferably 1,700 pieces / cm 3 or less, still more preferably 1,500 pieces / cm 3 or less, particularly preferably 1,000 pieces / cm 3 or less, Depending on the selection of the synthetic resin (A), it can be 600 pieces / cm 3 or less, so that contamination due to generation of particles (that is, foreign particles) can be remarkably suppressed. The amount of particles having a particle diameter of 0.5 μm or more measured in pure water is not particularly limited and is most preferably 0 / cm 3 , but is usually about 2 / cm 3 , and in many cases 5 / It can be about cm 3 .
 合成樹脂組成物を成形してなる成形体の純水中でのパーティクル発生量は、以下の測定法により測定した値である(以下、単に「成形体のパーティクル発生量」ということがある。)。すなわち、あらかじめ500cmビーカー中に純水を500cm注入した後、超音波発振機(1,200W)で1分間加振処理する。加振処理後の純水中のパーティクル発生量を、液中パーティクルカウンターを使用して測定して、グランド値とする。次いで、合成樹脂組成物を射出成形して調製した射出成形板(50mm×50mm×2mm厚)を、500cmビーカー中に入れて、純水を500cm注入し、上記と同じ条件で加振処理後の純水中のパーティクル発生量を、液中パーティクルカウンターを使用して測定し、前記のグランド値を差し引いて、成形体のパーティクル発生量とする。本発明においては、粒径0.5μm以上のパーティクルの数、粒径1.0μm以上のパーティクルの数、粒径2.0μm以上のパーティクルの数をそれぞれ求める。単位は、個/cmで表す。 The amount of particles generated in pure water of a molded product obtained by molding the synthetic resin composition is a value measured by the following measurement method (hereinafter, simply referred to as “particle generation amount of molded product”). . That is, after 500 cm 3 of pure water is poured into a 500 cm 3 beaker in advance, it is vibrated for 1 minute with an ultrasonic oscillator (1,200 W). The amount of particles generated in the pure water after the vibration treatment is measured using a submerged particle counter to obtain a ground value. Then, the injection molded plate and the synthetic resin composition was prepared by injection molding (50mm × 50mm × 2mm thick), placed in a 500 cm 3 beaker, deionized water 500 cm 3 injected, vibrated at the same conditions as the above-described processing The amount of particles generated in the pure water after the measurement is measured using a submerged particle counter, and the ground value is subtracted to obtain the amount of particles generated in the molded body. In the present invention, the number of particles having a particle size of 0.5 μm or more, the number of particles having a particle size of 1.0 μm or more, and the number of particles having a particle size of 2.0 μm or more are obtained. The unit is expressed in pieces / cm 3 .
9.成形体の表面抵抗率
 本発明の合成樹脂組成物を成形してなる成形体は、半導電性領域である10~1012Ω/□の表面抵抗率を有し、好ましくは1.1×105 ~9.9×1011Ω/□、より好ましくは1.2×10~9×1011Ω/□、更に好ましくは1.5×10~8×1011Ω/□の表面抵抗率を有する。なお、表面抵抗率は、単位表面積当りの抵抗を表し、その単位は、Ωであるが、単なる抵抗と区別するために、本発明においては、Ω/□(オーム・パー・スクエア)で表す。
9. Surface resistivity of molded body A molded body formed by molding the synthetic resin composition of the present invention has a surface resistivity of 10 5 to 10 12 Ω / □, which is a semiconductive region, and preferably 1.1 ×. 10 5 to 9.9 × 10 11 Ω / □, more preferably 1.2 × 10 5 to 9 × 10 11 Ω / □, more preferably 1.5 × 10 5 to 8 × 10 11 Ω / □ Has resistivity. The surface resistivity represents the resistance per unit surface area, and the unit is Ω. However, in order to distinguish it from mere resistance, in the present invention, it is expressed by Ω / □ (ohm per square).
 合成樹脂組成物を成形してなる成形体の表面抵抗率は、以下の測定法により測定する。すなわち、合成樹脂組成物を射出成形して調製した射出成形板(50mm×50mm×2mm厚)について、JIS K6911に準拠し、印加電圧100Vで、5点の表面抵抗率を測定する。5点の表面抵抗率の測定値の平均値を、成形体の表面抵抗率とする。本発明の合成樹脂組成物を成形してなる成形体は、成形体の表面抵抗率(すなわち、5点の表面抵抗率の測定値の平均値)が、前記した半導電性領域である10~1012Ω/□の範囲に含まれるものであるが、更に5点の表面抵抗率の測定値のうちの最大値〔最大表面抵抗率(Max)〕及び最小値〔最小表面抵抗率(Min)〕が、いずれも前記した半導電性領域である10~1012Ω/□の範囲に含まれることが好ましい。 The surface resistivity of a molded article formed by molding the synthetic resin composition is measured by the following measurement method. That is, for an injection-molded plate (50 mm × 50 mm × 2 mm thickness) prepared by injection molding a synthetic resin composition, the surface resistivity of five points is measured at an applied voltage of 100 V in accordance with JIS K6911. Let the average value of the measured value of the surface resistivity of 5 points | pieces be the surface resistivity of a molded object. The molded body formed by molding the synthetic resin composition of the present invention has a surface resistivity (that is, an average value of measured values of surface resistivity at 5 points) of 10 5 as described above. The maximum value [maximum surface resistivity (Max)] and the minimum value [minimum surface resistivity (Min) among the measured values of the surface resistivity at five points are included in the range of ˜10 12 Ω / □. )] Is preferably included in the range of 10 5 to 10 12 Ω / □, which is the semiconductive region described above.
 本発明の合成樹脂組成物を成形してなる成形体は、成形体の場所の違いによる表面抵抗率のバラツキが極めて小さなものである。成形体の表面抵抗率のバラツキは、合成樹脂組成物を成形してなる成形体の最大表面抵抗率(Max)と最小表面抵抗率(Min)との比(Max/Min)で表すことができ、本発明の合成樹脂組成物を成形してなる成形体は、前記の表面抵抗率のバラツキ(Max/Min)が、好ましくは1,000以下のものであり、より好ましくは800以下、更に好ましくは500以下、特に好ましくは200以下のものである。 The molded body formed by molding the synthetic resin composition of the present invention has extremely small variation in surface resistivity due to the difference in the location of the molded body. The variation in the surface resistivity of the molded body can be expressed by the ratio (Max / Min) between the maximum surface resistivity (Max) and the minimum surface resistivity (Min) of the molded body formed by molding the synthetic resin composition. The molded product obtained by molding the synthetic resin composition of the present invention has a surface resistivity variation (Max / Min) of preferably 1,000 or less, more preferably 800 or less, still more preferably. Is 500 or less, particularly preferably 200 or less.
