WO2000023295A1 - Groupe motopropulseur hybride - Google Patents

Groupe motopropulseur hybride Download PDF

Info

Publication number
WO2000023295A1
WO2000023295A1 PCT/FR1999/002513 FR9902513W WO0023295A1 WO 2000023295 A1 WO2000023295 A1 WO 2000023295A1 FR 9902513 W FR9902513 W FR 9902513W WO 0023295 A1 WO0023295 A1 WO 0023295A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
temperature
torque
powertrain
electric machine
Prior art date
Application number
PCT/FR1999/002513
Other languages
English (en)
Inventor
Rémi BASTIEN
Pierrick Cornet
Original Assignee
Renault
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault filed Critical Renault
Publication of WO2000023295A1 publication Critical patent/WO2000023295A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0622Air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D2041/026Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus using an external load, e.g. by increasing generator load or by changing the gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a hybrid powertrain in which the electric machine is used to regulate the temperature of the exhaust gases at an exhaust gas treatment device.
  • the invention relates more particularly to a powertrain for a motor vehicle, of the type comprising an internal combustion engine capable of driving at least one drive wheel of the vehicle and an electric machine which is capable of being used in a generator mode or according to an engine mode in which it participates in driving the vehicle, of the type in which, for certain operating states of the internal combustion engine, the latter is supplied with a so-called lean air / fuel mixture in which the air is in excess with respect to the fuel, and of the type in which the internal combustion engine comprises an exhaust circuit provided with an exhaust gas treatment device.
  • the invention will more particularly be described in the context of a particular hybrid powertrain.
  • This powertrain consists of an internal combustion engine fitted with an electric machine integrated into the flywheel.
  • the electric machine can deliver only a very small part of the maximum power of the heat engine which therefore remains the main source of driving power for the vehicle.
  • the machine is linked to the flywheel of the heat engine, that is to say that the flywheel is actually essentially constituted by the rotor of the electric machine.
  • the latter is therefore directly linked to the engine shaft of the heat engine, and it is generally interposed between the engine and a transmission member such as a gearbox.
  • the electric machine is generally a machine which can be used either in motor mode or in generator mode.
  • generator mode the electric machine then replaces the alternator to supply an electric current intended for use in the electric circuit of the vehicle or to be stored in a storage battery.
  • engine mode the electric machine is powered by current previously stored in the storage battery and it supplies an engine torque on the engine shaft, this engine torque thus adding to that of the heat engine to be transmitted. to the drive wheels of the vehicle.
  • the invention is in no way limited to such a powertrain, and can therefore be applied in all cases of hybrid powertrain in which the heat engine is capable of driving the vehicle by itself.
  • the invention is intended to apply to powertrains in which the internal combustion engine is capable of operating in lean mixture.
  • the lean mixture operation causes the formation of nitrogen oxides (NOx), molecules which it is then impossible to reduce in a conventional catalysis device because the exhaust gases then form an oxidizing medium.
  • NOx trap nitrogen oxides
  • Such a NOx storage device therefore makes it possible to store the NOx molecules produced when the engine operates with lean mixture, provided that the temperature of the device is within a certain range of temperatures, for example between 250 and 450 ° C.
  • the engine is used by supplying it with a rich fuel mixture, that is to say having an excess of fuel relative to the air, the exhaust gases then become reducing, which allows the reduction nitrogen oxides NOx, and this allows the NOx trap to be emptied so that the engine can be run again in a lean mixture.
  • NOx traps could not only store nitrogen oxides NOx, but that they could also store sulfur oxides (SOx).
  • SOx sulfur oxides
  • the storage of sulfur oxides can be done at the same temperatures as the storage and destocking of nitrogen oxides, the destocking of sulfur oxides can only be done when the exhaust gases form a reducing medium and that when the temperature of the storage device is greater than a certain temperature, for example greater than 650 °.
  • the NOx trap can fulfill its role effectively, it is therefore necessary, from time to time time, perform a purge of it to release it from sulfur oxides.
  • the temperature of the device for storing nitrogen oxides NOx is essentially dependent on the temperature and the flow rate of the exhaust gases passing through it.
  • the temperature of the exhaust gases depends essentially on the load of the engine, that is to say on the quantity of fuel which is injected at each cycle into the cylinder.
  • the load also determines the torque delivered, and it is this last parameter which is the most important because it must be constantly adjusted so to correspond as closely as possible to the torque demand which is formulated by the driver, the latter acting for example on an accelerator pedal.
  • the energy efficiency of the engine is significantly modified and, in order to obtain an increase in the temperature of the exhaust gases, it is necessary to modify the ignition advance in a sense such that the yield is diminished. Also, for the engine to supply the same torque requested by the driver, it will be necessary to use a quantity of higher fuel, at the expense of vehicle consumption.
  • the object of the invention is to propose a new design of a powertrain of the type described above, in which the heat engine and the electric machine are controlled so as to respond at all times to the demands of the driver with low fuel consumption, and by allowing, at any time, an irreproachable cleaning of exhaust gases.
  • the invention provides a powertrain of the type described above, characterized in that for certain operating states of the powertrain, the mode of use of the electric machine is determined by a powertrain management unit in order to maintain an exhaust gas temperature in the treatment device within a determined temperature range.
  • the treatment device is a device for storing the molecules of nitrogen oxides present in the exhaust gases
  • the powertrain management unit controls the electric machine in its engine mode to provide engine torque to meet the torque demand, to maintain the exhaust gas temperature within a temperature range allowing the storage of nitrogen oxides while by supplying the combustion engine with a lean mixture;
  • the combustion engine is provided with a system for direct injection of fuel into the cylinder by means of which, for certain operating states of the engine, the latter is supplied with a stratified air / fuel mixture in which the distribution of the fuel in the cylinder is not homogeneous, and in that, for certain operating states of the powertrain, the heat engine being supplied with a lean stratified mixture, and the torque demand becoming greater than a threshold value for which the temperature of the nitrogen oxides storage device becomes higher than a maximum storage temperature, the powertrain management unit controls the electric machine in its engine mode to provide engine torque so as to meet the torque demand, in order to maintain the exhaust gas temperature within a temperature range allowing the storage of nitrogen oxides while supplying the mo combustion tor with a stratified mixture;
  • the management unit controls the electric machine in its generator mode to provide a resistant torque s' opposing the engine torque supplied by the combustion engine, the latter being controlled to supply a torque equal to the sum of the torque requested by the driver with the resistive torque of the electric machine, so as to cause an increase in the temperature of the gases d 'exhaust;
  • the electric machine is controlled in its generator mode to maintain the temperature of the storage of nitrogen oxides in a temperature range allowing a purging of the sulfur oxides contained in the nitrogen oxide storage device;
  • the electric machine is controlled in its generator mode to maintain the temperature of the nitrogen oxide storage device within a temperature range allowing the storage and destocking of nitrogen oxides;
  • the combustion engine is a direct injection engine;
  • the electric machine is integrated into the flywheel of the combustion engine;
  • the combustion engine is a spark-ignition engine.
  • FIG. 1 is a schematic view illustrating a powertrain according to the invention
  • FIG. 2A to 2D are graphs illustrating the operation of an engine according to the state of the art
  • FIGS. 3A to 3D are graphs illustrating, under the same conditions, the operation of a powertrain according to the invention, optimized to limit fuel consumption and pollution;
  • FIG. 4 is a flowchart illustrating the main steps of a first method of controlling a powertrain incorporating the teachings of the invention
  • FIG. 5A to 5D are graphs illustrating the management of a powertrain according to the state of the art when it comes to raising the temperature of the gases exhaust to allow purging of sulfur oxides SOx;
  • FIGS. 6A to 6D are graphs illustrating the management of an engine according to the invention to allow the destocking of the sulfur oxides retained in the storage device.
  • FIG. 7 is a flowchart illustrating the main steps of a second method of controlling a powertrain according to the invention for ensuring the purge function.
  • FIG. 1 shows schematically a powertrain 10 of the hybrid type, more particularly a powertrain 10 consisting of a heat engine 12, for example an internal combustion engine with alternating pistons, which is provided with a machine electric 14 integrated into its flywheel.
  • the rotor 16 of the electric machine 14 is therefore integral in rotation with the motor shaft 18 of the heat engine 12 so that the electric machine 14 is interposed between the heat engine 12 and a transmission member 20 which can for example be a gearbox fitted with a clutch.
  • a central management unit 22 controls the operation of the heat engine 12 and of the electric machine 14 as a function of various parameters and in particular as a function of a torque Cd requested by the driver.
  • the driver of the vehicle manifests his request for torque by acting on an interface member such as an accelerator pedal.
  • the heat engine 12 provides a motor torque Cmot while the electric machine 14 imposes on the motor shaft Cme which is positive when the electric machine is used as a motor and which is negative when the machine electric is used as a generator.
  • the powertrain 10 supplies the transmission device with a torque Cgmp which is equal to the algebraic sum of the couples Cmot and Cme.
  • the electric machine 14 When used as a generator, the electric machine 14, the rotor 16 of which is then driven in rotation either by the motor shaft 18 or by the transmission 20, produces current which can be used by a vehicle electrical circuit or to be stored in a storage battery.
  • the heat engine 12 is an engine capable of operating with a lean mixture, that is to say a fuel mixture in which the air is in excess relative to the amount of fuel.
  • a lean mixture that is to say a fuel mixture in which the air is in excess relative to the amount of fuel.
  • the engine is used in lean mixture only for relatively low loads, that is to say relatively low torque demands of the driver, the maximum power of the engine can only be obtained with higher richnesses. or equal to the unit richness, that is to say when the fuel mixture has an excess of fuel relative to the stoichiometric equilibrium of the combustion reaction.
