EP3743610A1 - Systeme et procede de pilotage de la regeneration d'un filtre a particules de vehicule, et vehicule automobile les incorporant - Google Patents

Systeme et procede de pilotage de la regeneration d'un filtre a particules de vehicule, et vehicule automobile les incorporant

Info

Publication number
EP3743610A1
EP3743610A1 EP19703158.6A EP19703158A EP3743610A1 EP 3743610 A1 EP3743610 A1 EP 3743610A1 EP 19703158 A EP19703158 A EP 19703158A EP 3743610 A1 EP3743610 A1 EP 3743610A1
Authority
EP
European Patent Office
Prior art keywords
filter
particulate filter
regeneration
temperature
heat engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19703158.6A
Other languages
German (de)
English (en)
Inventor
Johan MILHAU
Frederic Dubillard
Ludmila LEBORGNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
PSA Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSA Automobiles SA filed Critical PSA Automobiles SA
Publication of EP3743610A1 publication Critical patent/EP3743610A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0694Engine exhaust temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D2041/026Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus using an external load, e.g. by increasing generator load or by changing the gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the subject of the invention is a control system for the regeneration of a hybrid vehicle particle filter. More particularly, the invention intends to propose a solution for optimally managing the regeneration of such filters fitted to this type of vehicle, currently placed in the exhaust line of the combustion gases emitted by a combustion engine. 'a vehicle.
  • the invention is presented in connection with one of these applications, specifically an application to a motor vehicle with electrical hybridization, that is to say comprising the heat engine and at least one electric motor associated with energy storage means 12, a battery pack.
  • the present invention is not limited to the use of an electric machine (motor) in a hybrid vehicle
  • the vehicle may for example comprise a transmission chain comprising at least the heat engine and the less a machine (or engine) hydraulic or compressed air.
  • Car manufacturers attempt to reduce or even eliminate pollution from their vehicles by various means, for example by reducing fuel consumption and / or filtering exhaust gases.
  • Particle filters were then developed and now equip more and more vehicles, whether they are gasoline or diesel engines. These filters, catalysed or not, are generally constituted by cylindrical blocks made of ceramics forming a multitude of parallel channels of small diameters (of the order of ten microns). The exhaust gases pass through the filter and the particles they contain are trapped in the channels. These particulate filters work well but have the disadvantage of having to be regenerated regularly to remove particles that tend to clog the channels of the filter. The removal of the particles is generally done by combustion by heating the filter.
  • the particles When the temperature of the particle filter reaches a threshold, and in the presence of oxygen, then the particles will burn and the filter will discharge the particles.
  • the torque contribution of the electric motor has the effect of reducing the frequency of life situations for the regeneration of the particulate filter.
  • the modification of the operating points of the engine which deliberately degrade the combustion of the engine to release more heat energy to heat the filter, it degrades the overall performance of the engine: fuel consumption, and more polluting emissions during this phase.
  • DE-A-10 201 10 50 980 describes, for a purely electric driving mode (in which the hybrid vehicle is driven solely by the electric machine), a regeneration of the particulate filter by the simple starting of the combustion engine depending on the speed of the vehicle, which is not optimized for either fuel consumption or pollutant emissions.
  • the present invention is intended in particular to avoid these drawbacks of the prior art and to propose a regeneration control system for a hybrid vehicle particle filter that makes it possible to manage as efficiently as possible without requiring structural changes. powertrain to minimize the use of a specific carburettor of the engine for managing the particulate filter.
  • the present invention proposes a system for controlling the regeneration of a hybrid vehicle particle filter, comprising:
  • this filter having a regeneration temperature intended to allow the combustion of the particles and being heated during the use of the heat engine;
  • an analysis and control means capable of determining an instantaneous temperature of the particulate filter and a level of particle charge of the filter
  • this system being such that a plurality of regeneration control strategies of the particulate filter combining a control of the engine with a control of the other driving source are predefined in the means of analysis and control, each of the strategies of regeneration control of the particulate filter, when the analysis and control means detects that the instantaneous temperature of the particulate filter is less than the regeneration temperature and the particulate charge level of the filter is greater than a minimum charge level, imposing on the thermal engine a maximum torque limit to be produced for a rise in temperature of the particulate filter.
  • each of the regeneration control strategies of the particulate filter imposes on the heat engine the maximum torque limit to be produced for a predetermined duration corresponding to the time required for reaching the regeneration temperature by the particulate filter.