10.合成樹脂組成物を成形してなる成形体の用途
 本発明の合成樹脂組成物を成形してなる成形体は、そのままで、または切削、穴あけ、切断などの二次加工を施して使用することができる。前記の用途を含む本発明の合成樹脂組成物を成形してなる成形体の用途としては、電気・電子分野では、例えば、ウエハキャリア、ウエハカセット、スピンチャック、トートビン、ウエハボート、ICチップトレー、ICチップキャリア、ICカード、ICテストソケット、バーンインソケット、ピングリッドアレイソケット、クワッドフラットパッケージ、リードレスチップスキャリア、デュアルインラインパッケージ、スモールアウトラインパッケージ、リールパッキング、各種ケース、保存用トレー、保存用ビン、搬送装置部品、磁気カードリーダーなどが挙げられる。
10. Use of molded product formed by molding synthetic resin composition The molded product formed by molding the synthetic resin composition of the present invention may be used as it is or after being subjected to secondary processing such as cutting, drilling or cutting. it can. In the electric / electronic field, for example, a wafer carrier, a wafer cassette, a spin chuck, a tote bottle, a wafer boat, an IC chip tray, IC chip carrier, IC card, IC test socket, burn-in socket, pin grid array socket, quad flat package, leadless chip carrier, dual inline package, small outline package, reel packing, various cases, storage tray, storage bin, Examples include conveyor device parts and magnetic card readers.
 OA機器分野では、例えば、電子写真複写機や静電記録装置などの画像形成装置における帯電ロール、転写ロール、現像ロールなどの帯電部材、記録装置用転写ドラム、プリント回路基板カセット、ブッシュ、紙及び紙幣搬送部品、紙送りレール、フォントカートリッジ、インクリボンキャニスター、ガイドピン、トレー、ローラー、ギア、スプロケット、コンピュータ用ハウジング、モデムハウジング、モニターハウジング、CD-ROMハウジング、プリンタハウジング、コネクター、コンピュータスロットなどが挙げられる。 In the field of office automation equipment, for example, charging members such as charging rolls, transfer rolls, and developing rolls in image forming apparatuses such as electrophotographic copying machines and electrostatic recording apparatuses, transfer drums for recording apparatuses, printed circuit board cassettes, bushes, paper, Bill transport parts, paper feed rails, font cartridges, ink ribbon canisters, guide pins, trays, rollers, gears, sprockets, computer housings, modem housings, monitor housings, CD-ROM housings, printer housings, connectors, computer slots, etc. Can be mentioned.
 通信機分野では、携帯電話部品、ペーガー(受信装置)、各種摺動材などが挙げられる。自動車分野では、内装材、アンダーフード、電子・電気機器ハウジング、ガスタンクキャップ、燃料フィルタ、燃料ラインコネクタ、燃料ラインクリップ、燃料タンク、機器ビージル、ドアハンドル、各種部品などが挙げられる。その他の分野では、電線支持体、電波吸収体、床材、パレット、靴底、送風ファン、面状発熱体、ポリスイッチなどが挙げられる。 In the communication equipment field, mobile phone parts, pagers (receivers), various sliding materials, and the like can be given. In the automotive field, interior materials, under hoods, electronic / electric equipment housings, gas tank caps, fuel filters, fuel line connectors, fuel line clips, fuel tanks, equipment beads, door handles, various parts, and the like. In other fields, electric wire supports, radio wave absorbers, floor materials, pallets, shoe soles, blower fans, planar heating elements, polyswitches, and the like can be given.
11.電子デバイスの搬送用トレーまたは容器
 本発明の合成樹脂組成物を成形してなる成形体は、特に、ICやLSIなどの半導体の製造工程で使用される部品及びその実装用部品、磁気ヘッド及びハードディスクドライブの製造工程で使用される部品及びその実装部品、液晶ディスプレイの製造工程で使用される部品及びその実装部品などとして好適に用いることができる。
11. Electronic device carrying tray or container The molded body formed by molding the synthetic resin composition of the present invention, in particular, components used in the manufacturing process of semiconductors such as IC and LSI, components for mounting the components, magnetic heads and hard disks It can be suitably used as a component used in the manufacturing process of the drive and its mounting component, a component used in the manufacturing process of the liquid crystal display, and its mounting component.
 すなわち、本発明の合成樹脂組成物を成形してなる成形体は、電子デバイスの搬送用トレーまたは容器である成形体として好適に用いられる。電子デバイスの搬送用トレーまたは容器としては、例えば、ウェハキャリア、洗浄用トレー、ICチップトレー、ハードディスクドライブ部品搬送用である磁気ヘッド用トレーやヘッド・ジンバル・アセンブリー(HGA)トレーなどがある。これらの中でも、本発明の合成樹脂組成物を成形してなる成形体は、汚染を極度に避けることが要求されるハードディスクドライブ(HDD)部品の搬送用トレーまたは容器として、好適に適用することができ、中でも、磁気ヘッド用トレーやヘッド・ジンバル・アセンブリー(HGA)トレーとして好適に適用することができる。 That is, a molded body formed by molding the synthetic resin composition of the present invention is suitably used as a molded body that is a transport tray or container for electronic devices. Examples of the electronic device transfer tray or container include a wafer carrier, a cleaning tray, an IC chip tray, a magnetic head tray for transferring hard disk drive components, and a head gimbal assembly (HGA) tray. Among these, the molded body formed by molding the synthetic resin composition of the present invention can be suitably applied as a transport tray or container for hard disk drive (HDD) parts that are required to avoid contamination extremely. In particular, it can be suitably applied as a magnetic head tray or a head gimbal assembly (HGA) tray.
 これらのトレーは、例えば、多数の貫通孔が設けられた薄板状成形体や平面構造体(積み重ね可能なように周縁部を立設等させてもよい。)等の汎用の形状を有するものであって、その上に多数の磁気ヘッドやHGAを載置し、貫通孔で固定して搬送するように構成されている。このような成形体を射出成形により作製すると、一般に、貫通孔を含む各部にバリが発生しやすく、パーティクル発生量も多くなる。しかも、従来のトレーは、導電性カーボンブラックを単独でかつ多量に配合した樹脂組成物を成形してなるものであり、導電性カーボンブラックの分散不良が要因となることもあって表面抵抗率のバラツキが大きいものである。これに対して、本発明の合成樹脂組成物を成形してなる成形体は、このような形状のトレーであっても、表面抵抗率のバラツキが小さく、パーティクルの発生量やバリの発生が顕著に抑制されたものとなる。 These trays have, for example, a general-purpose shape such as a thin plate-shaped molded body provided with a large number of through-holes or a planar structure (peripheral portions may be erected so that they can be stacked). In addition, a large number of magnetic heads and HGAs are mounted thereon, and are configured to be transported while being fixed by through holes. When such a molded body is produced by injection molding, in general, burrs are likely to occur in each part including a through hole, and the amount of generated particles increases. In addition, the conventional tray is formed by molding a resin composition containing a large amount of conductive carbon black alone, and the surface resistivity is reduced due to poor dispersion of the conductive carbon black. The variation is large. On the other hand, the molded product obtained by molding the synthetic resin composition of the present invention has a small variation in surface resistivity even with a tray having such a shape, and the generation amount of particles and generation of burrs are remarkable. Will be suppressed.