  • the internal combustion engine 12 is a spark-ignition engine with direct fuel injection.
  • Direct fuel injection makes it possible to use particularly poor carbide mixtures, the ignition of the mixture being favored by the fact that direct injection makes it possible to supply the engine with a stratified lean load, that is to say a charge in which the fuel which is injected into the cylinder is not homogeneously distributed therein at the time of ignition, the fuel then being grouped together as much as possible in the vicinity of the spark plug, so as to have a sufficient local concentration for the initiation of combustion.
  • a layered lean mixture can therefore allow correct operation of the engine with even less fuel, this to the benefit of the consumption of the powertrain.
  • the engine 12 is also provided with an exhaust gas pollution control system.
  • an exhaust gas pollution control system in the case of a positive-ignition engine, it comprises a three-way catalyst which makes it possible to significantly reduce the content of the exhaust gases in hydrocarbon (HC), in nitrogen oxides (NOx) and carbon monoxide (CO).
  • HC hydrocarbon
  • NOx nitrogen oxides
  • CO carbon monoxide
  • such a three-way catalyst generally works only for richness values very close to the unit value, that is to say only when the fuel mixture has the stoichiometric ratio between the quantities of air fuel introduced into the mixture for combustion.
  • the stoichiometric ratio is approximately 1 g of fuel for 14.7 g of air.
  • NOx nitrogen oxides
  • the central management unit 22 of the powertrain 10 will therefore control the heat engine 12 and the electric machine 14 so that, when the engine operates with lean mixture, the temperature of the gases exhaust such that these maintain the storage device within a temperature window between a low temperature Tmin, for example 250 °, and a high temperature Tmax, for example 450 °. Within this temperature range, NOx storage and destocking reactions can take place.
  • FIGS. 2A to 2D have illustrated a conventional method for managing the temperature of the exhaust gases in the case of an engine operating in a lean mixture.
  • the speed V of the vehicle as a function of time has been illustrated in FIG. 2A.
  • this acceleration allowing the vehicle to pass from speed V1, equal for example to 70 km / h, to speed V2, equal for example to 100 km / h , this between instants t1 and t3.
  • speed V1 equal for example to 70 km / h
  • speed V2 equal for example to 100 km / h
  • it is therefore necessary to control the heat engine 12 so that it provides additional torque allowing this acceleration.
  • FIG. 2B shows the temperature of the exhaust gases which would result from the control of the heat engine if the latter were forced to remain in operation in a lean mixture.
  • the additional torque requested from the heat engine 12, always controlled in lean mixture would cause an increase in the temperature of the exhaust gases, these being able to reach during acceleration a temperature equal to the temperature t2, for example 500 ° C, that is to say greater than the temperature Tmax for storage of nitrogen oxides. Indeed, we see on the curve that beyond the instant t2, the temperature of the exhaust gases would come to exceed 450 °.
  • FIG. 2C illustrates the richness R of the fuel mixture supplied to the engine, that, from time t2, we are forced to control the heat engine 12 according to the state of the art so that it is supplied with a stoichiometric fuel mixture, this in order to allow depollution of the exhaust gases by the three-way catalyst.
  • a change in the operation of the heat engine is harmful as regards relates to the consumption of the engine, this being due on the one hand to the fact that the efficiency of the engine is less good to the unit richness than when using a lean mixture, and this being moreover reinforced by the fact that the mode switching causes a transient phase during which the efficiency of the motor is particularly poor.
  • FIG. 2D Illustrated in FIG. 2D is the temperature variation curve of the NOx storage device when the engine is controlled according to the state of the art, in accordance with what is illustrated in FIG. 2C. It can therefore be seen that from time t2, during the changeover to stoichiometric mode, the temperature of the exhaust gases increases significantly at the level of the storage device, always to obtain the same acceleration which allows the vehicle to pass from 70 to 100 km / h. The maximum temperature can this time reach 600 ° C. and this is further reinforced by the fact that, at the unit richness, combustion of CO and HC takes place in the NOx-trap, a particularly exothermic reaction which contributes to the temperature rise.
  • this rise in temperature extends well beyond the end of the acceleration period and tends to maintain the temperature in the storage device at a temperature above the maximum storage temperature of 450 °, this although, as can be seen more particularly in FIG. 2B, it would be theoretically possible to maintain the vehicle at its new speed V2 by supplying the engine with lean mixture and then obtaining a temperature T3 of the exhaust in the storage device of approximately 430 °, temperature compatible with the storage reaction.
  • FIGS. 3A to 3D illustrate a mode of control of a powertrain according to the invention which makes it possible, during an acceleration of the type which has just been described, to keep the heat engine 12 in operation in a lean mixture, this of course without causing emission of nitrogen oxides into the atmosphere.
  • the graphs in Figures 3A and 3B are identical to those in Figures 2A and 2B.
  • FIG. 3C illustrates the mode of use of the electric machine 14.
  • the electric machine 14 is controlled to operate according to its engine mode in which it supplies engine torque to the drive wheels of the vehicle , of course by taking electrical energy previously stored in the storage battery.
  • FIG. 3C illustrates an operating state of the powertrain 10 in which, outside the acceleration period, the electric machine is used as a generator, for example to recharge the accumulator battery.
  • the electric machine 14 could be at rest, or even be used as an engine, depending on other operating parameters of the vehicle.
  • the invention resides in the fact that one of the parameters according to which the management unit 22 controls the electric machine 14 is, directly or indirectly, the temperature of the NOx storage device. Consequently, it can be seen in FIG. 3D that the temperature of the storage device remains within the temperature range for which the NOx storage reactions are possible.
  • the entire powertrain 10 delivers sufficient torque for the vehicle to accelerate as desired by the driver.
  • step 100 it can be seen in step 100 that the firstly, it is checked whether the requested torque Cd is lower or not than the threshold torque Cs defined above. If yes, then it suffices to control the heat engine 12 so that it delivers this torque Cd requested by the driver, without there being any need to modify the operating mode and the engine being able to operate in lean mixture.
  • step 1 10 the engine torque that the electric machine 14 must supply is calculated.
  • This torque Cme is equal to the difference of the torque Cd requested by the driver from which the threshold torque Cs is subtracted.
  • step 120 it is checked, in particular as a function of the state of charge of the storage battery, whether or not it is possible for the electric machine to supply this torque.
  • the powertrain 10 is controlled by the management unit 22 so that the heat engine 12 provides a torque equal to its threshold torque Cs while the electric machine 14 supplies the engine torque Cme calculated at l 'step 1 10.
  • the heat engine 12 then being supplied with a stoichiometric mixture and being controlled to supply an engine torque Cmot equal to the torque requested by the driver.
  • a method of controlling the powertrain 10 which makes it possible, in certain cases, to avoid the tilting of the thermal engine from an operating mode in lean mixture towards a mode operating in homogeneous mixture.
  • Another application case of the invention is envisaged for purging the sulfur oxides contained in the device for storing nitrogen oxides.
  • the opening angle ⁇ pap of the intake butterfly valve is increased air as shown in Figure 5C, which necessarily corresponds, given that there is a unit richness, an increase in the amount of fuel introduced at each cycle in the cylinders.
  • the central management unit controls the electric machine 14 so that, during the purge period, the machine 14 produces electric current, that is to say that it works in generator mode.
  • the electric machine 14 then absorbs a torque and the management unit 22 controls the machine 14 such so that the absorbed torque is equal to the excess of torque supplied by the engine compared to the torque requested by the driver.
  • FIG. 7 Illustrated in FIG. 7 is a flowchart illustrating the main steps of a method making it possible, according to the invention, to purge the sulfur oxides contained in the device for storing nitrogen oxides.
  • step 200 the management unit 22 of the powertrain 10 controls the heat engine so that it is supplied with a fuel mixture in stoichiometric proportions, that is to say tell unitary wealth.
  • step 210 it is checked whether the temperature T of the NOx storage device is higher or not than the minimum temperature Ts for purging sulfur oxides, that is to say about 650 °.
  • the central management unit leaves the electric machine 14 at rest and controls the heat engine so that it supplies the entire torque. CD requested by the driver. Otherwise, that is to say if the temperature T of the NOx storage device is lower than the temperature Ts of 650 °, the value of the torque Cme which the electric machine must absorb is evaluated in step 220. 14 so that the corresponding increase in the torque supplied by the heat engine is at the origin of a sufficient increase in the temperature of the exhaust gases in order to reach the necessary temperature of the NOx storage device.
  • the torque Cme is therefore a negative torque and it is checked, still in step 220, in particular as a function of the state of charge of the battery, whether it is actually possible for the electric machine 14 to absorb such a torque.
  • the heat engine is therefore controlled to supply the torque Cmot which is equal to the torque Cd requested by the driver minus the torque Cme supplied by the electric machine 14, which is negative since the electric machine 14 then absorbs power.
  • step 230 it is checked whether the temperature T of the NOx storage device is much higher than the threshold level Ts of 650 °. If so, the management unit 22 continues to control the powertrain 10 in this manner until the end of the purge operation of the sulfur oxide molecules.
  • the scope of the invention can be extended to any powertrain in which the operating mode of the electric machine is determined as a function of the operating temperature of an exhaust gas treatment device, whatever his nature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention propose un groupe motopropulseur pour un véhicule automobile, du type comportant un moteur à combustion interne et une machine électrique, du type dans lequel, pour certains états de fonctionnement du moteur à combustion interne, celui-ci est alimenté avec un mélange air/carburant dit pauvre dans lequel l'air est en excès par rapport au carburant, et du type dans lequel le moteur à combustion interne comporte un circuit d'échappement muni d'un dispositif de stockage des molécules d'oxydes d'azote présents dans les gaz d'échappement, caractérisé en ce que pour certains états de fonctionnement du groupe motopropulseur, le mode d'utilisation de la machine électrique est déterminé par une unité de gestion du groupe motopropulseur afin de maintenir une température des gaz d'échappement dans le dispositif de stockage des molécules d'oxydes d'azote à l'intérieur d'une plage de températures déterminée.

