WO2000026682A1 - Fiber optic current sensor - Google Patents
Fiber optic current sensor Download PDFInfo
- Publication number
- WO2000026682A1 WO2000026682A1 PCT/US1999/023945 US9923945W WO0026682A1 WO 2000026682 A1 WO2000026682 A1 WO 2000026682A1 US 9923945 W US9923945 W US 9923945W WO 0026682 A1 WO0026682 A1 WO 0026682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- polarization
- polarization converter
- current
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/032—Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
- G01R33/0322—Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/24—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
- G01R15/245—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
- G01R15/246—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect
Definitions
- the present invention pertains to fiber optic sensors and, particularly, to fiber optic current sensors.
- the sensing fiber is wound around the current carrying wire with an integral number of turns, and each point in the sensing fiber has a constant sensitivity to the magnetic field, then the rotation of the plane of polarization of the light in the fiber depends on the current being carried in the wire and is insensitive to all externally generated magnetic fields such as those caused by currents carried in nearby wires.
- the sensing optical fiber performs the line integral of the magnetic field along its path, which is proportional to the current in the wire, when that path closes on itself.
- ⁇ VNI where N is the number of turns of sensing fiber wound around the current carrying wire.
- N is the number of turns of sensing fiber wound around the current carrying wire.
- the rotation of the state of polarization of the light due to the presence of an electrical current is measured by injecting light with a well-defined linear polarization state into the sensing region, and then analyzing the polarization state of the light after it exits the sensing region.
- ⁇ represents the excess phase shift encountered by a circularly polarized light wave propagating in the sensing fiber.
- the in-line and Sagnac type current sensors disclosed in U.S. Patent No. 5,644,397, cited above may be operated in a closed loop fashion using direct digitization of the output of the preamplifier attached to the photodetector.
- the closed loop waveform may incorporate a number of different techniques, well known in the art of fiber optic gyroscopes, including dual ramp, serrodyne, and digital phase ramp. These closed loop techniques, when applied to the in-line and Sagnac type current sensor improve the sensitivity and accuracy of the sensor over that obtainable using the simpler open loop demodulation techniques.
- a loop closure scheme typically involves digitization of the output of a preamplifier attached to the photodetector output signal from an analog voltage to a digital one, via an analog-to-digital (A/D) converter in loop closure electronics.
- An A/D converter “samples”” or converts the preamplifier output to a digital signal representative of the preamp signal periodically, typically several times per half modulation cycle of the bias modulation period of the signal from a bias modulation signal generator.
- the output of the A/D converter is compared between the two half cycles with a signal indicative of current changes.
- the presence of a current change changes a loop closure waveform signal is applied to a phase modulator via a digital-to- analog (D/A) converter.
- the loop closure waveform signal used to rebalance the phase
- the sawtooth or serrodyne waveform has a gradual phase slope proportional to the electric current magnitude with a rapid flyback or reset of a multiple of 2 ⁇ phase shift in size.
- the dual ramp waveform alternates between a positive-going phase ramp and a negative-going one with the difference in the magnitude of the up-slope and the down- slope being proportional to the electric current, all ramp types are capable of reversing to indicate a reversal in the direction of the current in the conductor.
- a need has arisen for a fiber optic current sensor with much improved sensitivity.
- Certain applications require that small leakage currents be detected in systems carrying large nominal currents. Examples of such applications include detecting leakage currents in underground distribution cables and in battery charging systems. In charging systems, the detection of leakage currents can be used to provide protection against electrocution of the operator.
- the current sensor may be part of a ground-fault interrupter.
- the present invention discloses several methods of increasing the sensitivity of the in-line and Sagnac loop type current sensors.
- an optimally spun birefringent fiber is disclosed. This allows a circular state of polarization to be well maintained throughout a long length of bent fiber so that the number of turns of sensing fiber around the current carrying wire can be increased to a large number.
- a dopant such as Terbium is added to the optical fiber of the coil to increase the Verdet constant of the sensing fiber, which in turn increases the magnetic sensitivity of the coil. This is advantageously done in combination with using the optimally spun fiber.
- a Faraday rotator is used to passively bias the sensor, and the system is run closed loop using a phase nulling current passing through the sensing coil (in addition to the current to be measured which also passes through the sensing coil). This is also advantageously done in combination with either one or both of the first and second aspects of this invention.
- Figure la shows an in-line current sensor utilizing a piezoelectric birefringence modulator and open-loop signal processing together with an optimized sensing fiber.
- Figure lb shows an in-line current sensor utilizing a piezoelectric birefringence modulator and a phase nulling current based closed loop signal processing together with an optimized sensing fiber.