 以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。合成樹脂及び成形体の物性または特性の測定方法は、以下に示すとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. The measuring method of the physical property or characteristic of a synthetic resin and a molded object is as showing below.
〔合成樹脂の融点またはガラス転移温度〕
 合成樹脂の融点またはガラス転移温度は、示差走査熱量計(DSC)を使用して測定した。
[Melting point or glass transition temperature of synthetic resin]
The melting point or glass transition temperature of the synthetic resin was measured using a differential scanning calorimeter (DSC).
〔成形体の表面抵抗率〕
 合成樹脂組成物を成形してなる成形体の表面抵抗率は、以下の測定法により測定した。すなわち、合成樹脂組成物を射出成形して調製した射出成形板(50mm×50mm×2mm厚)について、JIS K6911に準拠し、株式会社三菱化学アナリテック製ハイレスタUPを使用して、印加電圧100Vで、5点の表面抵抗率を測定した。5点の表面抵抗率の測定値の平均値を、成形体の表面抵抗率とした。また、5点の表面抵抗率の測定値のうちの最大値〔最大表面抵抗率(Max)〕と最小値〔最小表面抵抗率(Min)〕からその比(Max/Min)を算出した。
[Surface resistivity of molded body]
The surface resistivity of a molded article formed by molding the synthetic resin composition was measured by the following measurement method. That is, an injection-molded plate (50 mm × 50 mm × 2 mm thickness) prepared by injection molding a synthetic resin composition was applied at a applied voltage of 100 V using Hiresta UP manufactured by Mitsubishi Chemical Analytech Co., Ltd. according to JIS K6911. The surface resistivity at 5 points was measured. The average value of the measured values of the surface resistivity at 5 points was defined as the surface resistivity of the molded body. Further, the ratio (Max / Min) was calculated from the maximum value [maximum surface resistivity (Max)] and the minimum value [minimum surface resistivity (Min)] among the measured values of the surface resistivity at five points.
〔成形体のパーティクル発生量〕
 合成樹脂組成物を成形してなる成形体の純水中でのパーティクル発生量は、以下の測定法により測定した。すなわち、あらかじめ500cmビーカー中に純水を500cm注入した後、超音波発振機(1,200W)で1分間加振処理する。加振処理後の純水中のパーティクル発生量を、液中パーティクルカウンター(リオン株式会社製KL-30AX)を使用して測定して、グランド値とした。次いで、合成樹脂組成物を射出成形して調製した射出成形板(50mm×50mm×2mm厚)を、500cmビーカー中に入れて、純水を500cm注入し、上記と同じ条件で加振処理後の純水中のパーティクル発生量を、液中パーティクルカウンターを使用して測定し、前記のグランド値を差し引いて、成形体のパーティクル発生量とした。粒径0.5μm以上のパーティクルの数、粒径1.0μm以上のパーティクルの数、粒径2.0μm以上のパーティクルの数をそれぞれ求めた。単位は、個/cmで表した。
[Particle generation amount of molded body]
The amount of particles generated in pure water of a molded product formed by molding the synthetic resin composition was measured by the following measurement method. That is, after 500 cm 3 of pure water is poured into a 500 cm 3 beaker in advance, it is vibrated for 1 minute with an ultrasonic oscillator (1,200 W). The amount of particles generated in the pure water after the vibration treatment was measured using a submerged particle counter (KL-30AX, manufactured by Rion Co., Ltd.), and used as a ground value. Then, the injection molded plate and the synthetic resin composition was prepared by injection molding (50mm × 50mm × 2mm thick), placed in a 500 cm 3 beaker, deionized water 500 cm 3 injected, vibrated at the same conditions as the above-described processing The amount of particles generated in the pure water later was measured using an in-liquid particle counter, and the ground value was subtracted to obtain the amount of particles generated in the molded body. The number of particles having a particle size of 0.5 μm or more, the number of particles having a particle size of 1.0 μm or more, and the number of particles having a particle size of 2.0 μm or more were determined. The unit was expressed in pieces / cm 3 .
[製造例]炭素前駆体の製造例
 軟化点210℃、キノリン不溶分1質量%、H/C原子比0.63の石油系ピッチ68kgとナフタレン32kgとを、攪拌翼を有する内容積300リットルの耐圧容器に仕込み、温度190℃に加熱して溶解混合した後、温度80~90℃に冷却して押し出して、直径が約500μmの紐状成形体を得た。次いで、この紐状成形体を、直径と長さの比が約1.5になるように粉砕し、得られた粉砕物を温度93℃に加熱した濃度0.53質量%のポリビニルアルコール(ケン化度88%)水溶液中に投下し、撹拌分散した後に、冷却して球状ピッチ成形体を得た。
[Production Example] Production Example of Carbon Precursor A petroleum pitch of 68 kg having a softening point of 210 ° C., a quinoline insoluble content of 1% by mass, and an H / C atomic ratio of 0.63 and naphthalene of 32 kg are mixed with an internal volume of 300 liters having a stirring blade. The mixture was charged into a pressure vessel, heated to 190 ° C., dissolved and mixed, then cooled to a temperature of 80 to 90 ° C. and extruded to obtain a string-like molded body having a diameter of about 500 μm. Next, this string-like molded body was pulverized so that the ratio of diameter to length was about 1.5, and the obtained pulverized product was heated to a temperature of 93 ° C. to a polyvinyl alcohol (kenken) having a concentration of 0.53% by mass. (Degree of conversion 88%) was dropped in an aqueous solution, stirred and dispersed, and then cooled to obtain a spherical pitch formed body.
 続いて、ろ過を行って水分を除去し、球状ピッチ成形体の約6倍量のn-ヘキサンでピッチ成形体中に残存するナフタレンを抽出除去した。得られた球状ピッチ成形体を、加熱空気を通じながら、温度260℃で1時間保持して酸化処理を行い、酸化ピッチを得た。この酸化ピッチを、窒素気流中で温度580℃で1時間熱処理(焼成)した後、粉砕して、平均粒子径が約25μmの炭素前駆体粒子とした。この炭素前駆体粒子の炭素含有量は91.0質量%であった。 Subsequently, filtration was performed to remove moisture, and naphthalene remaining in the pitch formed body was extracted and removed with about 6 times as much n-hexane as the spherical pitch formed body. The resulting spherical pitch formed body was oxidized for 1 hour while being heated air at a temperature of 260 ° C. to obtain an oxidized pitch. This oxidized pitch was heat treated (baked) at a temperature of 580 ° C. for 1 hour in a nitrogen stream, and then pulverized to obtain carbon precursor particles having an average particle diameter of about 25 μm. The carbon content of the carbon precursor particles was 91.0% by mass.