Description

Groupe motopropulseur hybride
L'invention concerne un groupe motopropulseur hybride dans lequel la machine électrique est utilisée pour réguler la température des gaz d'échappement au niveau d'un dispositif de traitement des gaz d'échappement.
L'invention se rapporte plus particulièrement à un groupe motopropulseur pour un véhicule automobile, du type comportant un moteur à combustion interne susceptible d'entraîner au moins une roue motrice du véhicule et une machine électrique qui est susceptible d'être utilisée selon un mode génératrice ou selon un mode moteur dans lequel elle participe à l'entraînement du véhicule, du type dans lequel, pour certains états de fonctionnement du moteur à combustion interne, celui-ci est alimenté avec un mélange air/carburant dit pauvre dans lequel l'air est en excès par rapport au carburant, et du type dans lequel le moteur à combustion interne comporte un circuit d'échappement muni d'un dispositif de traitement des gaz d'échappement. L'invention va plus particulièrement être décrite dans le cadre d'un groupe motopropulseur hybride particulier. Ce groupe motopropulseur est constitué d'un moteur à combustion interne muni d'une machine électrique intégrée au volant d'inertie. Dans un tel groupe, la machine électrique ne peut délivrer qu'une part très faible de la puissance maximale du moteur thermique qui reste donc la source principale de puissance motrice du véhicule. La machine est liée au volant d'inertie du moteur thermique, c'est-à-dire que le volant d'inertie est en réalité constitué pour l'essentiel par le rotor de la machine électrique. Ce dernier est donc lié directement à l'arbre moteur du moteur thermique, et il est généralement interposé entre le moteur thermique et un organe de transmission tel qu'une boîte de vitesses.
Dans ce cadre, la machine électrique est généralement une machine qui peut être utilisée soit en mode moteur, soit en mode génératrice. En mode génératrice, la machine électrique remplace alors l'alternateur pour fournir un courant électrique destiné à être utilisé dans le circuit électrique du véhicule ou à être stocké dans une batterie d'accumulateurs. Au contraire, en mode moteur, la machine électrique est alimentée par du courant précédemment stocké dans la batterie d'accumulateurs et elle fournit un couple moteur sur l'arbre moteur, ce couple moteur s'ajoutant donc à celui du moteur thermique pour être transmis aux roues motrices du véhicule.
Jusqu'à présent, il est connu d'utiliser la machine électrique en mode moteur pour démarrer le moteur thermique, pour réduire les acyclismes du moteur thermique lorsque celui- ci fonctionne au régime ralenti, ou pour fournir, pendant une brève période de temps, un complément de couple permettant par exemple de faciliter un démarrage en côte ou de faciliter un dépassement.
Toutefois, l'invention n'est en aucun cas limitée à un tel groupe motopropulseur, et pourra donc être appliquée dans tous les cas de motorisation hybride dans lesquels le moteur thermique est susceptible d'entraîner à lui seul le véhicule. L'invention est destinée à s'appliquer aux groupes motopropulseurs dans lesquels le moteur à combustion interne est susceptible de fonctionner en mélange pauvre. Le fonctionnement en mélange pauvre du moteur permet, lorsque la demande de couple du conducteur n'est pas trop importante, de limiter la consommation de carburant. Toutefois, dans le cadre d'un moteur à combustion dont les gaz d'échappement doivent être dépollués, le fonctionnement en mélange pauvre provoque la formation d'oxydes d'azote (NOx), molécules qu'il est alors impossible de réduire dans un dispositif de catalyse classique du fait que les gaz d'échappement forment alors un milieu oxydant. Aussi, pour éviter que ces oxydes d'azote ne soient rejetés dans l'atmosphère, il est connu de les stocker dans un dispositif de stockage également appelé piège à NOx ou NOx- trap.
Un tel dispositif de stockage des NOx permet donc d'emmagasiner les molécules de NOx produites lorsque le moteur fonctionne à mélange pauvre, sous réserve que la température du dispositif soit comprise à l'intérieur d'une certaine plage de températures, par exemple comprise entre 250 et 450°C. Lorsque le moteur est au contraire utilisé en l'alimentant avec un mélange carburé riche, c'est-à-dire présentant un excès de carburant par rapport à l'air, les gaz d'échappement deviennent alors réducteurs, ce qui permet la réduction des oxydes d'azote NOx, et ce qui permet de vider le piège à NOx afin de pouvoir de nouveau faire fonctionner le moteur en mélange pauvre.
Par ailleurs, il est apparu que les pièges à NOx pouvaient non seulement emmagasiner les oxydes d'azote NOx, mais qu'ils pouvaient aussi emmagasiner les oxydes de soufre (SOx). Or, si le stockage des oxydes de soufre peut se faire aux mêmes températures que le stockage et le déstockage des oxydes d'azote, le déstockage des oxydes de soufre ne peut se faire que lorsque les gaz d'échappement forment un milieu réducteur et que lorsque la température du dispositif de stockage est supérieure à une certaine température, par exemple supérieure à 650°.
Aussi, afin que le piège à NOx puisse remplir son rôle de manière efficace, il est donc nécessaire, de temps en temps, d'effectuer une purge de celui-ci pour le libérer des oxydes de soufre.
On le voit, pour assurer une dépollution complète des gaz d'échappement, il est donc nécessaire de pouvoir maîtriser la température du dispositif de stockage des oxydes d'azote NOx. Or, la température de ce dispositif est essentiellement dépendante de la température et du débit des gaz d'échappement qui le traversent.
Ainsi, pour maîtriser la température du dispositif de stockage des NOx, il est nécessaire de maîtriser la température des gaz d'échappement.
Or, la température des gaz d'échappement dépend essentiellement de la charge du moteur, c'est-à-dire de la quantité de carburant qui est injecté à chaque cycle dans le cylindre. Toutefois, on ne peut se contenter d'agir sur la charge du moteur pour faire varier la température car la charge détermine également le couple délivré, et c'est ce dernier paramètre qui est le plus important car il doit être en permanence ajusté de manière à correspondre au plus près à la demande de couple qui est formulée par le conducteur, celui-ci agissant par exemple sur une pédale d'accélérateur.
Aussi, dans l'art antérieur, il est proposé de pouvoir modifier la température des gaz d'échappement sans modifier le couple fourni par le moteur, en jouant notamment sur l'avance à l'allumage.
Or, en modifiant l'avance à l'allumage, on modifie de manière importante le rendement énergétique du moteur et, pour obtenir une augmentation de la température des gaz d'échappement, on est obligé de modifier l'avance à l'allumage dans un sens tel que le rendement s'en trouve diminué. Aussi, pour que le moteur fournisse un même couple demandé par le conducteur, il sera nécessaire d'utiliser une quantité de carburant plus importante, au détriment de la consommation du véhicule.
De ce fait, l'invention a pour objet de proposer une nouvelle conception d'un groupe motopropulseur du type décrit précédemment, dans lequel le moteur thermique et la machine électrique sont commandés de manière à répondre à tout moment aux sollicitations du conducteur avec une faible consommation de carburant, et en permettant, à tout moment, une dépollution irréprochable des gaz d'échappement. Dans ce but, l'invention propose un groupe motopropulseur du type décrit précédemment, caractérisé en ce que pour certains états de fonctionnement du groupe motopropulseur, le mode d'utilisation de la machine électrique est déterminé par une unité de gestion du groupe motopropulseur afin de maintenir une température des gaz d'échappement dans le dispositif de traitement à l'intérieur d'une plage de températures déterminée.
Selon d'autres caractéristiques de l'invention :
- le dispositif de traitement est un dispositif stockage des molécules d'oxydes d'azote présentes dans les gaz d'échappement ;
- pour certains états de fonctionnement du groupe motopropulseur, le moteur thermique étant alimenté avec un mélange pauvre, et la demande de couple devenant supérieure à une valeur de seuil pour laquelle la température du dispositif de stockage des oxydes d'azote devient supérieure à une température maximale de stockage, l'unité de gestion du groupe motopropulseur commande la machine électrique dans son mode moteur pour fournir un couple moteur de manière à répondre à la demande de couple, afin de maintenir la température des gaz d'échappement dans une plage de températures permettant le stockage des oxydes d'azote tout en alimentant le moteur à combustion avec un mélange pauvre ;
