WO2000037035A1 - Desodorierende kosmetische mittel - Google Patents

Desodorierende kosmetische mittel Download PDF

Info

Publication number
WO2000037035A1
WO2000037035A1 PCT/EP1999/009837 EP9909837W WO0037035A1 WO 2000037035 A1 WO2000037035 A1 WO 2000037035A1 EP 9909837 W EP9909837 W EP 9909837W WO 0037035 A1 WO0037035 A1 WO 0037035A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
fatty
oil
alkyl
alcohols
Prior art date
Application number
PCT/EP1999/009837
Other languages
English (en)
French (fr)
Inventor
Rolf Wachter
Sabine Kühne
Jörg KAHRE
Holger Tesmann
Original Assignee
Cognis Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh filed Critical Cognis Deutschland Gmbh
Priority to JP2000589147A priority Critical patent/JP2002532528A/ja
Priority to EP99959408A priority patent/EP1139996A1/de
Publication of WO2000037035A1 publication Critical patent/WO2000037035A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/74Biological properties of particular ingredients
    • A61K2800/78Enzyme modulators, e.g. Enzyme agonists
    • A61K2800/782Enzyme inhibitors; Enzyme antagonists

Definitions

  • the present invention is in the field of cosmetic products and relates to deodorant preparations.
  • the active substances for combating body odors can be divided into several classes: the class of odor maskers includes perfumes that are used to mask or hide body odor.
  • the odor absorbers are special substances that absorb and largely retain odor-forming compounds. Examples of odor absorbers are mixtures of special, odorless fragrances or a complex zinc salt of ricinoleic acid.
  • An important class of functional compounds are the so-called anti-microbial agents.
  • active ingredients are characterized by a selective activity against the bacteria, which release the irritating odorous substances from the odorless sweat.
  • These anti-microbial agents are bacteriostatic, ie they inhibit bacterial growth without killing the bacteria themselves (no bacteriocidal properties).
  • Typical representatives of these active ingredients are chlorhexidine or triclosan.
  • Another class of active ingredients for deodorant production are the so-called enzyme inhibitors. They work by specifically inhibiting enzymes that are responsible for the development of odors. These are above all ester-splitting lipases, so-called esterases.
  • a typical representative of the esterase inhibitors is citric acid triethyl ester.
  • Antioxidants are also used as active ingredients, since it is assumed that the formation of body odor is at least partly due to the oxidation of sweat components by atmospheric oxygen. Another class of active ingredients does not inhibit the decomposition of sweat, but the development of it. Examples of these antiperspirants (synonymously antiperspirants, antiperspirants) are aluminum compounds such as aluminum sulfate or aluminum chlorohydrate. Antiperspirants thus indirectly act as deodorants by reducing sweating.
  • the invention relates to the use of cyclic dicarbonates of the formula (I)
  • R 1 and R 2 independently of one another represent hydrogen, optionally hydroxyl-substituted linear and branched alkyl radicals having 1 to 4 carbon atoms are esterase inhibitors in cosmetic preparations.
  • deodorant preparations which contain cyclic carbonates as esterase inhibitors bring about a significant reduction in odor formation and at the same time have high skin-cosmetic compatibility.
  • Cyclic carbonates are produced by transesterification of dimethyl carbonate or diethyl carbonate with glycerol or vicinal diols, preferably 1,2-dioien.
  • suitable cyclic carbonates are the transesterification products of the lower dialkyl carbonates mentioned with ethylene glycol, 1, 2-pentanediol, 1, 2-hexanediol, 1, 2-octanediol, 1,2-decanediol, 1, 2-dodecanediol and 1, 2- Hexadecanediol.
  • the diols mentioned are generally prepared by opening the corresponding terminal olefin epoxides with water; analog, of course, 1, 2-diols can also serve as starting materials, which are obtained on the basis of internal olefin epoxides.
  • the amount of cyclic carbonates used as esterase inhibitors in cosmetic products is generally from 0.01 to 5% by weight, preferably from 1 to 3% by weight, based on the composition.
  • the present invention includes the discovery that cyclic carbonates can be used in conjunction with other esterase inhibitors. In a preferred embodiment, the cyclic carbonates are used together with trialkyl citrates.
  • Trialkyl citrates such as trimethyl citrate, tripropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG) can preferably be used as further esterase inhibitors.
  • esterase inhibitors are dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, maionic acid and malonic acid diethyl ester, hydroxy acid carbonic acid and their esters, for example citric acid and its carboxylic acid, such as citric acid and its carboxylic acid, such as citric acid and hydroxycarboxylic acid, for example.
  • Zinc glycinate can also be used as an esterase inhibitor.
  • esterase inhibitors Aminobenzoic acid amides and aryl-substituted alkanoic acid derivatives and N-substituted aminomethylene malonic acid derivatives are known as esterase inhibitors. These further esterase inhibitors are usually used in amounts of from 0.01 to 20% by weight, preferably from 1 to 5% by weight. Unless otherwise stated, all weights are based on!
  • the present invention includes the finding that by using cyclic carbonates in combination with other esterase inhibitors, in particular in combination with trialkyl citrates, a synergistic inhibition of the esterases can be achieved.
  • the total amount of esterase inhibitors used is usually 0.02 to 25% by weight, based on the composition.
  • the cyclic carbonates can be used together with further deodorant active ingredients.
  • the use of aluminum chlorohydrates, anti-microbial active substances and antioxidants is particularly preferred.
  • Aluminum chlorohydrates are colorless, hygroscopic crystals that easily melt in the air and are obtained when aqueous aluminum chloride solutions are evaporated. Aluminum chlorohydrate probably works by contracting or sticking the sweat glands through protein precipitation and / or dehumidification [cf. J. Soc. Cosm. Che. 24, 281 (1973)]. For example, an aluminum chlorohydrate that corresponds to the formula [Al2 (OH) 5CI] * 2.5 H2O and whose use is particularly preferred is commercially available under the brand Locron® from Hoechst AG, Frankfurt / FRG [cf. J. Pharm. Pharmacoi. 26, 531 (1975)]. Aluminum chlorohydrates are the invention Preparations are generally added in amounts of 1 to 50% by weight, preferably 10 to 50% by weight.
  • the cyclic dicarbonates are used as esterase inhibitors in cosmetic preparations which contain the following constituents: (amounts given based on the composition)
  • the preparations according to the invention can contain known anti-microbial active substances as further additives. These generally include all suitable preservatives with a specific approach against gram-positive bacteria. Typical examples are 2,4,4 , -Trichior-2'-hydroxydiphenyl ether (triclosan, sold under the Irgasan® brand by Ciba-Geigy, Basel / CH), chlorhexidine (1,6-di- (4-chlorophenylbiguanido) - hexane) or TCC (3,4,4'-trichlorocarbanilide). Quaternary ammonium compounds are also suitable in principle. Numerous fragrances and essential oils also have antimicrobial properties.
  • Typical examples are the active ingredients eugenol, menthol and thymol in clove, mint and thyme oil.
  • An interesting natural deodorant is the terpene alcohol farnesol (3,7,11 -trimetyl-2,6, 10-dodecatrien-1 -ol), which is present in the linden blossom oil and has a lily of the valley smell.
  • Phenoxyethanol as well as glycerol monolaurate and diglycerol monocaprinate (DMC) have also proven themselves as bacteriostatics.
  • the proportion of the additional germ-inhibiting agents is usually about 0.1 to 2% by weight, based on the solids content of the preparations.
  • the cyclic carbonates can be used as esterase inhibitors in cosmetic preparations which contain chitin derivatives.
  • Chitin is understood to mean amino sugar-containing polysaccharides of the general formula (C ⁇ Hi3 05) x, which usually have molecular weights in the order of magnitude of 500,000 to 1,000,000 Daltons on average.
  • Chitins consist of chains of ⁇ -1,4-glycosidically linked N-acetyl-D-glucosamine residues.
  • Chitin derivatives are, for example, carboxymethylated chitins as described in J.Polym.Sci., Ser.B, 37, 528 (1995) or also ethoxylated, propoxylated or alkylated derivatives of chitin.
  • Chitosans are preferably used as chitin derivatives. Chemically speaking, chitosans are partially deacetylated chitins of different molecular weights that contain the following - idealized - monomer unit:
  • chitosans are cationic biopolymers under these conditions.
  • the positively charged chitosans can interact with oppositely charged surfaces and are therefore used in cosmetic hair and body care products and pharmaceuticals Preparations used (see. Ullmann 's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A6, Weinheim, Verlag Chemie, 1986, pp. 231-232).
  • Overviews on this topic have also been published, for example, by B. Gesslein et al. in HAPPI 27, 57 (1990), O.Skaugrud in Drug Cosm. Ind. 148: 24 (1991) and E. Onoyen et al.
  • chitosans is based on chitin, preferably the shell remains of crustaceans, which are available in large quantities as cheap raw materials.