 前記の炭素前駆体の体積抵抗率を以下の方法により測定した。すなわち、前記の酸化ピッチを粉砕して粒子とした後、目開き約100μmのメッシュでふるうことにより、径100μm以上の粒子を除去した。ふるいを通過した酸化ピッチ粉末13gを、断面積80cmの円筒金型に充填し、圧力196MPaで成形して円筒状の成形体を得た。この円筒状の成形体を、窒素気流中で上記の炭素前駆体粒子の製造方法における熱処理温度と同一温度である温度580℃で1時間熱処理して、炭素前駆体の体積抵抗率測定用試料(成形体)を得た。この試料について、JIS K7194に従って、体積抵抗率を測定したところ、炭素前駆体の体積抵抗率は、3×10Ω・cmであった。 The volume resistivity of the carbon precursor was measured by the following method. That is, after the oxidized pitch was pulverized into particles, the particles having a diameter of 100 μm or more were removed by sieving with a mesh having an opening of about 100 μm. 13 g of oxidized pitch powder that passed through the sieve was filled into a cylindrical mold having a cross-sectional area of 80 cm 2 and molded at a pressure of 196 MPa to obtain a cylindrical molded body. The cylindrical shaped body was heat treated in a nitrogen stream at a temperature of 580 ° C., which is the same as the heat treatment temperature in the carbon precursor particle production method, for 1 hour, and a volume resistivity measurement sample of the carbon precursor ( Molded body) was obtained. When the volume resistivity of this sample was measured according to JIS K7194, the volume resistivity of the carbon precursor was 3 × 10 7 Ω · cm.
[実施例1]
 表1に示すとおり、ポリエーテルエーテルケトン〔PEEK;ビクトレックス社製、商品名「VICTREX(登録商標)PEEK450P」、融点334℃〕80.5質量%、前記製造例により製造した炭素前駆体(体積抵抗率3×10Ω・cm、炭素含有量は91.0質量%。以下、単に「炭素前駆体」という。)17.5質量%、及びカーボンナノチューブ(平均繊維径9.5nm、平均繊維長1.5μm)2.0質量%からなる合成樹脂組成物を、タンブラーミキサーで均一にドライブレンドし、45mmφの2軸混練押出機(株式会社池貝製PCM-45)へ供給し、溶融押出を行って、ペレットを作製した。
[Example 1]
As shown in Table 1, polyether ether ketone [PEEK; manufactured by Victrex, trade name “VICTREX (registered trademark) PEEK450P”, melting point 334 ° C.] 80.5% by mass, carbon precursor produced by the above production example (volume Resistivity 3 × 10 7 Ω · cm, carbon content 91.0% by mass, hereinafter referred to simply as “carbon precursor” 17.5% by mass, and carbon nanotubes (average fiber diameter 9.5 nm, average fiber A synthetic resin composition consisting of 2.0% by mass (1.5 μm in length) is uniformly dry blended with a tumbler mixer and supplied to a 45 mmφ twin-screw kneading extruder (PCM-45, manufactured by Ikegai Co., Ltd.). To make pellets.
 上記で作製したペレットを乾燥した後、射出成形機(東芝機械株式会社製「IS-75」)を使用して射出成形することにより、合成樹脂組成物を成形してなる、多数の貫通孔を有する薄板状の射出成形体(50mm×50mm×2mm厚の射出成形板)を製造した。射出成形体は、径0.5mmの厚み方向の貫通孔を、射出成形体の面積50mm×50mm当たり400個有するものであった。この射出成形体について、表面抵抗率〔平均値、すなわち成形体の表面抵抗率、最大表面抵抗率(Max)、最小表面抵抗率(Min)、及びその比(Max/Min)〕及びパーティクル発生量(粒径0.5μm以上、同1.0μm以上、同2.0μm以上をそれぞれ計数した。)を測定した結果を表1に示す。 After drying the pellets produced above, injection molding is performed using an injection molding machine (“IS-75” manufactured by Toshiba Machine Co., Ltd.) to form a large number of through holes formed by molding the synthetic resin composition. A thin plate-like injection molded body (50 mm × 50 mm × 2 mm thick injection molded plate) was produced. The injection-molded body had 400 through holes in the thickness direction having a diameter of 0.5 mm per 50 mm × 50 mm area of the injection-molded body. About this injection-molded product, the surface resistivity [average value, ie, the surface resistivity of the molded product, the maximum surface resistivity (Max), the minimum surface resistivity (Min), and the ratio (Max / Min)] and the amount of particles generated Table 1 shows the results of measurement (particle sizes of 0.5 μm or more, 1.0 μm or more, and 2.0 μm or more were counted, respectively).
[実施例2及び3]
 合成樹脂組成物中の各成分の含有割合を、表1に示すとおりに変更したこと以外は、実施例1と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表1に示す。
[Examples 2 and 3]
An injection molded article formed by molding the synthetic resin composition was produced in the same manner as in Example 1 except that the content ratio of each component in the synthetic resin composition was changed as shown in Table 1. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[実施例4~6]
 カーボンナノチューブに代えて、カーボンナノファイバー(平均繊維径10~15nm、平均繊維長3μm)を使用したこと、及び、合成樹脂組成物中の各成分の含有割合を、表1に示すとおりに変更したこと以外は、実施例1と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表1に示す。
[Examples 4 to 6]
Instead of carbon nanotubes, carbon nanofibers (average fiber diameter of 10 to 15 nm, average fiber length of 3 μm) were used, and the content ratio of each component in the synthetic resin composition was changed as shown in Table 1. Except for this, an injection-molded article formed by molding a synthetic resin composition was produced in the same manner as in Example 1. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[実施例7]
 PEEKに代えて、ポリフェニレンスルフィド〔PPS;ポリプラスチックス株式会社製、商品名「フォートロン(登録商標)W214A」〕を使用したこと、及び、合成樹脂組成物中の各成分の含有割合を、表1に示すとおりに変更したこと以外は、実施例1と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表1に示す。
[Example 7]
Instead of PEEK, polyphenylene sulfide [PPS; manufactured by Polyplastics Co., Ltd., trade name “Fortron (registered trademark) W214A”] was used, and the content ratio of each component in the synthetic resin composition An injection molded article formed by molding the synthetic resin composition was produced in the same manner as in Example 1 except that the change was made as shown in 1. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[実施例8]
 PEEKに代えて、ポリエーテルイミド〔PEI;GEプラスチックス社製、商品名「ウルテム(登録商標)1010」、ガラス転移温度217℃〕を使用したこと、及び、合成樹脂組成物中の各成分の含有割合を、表1に示すとおりに変更したこと以外は、実施例1と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表1に示す。
[Example 8]
Instead of PEEK, polyetherimide [PEI; manufactured by GE Plastics, trade name “Ultem (registered trademark) 1010”, glass transition temperature 217 ° C.] was used, and each component in the synthetic resin composition was used. An injection molded article formed by molding the synthetic resin composition was produced in the same manner as in Example 1 except that the content ratio was changed as shown in Table 1. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[実施例9]
 PEEKに代えて、ポリエーテルスルホン〔PES;住友化学株式会社製、商品名「スミカエクセル(登録商標)PES3600G」、ガラス転移温度225℃〕を使用したこと、及び、合成樹脂組成物中の各成分の含有割合を、表1に示すとおりに変更したこと以外は、実施例1と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表1に示す。
[Example 9]
Instead of PEEK, polyether sulfone [PES; manufactured by Sumitomo Chemical Co., Ltd., trade name “Sumika Excel (registered trademark) PES3600G”, glass transition temperature 225 ° C.] was used, and each component in the synthetic resin composition An injection molded body formed by molding a synthetic resin composition was produced in the same manner as in Example 1 except that the content ratio was changed as shown in Table 1. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[実施例10]