- le moteur à combustion est pourvu d'un système d'injection directe du carburant dans le cylindre grâce auquel, pour certains états de fonctionnement du moteur, celui-ci est alimenté avec un mélange air/carburant stratifié dans lequel la répartition du carburant dans le cylindre n'est pas homogène, et en ce que, pour certains états de fonctionnement du groupe motopropulseur, le moteur thermique étant alimenté avec un mélange pauvre stratifié, et la demande de couple devenant supérieure à une valeur de seuil pour laquelle la température du dispositif de stockage des oxydes d'azote devient supérieure à une température maximale de stockage, l'unité de gestion du groupe motopropulseur commande la machine électrique dans son mode moteur pour fournir un couple moteur de manière à répondre à la demande de couple, afin de maintenir la température des gaz d'échappement dans une plage de températures permettant le stockage des oxydes d'azote tout en alimentant le moteur à combustion avec un mélange stratifié ;
- pour certains états de fonctionnement du moteur, pour maintenir la température du dispositif de stockage des oxydes d'azote au dessus d'une température minimale, l'unité de gestion commande la machine électrique dans son mode génératrice pour fournir un couple résistant s'opposant au couple moteur fourni par le moteur à combustion, ce dernier étant commandé pour fournir un couple égal à la somme du couple demandé par le conducteur avec le couple résistant de la machine électrique, de manière à provoquer une augmentation de la température des gaz d'échappement ;
- la machine électrique est commandée dans son mode génératrice pour maintenir la température du dispositif de stockage des oxydes d'azote dans une plage de températures permettant une purge des oxydes de souffre contenus dans le dispositif de stockage des oxydes d'azote ;
- la machine électrique est commandée dans son mode génératrice pour maintenir la température du dispositif de stockage des oxydes d'azote dans une plage de températures permettant le stockage et le déstockage des oxydes d'azote ;
- le moteur à combustion est un moteur à injection directe ; - la machine électrique est intégrée au volant d'inertie du moteur à combustion ;
- le moteur à combustion est un moteur à allumage commandé.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique illustrant un groupe motopropulseur selon l'invention ; - les figures 2A à 2D sont des graphes illustrant le fonctionnement d'un moteur selon l'état de la technique ;
- les figures 3A à 3D sont des graphes illustrant, dans les mêmes conditions, le fonctionnement d'un groupe motopropulseur selon l'invention, optimisé pour limiter la consommation de carburant et la pollution ;
- la figure 4 est un organigramme illustrant les principales étapes d'un premier procédé de commande d'un groupe motopropulseur intégrant les enseignements de l'invention ; - les figures 5A à 5D sont des graphes illustrant la gestion d'un groupe motopropulseur selon l'état de la technique lorsqu'il s'agit d'élever la température des gaz d'échappement pour permettre une purge des oxydes de soufre SOx ;
- les figures 6A à 6D sont des graphes illustrant la gestion d'un moteur selon l'invention pour permettre le déstockage des oxydes de soufre retenus dans le dispositif de stockage ; et
- la figure 7 est un organigramme illustrant les principales étapes d'un second procédé de commande d'un groupe motopropulseur selon l'invention permettant d'assurer la fonction de purge.
On a représenté sur la figure 1 de manière schématique un groupe motopropulseur 10 de type hybride, plus particulièrement un groupe motopropulseur 10 constitué d'un moteur thermique 12, par exemple un moteur à combustion interne à pistons alternés, qui est muni d'une machine électrique 14 intégrée à son volant d'inertie. Le rotor 16 de la machine électrique 14 est donc solidaire en rotation de l'arbre moteur 18 du moteur thermique 12 de sorte que la machine électrique 14 se trouve interposée entre le moteur thermique 12 et un organe de transmission 20 qui peut par exemple être une boîte de vitesses munie d'un embrayage.
Une unité centrale de gestion 22 commande le fonctionnement du moteur thermique 12 et de la machine électrique 14 en fonction de divers paramètres et notamment en fonction d'un couple Cd demandé par le conducteur.
Le conducteur du véhicule manifeste sa demande de couple en agissant sur un organe d'interface tel qu'une pédale d'accélérateur.
Le moteur thermique 12 fournit un couple moteur Cmot tandis que la machine électrique 14 impose à l'arbre moteur Cme qui est positif lorsque la machine électrique est utilisée en tant que moteur et qui est négatif lorsque la machine électrique est utilisée en tant que génératrice. Ainsi, le groupe motopropulseur 10 fournit au dispositif de transmission un couple Cgmp qui est égale à la somme algébrique des couples Cmot et Cme. Lorsqu'elle est utilisée en tant que génératrice, la machine électrique 14, dont le rotor 16 est alors entraîné en rotation soit par l'arbre moteur 18, soit par la transmission 20, produit du courant qui est susceptible d'être utilisé par un circuit électrique du véhicule ou d'être stocké dans une batterie d'accumulateurs.
Conformément aux enseignements de l'invention, le moteur thermique 12 est un moteur susceptible de fonctionner avec un mélange pauvre, c'est-à-dire un mélange carburé dans lequel l'air se trouve en excès par rapport à la quantité de carburant. Bien entendu, le moteur n'est utilisé en mélange pauvre que pour des charges relativement faibles, c'est-à-dire des demandes de couple relativement faibles du conducteur, la puissance maximale du moteur ne pouvant être obtenue qu'avec des richesses supérieures ou égales à la richesse unitaire, c'est-à-dire lorsque le mélange carburé présente un excès de carburant par rapport à l'équilibre stoechiométrique de la réaction de combustion.
Dans le mode de réalisation préféré de l'invention, le moteur à combustion interne 12 est un moteur à allumage commandé et à injection directe de carburant.
L'injection directe de carburant permet d'utiliser des mélanges carbures particulièrement pauvres, l'inflammation du mélange étant favorisée par le fait que l'injection directe permet d'alimenter le moteur avec une charge pauvre stratifiée, c'est-à-dire une charge dans laquelle le carburant qui est injecté dans le cylindre n'est pas réparti de manière homogène dans celui-ci au moment de l'allumage, le carburant étant alors regroupé le plus possible au voisinage de la bougie d'allumage, de manière à présenter une concentration locale suffisante pour l'initiation de la combustion. Par rapport à un mélange pauvre homogène, un mélange pauvre stratifié peut donc permettre un fonctionnement correct du moteur avec encore moins de carburant, ceci au bénéfice de la consommation du groupe motopropulseur.
Selon l'invention, le moteur 12 est par ailleurs pourvu d'un système de dépollution des gaz d'échappement. De manière classique, s'agissant d'un moteur à allumage commandé, il comporte un catalyseur trois voies qui permet de réduire de manière conséquente la teneur des gaz d'échappement en hydrocarbure (HC), en oxydes d'azote (NOx) et en monoxyde de carbone (CO). Cependant, un tel catalyseur trois voies ne fonctionne généralement que pour des valeurs de richesse très proches de la valeur unitaire, c'est-à-dire uniquement lorsque le mélange carburé présente le rapport stoechiométrique entre les quantités de carburant d'air introduites dans le mélange pour la combustion. Le rapport stoechiométrique est sensiblement de 1 g de carburant pour 14,7g d'air.
Aussi, pour assurer une dépollution efficace des gaz d'échappement lorsque le moteur est utilisé avec un mélange pauvre, il est prévu par ailleurs un dispositif de stockage des oxydes d'azote (NOx) également appelé piège à NOx ou NOx- trap. En effet, lorsque le moteur est alimenté en mélange pauvre, les émissions d'hydrocarbures HC et de monoxydes de carbone sont très faibles, tandis qu'au contraire l'excès d'oxygène tend à favoriser la formation de molécules d'oxydes d'azote (NOx).
Ainsi, lorsque le moteur est utilisé en mélange pauvre, les oxydes d'azote sont stockés au fur et à mesure dans le dispositif de stockage. Au contraire, lorsque le moteur est alimenté avec un mélange stoechiométrique ou avec un mélange riche, il est alors possible de déstocker les molécules d'oxydes d'azote obtenus dans le dispositif de stockage. Selon un premier aspect de l'invention, l'unité centrale de gestion 22 du groupe motopropulseur 10 va donc commander le moteur thermique 12 et la machine électrique 14 de manière à ce que, lorsque le moteur fonctionne à mélange pauvre, la température des gaz d'échappement soit telle que ceux-ci maintiennent le dispositif de stockage à l'intérieur d'une fenêtre de températures comprise entre une température basse Tmin , par exemple 250°, et une température haute Tmax, par exemple 450°. A l'intérieur de cette plage de températures, les réactions de stockage et de déstockage des NOx peuvent se réaliser.