- Figure 2 shows the remaining power present in a circular state of polarization as the light propagates along a bent spun birefringent fiber.
- Figure 3 a shows an in-line current sensor utilizing an electrooptic birefringence modulator and electronic closed loop signal processing together with an optimized sensing fiber.
- Figure 3b shows an in-line current sensor utilizing an electrooptic birefringence modulator and a phase nulling current based closed loop signal processing together with an optimized sensing fiber.
- Figure 4 shows a Faraday rotator based passive in-line current sensor and a phase nulling current based closed loop signal processing together with an optimized sensing fiber.
- Figure 5a shows a Sagnac type current sensor utilizing a piezoelectric phase modulator and open-loop signal processing together with an optimized sensing fiber.
- Figure 5b shows a Sagnac type current sensor utilizing a piezoelectric phase modulator and a phase nulling current based closed loop signal processing together with an optimized sensing fiber.
- Figure 6a shows a Sagnac type current sensor utilizing an electrooptic phase modulator and electronic closed loop signal processing together with an optimized sensing fiber.
- Figure 6b shows a Sagnac type current sensor utilizing an electrooptic phase modulator and a phase nulling current based closed loop signal processing together with an optimized sensing fiber.
- Figure 7 shows a Faraday rotator based passive Sagnac type current sensor and a phase nulling current based closed loop signal processing together with an optimized sensing fiber.
- Figure la shows an embodiment of an in-line current sensor.
- Light from source 10 propagates through coupler 1 1 and polarizer 12 to a 45-degree splice 13, where it divides equally into the two polarization states maintained throughout the rest of the optical circuit.
- Piezoelectric birefringence modulator 14 differentially modulates the phases of the light in the two polarization states.
- Modulator 14 is driven by a modulator signal generator 71 that provides an electrical, periodic, alternating signal having either a square or sine wave.
- the light then propagates through delay line 15, through mode converter 16 which converts the two linear states of polarization into two circular states of polarization, and through optimized sensor coil 17.
- Optimized sensor coil 17 is wound around current carrying wire 18.
- the light reflects off reflective termination 19 and retraces its way through the optical circuit, finally arriving at detector 20.
- Open- loop signal processor 21 converts the detected signal to an output 22 which is indicative of the current flowing in current carrying wire 18.
- the sensor achieves its greatest sensitivity when the circular states of polarization are well maintained throughout the sensing coil. It is well known in the art that a spun birefringent fiber can preserve a circular state of polarization to some degree. However, for this invention, the concern is that the circular state of polarization be extraordinarily well maintained so that a very long length (hundreds of meters) of sensing fiber can be used. A straight spun birefringent fiber does hold a circular state of polarization over a long distance, but achieving this property is much more difficult when the fiber is bent, as is done when it is wrapped around a current carrying wire.
- Figure 2 illustrates the circular polarization holding capability of a bent spun birefringent fiber.
- the light As the light propagates down the fiber, the light oscillates in and out of the pure circular polarization state. For minimizing the power that leaves the desired circular state of polarization, it is important to optimize the ratio of the spin rate to the intrinsic polarization beat length of the fiber. If the spin rate is too fast, the intrinsic birefringence of the fiber is too well averaged and the fiber becomes very sensitive to bend induced birefringence. If the spin rate is too slow, the intrinsic birefringence is not well averaged, and the fiber does not hold a circular state of polarization for this reason.
- Numerical modeling of the characteristics of a bent spun birefringent fiber yields the result that for practical bend radii (2 to 10 cm) the optimum ratio of the spin rate to the intrinsic beat length is between 4 and 6. Minimum degradation of the circular polarization holding capability is achieved when the ratio is between 3 and 8.
- a second method of increasing the sensitivity of the sensor of figures 1, and 3-7 is to dope the fiber with a material that increases the fiber's Verdet constant. Terbium is one element that has this desired effect. Doping the fiber can be done in conjunction with optimally spinning the fiber.
- the optimized sensor coil 17 of figure la is advantageously both optimally spun and doped.
- Figure lb shows a variation of the sensor disclosed in figure la.
- a closed loop signal processor 21 ' drives a current generator 23 that produces a phase nulling current 24.
- Phase nulling current 24 passes through the optimized sensor coil 17 producing a substantially equal and opposite effect to that produced by the current in current carrying wire 18.
- Figures 3a and 3b show in-line current sensors similar to those in figures la and lb, the difference being that the piezoelectric birefringence modulators are replaced with electrooptic modulators 14'.