  • the chitin is used in a process that was first developed by Hackmann et al. has been described, usually first deproteinized by adding bases, demineralized by adding mineral acids and finally deacetylated by adding strong bases, it being possible for the molecular weights to be distributed over a broad spectrum.
  • Appropriate methods are, for example, made from Makromol. Chem. 177, 3589 (1976) or French patent application FR-A 2701266.
  • Preferred types are those as disclosed in German patent applications DE-A1 4442987 and DE-A1 19537001 (Henkel) and which have an average molecular weight of 800,000 to 1,200,000 Daltons, a Brookfield viscosity (1% by weight in glycolic acid) below 5000 mPas, have a degree of deacetylation in the range from 80 to 88% and an ash content of less than 0.3% by weight.
  • anionically or nonionically derivatized chitosans such as carboxylation, succinylation or alkoxylation products, as described, for example, in German patent DE-C2 3713099 (LOreal) and the German patent application are also suitable for the purposes of the invention DE-A1 19604180 (Henkel).
  • cationically derivatized chitosans such as, for example, quaternized chitosans, are also suitable for the purposes of the invention.
  • the active ingredients In order to be able to apply the active ingredients to the skin in a dosed, economical, convenient and cosmetically appealing way, they are usually incorporated into the basis of the formulation.
  • the most important bases are: Alcoholic and aqueous / alcoholic solutions, emulsions, gels, oils, wax / fat masses, stick preparations and powder.
  • the preparations can each contain up to 60% by weight of lower aliphatic alcohols, preferably ethanol and organic acids such as e.g. Contain glycolic acid.
  • Other feedstocks are superfatting agents, emulsifiers, antioxidants, talc, silica (e.g.
  • the agents are preferably sold as rollers (roll-on emulsions), pens, deodorant or pump sprays, but also as deodorant soaps or deodorant creams.
  • agents can also be used as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, superfatting agents, pearlescent waxes, consistency agents, thickeners, polymers, silicone compounds, fats, waxes, stabilizers, biogenic agents, film formers, swelling agents, UV light protection factors, antioxidants, hydrotropes, Contain preservatives, solubilizers, perfume oils, dyes and the like.
  • Suitable mild, i.e. surfactants that are particularly compatible with the skin are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ether carboxylic acids, alkyl oligoglucosides, fatty acid glucamides or alkyl amide fatty acid proteins, and alkyl amide fatty acid proteins, preferably protein amide fatty acid proteins, or alkyl amide fatty acid proteins, or alkyl amide fatty acid proteins, or alkyl amido fatty acid proteins, preferably protein-based fatty acid proteins or alkyl amide fatty acid proteins, alkyl amide fatty acid proteins, and alkyl amido fatty acid proteins.
  • Guerbet alcohols based on fatty alcohols with 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C ⁇ -C ⁇ fatty acids with linear C ⁇ -C22 fatty alcohols, esters of branched C6-Ci3 carboxylic acids with linear ones are, for example, Guerbet alcohols C6-C22 fatty alcohols, esters of linear C ⁇ -C ⁇ fatty acids with branched alcohols, in particular 2-ethylhexanol, esters of hydroxycarboxylic acids with linear or branched C6-C22 fatty alcohols, in particular dioctyl malates, esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on C ⁇ -Cio fatty acids, liquid mono- / di- / triglyceride mixtures based on C ⁇ -C
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • alkyl mono- and oligoglycosides with 8 to 22 carbon atoms in the alkyl radical and their ethoxylated analogs
  • polyol and especially polyglycerol esters such as e.g. Polyglycerol polyricinoleate, polyglycerol poly-12-hydroxystearate or polyglycerol dimer isostearate. Mixtures of compounds from several of these classes of substances are also suitable;
  • partial esters based on linear, branched, unsaturated or saturated C6 / 22 fatty acids, ricinoleic acid as well as 12-hydroxystearic acid and glycerin, polyglycerin, pentaerythritol, dipentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, butyl glucoside, - coside) and polyglucosides (eg cellulose);
  • adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols, glycerol mono- and diesters as well as sorbitan mono- and diesters with fatty acids or with castor oil are known, commercially available products. mixtures whose average degree of alkoxylation corresponds to the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate with which the addition reaction is carried out.
  • Ci2 / i8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE-PS 2024051 as refatting agents for cosmetic preparations.
  • C ⁇ / i ⁇ alkyl mono- and oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyldimethylammonium glycinate, and 2-alkyl-3-ca-oxy 3-hydroxyethylimidazoiine each having 8 to 18 carbon atoms in the alkyl or acyl group, and the coconut acylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C ⁇ / i ⁇ alkyl or acyl group, contain at least one free amino group and at least one -COOH or -S ⁇ 3H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycine, N-alkylpropionic acid, N-alkylaminobutyric acid, N-alkyliminodipropionic acid, N-hydroxyethyl-N-aikylamidopropylglycine, N-alkyitaurine, N-alkyisarcosine, 2-alkylaminopropionic acid and alkylamino-bisacetic acid, each with about 8-aminoacetic acids Atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylamino propionate and Ci2 / i8-acylsarcosine.
  • quaternary emulsifiers are also suitable, those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Substances such as lanolin and lecithin as well as polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid realanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • suitable pearlescent waxes are: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atoms and
  • Suitable consistency agents are primarily fatty alcohols or hydroxyfatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxyfatty acids. A combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyiceliulose and hydroxyethylceliulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, (for example Carbopole® from Goodrich or Synthalene® from Sigma ), Polyacrylamides, polyvinyl alcohol and polyvinylpyrrolidone, surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride.
  • polysaccharides in particular xanthan gum, guar guar
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethylceliulose, which is available from Amerchol under the name Polymer JR 400®, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, such as, for example, Luviquat® (BASF) , Condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as, for example, amidomethicones, copolymers of adipic acid and dimethyldiethylhydroxy-hydroxymethylaminohydroxin (hydroxymethylaminohydroxi
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate / crotonic acid copolymers, Vinylpyirolidon / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and esters thereof, uncrosslinked and polyol-crosslinked polyacrylic acids, acrylamidopropyl / Acrylate copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyrrolidone A / ethyl acetate copolymers, vinyl pyrrolidone / dimethylaminoethyl methacrylate / vinyl caprolactam
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiioxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 9J, 27 (1976).
  • Typical examples of fats are glycerides, waxes include Beeswax, carnauba wax, candelilla wax, montan wax, paraffin wax, hydrogenated castor oils, fatty acid esters or micro waxes solid at room temperature, optionally in combination with hydrophilic waxes, e.g. Cetyl stearyl alcohol or partial glycerides in question.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate are used.
  • Biogenic active substances are, for example, tocopheroi, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary celiosis derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • Hydrotropes such as ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups. Typical examples are • glycerin;
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethyiolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides in particular those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Sugar alcohols with 5 to 12 carbon atoms such as sorbitol or mannitol,
  • Aminosugars such as glucamine.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • Perfume oils are mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angeiica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are e.g.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g.
  • the linear alkanals with 8 to 18 carbon atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g. the jonones, oc-isomethylionone and methyl cedryl ketone, to the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balms. However, preference is given to using mixtures of different fragrances which together produce an appealing fragrance.
  • Essential oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. Sage oil, chamomile oil, clove oil,
  • Lemon balm oil mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40,% by weight, based on the composition.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.
  • the esterase used in the test system can cleave the substrates p-nitrophenylacetate or p-nitropenylbuty rat due to its esterolytic activity. In addition to acetic or butyric acid, p-nitrophenol is released, which can be quantified photometrically at 410 nm.
  • glycerol carbonate inhibits the activity of the esterase (R1 to R4).
  • a known esterase inhibitor trialkyl citrate there is a synergistic inhibition of the esterase (R5).