On a illustré sur les figures 2A à 2D une méthode classique de gestion de la température des gaz d'échappement dans le cas d'un moteur fonctionnant en mélange pauvre.
On a illustré sur la figure 2A la vitesse V du véhicule en fonction du temps. On se situe ici dans le cas où le conducteur souhaite provoquer une accélération du véhicule, cette accélération permettant le passage du véhicule de la vitesse V1 , égale par exemple à 70km/h, à la vitesse V2, égale par exemple à 100 km/h, ceci entre les instants t1 et t3. Pour provoquer cette accélération, il est donc nécessaire de commander le moteur thermique 12 de manière à ce qu'il fournisse un supplément de couple permettant cette accélération.
On a représenté sur la figure 2B la température des gaz d'échappement qui résulterait de la commande du moteur thermique si on obligeait ce dernier à rester en fonctionnement en mélange pauvre. On voit que, jusqu'à l'instant t1 , le moteur est commandé pour maintenir le véhicule à la vitesse V1 de 70km/h et la température de ces gaz d'échappement, au niveau du dispositif de stockage des NOx, est par exemple égale à la température T1 de 400°C. On se trouve alors dans la fenêtre de stockage de sorte que l'opération de stockage peut effectivement se réaliser.
Puis, à partir de l'instant t1 , le supplément de couple demandé au moteur thermique 12, toujours commandé en mélange pauvre, provoquerait une augmentation de la température des gaz d'échappement, ceux-ci pouvant atteindre au cours de l'accélération une température égale à la température t2, par exemple 500°C, c'est-à-dire supérieure à la température Tmax de stockage des oxydes d'azote. En effet, on voit sur la courbe qu'au-delà de l'instant t2, la température des gaz d'échappement viendrait à dépasser les 450°.
Il existe donc un couple de seuil Cs au-delà duquel le moteur thermique ne peut pas aller, lorsqu'il est alimenté en mélange pauvre, sans que la température des gaz d'échappement ne dépasse une température pour laquelle le dispositif de stockage des NOx atteint une température supérieure à la température maximale de stockage qui est d'environ 450°. Ce couple Cs est inférieur au couple maximum que le moteur est susceptible de fournir en régime pauvre.
Aussi, pour éviter que des oxydes d'azote ne soient rejetés dans l'atmosphère, on peut voir à la figure 2C qui illustre la richesse R du mélange carburé fourni au moteur, que, à partir de l'instant t2, on est obligé de commander le moteur thermique 12 selon l'état de la technique de manière qu'il soit alimenté avec un mélange carburé stoechiométrique, ceci afin de permettre une dépollution des gaz d'échappement par le catalyseur à trois voies. Or, un tel basculement du fonctionnement du moteur thermique est néfaste en ce qui concerne la consommation du moteur, ceci étant dû d'une part au fait que le rendement du moteur est moins bon à la richesse unitaire que lors de l'utilisation d'un mélange pauvre, et ceci étant par ailleurs renforcé par le fait que le basculement de mode provoque une phase transitoire au cours de laquelle le rendement du moteur est particulièrement mauvais.
On a illustré sur la figure 2D la courbe de variation de température du dispositif de stockage des NOx lorsque le moteur est commandé selon l'état de la technique, conformément à ce qui est illustré à la figure 2C. On voit donc qu'à partir de l'instant t2, lors du basculement en mode stoechiométrique, la température des gaz d'échappement augmente de manière importante au niveau du dispositif de stockage, toujours pour obtenir la même accélération qui permet au véhicule de passer de 70 à 100 km/h. La température maximale peut cette fois atteindre 600°C et ceci est par ailleurs renforcé par le fait que, à la richesse unitaire, il se produit une combustion du CO et des HC dans le NOx- trap, réaction particulièrement exothermique qui contribue à l'élévation de température. Comme on peut le voir sur la figure 2D, cette élévation de température se prolonge bien au delà de la fin de la période d'accélération et tend à maintenir la température dans le dispositif de stockage à une température supérieure à la température maximale de stockage de 450°, ceci bien que, comme on peut le voir plus particulièrement sur la figure 2B, il serait possible théoriquement de maintenir le véhicule à sa nouvelle vitesse V2 en alimentant le moteur en mélange pauvre et en obtenant alors une température T3 des gaz d'échappement dans le dispositif de stockage d'environ 430° , température compatible avec la réaction de stockage.
Comme on le voit donc à la figure 2C, on est alors obligé de maintenir le moteur en mode de fonctionnement stoechiométrique bien au delà de l'instant t4 à partir duquel on pourrait envisager, en dehors des problèmes de dépollution, de commander le moteur de nouveau en mélange pauvre pour maintenir le véhicule à la vitesse V2 de 100 km/h. On a illustré sur les figures 3A à 3D un mode de commande d'un groupe motopropulseur selon l'invention qui permet, au cours d'une accélération du type de celle qui vient d'être décrite, de maintenir le moteur thermique 12 en fonctionnement en mélange pauvre, ceci bien entendu sans provoquer d'émission d'oxydes d'azote dans l'atmosphère. Les graphes des figures 3A et 3B sont identiques à ceux des figures 2A et 2B.
Sur le graphe de la figure 3C, qui illustre le mode d'utilisation de la machine électrique 14, on peut voir qu'à partir de l'instant t2 au delà duquel le couple demandé par le conducteur devient supérieur au couple de seuil Cs que le moteur thermique est susceptible de fournir sans que la température du dispositif de stockage ne dépasse la température maximale Tmax de stockage des NOx, la machine électrique 14 est commandée pour fonctionner selon son mode moteur dans lequel elle fournit un couple moteur aux roues motrices du véhicule, bien entendu en prélevant de l'énergie électrique précédemment stockée dans la batterie d'accumulateurs. Sur la figure 3C on a illustré un état de fonctionnement du groupe motopropulseur 10 dans lequel, en dehors de la période d'accélération, la machine électrique est utilisée en tant que génératrice, par exemple pour recharger la batterie d'accumulateurs. Cependant, pour d'autres états de fonctionnement du moteur, la machine électrique 14 pourrait être au repos, ou encore être utilisée en tant que moteur, en fonction d'autres paramètres de fonctionnement du véhicule. L'invention réside dans le fait que l'un des paramètres selon lequel l'unité de gestion 22 commande la machine électrique 14 est, directement ou indirectement, la température du dispositif de stockage des NOx. Dès lors, on peut voir à la figure 3D que la température du dispositif de stockage reste à l'intérieur de la plage de températures pour lesquelles les réaction de stockage des NOx sont possibles. Dans le même temps, comme on peut le voir à la figure 3A, l'ensemble du groupe motopropulseur 10 délivre un couple suffisant pour que le véhicule accélère selon le désir du conducteur.
A l'instant t3, quand l'accélération cesse et que la demande de couple baisse, on se retrouve alors à un niveau de couple demandé par le conducteur qui est inférieur au couple de seuil défini précédemment. Il est alors possible de diminuer progressivement l'intervention de la machine électrique 14 pour ne plus entraîner le véhicule qu'avec le moteur thermique, ce dernier n'ayant jamais cessé d'être alimenté avec un mélange pauvre. Ainsi , g râce à l'invention , on évite le basculement du mode de fonctionnement du moteur thermique d'un mode de fonctionnement en mélange pauvre vers un mode de fonctionnement en mélange stoechiométrique, ceci au bénéfice du rendement et de la consommation en carburant du groupe motopropulseur.
Pour mettre en oeuvre un procédé de commande d'un groupe motopropulseur selon l'invention, on peut donc suivre les principales étapes de l'organigramme illustré à la figure 4. Sur cet organigramme, on peut voir à l'étape 100 que l'on vérifie tout d'abord si le couple demandé Cd est inférieur ou non au couple de seuil Cs défini plus haut. Si oui, il suffit alors de commander le moteur thermique 12 de manière qu'il délivre ce couple Cd demandé par le conducteur, ceci sans qu'il soit besoin de modifier le mode de fonctionnement et le moteur pouvant fonctionner en mélange pauvre.
Dans le cas contraire, on calcule à l'étape 1 10 le couple moteur que doit fournir la machine électrique 14. Ce couple Cme est égal à la différence du couple Cd demandé par le conducteur auquel on retranche le couple de seuil Cs.
A l'étape 120, on vérifie, notamment en fonction de l'état de charge de la batterie d'accumulateurs, s'il est possible ou non à la machine électrique de fournir ce couple.