  • the invention it is now possible to optimize the overall consumption of fossil fuel, while ensuring perfect regeneration of the particulate filter of a hybrid vehicle. Indeed, the maximum torque limit to be produced for a rise in temperature of the particulate filter allows the engine to remain on optimal operating points vis-à-vis its fuel consumption, and its polluting emissions, while allowing the temperature rise of the particulate filter.
  • the maximum torque limit to be produced for a rise in temperature of the particulate filter corresponds to an operating point of the thermal engine with optimum efficiency.
  • the regeneration control strategies of the particulate filter are established as a function of a plurality of particle filter charge level thresholds, a driver's instantaneous power demand, the temperature instantaneous filter, and maximum solicitation of the other motor source.
  • the system according to the invention also allows a passive regeneration of the particulate filter when possible: that is to say that, given a particular temperature above the regeneration temperature and a level high particulate filter loading, no specific strategy is then implemented for the regeneration of the particulate filter compared to that implemented with a conventional vehicle, namely that a simple supply of oxygen is sufficient.
  • the system according to the invention also makes it possible to avoid having to use an active particle filter requiring one or more additional components including in particular a fifth fuel injector in an exhaust line of the heat engine.
  • charge level relative to the particle filter is understood to mean the mass of particles present or trapped in the particulate filter. In addition to a weight or a mass of particles, this level of charge of the particulate filter can also be expressed with a percentage of filling of said filter by the particles with regard to a maximum capacity of presence, or capture, of particles in the filtered. Thus, for example, a charge level of 50% of the particle filter means that the latter retains, or trapped, a quantity of particles (expressed in mass, and possibly in volume) equal to half of its maximum capacity.
  • the expression "demand for instantaneous driving power from the driver” means the driver's will to accelerate or slow the movement of the vehicle.
  • This demand for power driver's instantaneous power is expressed in power (Watt, abbreviated as W), but at a given speed and mass of the vehicle is expressed as an equivalent torque (Newton meter, abbreviated as Nm) , in acceleration (in meters per second squared, that is ms 2 ) and mainly depends, for example, on the positions of an accelerator pedal and a brake pedal, the state of a speed lever d a gearbox, the selected driving mode, the vehicle speed and / or driving aids.
  • the term "means of analysis and control” means an on-board system currently equipping vehicles, especially those of the hybrid drive type, and whose function is to analyze, store / store information / data, control (especially via sensors) and control the various functional components of a vehicle.
  • Such a means is well known to those skilled in the art.
  • the analysis and control means is connected to all the sensors or the like of the vehicle, which enables it to measure, or to calculate, external parameters such as the outside temperature, the altitude or slope (via geolocation), or vehicle-specific characteristics such as the catalyst temperature or the charge level of the battery pack (the energy store of the other power source). These sensors or the like are thus considered as part of the analysis and control means of the system according to the invention.
  • the particulate charge level thresholds are predefined in the analysis and control means.
  • the value of at least one particle charge level threshold of the particulate filter has a hysteresis to confirm the determination, by means of analysis and control, of the charge level.
  • the value of at least one particle charge threshold of the particulate filter thus has a hysteresis representing between 0.5% and 10% of the value of said level threshold.
  • This hysteresis confirms that the threshold in question is actually reached.
  • each filter level of charge level has such a hysteresis to anticipate the value of the threshold considered during the measurement.
  • This hysteresis is found in the electrical / electronic control systems, and is variable over a wide range from 0.5% to 10% of the value of the threshold considered, preferably from 1% to 7% and more preferably from 1% to % to 5% of said value.
  • the system according to the invention comprises a critical level of particulate charge level of said filter requiring replacement of the particulate filter.
  • the regeneration temperature of the particulate filter is variable depending on the climatic temperature, the altitude and / or the number of cycles of use of the particulate filter.
  • the regeneration temperature of the particulate filter is defined by the analysis and control means.
  • the other motor source consists of at least one electric motor.
  • the present invention also proposes a hybrid motor vehicle comprising at least one control system as previously described.
  • the present invention proposes a method for controlling the regeneration of a particle filter of a hybrid engine vehicle, having a plurality of regeneration control strategies of the particle filter combining a control of a motor with a control of another driving source, which are predefined in an analysis and control means, each of the regeneration control strategies of the particle filter, when the analysis and control means detects that a instantaneous temperature of the particulate filter is below its regeneration temperature and that the level The particulate charge of the filter is greater than a minimum charge level, imposes on the thermal engine a maximum torque limit to be produced for a rise in temperature of the particulate filter.