Abstract

Vorgeschlagen wird die Verwendung von cyclischen Carbonaten als Esteraseinhibitoren in kosmetischen Mitteln. Besonders geeignet ist die Kombination von Glycerincarbonat mit Trialkylcitraten zur Herstellung von desodorierenden Mitteln.

Description

Desodorierende kosmetische Mittel
Gebiet der Erfindung
Die vorliegende Erfindung liegt auf dem Gebiet der kosmetischen Mittel und betrifft desodorierende Zubereitungen.
Stand der Technik
Im Bereich der Körperpflege werden Desodorantien zur Beseitigung störender Körpergerüche eingesetzt. Diese entstehen bei der bakteriellen Zersetzung des an sich geruchlosen Schweißes, insbesondere in den feuchtwarmen Achselhöhlen oder unter ähnlichen, den Mikroorganismen gute Lebensbedingungen bietenden Bedingungen. Die Wirkstoffe zur Bekämpfung von Körpergerüchen kann man je nach ihrer Funktion in mehrere Klassen unterteilen: in die Klasse der Geruchsüberdecker fallen Parfüme, die zur Überdeckung bzw. Kaschierung von Körpergeruch eingesetzt werden. Die Geruchsabsorber sind spezielle Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten. Beispiele für Geruchsabsorber sind Mischungen spezieller, geruchsneutraler Duftstoffe oder ein komplexes Zink-Salz der Ricinolsäure. Eine wichtige Klasse von funktioneilen Verbindungen stellen die sog. anti-mikrobielie Mittel dar. Diese Wirkstoffe zeichnen sich durch eine selektive Wirksamkeit gegenüber den Bakterien aus, die aus dem an sich geruchlosen Schweiß die störenden Geruchsstoffe freisetzen. Diese anti-mikrobiellen Wirkstoffe sind bakteriostatisch, d.h. sie hemmen das Bakterienwachstum ohne die Bakterien selbst zu töten (keine bakterioziden Eigenschaften). Typische Vertreter dieser Wirkstoffe sind Chlorhexidin oder Triclosan. Eine weitere Klasse von Wirkstoffen für die Deodorantien Herstellung sind die sog. Enzvminhibitoren. Sie wirken durch die gezielte Hemmung von Enzymen, die für die Geruchsentstehung verantwortlich sind. Dies sind vor allem esterspaltende Lipasen, sog. Esterasen. Ein typischer Vertreter der Esteraseinhibitoren ist Citronensäuretriethylester. Der genau Wirkungsmechanismus ist noch ungeklärt, man vermutet, daß die bei der Spaltung des Esters freiwerdende Citronensäure den pH-Wert der Haut senkt und damit die Aktivität der Esterasen gehemmt wird. Auch Antioxidantien werden als Wirkstoffe eingesetzt, da man annimmt, daß die Bildung des Körpergeruchs wenigstens teilweise auf Oxidation von Schweißbestandteilen durch Luftsauerstoff zurückzuführen ist. Eine weitere Klasse von Wirkstoffen hemmt nicht die Zersetzung des Schweißes sondern dessen Entstehung. Beipiele für diese Antitranspirantien (synonym Antihidrotika, Antiperspirantien) sind Aluminiumverbindungen wie Aluminiumsulfat oder Aluminiumchlorhydrat. Antitranspirantien wirken über eine Verminderung der Schweißabsonderung somit indirekt als Deodorantien. Eine Übersicht hierzu findet sich beispielsweise in Limbach (Hrsg.), „Kosmetik", S. 343 f., Thieme Verlag, Stuttgart, 1995. Aus der täglichen Lebenserfahrung ist jedoch klar, daß das Problem der Geruchsinhibierung, insbesondere bei Hitze oder körperlicher Betätigung keineswegs vollständig gelöst ist. Die Produkte des Marktes vermögen weder die Absonderung von Schweiß noch die Bildung von Gerüchen dauerhaft zu unterbinden. Vielmehr ist die Inhibierung zeitlich begrenzt und auch davon abhängig, in welchem Umfang Schweiß abgesondert wird. Demzufolge besteht ein andauerndes Bedürfnis nach Produkten, die hinsichtlich der Minimierung der Schweißabsonderung und der Verminderung der Geruchsbildung verbessert sind und dabei gleichzeitig noch eine erhöhte hautkosmetische Verträglichkeit, d.h. ein vermindertes Irritationspotential gegenüber besonders empfindlicher Haut aufweisen. Die Aufgabe der Erfindung hat somit darin bestanden, derartige Produkte zur Verfügung zu stellen.
Beschreibung der Erfindung
Gegenstand der Erfindung ist die Verwendung von cyclischen Dicarbonaten der Formel (I)
Figure imgf000004_0001
in der R1 und R2 unabhängig voneinander für Wasserstoff, gegebenenfalls hydroxysubstituierte lineare und verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen stehen als Esteraseinhibitoren in kosmetischen Zubereitungen.
Überraschenderweise wurde gefunden, daß desodorierende Zubereitungen, die cyclische Carbonate als Esteraseinhibitoren enthalten, eine deutliche Verminderung der Geruchsbildung bewirken und gleichzeitig eine hohe hautkosmetische Verträglichkeit aufweisen.
Cyclische Carbonate
Cyclische Carbonate werden durch Umesterung von Dimethylcarbonat oder Diethylcarbonat mit Glycerin oder vicinalen Diolen, vorzugsweise 1,2-Dioien hergestellt. Typische Beispiele für geeignete cyclische Carbonate sind die Umesterungsprodukte der genannten niederen Dialkylcarbonate mit Ethylenglycol, 1 ,2-Pentandiol, 1 ,2-Hexandiol, 1 ,2-Octandiol, 1,2-Decandiol, 1 ,2-Dodecandiol und 1 ,2- Hexadecandiol. Die genannten Diole werden in der Regel durch Ringöffnung der entsprechenden endständigen Olefinepoxide mit Wasser hergestellt; analog können natürlich auch 1 ,2-Diole als Ausgangsstoffe dienen, die auf Basis von innenständigen Olefinepoxiden gewonnen werden. Besonders bevorzugt als cyclisches Carbonat ist Glycerincarbonat (Ri = Wasserstoff, R∑ = CH2OH). Die Einsatzmenge der cyclischen Carbonate als Esteraseinhibitoren in kosmetischen Mitteln beträgt in der Regel 0,01 bis 5, vorzugsweise 1 bis 3 Gew.-% - bezogen auf das Mittel. Die vorliegenden Erfindung schließt die Erkenntnis mit ein, daß cyclische Carbonate zusammen mit weiteren Esteraseinhibitoren verwendet werden können. In einer bevorzugten Ausführungsform werden die cyclischen Carbonate zusammen mit Trialkylcitraten eingesetzt.