Si cela est possible, le groupe motopropulseur 10 est commandé par l'unité de gestion 22 de telle sorte que le moteur thermique 12 fournisse un couple égal à son couple de seuil Cs tandis que la machine électrique 14 fournit le couple moteur Cme calculé à l'étape 1 10. Ainsi, le groupe motopropulseur 10 fournit au véhicule le couple total Cgmp = Cs + Cme qui est égal au couple Cd demandé par le conducteur.
Dans le cas où, par exemple, l'état de charge de la batterie ne permettrait pas à la machine électrique 14 de fournir le couple suffisant, on serait alors obligé, pour satisfaire la demande de couple Cd sans provoquer d'émission d'oxydes d'azote, de provoquer un basculement de mode de fonctionnement du moteur, le moteur thermique 12 étant alors alimenté avec un mélange stoechiométrique et étant commandé pour fournir un couple moteur Cmot égal au couple demandé par le conducteur.
Dans l'exemple qui vient d'être décrit, on a décrit un procédé de commande du groupe motopropulseur 10 qui permet, dans certains cas, d'éviter le basculement du moteur thermique d'un mode de fonctionnement en mélange pauvre en vers un mode de fonctionnement en mélange homogène. Toutefois, dans le cadre d'un moteur thermique à injection directe, on peut prévoir de mettre en oeuvre le même genre de stratégie de commande pour éviter le basculement du moteur thermique d'un mode de fonctionnement en mélange pauvre stratifié vers un mode de fonctionnement en mélange pauvre homogène, ceci afin d'améliorer encore le rendement du groupe motopropulseur.
Un autre cas d'application de l'invention est envisagé pour effectuer une purge des oxydes de soufre contenus dans le dispositif de stockage des oxydes d'azote.
En effet, un tel déstockage des oxydes de soufre SOx ne peut se faire que lorsque la température dans le dispositif de stockage est supérieur à une température de seuil Ts, par exemple égale à 650°C. Bien entendu, un tel déstockage des oxydes de soufre, qui est la conséquence d'une réaction de réduction, ne peut se produire que lorsque les gaz d'échappement forment un milieu réducteur, c'est-à-dire uniquement lorsque le moteur thermique 12 est alimenté avec un mélange carburé dont la richesse est au moins égale à 1 , voire supérieure.
Cependant, même lorsque le moteur est alimenté avec un mélange stoechiométrique, il est rare que dans des conditions de fonctionnement normales du véhicule, les gaz d'échappement permettent au dispositif de stockage d'atteindre une telle température.
Aussi, lorsque le véhicule roule à une vitesse stabilisée, par exemple à la vitesse V1 de 100 km/h, pour obtenir une élévation de température, sans modifier le couple fourni par le moteur thermique 12, on est obligé, selon l'état de la technique, de modifier l'avance à l'allumage du moteur 12 afin d'en dégrader le rendement. Ainsi, pendant tout l'intervalle de temps de la purge compris entre les instants t1 et t2, on réduit la valeur A de l'avance à l'allumage, ainsi que cela est représenté à la figure 5B, et en même temps, pour compenser la baisse de rendement, on augmente l'angle d'ouverture αpap du papillon d'admission d'air ainsi que cela est représenté à la figure 5C, ce qui correspond obligatoirement, vu que l'on a une richesse unitaire, à une augmentation de la quantité de carburant introduite à chaque cycle dans les cylindres.
De la sorte, on peut voir à la figure 5D que l'on peut obtenir, grâce à cet artifice, une température des gaz d'échappement qui atteint la température Ts nécessaire au déstockage des oxydes de soufre, c'est-à-dire la température de 650°C. Cependant, en utilisant ce procédé selon l'état de la technique, on voit que, durant toute la durée de la purge des oxydes de soufre, on est obligé de fournir au moteur thermique plus de carburant, sans que cela soit rendu nécessaire par ailleurs par une volonté du conducteur d'accélérer, ou par la présence d'une pente à gravir.
Au contraire, grâce au procédé selon l'invention, on va provoquer, comme on peut le voir sur les figures 6A à 6D, une élévation de température des gaz d'échappement obtenue, comme on peut le voir à la figure 6C, par le fait que le moteur thermique est alimenté durant toute cette période avec une quantité de carburant qui permet d'obtenir une telle élévation de température. Cependant, grâce à l'invention, il n'est pas nécessaire de diminuer le rendement du moteur pour maintenir une vitesse constante. En effet, selon l'invention, l'unité centrale de gestion commande la machine électrique 14 de manière à ce que, pendant la durée de la purge, la machine 14 produit du courant électrique, c'est-à-dire qu'elle fonctionne en mode génératrice. La machine électrique 14 absorbe alors un couple et l'unité de gestion 22 commande la machine 14 de telle manière que ie couple absorbé soit égal à l'excédant de couple fourni par le moteur thermique par rapport au couple demandé par le conducteur.
Ainsi, contrairement à l'état de la technique, l'élévation de température qui est obtenue en brûlant une quantité plus importante de carburant n'est pas perdue puisque l'énergie supplémentaire fournie par ce carburant est transformée en énergie électrique qui est stockée dans la batterie d'accumulateurs et qui peut être utilisée ultérieurement. Comme dans le premier exemple de réalisation de l'invention, la machine électrique 14 pourrait, en dehors du temps de purge, être utilisée en mode moteur ou être au repos, en fonction d'autres paramètres de fonctionnement du véhicule. On a illustré sur la figure 7 un organigramme illustrant les principales étapes d'un procédé permettant d'effectuer, selon l'invention, une purge des oxydes de soufre contenus dans ie dispositif de stockage des oxydes d'azote.
Tout d'abord, à l'étape 200, l'unité de gestion 22 du groupe motopropulseur 10 commande le moteur thermique de manière à ce que celui-ci soit alimenté avec un mélange carburé dans les proportions stoechiométriques, c'est-à-dire à la richesse unitaire. Ensuite, à l'étape 210, on vérifie si la température T du dispositif de stockage des NOx est supérieure ou non à la température minimale Ts de purge des oxydes de soufre, c'est-à-dire environ 650°.
Si oui, ce qui peut être le cas en forte charge lorsque le conducteur demande un couple élevé, l'unité centrale de gestion laisse la machine électrique 14 au repos et commande le moteur thermique de manière que celui-ci fournisse l'intégralité de couple Cd demandé par le conducteur. Dans le cas contraire, c'est-à-dire si la température T du dispositif de stockage des NOx est inférieure à la température Ts de 650°, on évalue à l'étape 220 la valeur du couple Cme que doit absorber la machine électrique 14 pour que l'élévation correspondante du couple fourni par le moteur thermique soit à l'origine d'une hausse suffisante de la température des gaz d'échappement afin de parvenir à la température nécessaire du dispositif de stockage des NOx. Le couple Cme est donc un couple négatif et l'on vérifie, toujours à l'étape 220, notamment en fonction de l'état de charge de la batterie, s'il est effectivement possible que la machine électrique 14 absorbe un tel couple.
Si oui, le moteur thermique est donc commandé pour fournir le couple Cmot qui est égal au couple Cd demandé par le conducteur moins le couple Cme fourni par la machine électrique 14, qui est négatif car la machine électrique 14 absorbe alors de la puissance.
A l'étape 230, on vérifie si la température T du dispositif de stockage des NOx est bien supérieure au niveau de seuil Ts de 650°. Dans l'affirmative, l'unité de gestion 22 continue de commander le groupe motopropulseur 10 de cette manière jusqu'à la fin de l'opération de purge des molécules d'oxydes de soufre.
Si jamais cette température de 650° n'est pas atteinte, on met alors en oeuvre une stratégie de modification de l'avance qui, en remplacement de ia stratégie définie plus haut ou en complément de celle-ci, permet comme on l'a vu dans la description de l'état de la technique, d'augmenter la température des gaz d'échappement. Dans le deuxième exemple de réalisation de l'invention, on a décrit un procédé de commande d'un moteur dans lequel on cherchait à maintenir la température du dispositif de stockage des oxydes d'azote au-dessus du niveau de seuil Ts de purge des oxydes de soufre. Bien entendu, le même procédé pourra être adapté pour maintenir ladite température au-dessus de la température minimale Tmin de stockage et de déstockage des oxydes d'azote.
De même, la portée de l'invention peut être étendue à tout groupe motopropulseur dans lequel le mode de fonctionnement de la machine électrique est déterminée en fonction de la température de fonctionnement d'un dispositif de traitement des gaz d'échappement, quel que soit sa nature.