- Figure 3a shows a configuration where an electronic closed loop signal processor 21 " is used to provide a feedback signal to 14'. Also, the closed-loop processors connected to the modulators in this disclosure provide bias signals like that of generator 71, as note above.
- Electronic closed loop signal processor 21 " may provide a dual-ramp, serrodyne, or digital phase step closed loop signal.
- Figure 3b show a configuration similar to figure lb, where current is used to close the loop.
- Figure 4 shows a passive version of the current sensor, where Faraday rotator 30 and mode converter 31 provide a passive bias to the sensor.
- Mode converter 31 is a quarter waveplate.
- the polarization rotation provided by Faraday rotator 30 is 22.5 degrees.
- the bias phase shift to the interference pattern is four times the rotation provided by the Faraday rotator.
- the phase nulling current 24 from current generator 23, which is controlled by closed-loop signal processor 21 " " . in this configuration can be more accurate for high frequencies that are achievable for the modulated architectures of figures 1 and 3, as the bandwidth of the passive sensor is much greater.
- Figure 5a shows a Sagnac loop current sensor.
- Light from source 50 propagates through coupler 51 and polarizer 52 to loop coupler 53 where it is split and sent in two directions around the fiber loop.
- Piezoelectric phase modulator 54 provides a dynamic phase bias.
- Modulators 54 and 70 of the presently disclosed Sagnac sensors modulate the phase difference of the counter-propagating waves of a polarization state.
- the signal driving these modulators is a signal like that of generator 71.
- Mode converters 55 and 55 'convert the light to a circular state of polarization for passage through optimized sensor coil 56.
- the optimization condition for the bent spun fiber is the same for the Sagnac loop current sensor as for the in-line sensor.
- Minimum deviation of the state of polarization of the light from the circular is achieved when the ratio of the spin rate to the intrinsic polarization beat length is between 3 and 8. When this condition is achieved, a very large number of turns of sensing fiber can be wrapped around current carrying wire 57.
- the light returns through the optical circuit to detector 58.
- Open loop signal processor 59 demodulates the signal to give an output 60 that is indicative of the current flowing in current carrying wire 57.
- Figure 5b shows a variation of figure 5a, where the signal processing is now accomplished by closed loop signal processor 61 which drives a current generator 62 which in turn produces phase nulling current 63.
- Phase nulling current 63 substantially cancels the non-reciprocal phase shift produced by the current in current carrying wire 57, allowing for a very high sensitivity sensing coil to be employed.
- Figure 6a shows another version of the Sagnac loop current sensor where the polarization, loop splitter, and phase modulation functions have been combined into a single integrated optics multifunction chip 70.
- Electronic closed loop signal processor 64 provides an electronic closed loop signal to the phase modulator. This signal may be dual ramp, serrodyne or digital phase step.
- Figure 6b shows a version of the current sensor where the signal processing is accomplished by closed loop signal processor 64' which drives current generator 62 which in turn provides phase nulling current 63.
- Figure 7 shows a Sagnac loop current sensor where the phase bias is provided passively by Faraday rotator 81 surrounded by mode converters 80 and 80'.
- Mode converters 80 and 80' are advantageously quarter waveplates so that they convert linear polarization to circular polarization.
- the loop closure bandwidth of phase nulling current 63 can be much greater than in the dynamically biased versions of the sensor. This allows for greater measurement accuracy at higher frequencies.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measuring Magnetic Variables (AREA)