 PEEKに代えて、ポリカーボネート〔PC;帝人化成株式会社製、商品名「パンライト(登録商標)L-1225W」、ガラス転移温度150℃〕を使用したこと、及び、合成樹脂組成物中の各成分の含有割合を、表1に示すとおりに変更したこと以外は、実施例1と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表1に示す。
[Example 10]
Instead of PEEK, polycarbonate [PC; manufactured by Teijin Chemicals Ltd., trade name “Panlite (registered trademark) L-1225W”, glass transition temperature 150 ° C.] was used, and each component in the synthetic resin composition An injection molded body formed by molding a synthetic resin composition was produced in the same manner as in Example 1 except that the content ratio was changed as shown in Table 1. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[実施例11]
 PEEKに代えて、エポキシ樹脂として、エポキシ樹脂〔三菱化学株式会社製、商品名「JER(登録商標)YX4000HK」〕52質量%及び硬化剤〔明和化成株式会社製のエポキシ樹脂用硬化剤DL-92〕48質量%からなる組成物を使用したこと、及び、合成樹脂組成物中の各成分の含有割合を、表1に示すとおりに変更したこと以外は、実施例1と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表1に示す。
[Example 11]
Instead of PEEK, epoxy resin [Mitsubishi Chemical Corporation, trade name “JER (registered trademark) YX4000HK”] 52 mass% and curing agent [Maywa Kasei Co., Ltd. epoxy resin curing agent DL-92 Synthetic resin in the same manner as in Example 1 except that the composition comprising 48% by mass was used, and the content ratio of each component in the synthetic resin composition was changed as shown in Table 1. An injection molded article formed by molding the composition was produced. Table 1 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[比較例1及び2]
 炭素前駆体を含有しないこと、及び、合成樹脂組成物中の各成分の含有割合を、表2に示すとおりに変更したこと以外は、実施例1と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表2に示す。
[Comparative Examples 1 and 2]
A synthetic resin composition was molded in the same manner as in Example 1 except that it did not contain a carbon precursor and the content ratio of each component in the synthetic resin composition was changed as shown in Table 2. An injection molded body was manufactured. Table 2 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[比較例3]
 炭素前駆体を含有しないこと、及び、合成樹脂組成物中の各成分の含有割合を、表2に示すとおりに変更したこと以外は、実施例4と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表2に示す。
[Comparative Example 3]
A synthetic resin composition was molded in the same manner as in Example 4 except that it did not contain a carbon precursor and the content ratio of each component in the synthetic resin composition was changed as shown in Table 2. An injection molded body was manufactured. Table 2 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[比較例4]
 カーボンナノチューブに代えて、炭素繊維〔PAN系炭素繊維:東邦テナックス株式会社製、商品名「テナックス(登録商標)HTA3000」、体積抵抗率10Ω・cm未満、平均繊維径7.0μm、平均繊維長80μm〕を使用したこと、及び、合成樹脂組成物中の各成分の含有割合を、表2に示すとおりに変更したこと以外は、実施例1と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表2に示す。
[Comparative Example 4]
Instead of carbon nanotubes, carbon fiber [PAN-based carbon fiber: manufactured by Toho Tenax Co., Ltd., trade name “Tenax (registered trademark) HTA3000”, volume resistivity less than 10 2 Ω · cm, average fiber diameter 7.0 μm, average fiber The synthetic resin composition was molded in the same manner as in Example 1 except that the length of 80 μm] was used and the content ratio of each component in the synthetic resin composition was changed as shown in Table 2. An injection molded body was manufactured. Table 2 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[比較例5]
 PEEKに代えて、前記のPESを使用したこと、及び、合成樹脂組成物中の各成分の含有割合を、表2に示すとおりに変更したこと以外は、比較例4と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表2に示す。
[Comparative Example 5]
Synthetic resin in the same manner as in Comparative Example 4, except that the PES was used instead of PEEK, and the content ratio of each component in the synthetic resin composition was changed as shown in Table 2. An injection molded article formed by molding the composition was produced. Table 2 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
[比較例6]
 PEEKに代えて、該PEEKと前記のPESの混合物を使用したこと、及び、合成樹脂組成物中の各成分の含有割合を、表2に示すとおりに変更したこと以外は、比較例4と同様にして、合成樹脂組成物を成形してなる射出成形体を製造した。この射出成形体について、表面抵抗率及びパーティクル発生量を測定した結果を表2に示す。
[Comparative Example 6]
It is the same as that of the comparative example 4 except having replaced with PEEK and having used the mixture of this PEEK and said PES, and having changed the content rate of each component in a synthetic resin composition as shown in Table 2. Thus, an injection molded article formed by molding the synthetic resin composition was produced. Table 2 shows the results of measuring the surface resistivity and the amount of particles generated for this injection-molded product.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から、合成樹脂(A)46~99.4質量%、体積抵抗率10~1010Ω・cmの炭素前駆体(B)0.5~40質量%、並びに、体積抵抗率10Ω・cm未満のカーボンナノチューブ及び/またはカーボンナノファイバーである導電性充填材(C)0.1~14質量%を含有する実施例1~11の合成樹脂組成物を成形してなる成形体は、
i)成形体の表面抵抗率が、4.6×10Ω/□~7.3×1011Ω/□であって、10~1012Ω/□の範囲にあることから、電子デバイスの搬送用トレーまたは容器に適した半導電性の電気特性を備えていることが確認でき、
ii)最大表面抵抗率と最小表面抵抗率との比(Max/Min)が、2~176と極めて小さいことから、成形体における表面抵抗率のバラツキが極めて少なく、電子デバイスの搬送用トレーまたは容器等の用途に使用するときに、表面抵抗率の変動、場合によっては半導電性の破壊などを生ずるおそれがないものであることが分かり、
iii)純水中でのパーティクル(粒径0.5μm以上)の発生量が、260~1,460個/cmと少なく、特に、粒径1.0μm以上のパーティクルの発生量が32~165個/cm、粒径2.0μm以上のパーティクルの発生量が4~31個/cmと極めて少なく、粗大なパーティクルの脱落がほぼ皆無に近いことから、電子デバイスの搬送用トレーまたは容器等の用途に使用するときに、脱落したパーティクルによる汚染や、表面抵抗率の変動、場合によっては半導電性の破壊などを生ずるおそれがない耐汚染性のものであることが分かった。
From Tables 1 and 2, the synthetic resin (A) 46 to 99.4% by mass, the volume resistivity 10 2 to 10 10 Ω · cm of the carbon precursor (B) 0.5 to 40% by mass, and the volume resistance The synthetic resin compositions of Examples 1 to 11 containing 0.1 to 14% by mass of a conductive filler (C) that is a carbon nanotube and / or carbon nanofiber with a rate of less than 10 2 Ω · cm are formed. The molded body is
i) Since the surface resistivity of the compact is 4.6 × 10 5 Ω / □ to 7.3 × 10 11 Ω / □ and is in the range of 10 5 to 10 12 Ω / □, the electronic device It can be confirmed that it has semi-conductive electrical characteristics suitable for the transport tray or container of
ii) Since the ratio (Max / Min) between the maximum surface resistivity and the minimum surface resistivity is extremely small, 2 to 176, there is very little variation in the surface resistivity in the molded product, and the tray or container for transporting electronic devices. It can be seen that there is no risk of surface resistivity fluctuations, in some cases, semiconductive breakdown, etc.