Claims

REVENDICATIONS
1 . Groupe motopropulseur pour un véhicule automobile, du type comportant un moteur à combustion interne (12) susceptible d'entraîner au moins une roue motrice du véhicule et une machine électrique (14) qui est susceptible d'être utilisée selon un mode génératrice ou selon un mode moteur dans lequel elle participe à l'entraînement du véhicule, du type dans lequel, pour certains états de fonctionnement du moteur à combustion interne (12), celui-ci est alimenté avec un mélange air/carburant dit pauvre dans lequel l'air est en excès par rapport au carburant, et du type dans lequel le moteur à combustion interne ( 12) comporte un circuit d'échappement muni d'un dispositif de traitements des gaz d'échappement, caractérisé en ce que pour certains états de fonctionnement du groupe motopropulseur (10), le mode d'utilisation de la machine électrique (14) est déterminé par une unité de gestion (22) du groupe motopropulseur afin de maintenir une température des gaz d'échappement dans le dispositif de traitement à l'intérieur d'une plage de températures déterminée.
2. Groupe motopropulseur selon la revendication 1 , caractérisé en ce que le dispositif de traitement est un dispositif stockage des molécules d'oxydes d'azote présentes dans les gaz d'échappement.
3. Groupe motopropulseur selon ia revendication 2, caractérisé en ce que, pour certains états de fonctionnement du groupe motopropulseur, le moteur thermique (12) étant alimenté avec un mélange pauvre, et la demande de couple (Cd) devenant supérieure à une valeur de seuil (Cs) pour laquelle la température du dispositif de stockage des oxydes d'azote devient supérieure à une température maximale de stockage (Tmax), l'unité de gestion du groupe motopropulseur commande la machine électrique (14) dans son mode moteur pour fournir un couple moteur (Cme) de manière à répondre à la demande de couple (Cd), afin de maintenir la température des gaz d'échappement dans une plage de températures permettant le stockage des oxydes d'azote tout en alimentant le moteur à combustion (12) avec un mélange pauvre.
4. Groupe motopropulseur selon la revendication 3, caractérisé en ce que le moteur à combustion est pourvu d'un système d'injection directe du carburant dans ie cylindre grâce auquel, pour certains états de fonctionnement du moteur, celui-ci est alimenté avec un mélange air/carburant stratifié dans lequel la répartition du carburant dans le cylindre n'est pas homogène, et en ce que, pour certains états de fonctionnement du groupe motopropulseur, le moteur thermique (12) étant alimenté avec un mélange pauvre stratifié, et la demande de couple (Cd) devenant supérieure à une valeur de seuil (Cs) pour laquelle la température du dispositif de stockage des oxydes d'azote devient supérieure à une température maximale de stockage (Tmax), l'unité de gestion (22) du groupe motopropulseur (10) commande la machine électrique (14) dans son mode moteur pour fournir un couple moteur (Cme) de manière à répondre à la demande de couple (Cd), afin de maintenir la température des gaz d'échappement dans une plage de températures permettant le stockage des oxydes d'azote tout en alimentant le moteur à combustion (12) avec un mélange stratifié.
5. Groupe motopropulseur selon la revendication 2, caractérisé en ce que, pour certains états de fonctionnement du moteur, pour maintenir la température du dispositif de stockage des oxydes d'azote au dessus d'une température minimale (Ts), l'unité de gestion (22) commande la machine électrique (14) dans son mode génératrice pour fournir un couple résistant (Cme) s'opposant au couple moteur fourni par le moteur à combustion (12), ce dernier étant commandé pour fournir un couple (Cmot) égal à la somme du couple (Cd) demandé par le conducteur avec le couple résistant (Cme) de la machine électrique (14), de manière à provoquer une augmentation de la température des gaz d'échappement.
6. Groupe motopropulseur selon la revendication 5, caractérisé en ce que la machine électrique (14) est commandée dans son mode génératrice pour maintenir la température du dispositif de stockage des oxydes d'azote dans une plage de températures permettant une purge des oxydes de souffre contenus dans le dispositif de stockage des oxydes d'azote.
7. Groupe motopropulseur selon la revendication 5, caractérisé en ce que la machine électrique est commandée dans son mode génératrice pour maintenir la température du dispositif de stockage des oxydes d'azote dans une plage de températures permettant le stockage et le déstockage des oxydes d'azote.
8. Groupe motopropulseur selon l'une quelconque des revendications 5 à 7, caractérisé en ce que le moteur à combustion (12) est un moteur à injection directe.
9. Groupe motopropulseur selon l'une quelconque des revendications précédentes, caractérisé en ce que la machine électrique (14) est intégrée au volant d'inertie du moteur à combustion (12).
10. Groupe motopropulseur selon l'une quelconque des revendications précédentes, caractérisé en ce que le moteur à combustion (12) est un moteur à allumage commandé.
PCT/FR1999/002513 1998-10-16 1999-10-15 Groupe motopropulseur hybride WO2000023295A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/13001 1998-10-16
FR9813001A FR2784626B1 (fr) 1998-10-16 1998-10-16 Groupe motopropulseur hybride

Publications (1)

Publication Number Publication Date
WO2000023295A1 true WO2000023295A1 (fr) 2000-04-27

Family

ID=9531658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002513 WO2000023295A1 (fr) 1998-10-16 1999-10-15 Groupe motopropulseur hybride

Country Status (2)