- Gas-Insulated Switchgears (AREA)
- Glass Compositions (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002347749A CA2347749C (en) | 1998-10-31 | 1999-10-13 | Fiber optic current sensor |
| BRPI9914931-1A BR9914931B1 (pt) | 1998-10-31 | 1999-10-13 | sensor de corrente de fibra àptica. |
| JP2000580012A JP2002529709A (ja) | 1998-10-31 | 1999-10-13 | 光ファイバ電流センサ |
| EP99971516A EP1133703B1 (en) | 1998-10-31 | 1999-10-13 | Fiber optic current sensor |
| AT99971516T ATE272221T1 (de) | 1998-10-31 | 1999-10-13 | Faseroptischer stromsensor |
| DE69919021T DE69919021T2 (de) | 1998-10-31 | 1999-10-13 | Faseroptischer stromsensor |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/183,977 US6188811B1 (en) | 1998-10-31 | 1998-10-31 | Fiber optic current sensor |
| US09/183,977 | 1998-10-31 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2000026682A1 true WO2000026682A1 (en) | 2000-05-11 |
Family
ID=22675103
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1999/023945 Ceased WO2000026682A1 (en) | 1998-10-31 | 1999-10-13 | Fiber optic current sensor |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US6188811B1 (enExample) |
| EP (1) | EP1133703B1 (enExample) |
| JP (1) | JP2002529709A (enExample) |
| AT (1) | ATE272221T1 (enExample) |
| BR (1) | BR9914931B1 (enExample) |
| CA (1) | CA2347749C (enExample) |
| DE (1) | DE69919021T2 (enExample) |
| WO (1) | WO2000026682A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6748127B2 (en) | 2002-03-13 | 2004-06-08 | Agilent Technologies, Inc. | Transmission of orthogonal circular polarizations on a fiber |
| EP3104183A1 (en) | 2015-06-10 | 2016-12-14 | Lumiker Aplicaciones Tecnologicas S.L. | Current measuring equipment based on optical fiber for measuring the current circulating through a conductor and the associated method |
| RU170319U1 (ru) * | 2016-07-28 | 2017-04-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" | Волоконно-оптическое информационно-измерительное устройство электрического тока и магнитного поля |
Families Citing this family (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2784456B1 (fr) * | 1998-10-09 | 2000-12-08 | Sextant Avionique | Dispositif de mesure de distance a effet magneto-optique et chaine de mesure incorporant ce dispositif |
| US6891622B2 (en) * | 1999-02-11 | 2005-05-10 | Kvh Industries, Inc. | Current sensor |
| WO2001063302A2 (en) | 2000-02-28 | 2001-08-30 | Kvh Industries, Inc. | Faraday-effect current sensor with improved vibration response |
| US6707558B2 (en) * | 2000-08-02 | 2004-03-16 | Kvh Industries, Inc. | Decreasing the effects of linear birefringence in a fiber-optic sensor by use of Berry's topological phase |
| US6630819B2 (en) * | 2001-02-22 | 2003-10-07 | The University Of Chicago | Magneto-optic current sensor |
| US6836334B2 (en) * | 2001-10-31 | 2004-12-28 | Kvh Industries, Inc. | Angle random walk (ARW) noise reduction in fiber optic sensors using an optical amplifier |
| US6763153B2 (en) * | 2002-04-17 | 2004-07-13 | Kvh Industries, Inc. | Apparatus and method for electronic RIN reduction in fiber-optic sensors utilizing filter with group delay |
| US7206468B2 (en) * | 2004-08-17 | 2007-04-17 | Huang Hung-Chia | Broad-band fiber-optic wave plates |
| KR100659564B1 (ko) | 2004-08-21 | 2006-12-19 | 일진전기 주식회사 | 광 전류센서 |
| US7277179B2 (en) * | 2004-12-13 | 2007-10-02 | General Electric Company | Magneto-optical sensors |
| DE102005043322B4 (de) * | 2005-09-12 | 2015-03-19 | AREVA T&D Inc. Corp. | Faseroptischer Stromsensor |
| US7633285B2 (en) * | 2006-07-31 | 2009-12-15 | Nxtphase T&D Corporation | Sensors and sensing methods for three-phase, gas insulated devices |
| US8890508B2 (en) * | 2007-05-04 | 2014-11-18 | Alstom Technology Ltd | Adaptive filters for fiber optic sensors |
| US7492977B2 (en) * | 2007-06-14 | 2009-02-17 | Yong Huang | All-fiber current sensor |
| US7679753B2 (en) * | 2007-06-26 | 2010-03-16 | Huang Hung-Chia | Passively biased fiber-optic gyroscope and current sensor |
| JP2010025766A (ja) * | 2008-07-18 | 2010-02-04 | Tokyo Electric Power Co Inc:The | 光ファイバ電流センサ、電流測定方法、及び事故区間検出装置 |