Esteraseinhibitoren
Als weitere Esteraseinhibitoren können vorzugsweise Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG) eingesetzt werden. Weitere Stoffe, die als Esteraseinhibtoren in Betracht kommen, sind Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Maionsäure und Malonsäurediethylester, Hydroxycarbonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfeisäure, Weinsäure oder Weinsaurediethylester. Des weiteren kann Zinkglycinat als Esteraseinhibitor eingesetzt werden. Aminobenzoesäureamide sowie arylsubstituierte Alkansäuerderivate und N-substituierte Aminomethylenmalonsäurederivate sind als Esteraseinhibitoren bekannt. Diese weiteren Esteraseinhibitoren werden üblicherweise in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise von 1 bis 5 Gew.-% verwendet. Alle Gewichtsangaben beziehen sich - soweit nicht anders vermerkt- auf die !
Die vorliegende Erfindung schließt die Erkenntnis mit ein, daß durch die Verwendung von cyclischen Carbonaten in Kombination mit anderen Esteraseinhibitoren, insbesondere in Kombination mit Trialkylcitraten, eine synergistische Inhibierung der Esterasen erzielt werden kann. Die Gesamtmenge der verwendeten Esteraseinhibitoren beträgt üblicherweise 0,02 bis 25 Gew.-% bezogen auf die Mittel.
In einer weiteren Ausführungsform der Erfindung können die cyclischen Carbonate zusammen mit weiteren desodorierende Wirkstoffe eingesetzt werden. Besonders bevorzugt ist der Einsatz von Aluminiumchlorhydrate, anti-mikrobiellen Wirkstoffen sowie Antioxidantien.
Aluminiumchlorhvdrate
Bei Aluminiumchlorhydraten handelt es sich um farblose, hygroskopische Kristalle, die an der Luft leicht zerfließen und beim Eindampfen wäßriger Aluminiumchloridlösungen anfallen. Aluminiumchlorhydrat wirkt wahrscheinlich über ein Zusammenziehen bzw. Verkleben der Schweißdrüsen durch Eiweißfällung und/oder Feuchtigkeitsentzug [vgl. J. Soc. Cosm. Che . 24, 281 (1973)]. Unter der Marke Locron® der Hoechst AG, Frankfurt/FRG, befindet beispielsweise sich ein Aluminiumchlorhydrat im Handel, das der Formel [Al2(OH)5CI]*2,5 H2O entspricht und dessen Einsatz besonders bevorzugt ist [vgl. J. Pharm. Pharmacoi. 26, 531 (1975)]. Aluminiumchlorhydrate werden den erfindungsgemäßen Zubereitungen in der Regel in Megen von 1 bis 50 Gew.-%, vorzugsweise von 10 bis 50 Gew.-% zugesetzt.
In einer bevorzugten Ausführungsform werden die cyclischen Dicarbonate als Esteraseinhibitoren in kosmetischen Zubereitungen eingesetzt, welche die folgenden Bestandteile enthalten: (Mengenangaben bezogen auf die Mittel)
0,01 bis 5, vorzugsweise 1 bis 3 Gew.-% cyclische Carbonate,
0,01 bis 20, vorzugsweise 0,1 bis 3 Gew.-% weitere Esteraseinhibitoren
1 bis 50, vorzugsweise 10 bis 50 Gew.-% Aluminiumchlorhydrat
Anti-mikrobielle Wirkstoffe
Die erfindungsgemäßen Zubereitungen können als weitere Zusatzstoffe bekannte anti-mikrobielle Wirkstoffe enthalten. Dazu zählen generell alle geeigneten Konservierungsmittel mit spezifischer Wikung gegen grampositive Bakterien. Typische Beispiele sind 2,4,4,-Trichior-2'-hydroxydiphenylether (Triclosan, unter der Marke Irgasan® von der Ciba-Geigy, Basel/CH vertrieben), Chlorhexidin (1,6-Di- (4-chlorphenylbiguanido)-hexan) oder TCC (3,4,4'-Trichlorcarbanilid). Ebenfalls prinzipiell geeignet sind quartäre Ammoniumverbindungen. Auch zahlreiche Riechstoffe und etherische Öle weisen antimikrobielle Eigenschaften auf. Typische Beispiele sind die Wirkstoffe Eugenol, Menthol und Thymol in Nelken-, Minz- und Thymianöl. Ein interessantes natürliches Deomittel ist der Terpenalkohol Farnesol (3,7,11 -Trimet yl-2,6, 10-dodecatrien-1 -ol) , der im Lindenblütenöl vorhanden ist und einen Maiglöckchengeruch hat. Auch Phenoxyethanol sowie Glycerinmonolaurat und Diglycerinmonocaprinat (DMC) haben sich als Bakteriostatika bewährt. Üblicherweise liegt der Anteil der zusätzlichen keimhemmenden Mittel bei etwa 0,1 bis 2 Gew.-% - bezogen auf den auf den Feststoffanteil der Zubereitungen.
In einer weiteren Ausführungsform der Erfindung können die cyclischen Carbonate als Esteraseinhibitoren in kosmetischen Zubereitungen eingesetzt werden, die Chitinderivate enthalten.
Chitinderivate
Unter Chitin sind aminozuckerhaltige Polysaccharide der allgemeinen Formel (CβHi3 05)x zu verstehen, die üblicherweise Molekulargewichte in der Größenordnung von durchschnittlich 500.000 bis 1.000.000 Dalton ausweisen. Chitine bestehen aus Ketten von ß-1 ,4-glykosidisch verknüpften N-Acetyl- D-glucosamin-Resten. Chitinderivate sind z.B. carboxymethylierte Chitine, wie in J.Polym.Sci.,Ser.B, 37, 528 (1995) beschrieben oder auch ethoxylierte, propoxylierte oder alkylierte Derivate des Chitins. Vorzugsweise werden als Chitinderivate Chitosane eingesetzt. Chemisch betrachtet handelt es sich bei Chitosanen um partiell deacetylierte Chitine unterschiedlichen Molekulargewichtes, die den folgenden - idealisierten - Monomerbaustein enthalten:
Figure imgf000007_0001