iii) The generation amount of particles (particle size 0.5 μm or more) in pure water is as small as 260 to 1,460 particles / cm 3, and the generation amount of particles having a particle size of 1.0 μm or more is particularly 32 to 165. pieces / cm 3, generation of higher particle size 2.0μm particles is extremely small 4 to 31 / cm 3, coarse since particles falling off is close almost no, the transport trays or containers of electronic devices When used in the above-mentioned applications, it was found that the material is resistant to contamination without causing contamination by dropped particles, fluctuation of surface resistivity, and in some cases, destruction of semiconductivity.
 また、導電性充填材(C)であるカーボンナノチューブまたはカーボンナノファイバーの含有量が、0.5~5.0質量%という極めて少量である実施例1~11の合成樹脂組成物を成形してなる成形体が、前記の優れた電気特性や耐汚染性を備えることができる結果、具体的には、PEEK、PPS、PEI、PES、PC、またはエポキシ樹脂のような合成樹脂(A)を、77.5~98.0質量%と多量に含有させることができるので、合成樹脂(A)そのものが有する優れた機械的特性や電気特性を、所望するとおりに発揮させることができ、かつ、経済性にも優れることが分かった。 In addition, the synthetic resin compositions of Examples 1 to 11 in which the content of the carbon nanotubes or carbon nanofibers as the conductive filler (C) is as small as 0.5 to 5.0% by mass were molded. As a result that the molded body can be provided with the above-described excellent electrical properties and stain resistance, specifically, a synthetic resin (A) such as PEEK, PPS, PEI, PES, PC, or epoxy resin, Since it can be contained in a large amount of 77.5 to 98.0% by mass, the excellent mechanical and electrical properties of the synthetic resin (A) itself can be exhibited as desired, and the economy It turned out that it is excellent also in property.
 これに対して、導電性充填材(C)としてカーボンナノチューブまたはカーボンナノファイバーを含有するものの、体積抵抗率10~1010Ω・cmの炭素前駆体(B)を含有しない比較例1~3の合成樹脂組成物を成形してなる成形体は、最大表面抵抗率と最小表面抵抗率との比(Max/Min)が、1,600~120,000と大きく、成形体における表面抵抗率のバラツキが大きいことから、表面抵抗率の変動、場合によっては半導電性の破壊を生ずるおそれがあることが分かった。 On the other hand, Comparative Examples 1 to 3 which contain carbon nanotubes or carbon nanofibers as the conductive filler (C) but do not contain a carbon precursor (B) having a volume resistivity of 10 2 to 10 10 Ω · cm. The molded product obtained by molding the synthetic resin composition has a ratio of maximum surface resistivity to minimum surface resistivity (Max / Min) as large as 1,600 to 120,000, and the surface resistivity of the molded product is high. It was found that due to the large variation, there was a risk of fluctuations in surface resistivity, and in some cases, semiconductive breakdown.
 また、導電性充填材としてカーボンナノチューブまたはカーボンナノファイバーを含有せず、導電性充填材である炭素繊維を22.0~24.5質量%と多量に含有する比較例4~6の、合成樹脂としてPEEKまたはPESを含有する合成樹脂組成物を成形してなる成形体は、パーティクル発生量が、2,932個/cm、4,230個/cmまたは10,000個/cm超であることから、電子デバイスの搬送用トレーまたは容器等の用途に使用するときに、脱落したパーティクルによる汚染や、表面抵抗率の変動、場合によっては半導電性の破壊などを生ずるおそれがあるものであることが分かった。 Further, the synthetic resins of Comparative Examples 4 to 6 which do not contain carbon nanotubes or carbon nanofibers as the conductive filler and contain a large amount of carbon fiber as the conductive filler at 22.0 to 24.5% by mass. molded body obtained by molding a synthetic resin composition containing the PEEK or PES as the particle generation amount is 2,932 pieces / cm 3, 4,230 pieces / cm 3 or 10,000 / cm 3 greater than in Therefore, when used in applications such as electronic device transport trays or containers, it may cause contamination by dropped particles, fluctuations in surface resistivity, and in some cases, destruction of semiconductivity. I found out.
 すなわち、合成樹脂(A)46~99.4質量%、体積抵抗率10~1010Ω・cmの炭素前駆体(B)0.5~40質量%、並びに、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)0.1~14質量%を含有する、本発明の合成樹脂組成物は、前記の炭素前駆体(B)と、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)との併用による相乗効果によって、電子デバイスの搬送用トレーまたは容器等の用途に使用するときに、脱落したパーティクルによる汚染や、表面抵抗率の変動、場合によっては半導電性の破壊などを生ずるおそれがないものである。 That is, synthetic resin (A) 46 to 99.4 mass%, volume resistivity 10 2 to 10 10 Ω · cm of carbon precursor (B) 0.5 to 40 mass%, and volume resistivity 10 2 Ω · cm. The synthetic resin composition of the present invention containing 0.1 to 14% by mass of at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers of less than cm is the carbon precursor (B). And a synergistic effect of the combined use with at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers having a volume resistivity of less than 10 2 Ω · cm. When used for the above, there is no possibility of causing contamination by the dropped particles, fluctuation of the surface resistivity, and in some cases, destruction of the semiconductive property.