| DE112010002691B4 (de) | 2009-04-14 | 2023-01-12 | General Electric Technology Gmbh | Faltbare hochspannung isolierende säule |
| JP5756966B2 (ja) * | 2009-05-21 | 2015-07-29 | アダマンド株式会社 | 電流測定装置 |
| US20110052115A1 (en) * | 2009-08-27 | 2011-03-03 | General Electric Company | System and method for temperature control and compensation for fiber optic current sensing systems |
| DE112010003627T5 (de) | 2009-09-11 | 2012-11-22 | Alstom Grid Inc. | Faseroptische Master-Slave-Stromsensoren für Differenz-Schutzschemata |
| US8395372B2 (en) * | 2009-10-28 | 2013-03-12 | Optisense Network, Llc | Method for measuring current in an electric power distribution system |
| US9134344B2 (en) | 2009-10-28 | 2015-09-15 | Gridview Optical Solutions, Llc. | Optical sensor assembly for installation on a current carrying cable |
| US9664712B2 (en) * | 2009-12-11 | 2017-05-30 | Abb Schweiz Ag | Magneto optical current transducer with improved outage performance |
| RU2437106C2 (ru) * | 2009-12-29 | 2011-12-20 | Закрытое акционерное общество "Профотек" | Волоконно-оптический датчик тока |
| RU2451941C1 (ru) * | 2010-12-27 | 2012-05-27 | Открытое акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (ОАО "НИИ ОЭП") | Волоконно-оптический измерительный преобразователь тока |
| TWI436068B (zh) * | 2011-04-01 | 2014-05-01 | Delta Electronics Inc | 被動式交流電流感測器 |
| CN102426280B (zh) * | 2011-10-19 | 2013-07-17 | 上海大学 | 反射式萨格奈克干涉型光纤电流传感器 |
| CN102401730A (zh) * | 2011-11-21 | 2012-04-04 | 北京交通大学 | 一种自组织光纤光缆识别仪 |
| CN102608380B (zh) * | 2012-02-29 | 2013-12-11 | 曲阜师范大学 | 自感应光电混合式电流互感器 |
| CN102650524B (zh) * | 2012-04-25 | 2014-10-15 | 北京航空航天大学 | 一种基于宽谱光源双折射调制的差分双干涉式闭环光纤陀螺仪 |
| RU2497135C1 (ru) * | 2012-05-18 | 2013-10-27 | Закрытое акционерное общество "Профотек" | Способ и волоконно-оптическое устройство (варианты) для измерения величины электрического тока и магнитного поля |
| CN102721460A (zh) * | 2012-05-29 | 2012-10-10 | 北京航空航天大学 | 一种具有准互易光路的光纤水听器 |
| CN102721853A (zh) * | 2012-07-02 | 2012-10-10 | 昆明理工大学 | 基于罗氏线圈的光纤Bragg光栅电压传感器 |
| US9588150B2 (en) | 2013-03-07 | 2017-03-07 | Adamant Co., Ltd. | Electric current measuring apparatus |
| CN103777062B (zh) * | 2013-12-13 | 2017-01-25 | 国家电网公司 | 一种干涉环式全光纤电流互感器 |
| WO2015094202A1 (en) | 2013-12-18 | 2015-06-25 | Halliburton Energy Services Inc. | Fiber optic current monitoring for electromagnetic ranging |
| CN103954827A (zh) * | 2014-04-03 | 2014-07-30 | 易能乾元(北京)电力科技有限公司 | 一种光学电流传感器 |
| RU2567116C1 (ru) * | 2014-06-17 | 2015-11-10 | Закрытое акционерное общество "Профотек" | Волоконно-оптический чувствительный элемент датчика электрического тока и магнитного поля |
| DE202014009595U1 (de) | 2014-11-21 | 2016-02-23 | Alstom Technology Ltd. | Digitaler Messwandler |
| CN106199125B (zh) * | 2016-07-11 | 2019-01-15 | 国网北京经济技术研究院 | 一种新型全光纤电流互感器及其调制解调方法 |
| CN109752581B (zh) * | 2019-03-14 | 2024-07-12 | 北京交通大学 | 偏振检偏式闭环全光纤电流互感器 |
| WO2023158335A1 (ru) * | 2022-02-15 | 2023-08-24 | Общество с ограниченной ответственностью "Научно-Производственный центр "Профотек" | Волоконно-оптический датчик электрических токов мегаамперного диапазона |
| CN115638782B (zh) * | 2022-11-03 | 2024-04-09 | 哈尔滨工业大学 | 一种基于圆偏振光传输抑制光纤环热致误差的干涉式光纤陀螺 |
| CN117405961B (zh) * | 2023-12-15 | 2024-03-15 | 华中科技大学 | 一种光路微差量程等效与反馈自补偿的光纤电流测量系统 |
| JP2025127696A (ja) * | 2024-02-21 | 2025-09-02 | シチズンファインデバイス株式会社 | 磁界センサ装置 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4947107A (en) * | 1988-06-28 | 1990-08-07 | Sundstrand Corporation | Magneto-optic current sensor |
| US5400418A (en) * | 1992-12-04 | 1995-03-21 | Williams Telecommunication Group, Inc. | Polarization independent all-fiber optical circulator |
| US5553173A (en) * | 1994-03-03 | 1996-09-03 | Minnesota Mining And Manufacturing Company | Faraday-effect sensing coil with stable birefringence and method of making same |
| US5696858A (en) * | 1996-08-01 | 1997-12-09 | The Texas A&M University System | Fiber Optics apparatus and method for accurate current sensing |