Country Link
FR (1) FR2784626B1 (fr)
WO (1) WO2000023295A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182074A2 (fr) * 2000-08-25 2002-02-27 Ford Global Technologies, Inc. Procédure de régulation d'un véhicule hybride-électrique pour la réduction des émissions
DE10338871A1 (de) * 2003-08-20 2005-03-17 Volkswagen Ag Hybridfahrzeug und Verfahren zum Betreiben eines Hybridfahrzeugs
FR2863373A1 (fr) * 2003-12-03 2005-06-10 Toyota Motor Co Ltd Procede de commande d'un moteur a combustion interne dans un vehicule hybride
GB2416862A (en) * 2004-07-30 2006-02-08 Ford Global Tech Llc A method for operating a vehicle to reduce exhaust emissions
CN101946076A (zh) * 2008-02-20 2011-01-12 罗伯特·博世有限公司 用于控制车辆动力总成系统的方法和装置
CN109383486A (zh) * 2017-08-04 2019-02-26 郑州宇通客车股份有限公司 混合动力汽车扭矩控制方法和混合动力汽车动力系统
CN113968211A (zh) * 2020-07-22 2022-01-25 北京福田康明斯发动机有限公司 混合动力车辆热管理方法、存储介质以及车辆
CN114439636A (zh) * 2020-11-05 2022-05-06 北京福田康明斯发动机有限公司 发动机后处理器进口温度优化及油耗降低方法及装置
CN114439637A (zh) * 2020-11-05 2022-05-06 北京福田康明斯发动机有限公司 发动机后处理器进口温度优化及油耗降低方法及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241341A (ja) 2000-02-28 2001-09-07 Hitachi Ltd 内燃機関の排気ガス浄化装置及び浄化方法
FR2816663B1 (fr) * 2000-11-14 2003-06-27 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur de vehicule automobile
FR2816662B1 (fr) * 2000-11-14 2003-06-20 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur de vehicule
US6421599B1 (en) 2001-08-09 2002-07-16 Ford Global Technologies, Inc. Control strategy for an internal combustion engine in a hybrid vehicle
DE10333210A1 (de) * 2003-06-30 2005-01-20 Volkswagen Ag Hybridfahrzeug und Verfahren zum Betrieb eines Hybridfahrzeugs
DE102007015875A1 (de) * 2007-04-02 2008-10-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebes eines Fahrzeugs
DE102008042544A1 (de) * 2008-10-01 2010-04-08 Robert Bosch Gmbh Verfahren zum Betreiben eines Fahrzeugs mit einem hybriden Motorsystem sowie Motorsystem und Fahrzeug
DE102012202679B3 (de) * 2012-02-22 2013-03-14 Ford Global Technologies, Llc Verfahren zur Einleitung und Aufrechterhaltung eines unterstöchiometrischen Betriebs einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
FR3007791B1 (fr) * 2013-06-28 2015-07-17 Renault Sa Procede de purge d'un piege a oxydes d'azote et dispositif de motorisation associe
GB2541435B (en) * 2015-08-20 2018-02-21 Ford Global Tech Llc A method of reducing NOx emissions from an engine
DE102017217284A1 (de) * 2017-09-28 2019-03-28 Robert Bosch Gmbh Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs mit einer Verbrennungskraftmaschine und einer weiteren Maschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015778A1 (fr) * 1991-03-09 1992-09-17 Ford Motor Company Limited Moteur a combustion interne
US5343970A (en) * 1992-09-21 1994-09-06 Severinsky Alex J Hybrid electric vehicle
DE19618865A1 (de) * 1996-05-10 1997-11-13 Fichtel & Sachs Ag Antriebsanordnung für ein Hybridfahrzeug
EP0860595A1 (fr) * 1997-02-20 1998-08-26 Ford Global Technologies, Inc. Procédé de désulfuration d'un piège pour oxydes d'azote placée dans le système d'échappement d'un moteur à combustion
GB2326857A (en) * 1997-07-05 1999-01-06 Rover Group Catalyst temperature control in hybrid vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015778A1 (fr) * 1991-03-09 1992-09-17 Ford Motor Company Limited Moteur a combustion interne
US5343970A (en) * 1992-09-21 1994-09-06 Severinsky Alex J Hybrid electric vehicle
DE19618865A1 (de) * 1996-05-10 1997-11-13 Fichtel & Sachs Ag Antriebsanordnung für ein Hybridfahrzeug
EP0860595A1 (fr) * 1997-02-20 1998-08-26 Ford Global Technologies, Inc. Procédé de désulfuration d'un piège pour oxydes d'azote placée dans le système d'échappement d'un moteur à combustion
GB2326857A (en) * 1997-07-05 1999-01-06 Rover Group Catalyst temperature control in hybrid vehicles

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182074A2 (fr) * 2000-08-25 2002-02-27 Ford Global Technologies, Inc. Procédure de régulation d'un véhicule hybride-électrique pour la réduction des émissions
EP1182074A3 (fr) * 2000-08-25 2005-10-12 Ford Global Technologies, Inc. Procédure de régulation d'un véhicule hybride-électrique pour la réduction des émissions
DE10338871A1 (de) * 2003-08-20 2005-03-17 Volkswagen Ag Hybridfahrzeug und Verfahren zum Betreiben eines Hybridfahrzeugs
US7458203B2 (en) 2003-08-20 2008-12-02 Volkswagen Aktiengesellschaft Hybrid vehicle and method for operating a hybrid vehicle
FR2863373A1 (fr) * 2003-12-03 2005-06-10 Toyota Motor Co Ltd Procede de commande d'un moteur a combustion interne dans un vehicule hybride
GB2416862B (en) * 2004-07-30 2008-07-02 Ford Global Tech Llc A method for operating a vehicle to reduce exhaust emissions
US7100362B2 (en) 2004-07-30 2006-09-05 Ford Global Technologies, Llc Vehicle and method for operating a vehicle to reduce exhaust emissions
GB2416862A (en) * 2004-07-30 2006-02-08 Ford Global Tech Llc A method for operating a vehicle to reduce exhaust emissions
CN101946076A (zh) * 2008-02-20 2011-01-12 罗伯特·博世有限公司 用于控制车辆动力总成系统的方法和装置
CN109383486A (zh) * 2017-08-04 2019-02-26 郑州宇通客车股份有限公司 混合动力汽车扭矩控制方法和混合动力汽车动力系统
CN113968211A (zh) * 2020-07-22 2022-01-25 北京福田康明斯发动机有限公司 混合动力车辆热管理方法、存储介质以及车辆
CN114439636A (zh) * 2020-11-05 2022-05-06 北京福田康明斯发动机有限公司 发动机后处理器进口温度优化及油耗降低方法及装置
CN114439637A (zh) * 2020-11-05 2022-05-06 北京福田康明斯发动机有限公司 发动机后处理器进口温度优化及油耗降低方法及装置
CN114439637B (zh) * 2020-11-05 2024-05-03 北京福田康明斯发动机有限公司 发动机后处理器进口温度优化及油耗降低方法及装置

Also Published As

Publication number Publication date
FR2784626A1 (fr) 2000-04-21
FR2784626B1 (fr) 2000-12-15

Similar Documents

Publication Publication Date Title
WO2000023295A1 (fr) Groupe motopropulseur hybride
EP3724468B1 (fr) Systeme et procede de pilotage de la temperature d'un catalyseur d'une ligne d'echappement de vehicule, et vehicule automobile les incorporant
FR2808050A1 (fr) Unite de controle de moteur a combustion interne pour un vehicule hybride et procede de controle d'un vehicule hybride
EP3724052B1 (fr) Système et procédé de pilotage de la température d'un catalyseur et d'un filtre à particules d'une ligne d'échappement de véhicule, et véhicule automobile les incorporant
EP2776297A1 (fr) Procede de regeneration d'un filtre a particules pour vehicule automobile hybride
EP3743610A1 (fr) Systeme et procede de pilotage de la regeneration d'un filtre a particules de vehicule, et vehicule automobile les incorporant
FR2859499A1 (fr) Moteur a combustion interne et procede destine a commander un generateur a turbine dans un moteur a combustion interne
JP2004278465A (ja) ハイブリッド型車両の排気浄化装置
FR2784944A1 (fr) Groupe motopropulseur hybride
FR3075260A1 (fr) Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR2979091A1 (fr) Procede et dispositif de controle pour la maitrise des emballements de la reaction de regeneration d'un filtre a particules dans un vehicule automobile hybride
FR3053389A1 (fr) Procede de regulation d’un chauffage d’un element de depollution d’une ligne d’echappement d’un moteur
FR3104638A1 (fr) Procede de gestion de l’amorcage d’un catalyseur de vehicule hybride
EP4069958B1 (fr) Procédé pour limiter la quantité de polluants rejetés par un moteur thermique de véhicule hybride
WO2021043533A1 (fr) Calculateur de controle d'une chaine de traction d'un vehicule hybride
FR3074224A1 (fr) Systeme et procede de pilotage de l’amorcage d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR2926518A1 (fr) Procede de commande d'un moteur hybride et moteur correspondant
EP2504212A1 (fr) Procede d'augmentation de la charge d'un moteur thermique
FR2926332A1 (fr) Strategie de chauffage rapide pour compenser le vieillissement d'un catalyseur d'oxydation d'un moteur diesel
WO2024156944A1 (fr) Procede de regeneration d'un filtre a particules de vehicule hybride
WO2024083965A1 (fr) Procédé de réduction des émissions polluantes d'un dispositif de motorisation hybride
FR2849468A1 (fr) Systeme de depollution des gaz d'echappement pour un vehicule a moteur thermique
EP2084376A1 (fr) Ligne d'echappement des gaz pour moteur a combustion interne equipee de systemes de depollution
FR2978983A1 (fr) Procede et dispositif de regeneration d'un filtre a particules dans la ligne d'echappement d'un moteur thermique d'un vehicule hybride
FR3077256A1 (fr) Systeme et procede de pilotage d’un stockeur d’energie de vehicule hybride, et vehicule automobile les incorporant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application