 本発明の合成樹脂組成物が、成形体における表面抵抗率のバラツキが極めて少なく、パーティクル発生量が極めて少ないものとなる理由は、必ずしも明確ではないが、以下の推察ができる。すなわち、所定量の体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)と体積抵抗率10~1010Ω・cmの炭素前駆体(B)とを併用することにより、従来導電性充填材として使用されてきた炭素繊維と比較して、極めて少ない導電性充填材の配合量で、同等の半導電性を実現できる結果、脱落するパーティクル発生量が減少し、成形体における表面抵抗率の均一性も保持されるものと考えられる。 The reason why the synthetic resin composition of the present invention has a very small variation in surface resistivity in the molded body and a very small amount of particles generated is not necessarily clear, but can be presumed as follows. In other words, the carbon precursor of at least one conductive filler (C) and a volume resistivity of 10 2 ~ 10 10 Ω · cm selected from a predetermined amount of carbon nanotubes and carbon nanofibers having a volume resistivity of less than 10 2 Omega · cm By using together with (B), as compared with the carbon fiber that has been used as a conventional conductive filler, the equivalent semiconductivity can be realized with a very small amount of the conductive filler, resulting in dropout. It is considered that the amount of generated particles is reduced and the uniformity of the surface resistivity in the molded body is maintained.
 本発明によれば、合成樹脂(A)46~99.4質量%、体積抵抗率10~1010Ω・cmの炭素前駆体(B)0.5~40質量%、並びに、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)0.1~14質量%を含有する合成樹脂組成物であることにより、表面抵抗率が半導電性領域の所望の範囲内に厳密に制御されるとともに、表面抵抗率のバラツキが極めて小さく、更に異物微粒子(パーティクル)の発生量が著しく少ない合成樹脂組成物が提供されるので、産業上の利用可能性が高い。 According to the present invention, the synthetic resin (A) 46 to 99.4 mass%, the volume resistivity 10 2 to 10 10 Ω · cm of the carbon precursor (B) 0.5 to 40 mass%, and the volume resistivity By being a synthetic resin composition containing 0.1 to 14% by mass of at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers of less than 10 2 Ω · cm, the surface resistivity is half Provided is a synthetic resin composition that is strictly controlled within a desired range of the conductive region, has a very small variation in surface resistivity, and generates a very small amount of foreign particles (particles). High availability.
 また、本発明によれば、前記の合成樹脂組成物を成形してなる成形体であることによって、表面抵抗率が半導電性領域の所望の範囲内に厳密に制御されるとともに、表面抵抗率のバラツキが極めて小さく、更に異物微粒子(パーティクル)の発生量が著しく少ない成形体を得ることができるため、優れた特性を備える電子デバイスの搬送用トレーまたは容器、特に、ハードディスクドライブ部品の搬送用トレーまたは容器、中でも、磁気ヘッド用トレーまたはヘッド・ジンバル・アセンブリー(HGA)トレーを提供することができ、産業上の利用可能性が高い。 Further, according to the present invention, the surface resistivity is strictly controlled within a desired range of the semiconductive region, and the surface resistivity is obtained by molding the synthetic resin composition. As a result, it is possible to obtain a molded product with extremely small variation in the generation amount of foreign particles (particles). Therefore, a transport tray or container for electronic devices having excellent characteristics, especially a transport tray for hard disk drive components. Alternatively, a container, among others, a magnetic head tray or a head gimbal assembly (HGA) tray can be provided, which has high industrial applicability.

Claims (9)

  1.  合成樹脂(A)46~99.4質量%、体積抵抗率10~1010Ω・cmの炭素前駆体(B)0.5~40質量%、並びに、体積抵抗率10Ω・cm未満のカーボンナノチューブ及びカーボンナノファイバーから選ばれる少なくとも一種の導電性充填材(C)0.1~14質量%を含有する合成樹脂組成物。 Synthetic resin (A) 46-99.4% by mass, volume resistivity 10 2 to 10 10 Ω · cm of carbon precursor (B) 0.5-40% by mass, and volume resistivity less than 10 2 Ω · cm A synthetic resin composition containing 0.1 to 14% by mass of at least one conductive filler (C) selected from carbon nanotubes and carbon nanofibers.
  2.  合成樹脂(A)が、熱可塑性ポリエステル、ポリアリーレンスルフィド、ポリオレフィン、ポリカーボネート、ポリエーテルエーテルケトン、ポリアセタール、ポリエーテルイミド、ポリエーテルスルホン、フッ素樹脂、及びエポキシ樹脂からなる群より選ばれる少なくとも一種である請求項1記載の合成樹脂組成物。 The synthetic resin (A) is at least one selected from the group consisting of thermoplastic polyester, polyarylene sulfide, polyolefin, polycarbonate, polyether ether ketone, polyacetal, polyether imide, polyether sulfone, fluororesin, and epoxy resin. The synthetic resin composition according to claim 1.
  3.  請求項1または2記載の合成樹脂組成物を成形してなる成形体。 A molded body formed by molding the synthetic resin composition according to claim 1 or 2.
  4.  射出成形体または押出成形体である請求項3記載の成形体。 The molded article according to claim 3, which is an injection molded article or an extruded molded article.
  5.  純水中で測定した粒径0.5μm以上のパーティクル発生量が2,000個/cm以下である請求項3または4記載の成形体。 The molded product according to claim 3 or 4, wherein the amount of particles having a particle size of 0.5 µm or more measured in pure water is 2,000 particles / cm 3 or less.
  6.  最大表面抵抗率(Max)と最小表面抵抗率(Min)との比(Max/Min)で表される表面抵抗率のバラツキが1,000以下である請求項3乃至5のいずれか1項に記載の成形体。 The variation of the surface resistivity represented by the ratio (Max / Min) between the maximum surface resistivity (Max) and the minimum surface resistivity (Min) is 1,000 or less. The molded body described.
  7.  電子デバイスの搬送用トレーまたは容器である請求項3乃至6のいずれか1項に記載の成形体。 The molded body according to any one of claims 3 to 6, which is a tray or a container for transporting an electronic device.
  8.  ハードディスクドライブ部品の搬送用トレーまたは容器である請求項7記載の成形体。 The molded body according to claim 7, which is a tray or container for transporting hard disk drive components.
  9.  磁気ヘッド用トレーまたはヘッド・ジンバル・アセンブリー(HGA)トレーである請求項8記載の成形体。 The molded article according to claim 8, which is a magnetic head tray or a head gimbal assembly (HGA) tray.