Family Cites Families (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3605013A (en) * | 1968-11-16 | 1971-09-14 | Nippon Selfoc Co Ltd | Current-measuring system utilizing faraday effect element |
| CH512076A (de) | 1970-02-04 | 1971-08-31 | Bbc Brown Boveri & Cie | Magnetfeldsonde |
| US3746983A (en) * | 1970-07-20 | 1973-07-17 | Transformatoren Union Ag | Apparatus fur measuring very high currents particularly direct currents |
| DE2835794C3 (de) | 1978-08-16 | 1987-12-03 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften eV, 3400 Göttingen | Faseroptische Anordnung zur Messung der Stärke eines elektrischen Stromes |
| US4372685A (en) | 1979-01-15 | 1983-02-08 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Method and arrangement for the measurement of rotations |
| US4456376A (en) | 1981-04-06 | 1984-06-26 | Lear Siegler, Inc. | Optical rate sensor |
| US4733938A (en) | 1981-11-09 | 1988-03-29 | The Board Of Trustees Of The Leland Stanford Junior University | Magneto-optic rotator |
| US4615582A (en) | 1981-11-09 | 1986-10-07 | The Board Of Trustees Of The Leland Stanford Junior University | Magneto-optic rotator for providing additive Faraday rotations in a loop of optical fiber |
| US4545682A (en) | 1983-08-11 | 1985-10-08 | The Singer Company | Optical gyroscope |
| US4578639A (en) | 1984-03-02 | 1986-03-25 | Westinghouse Electric Corp. | Metering system for measuring parameters of high AC electric energy flowing in an electric conductor |
| US4613811A (en) | 1984-09-04 | 1986-09-23 | Westinghouse Electric Corp. | Faraday current sensor with fiber optic compensated by temperature, degradation, and linearity |
| GB8612190D0 (en) | 1986-05-20 | 1986-07-16 | Qian J R | Optical fibre apparatus |
| CH671638A5 (en) | 1986-09-05 | 1989-09-15 | Bbc Brown Boveri & Cie | Optical fibre current transducer using Sagnac interferometer - has two polarised partial beams fed through current sensor coil in opposing directions |
| US4779975A (en) | 1987-06-25 | 1988-10-25 | The Board Of Trustees Of The Leland Stanford Junior University | Interferometric sensor using time domain measurements |
| US4894608A (en) | 1987-07-22 | 1990-01-16 | Square D Company | Electric current sensor using the faraday effect |
| EP0425554A4 (en) | 1988-07-20 | 1991-11-21 | The Commonwealth Scientific And Industrial Research Organisation | An ultrasonic sensor |
| DE58905849D1 (de) | 1989-06-02 | 1993-11-11 | Litef Gmbh | Verfahren und Einrichtung zur Demodulation des Drehratensignals eines Faserkreisels. |
| US4973899A (en) | 1989-08-24 | 1990-11-27 | Sundstrand Corporation | Current sensor and method utilizing multiple layers of thin film magneto-optic material and signal processing to make the output independent of system losses |
| US5034679A (en) | 1989-12-14 | 1991-07-23 | Sundstrand Corporation | Polarization feedback control of polarization rotating sensor |
| US5051577A (en) | 1990-03-20 | 1991-09-24 | Minnesota Mining And Manufacturing Company | Faraday effect current sensor having two polarizing fibers at an acute angle |
| FR2660996B1 (fr) | 1990-04-17 | 1992-08-07 | Photonetics | Dispositif de mesure a fibre optique, gyrometre, centrale de navigation et de stabilisation, capteur de courant. |
| US5056885A (en) | 1990-05-10 | 1991-10-15 | General Electric Company | Fiber optic switch |
| FR2662245B1 (fr) | 1990-05-18 | 1994-05-20 | Photonetics | Dispositif de mesure a fibre optique, gyrometre, centrale de stabilisation et capteur de courant ou de champ magnetique. |
| US5157461A (en) | 1990-06-14 | 1992-10-20 | Smiths Industries Aerospace & Defense Systems Inc. | Interface configuration for rate sensor apparatus |
| US5063290A (en) | 1990-09-14 | 1991-11-05 | The United States Of America As Represented By The Secretary Of The Navy | All-optical fiber faraday rotation current sensor with heterodyne detection technique |
| US5677622A (en) | 1991-12-24 | 1997-10-14 | The University Of Sydney | Current sensor using a Sagnac interferometer and spun, single mode birefringent optical fiber to detect current via the Faraday effect |