Im Gegensatz zu den meisten Hydrokolloiden, die im Bereich biologischer pH-Werte negativ geladen sind, stellen Chitosane unter diesen Bedingungen kationische Biopolymere dar. Die positiv geladenen Chitosane können mit entgegengesetzt geladenen Oberflächen in Wechselwirkung treten und werden daher in kosmetischen Haar- und Körperpflegemitteln sowie pharmazeutischen Zubereitungen eingesetzt (vgl. Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A6, Weinheim, Verlag Chemie, 1986, S. 231-232). Übersichten zu diesem Thema sind auch beispielsweise von B.Gesslein et al. in HAPPI 27, 57 (1990), O.Skaugrud in Drug Cosm.lnd. 148, 24 (1991) und E.Onsoyen et al. in Seifen-Öle-Fette-Wachse 117, 633 (1991) erschienen. Zur Herstellung der Chitosane geht man von Chitin, vorzugsweise den Schalenresten von Krustentieren aus, die als billige Rohstoffe in großen Mengen zur Verfügung stehen. Das Chitin wird dabei in einem Verfahren, das erstmals von Hackmann et al. beschrieben worden ist, üblicherweise zunächst durch Zusatz von Basen deproteiniert, durch Zugabe von Mineralsäuren demineralisiert und schließlich durch Zugabe von starken Basen deacetyliert, wobei die Molekulargewichte über ein breites Spektrum verteilt sein können. Entsprechende Verfahren sind beispielsweise aus Makromol. Chem. 177, 3589 (1976) oder der französischen Patentanmeldung FR-A 2701266 bekannt. Vorzugsweise werden solche Typen eingesetzt, wie sie in den deutschen Patentanmeldungen DE-A1 4442987 und DE-A1 19537001 (Henkel) offenbart werden und die ein durchschnittliches Molekulargewicht von 800.000 bis 1.200.000 Dalton, eine Viskosität nach Brookfield (1 Gew.-%ig in Glycolsäure) unterhalb von 5000 mPas, einen Deacetylierungsgrad im Bereich von 80 bis 88 % und einem Aschegehalt von weniger als 0,3 Gew.-% aufweisen. Neben den Chitosanen als typischen kationischen Biopolymeren kommen im Sinne der Erfindung auch anionisch bzw. nichtionisch derivatisierte Chitosane, wie z.B. Carboxylierungs-, Succinylierungs- oder Alkoxylierungsprodukte in Frage, wie sie beispielsweise in der deutschen Patentschrift DE-C2 3713099 (LOreal) sowie der deutschen Patentanmeldung DE-A1 19604180 (Henkel) beschrieben werden. Desweiteren kommen im Sinne der Erfindung auch kationisch derivatisierte Chitosane, wie z.B. quatemisierte Chitosane in Frage. Gewerbliche Anwendbarkeit
Um die Wirkstoffe auf eine dosierbare, sparsame, bequeme und kosmetisch ansprechende Weise auf die Haut applizieren zu können, werden sie üblicherweise in Rezepturgrundlagen eingearbeitet. Als wichtigste Grundlagen sind zu nennen: Alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Gele, Öle, Wachs/Fett-Massen, Stiftpräparate und Puder. So können die Zubereitungen beispielsweise jeweils bis zu 60 Gew.-% niedere aliphatische Alkohole, vorzugsweise Ethanol sowie organische Säuren wie z.B. Glycolsäure enthalten. Weitere Einsatzstoffe sind Überfettungsmittel, Emulgatoren, Antioxi-dantien, Talkum, Kieselsäure (z.B. als Träger für das Aluminiumchlorhydrat), sowie Parfumöle, etherische Öle, Farbstoffe und - für Sprayanwendungen - Treibgase wie beispielsweise Propan und/oder Butan. Die Mittel kommen vorzugsweise als Roller (Roll-on-Emulsionen), Stifte, Deo- oder Pumpsprays in den Handel, aber auch als Deo-Seifen bzw. Deo-Cremes.
Diese Mittel können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Filmbildner, Quellmittel, UV- Lichtschutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel, Solubilisatoren, Parfumöle, Farbstoffe und dergleichen enthalten.
Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpoly- glycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohienstoffatomen, Ester von linearen Cβ-C∑∑-Fettsäuren mit linearen Cβ-C22-Fet- talkoholen, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Ester von linearen Cβ-C∑∑-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hy- droxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylengly- col, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cε-Cio-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Cβ-Ciβ-Fettsäuren, Ester von Cδ-C∑∑-Fettalko- holen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten Cδ-C∑∑-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht.
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
(1) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
(2) Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
(3) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
(4) Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxy- lierte Analoga;
(5) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(6) Polyol- und insbesondere Polyglycerinester, wie z.B. Polyglycerinpolyricinoleat, Polyglycerinpoly- 12-hydroxystearat oder Polyglycerindimeratisostearat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
(7) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(8) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipentae- rythrit, Zuckeralkohole (z.B. Sorbit), Alkylglucoside (z.B. Methylglucosid, Butylglucosid, Laurylglu- cosid) sowie Polyglucoside (z.B. Cellulose);
(9) Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
(10) Wollwachsalkohole;
(11) Polysiloxan-Poiyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
(12) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 1165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin sowie
(13) Poiyalkylenglycole.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole, Glycerinmono- und -diester sowie Sorbitanmono- und -diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologen- gemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE-PS 2024051 als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Cβ/iβ-Alkylmono- und -oligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosac- chariden mit primären Alkoholen mit 8 bis 18 C-Atomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylam- moniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-ca oxylmethyl-3-hydroxyethylimidazoiine mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacyiaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cβ/iβ-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -Sθ3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N- Hydroxyethyl-N-aikylamidopropylglycine, N-Alkyitaurine, N-Alkyisarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylamino- propionat und das Ci2/i8-Acylsarcosin. Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquatemierte Difettsäuretrietha- noIaminester-Salze, besonders bevorzugt sind.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxy- lierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäu- realkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen. Als Periglanzwachse kommen beispielsweise in Frage : Alkylenglycolester, speziell Ethylengiycoldi- stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stea- rinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkohoien mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohienstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfett- säuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloiigoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Polysaccharide, insbesondere Xanthan-Gum, Guar- Guar, Agar-Agar, Alginate und Tylosen, Carboxymethyiceliulose und Hydroxyethylceliulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma), Polyacrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Geeignete kationische Polymere sind beispielsweise kationische Celluiosederivate, wie z.B. eine quaternierte Hydroxyethylceliulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Poly- glycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxy- propyl hydrolyzed collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpoiymere, wie z.B. Amidomethicone, Copolymere der Adipinsäure und Dimethyla- minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl- diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR-A 2252840 sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1 ,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol. Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyirolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobomylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, un- vernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxypro- pylmethacrylat-Copolymere, Polyvinylpyrrolidon, VinylpyrrolidonA/inylacetat-Copolymere, Vinylpyrroli- don/Dimethylaminoethylmethacrylat/Vinylcaprolactam-Teφolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
Geeignete Siliconverbindungen sind beispielsweise Dimethylpoiysiloxane, Methylphenylpolysiioxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 9J, 27 (1976).
Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. Bienenwachs, Carnaubawachs, Candelillawachs, Montanwachs, Paraffinwachs, hydriertes Ricinusöle, bei Raumtemperatur feste Fettsäureester oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen, z.B. Cetyl- stearylalkohol oder Partialglyceriden in Frage. Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Unter biogenen Wirkstoffen sind beispielsweise Tocopheroi, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säu- ren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäure- reihe, quaternäre Celiulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen. Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopro- pylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Typische Beispiele sind • Glycerin;
• Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
• technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
• Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethyiolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
• Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
• Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
• Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
• Aminozucker, wie beispielsweise Glucamin.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Para- bene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Ais Parfümöle seien genannt Gemische aus natüriichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angeiica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Bu- tylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa- licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-lsomethylionon und Me- thylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Pheny- lethyialkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl,
n Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanu- möl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Lina- lool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixoiide NP, Evernyl, Iraldein gamma, Phenylessig- säure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Beispiele
Testverfahren zur Esteraseinhibierunq
Die im Testsystem eingesetzten Esterase kann aufgrund ihrer esterolytischen Aktivität die Substrate p- Nitrophenylacetat bzw. p-N itrop enylbuty rat spalten. Dabei wird neben Essig- bzw. Buttersäure p- Nitrophenol freigesetzt, welches photometrisch bei 410 nm quantifiziert werden kann. Zur Untersuchung der Esteraseinhibierung wurden verschiedene Lösungen von Glycerincarbonat in Wasser hergestellt. Nach 15minütiger Einwirkzeit der Testgemische auf die Esterase bei pH=6 wurde deren Restaktivität im oben geschilderten Testsystem bestimmt. Parallel dazu wurde die Aktivität der Esterase (ohne Inhibitor) bestimmt. Daraus wurde die Restaktivität berechnet als
Esteraseaktivität nach Inkubation mit Glycerincarbonat
Restaktivität [%]= x 100
Esteraseaktivität ohne Inkubation mit Inhibitor
Insgesamt wurden 4 verschiedene Konzentrationen Glycerincarbonat getestet: 3%, 2%, 1% sowie 0,5 Gew.-%. Die nachfolgende Tabelle stellt die Ergebnisse dar. Zusätzlich wurden Formulierungen mit Triethylcitrat und Aluminiumchlorhydrat getestet. Alle Mengenangaben als Gew.-%.
Tabelle 1
Rezepturen und Esteraseinhibierung
Figure imgf000015_0001
Wie aus Tabelle 1 ersichtlich, hemmt Glycerincarbonat die Aktivität der Esterase (R1 bis R4). In Kombination mit einem bekannten Esteraseinhibitor Trialkylcitrat kommt es zu einer synergistischen Hemmung der Esterase (R5).