PCT/JP2013/061061 2012-06-27 2013-04-12 Synthetic resin composition and moulded body WO2014002581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014522460A JPWO2014002581A1 (en) 2012-06-27 2013-04-12 Synthetic resin composition and molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-144089 2012-06-27
JP2012144089 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014002581A1 true WO2014002581A1 (en) 2014-01-03

Family

ID=49782759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061061 WO2014002581A1 (en) 2012-06-27 2013-04-12 Synthetic resin composition and moulded body

Country Status (3)

Country Link
JP (1) JPWO2014002581A1 (en)
TW (1) TW201404813A (en)
WO (1) WO2014002581A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021672A1 (en) * 2014-08-07 2016-02-11 電気化学工業株式会社 Conductive polymer material and molded article using same
JP2019012737A (en) * 2017-06-29 2019-01-24 北川工業株式会社 Electromagnetic wave absorber and electromagnetic wave shielding structure
JP2019163135A (en) * 2018-03-20 2019-09-26 セイコーエプソン株式会社 Medium processing device
WO2020230472A1 (en) * 2019-05-10 2020-11-19 東邦化成株式会社 Filter housing and filter comprising same
US20210323059A1 (en) * 2020-04-17 2021-10-21 Pukyong National University Industry-University Cooperation Foundation Method of preparing composite material for highly heat-dissipative and durable electric wiring connector, and composite material for electric wiring connector prepared thereby
US20210325449A1 (en) * 2020-04-17 2021-10-21 Pukyong National University Industry-University Cooperation Foundation Method of preparing composite material for semiconductor test socket that is highly heat-dissipative and durable, and composite material prepared thereby
JP7004106B1 (en) 2021-07-01 2022-02-10 東洋インキScホールディングス株式会社 Molded body for housing, resin composition used to form it, and masterbatch
WO2022210013A1 (en) * 2021-04-02 2022-10-06 三菱エンジニアリングプラスチックス株式会社 Resin composition and molded body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438832B2 (en) * 2015-04-22 2018-12-19 Jxtgエネルギー株式会社 Pipe molding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333474A (en) * 1995-06-07 1996-12-17 Kureha Chem Ind Co Ltd Semiconductive resin composite
JP2000290514A (en) * 1999-04-13 2000-10-17 Toyo Ink Mfg Co Ltd Conductive resin composition and manufacture thereof
JP2002080720A (en) * 2000-09-08 2002-03-19 Kureha Chem Ind Co Ltd Cassette for substrate
JP2002531660A (en) * 1998-12-09 2002-09-24 呉羽化学工業株式会社 Synthetic resin composition
JP2006324640A (en) * 2005-04-21 2006-11-30 Kureha Corp Cassette for substrates
JP2008239947A (en) * 2007-02-28 2008-10-09 Showa Denko Kk Semi-electroconductive resin composition
WO2011129024A1 (en) * 2010-04-14 2011-10-20 高橋 玄策 Electroconductive thermoplastic resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200620A (en) * 2003-12-15 2005-07-28 Bridgestone Corp Thermoplastic resin composition and thermoplastic resin molded product
KR100839173B1 (en) * 2007-03-21 2008-06-17 신일화학공업(주) Modified polyphenylene oxide resin composition comprising carbon nano tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333474A (en) * 1995-06-07 1996-12-17 Kureha Chem Ind Co Ltd Semiconductive resin composite
JP2002531660A (en) * 1998-12-09 2002-09-24 呉羽化学工業株式会社 Synthetic resin composition
JP2000290514A (en) * 1999-04-13 2000-10-17 Toyo Ink Mfg Co Ltd Conductive resin composition and manufacture thereof
JP2002080720A (en) * 2000-09-08 2002-03-19 Kureha Chem Ind Co Ltd Cassette for substrate
JP2006324640A (en) * 2005-04-21 2006-11-30 Kureha Corp Cassette for substrates
JP2008239947A (en) * 2007-02-28 2008-10-09 Showa Denko Kk Semi-electroconductive resin composition
WO2011129024A1 (en) * 2010-04-14 2011-10-20 高橋 玄策 Electroconductive thermoplastic resin

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629326B2 (en) 2014-08-07 2020-04-21 Denka Company Limited Conductive polymer material and molded article using same
JPWO2016021672A1 (en) * 2014-08-07 2017-08-03 デンカ株式会社 Conductive polymer material and molded product using the same
WO2016021672A1 (en) * 2014-08-07 2016-02-11 電気化学工業株式会社 Conductive polymer material and molded article using same
JP2019012737A (en) * 2017-06-29 2019-01-24 北川工業株式会社 Electromagnetic wave absorber and electromagnetic wave shielding structure
JP7091750B2 (en) 2018-03-20 2022-06-28 セイコーエプソン株式会社 Media processing equipment
JP2019163135A (en) * 2018-03-20 2019-09-26 セイコーエプソン株式会社 Medium processing device
WO2020230472A1 (en) * 2019-05-10 2020-11-19 東邦化成株式会社 Filter housing and filter comprising same
US20210323059A1 (en) * 2020-04-17 2021-10-21 Pukyong National University Industry-University Cooperation Foundation Method of preparing composite material for highly heat-dissipative and durable electric wiring connector, and composite material for electric wiring connector prepared thereby
US20210325449A1 (en) * 2020-04-17 2021-10-21 Pukyong National University Industry-University Cooperation Foundation Method of preparing composite material for semiconductor test socket that is highly heat-dissipative and durable, and composite material prepared thereby
US11577313B2 (en) * 2020-04-17 2023-02-14 Pukyong National University Industry-University Cooperation Foundation Method of preparing composite material for highly heat-dissipative and durable electric wiring connector, and composite material for electric wiring connector prepared thereby
US11592473B2 (en) * 2020-04-17 2023-02-28 Pukyong National University Industry-University Cooperation Foundation Method of preparing composite material for semiconductor test socket that is highly heat-dissipative and durable, and composite material prepared thereby
WO2022210013A1 (en) * 2021-04-02 2022-10-06 三菱エンジニアリングプラスチックス株式会社 Resin composition and molded body
JP7004106B1 (en) 2021-07-01 2022-02-10 東洋インキScホールディングス株式会社 Molded body for housing, resin composition used to form it, and masterbatch
WO2023276489A1 (en) * 2021-07-01 2023-01-05 東洋インキScホールディングス株式会社 Molded body for housing, resin composition for use in forming same, and masterbatch
JP2023006918A (en) * 2021-07-01 2023-01-18 東洋インキScホールディングス株式会社 Molding for housing, resin composition used for forming the same, and master batch

Also Published As

Publication number Publication date
JPWO2014002581A1 (en) 2016-05-30
TW201404813A (en) 2014-02-01

Similar Documents

Publication Publication Date Title
WO2014002581A1 (en) Synthetic resin composition and moulded body
US8653177B2 (en) Semiconductive resin composition
JP5369072B2 (en) Synthetic resin composition
JP6047569B2 (en) Nanotube and finely pulverized carbon fiber polymer composite composition and production method
US8158242B2 (en) Stock shape for machining and production process thereof
JP4971654B2 (en) PCB cassette
JP5634870B2 (en) Composite material containing carbon fiber
JP2009127038A (en) Resin composition, method for producing the same and use of the same
JP4456916B2 (en) Low-contamination injection molding
JP4548922B2 (en) Semiconductive resin composition
JP7274083B2 (en) THERMOPLASTIC RESIN COMPOSITION AND MOLDED PRODUCT FOR ELECTRICAL AND ELECTRONIC PACKAGING
JP2006137938A (en) Resin composition for carrying tray for magnetic recording head for magnetic disk, and carrying tray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810298

Country of ref document: EP

Kind code of ref document: A1