| JPH06307875A (ja) | 1993-02-24 | 1994-11-04 | Sumitomo Electric Ind Ltd | 信号検出方法及び位相変調度変動の検出方法 |
| US5434501A (en) | 1994-04-29 | 1995-07-18 | The United States Of America As Represented By The Secretary Of The Navy | Polarization insensitive current and magnetic field optic sensor |
| US5598489A (en) | 1994-07-27 | 1997-01-28 | Litton Systems, Inc. | Depolarized fiber optic rotation sensor with low faraday effect drift |
| US5587791A (en) * | 1994-09-27 | 1996-12-24 | Citeq | Optical interferometric current sensor and method using a single mode birefringent waveguide and a pseudo-depolarizer for measuring electrical current |
| US5644397A (en) | 1994-10-07 | 1997-07-01 | The Texas A&M University System | Fiber optic interferometric circuit and magnetic field sensor |
| JP3231213B2 (ja) * | 1995-04-04 | 2001-11-19 | 松下電器産業株式会社 | 光センサ装置及びその製造方法 |
| DE19517128A1 (de) | 1995-05-10 | 1996-11-14 | Siemens Ag | Verfahren und Anordnung zum Messen eines magnetischen Wechselfeldes mit Off-set-Faraday-Rotation zur Temperaturkompensation |
| DE69608461T2 (de) * | 1995-10-04 | 2001-01-18 | Minnesota Mining And Mfg. Co., Saint Paul | Stromfühler mit kompensation für die temperaturabhängigkeit der verdet-konstante |
| US5729005A (en) * | 1996-07-12 | 1998-03-17 | Minnesota Mining And Manufacturing Company | Fiber optic current sensor with bend birefringence compensation |
| US5987195A (en) * | 1996-08-01 | 1999-11-16 | The Texas A&M University System | Fiber optics apparatus and method for accurate current sensing |
| US5935292A (en) * | 1997-01-08 | 1999-08-10 | 3M Innovative Properties Company | Annealing mold and retainer for making a fiber optic current sensor |
| US6023331A (en) | 1997-06-19 | 2000-02-08 | The Texas A&M University System | Fiber optic interferometric sensor and method by adding controlled amounts of circular birefringence in the sensing fiber |
| US5978084A (en) | 1997-08-26 | 1999-11-02 | The Texas A&M University System | Open loop signal processing circuit and method for a fiber optic interferometric sensor |
-
1998
- 1998-10-31 US US09/183,977 patent/US6188811B1/en not_active Expired - Lifetime
-
1999
- 1999-10-13 DE DE69919021T patent/DE69919021T2/de not_active Expired - Lifetime
- 1999-10-13 JP JP2000580012A patent/JP2002529709A/ja active Pending
- 1999-10-13 EP EP99971516A patent/EP1133703B1/en not_active Expired - Lifetime
- 1999-10-13 CA CA002347749A patent/CA2347749C/en not_active Expired - Fee Related
- 1999-10-13 AT AT99971516T patent/ATE272221T1/de not_active IP Right Cessation
- 1999-10-13 WO PCT/US1999/023945 patent/WO2000026682A1/en not_active Ceased
- 1999-10-13 BR BRPI9914931-1A patent/BR9914931B1/pt not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4947107A (en) * | 1988-06-28 | 1990-08-07 | Sundstrand Corporation | Magneto-optic current sensor |
| US5400418A (en) * | 1992-12-04 | 1995-03-21 | Williams Telecommunication Group, Inc. | Polarization independent all-fiber optical circulator |
| US5553173A (en) * | 1994-03-03 | 1996-09-03 | Minnesota Mining And Manufacturing Company | Faraday-effect sensing coil with stable birefringence and method of making same |
| US5696858A (en) * | 1996-08-01 | 1997-12-09 | The Texas A&M University System | Fiber Optics apparatus and method for accurate current sensing |
Non-Patent Citations (3)
| Title |
|---|
| DATABASE INSPEC [online] INSTITUTE OF ELECTRICAL ENGINEERS, STEVENAGE, GB; TONG YU ET AL: "Magnet-sensitive optical fiber and its application in current sensor system", XP002131302, Database accession no. 4250392 * |
| FIBER OPTIC AND LASER SENSORS IX, BOSTON, MA, USA, 3-5 SEPT. 1991, vol. 1584, Proceedings of the SPIE - The International Society for Optical Engineering, 1991, USA, pages 135 - 137, ISSN: 0277-786X * |
| QIAN J R ET AL: "SPUN LINEAR BIREFRINGENCE FIBRES AND THEIR SENSING MECHANISM IN CURRENT SENSORS WITH TEMPERATURE COMPENSATION", IEE PROCEEDINGS: OPTOELECTRONICS,GB,INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, vol. 141, no. 6, 1 December 1994 (1994-12-01), pages 373 - 380, XP000494730, ISSN: 1350-2433 * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6748127B2 (en) | 2002-03-13 | 2004-06-08 | Agilent Technologies, Inc. | Transmission of orthogonal circular polarizations on a fiber |