Claims

Patentansprüche
1. Verwendung von cyclischen Carbonaten der Formel (I)
Figure imgf000016_0001
in der R1 und R2 unabhängig voneinander für Wasserstoff, gegebenenfalls hydroxysubstituierte lineare und verzweigte Alkyireste mit 1 bis 4 Kohlenstoffatomen stehen, als Esteraseinhibitor in kosmetischen Zubereitungen.
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, daß man als cyclisches Carbonat Glycerincarbonat einsetzt.
3. Verwendung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man die cyclischen Carbonate zusammen mit weiteren Esteraseinhibitoren einsetzt.
4. Verwendung nach Anspruch 3, dadurch gekennzeichnet, daß als weiterer Esteraseinhibitor Trialkylcitrate eingesetzt werden.
5. Verwendung nach mindestens einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die cyclischen Carbonate zusammen mit Aluminiumchlorhydrate eingesetzt werden.
6. Verwendung nach mindestens einem der voranstehenden Ansprüche, dadurch gekennzeichnet daß die cyclischen Carbonate in Mengen von 0,01 bis 5 Gew.-% eingesetzt werden.
PCT/EP1999/009837 1998-12-21 1999-12-11 Desodorierende kosmetische mittel WO2000037035A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000589147A JP2002532528A (ja) 1998-12-21 1999-12-11 脱臭化粧品製剤
EP99959408A EP1139996A1 (de) 1998-12-21 1999-12-11 Desodorierende kosmetische mittel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19858812.7 1998-12-21
DE19858812A DE19858812A1 (de) 1998-12-21 1998-12-21 Desodorierende kosmetische Mittel

Publications (1)

Publication Number Publication Date
WO2000037035A1 true WO2000037035A1 (de) 2000-06-29

Family

ID=7891801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/009837 WO2000037035A1 (de) 1998-12-21 1999-12-11 Desodorierende kosmetische mittel

Country Status (4)