| EP3104183A1 (en) | 2015-06-10 | 2016-12-14 | Lumiker Aplicaciones Tecnologicas S.L. | Current measuring equipment based on optical fiber for measuring the current circulating through a conductor and the associated method |
| WO2016198575A1 (en) | 2015-06-10 | 2016-12-15 | Lumiker Aplicaciones Tecnologicas S.L. | Current measuring equipment based on optical fiber for measuring the current circulating through a conductor and the associated method |
| US10241138B2 (en) | 2015-06-10 | 2019-03-26 | Lumiker Aplicaciones Tecnologicas S.L. | Current measuring equipment and methods |
| RU170319U1 (ru) * | 2016-07-28 | 2017-04-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" | Волоконно-оптическое информационно-измерительное устройство электрического тока и магнитного поля |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2002529709A (ja) | 2002-09-10 |
| DE69919021D1 (de) | 2004-09-02 |
| BR9914931A (pt) | 2001-11-06 |
| EP1133703A1 (en) | 2001-09-19 |
| ATE272221T1 (de) | 2004-08-15 |
| US6188811B1 (en) | 2001-02-13 |
| BR9914931B1 (pt) | 2013-04-02 |
| CA2347749C (en) | 2008-12-16 |
| CA2347749A1 (en) | 2000-05-11 |
| DE69919021T2 (de) | 2005-07-28 |
| EP1133703B1 (en) | 2004-07-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6188811B1 (en) | Fiber optic current sensor | |
| US6301400B1 (en) | Fiber optic current sensor having rotation immunity | |
| US6122415A (en) | In-line electro-optic voltage sensor | |
| US8624579B2 (en) | Fiber optic current sensor | |
| US6046810A (en) | Kerr effect compensator for a fiber optic gyroscope | |
| RU2627021C2 (ru) | Оптоволоконный датчик тока со spun волокном и температурной компенсацией | |
| JP3990450B2 (ja) | 光ファイバ感知コイル用の固有周波数トラッカ | |
| JP4130730B2 (ja) | 光ファイバジャイロスコープ | |
| US5999304A (en) | Fiber optic gyroscope with deadband error reduction | |
| JP2002508061A (ja) | 光ファイバ・ジャイロスコープ振動誤差補償器 | |
| US6563589B1 (en) | Reduced minimum configuration fiber optic current sensor | |
| CN107003343A (zh) | 具有旋转的双折射感测光纤的光学传感器 | |
| JP2002504234A (ja) | 光ファイバ・ジャイロスコープ振動誤差補償器 | |
| US5587791A (en) | Optical interferometric current sensor and method using a single mode birefringent waveguide and a pseudo-depolarizer for measuring electrical current | |
| WO2007033057A2 (en) | Fiber optic current sensor | |
| Blake | Fiber optic current sensor | |
| RU2146807C1 (ru) | Способ компенсации разности фаз саньяка в кольцевом интерферометре волоконно-оптического гироскопа | |
| US20040095581A1 (en) | Method and device for current measurement by means of fibre-optic in-line sagnac interferometer and phase modulator suitable for the above | |
| WO2000031551A1 (en) | Displacement current based voltage sensor | |
| Carrara | Drift caused by phase-modulator nonlinearities in fiber gyroscopes | |
| CA2380696A1 (en) | Reduced minimum configuration fiber opic current sensor | |
| Cao et al. | A novel design of fiber-optic Sagnac current sensor | |
| RU2234680C2 (ru) | Способ стабилизации масштабного коэффициента волоконно-оптического гироскопа | |
| Hotate et al. | Comparison between flint glass fiber and twisted/bent single-mode fiber as a Faraday element in an interferometric fiber optic current sensor | |
| KR0183281B1 (ko) | 새낵형 광섬유 전류센서를 이용한 교류전류 측정장치 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE BR CA CN IL IN JP KR NO |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 580012 Kind code of ref document: A Format of ref document f/p: F |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1999971516 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1999971516 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2347749 Country of ref document: CA Ref country code: CA Ref document number: 2347749 Kind code of ref document: A Format of ref document f/p: F |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1999971516 Country of ref document: EP |