Country Link
EP (1) EP1139996A1 (de)
JP (1) JP2002532528A (de)
DE (1) DE19858812A1 (de)
WO (1) WO2000037035A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752193A1 (de) 2005-08-13 2007-02-14 Dr. Straetmans Chemische Produkte GmbH Verwendung eines oder mehrerer zyklischer 1,2-Alkylencarbonate zur Stabilisierung und Erhöhung der Wirksamkeit von Konservierungsstoffen und/oder-hilfen, sowie entsprechendes Mittel
CN103781478A (zh) * 2011-06-24 2014-05-07 艾森达制药有限公司 用以改善酯类前药吸收率的方法与改良的药学组合物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002643A1 (de) * 2000-01-21 2001-07-26 Cognis Deutschland Gmbh Desodorierende Zubereitungen
JP4406855B2 (ja) * 2000-03-17 2010-02-03 株式会社ビメーク 化粧料
DE10033022A1 (de) 2000-07-07 2002-01-17 Cognis Deutschland Gmbh Aerosole
WO2017085152A1 (en) * 2015-11-16 2017-05-26 Firmenich Sa Odor neutralizer for ammonia and primary or secondary amines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167210A (en) * 1979-06-15 1980-12-26 Kobayashi Kooc:Kk Water-containing cosmetic
JPH02302258A (ja) * 1989-05-17 1990-12-14 Yuukou Yakuhin Kogyo Kk 脱臭剤
US5284649A (en) * 1992-09-29 1994-02-08 The Procter & Gamble Company Deodorant gel sticks containing 1-hydroxy pyridinethione active
WO1997016164A1 (de) * 1995-10-28 1997-05-09 Henkel Kommanditgesellschaft Auf Aktien Desodorierende zubereitungen mit einem gehalt an kationischen biopolymeren, aluminiumchlorhydrat und esteraseinhibitoren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642874C1 (de) * 1996-10-17 1998-05-07 Henkel Kgaa Desodorierende Zubereitungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167210A (en) * 1979-06-15 1980-12-26 Kobayashi Kooc:Kk Water-containing cosmetic
JPH02302258A (ja) * 1989-05-17 1990-12-14 Yuukou Yakuhin Kogyo Kk 脱臭剤
US5284649A (en) * 1992-09-29 1994-02-08 The Procter & Gamble Company Deodorant gel sticks containing 1-hydroxy pyridinethione active
WO1997016164A1 (de) * 1995-10-28 1997-05-09 Henkel Kommanditgesellschaft Auf Aktien Desodorierende zubereitungen mit einem gehalt an kationischen biopolymeren, aluminiumchlorhydrat und esteraseinhibitoren

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 005, no. 045 (C - 048) 25 March 1981 (1981-03-25) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 080 (C - 0810) 25 February 1991 (1991-02-25) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752193A1 (de) 2005-08-13 2007-02-14 Dr. Straetmans Chemische Produkte GmbH Verwendung eines oder mehrerer zyklischer 1,2-Alkylencarbonate zur Stabilisierung und Erhöhung der Wirksamkeit von Konservierungsstoffen und/oder-hilfen, sowie entsprechendes Mittel
CN103781478A (zh) * 2011-06-24 2014-05-07 艾森达制药有限公司 用以改善酯类前药吸收率的方法与改良的药学组合物
EP2734198A1 (de) * 2011-06-24 2014-05-28 Acenda Pharma, Inc. Verfahren und verbesserte pharmazeutische zusammensetzung zur verbesserung der absorption eines esterprodrugs
EP2734198A4 (de) * 2011-06-24 2015-04-15 Acenda Pharma Inc Verfahren und verbesserte pharmazeutische zusammensetzung zur verbesserung der absorption eines esterprodrugs

Also Published As

Publication number Publication date
DE19858812A1 (de) 2000-06-29
EP1139996A1 (de) 2001-10-10
JP2002532528A (ja) 2002-10-02

Similar Documents

Publication Publication Date Title
EP1097270B1 (de) Verwendung von pit-emulsionen
DE19917743C2 (de) Desodorierende Zubereitungen
EP1002032B1 (de) Detergensgemische enthaltend esterquats, chitosan und/oder chitosanderivate und proteinhydrolysate
DE19911056B4 (de) Kosmetische Zubereitungen und deren Verwendung
EP1112058B1 (de) Verwendung von cyclischen carbonaten als feuchthaltemittel
WO2000027343A2 (de) Kosmetische und/oder pharmazeutische zubereitungen die esterquats und partialglyceride enthalten
EP1139996A1 (de) Desodorierende kosmetische mittel
WO2000021502A1 (de) Kosmetische zubereitungen
DE19858811A1 (de) Desodorierende kosmetische Mittel
WO2003068182A1 (de) Desodorierende zubereitungen mit chitosanen und/oder chitosanderivaten
EP1117758A1 (de) Syndetstückseifen
DE19828020B4 (de) Verwendung von Mischungen, enthaltend lineare Fettalkohole, 12-Hydroxystearinsäure, Fettketone und/oder Fettether als Verdickungsmittel für kosmetische Zubereitungen in Stiftform
EP1131040B1 (de) Ethanolische chitosan enthaltende kosmetische zubereitungen
DE19855956C2 (de) Sterolphosphate
EP1301073A1 (de) Verwendung von esterquats als mikrobizide wirkstoffe
WO2000027344A2 (de) Ölhaltige kosmetische zubereitungen mit einem gehalt an esterquats und fettalkohole
WO2000027355A1 (de) Verwendung von kationaktiven mischungen
WO2000061103A1 (de) Kosmetische zubereitungen
DE19956185A1 (de) Emulsionen
WO2000027354A1 (de) Verwendung von kationaktiven mischungen
WO2000001875A1 (de) Avivage zusammensetzung
EP1244417A1 (de) Verwendung von alkyl- und/oder alkenyloligoglykosid-fettsäureestern zur verbesserung der sensorischen beurteilung von emulsionen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999959408

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 589147

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09868798

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999959408

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999959408

Country of ref document: EP