  • FIG. 1 is a diagram of a hybrid vehicle according to one embodiment of the system according to the invention.
  • FIG. 2 is a diagram illustrating four levels or states of charge of a particle filter according to an embodiment of the system and method according to the invention
  • FIG. 3 is another diagram illustrating the different actions or strategies of management of the powertrain as a function, on the one hand, of the charge of the particulate filter and its temperature;
  • FIG. 4 schematically illustrates, on a flowchart or a logic diagram, the principle of the system and method according to the invention
  • FIG. 5 illustrates an exemplary execution of a powertrain management action or strategy in the cases (or phases) denoted A 2 and A 4 presented in FIG. 3;
  • FIG. 6 illustrates another example of execution of a powertrain management action or strategy in the cases noted A 2 and A 4 presented in FIG. 3;
  • FIG. 7 illustrates another exemplary execution of a powertrain management action or strategy in the case noted A3 shown in FIG. 3.
  • the present invention does not intend to modify the particulate filter conventionally used for a hybrid drive vehicle, or even for a conventional vehicle.
  • the invention provides no modification, addition or deletion, in terms of the structure or architecture of the vehicle, specifically in the exhaust line.
  • Figure 1 shows a motor vehicle, which can be used to illustrate the invention, including for example the following equipment and organs.
  • This figure shows a hybrid vehicle comprising a heat engine 2, whether a gasoline or diesel engine, driving by an automatically driven clutch 4, a transmission 6 having different gear ratios, connected to the front wheels 8 of this vehicle.
  • An exhaust line 50 has means capable of treating the exhaust gases, including the unbreated ones, coming from the combustion chamber of the heat engine 2.
  • these means consist more particularly of a filter
  • This particulate filter 40 may be catalysed or not.
  • the input shaft of the transmission 6 receiving the movement of the clutch 4 comprises a front electric traction machine 10 powered by a low traction voltage battery 12.
  • the front electric machine 10 can deliver a torque on the driving wheels 8 without going through the clutch 4, using the different gear ratios proposed by the transmission 6.
  • An on-board charger 14 can be connected by an external plug 16 to an electricity distribution network, to recharge the traction battery 12 when the vehicle is stationary.
  • the traction battery 12 has a low voltage, which can be for example 220 or 300 volts (V).
  • the traction battery 12 also supplies a rear traction electric machine 18 successively connected by a gearbox 20 and a interconnection system 22, with a rear differential 24 distributing the movement towards the rear wheels of the vehicle 26.
  • An alternator also called alternator-starter, permanently connected by a belt 32 to the heat engine 2, supplies an edge network 34 comprising a very low-voltage battery.
  • the battery of the on-board network 34 may be charged by a DC / DC voltage converter 36, receiving electrical energy from the traction battery 12, or a front or rear electric machine 18 if the level of power energy from this traction battery is insufficient.
  • the electrical machines 10, 18 work as a generator by delivering a braking torque, to recharge the traction battery 12 and recover energy.
  • a means of analysis and control controls the operation of this powertrain to meet the demands of the driver while optimizing energy consumption and emissions of gaseous pollutants according to conventional strategies.
  • the traction battery 12 constitutes the energy store according to the invention while the assembly formed by the front electric traction machine 10 and the rear electric traction machine 18 constitutes the other driving source. (hybrid) according to the invention.
  • FIG. 2 shows five particulate charge states of the particle filter 40 during a charge 41 and then a discharge 42 of a hybrid motor vehicle particulate filter 40.
  • the passage between each level depends on a threshold representative of a mass of particles or a percentage of filling of the particulate filter 40.
  • the state of charge can be calculated or measured by the analysis and control means. according to various methods known to those skilled in the art.
  • the levels (or thresholds) of charge A, B, C and D may depend on various parameters, such as, for example, the altitude or the aging of the particulate filter 40. It is possible to associate a hysteresis 43 with each of these respective thresholds A to D, the value of which may also depend on multiple parameters. This hysteresis corresponds to a margin representing between 0.5% and 10% of the value of said level of charge.
  • the level / threshold A is equal to 2.5 gr
  • the level / threshold B is equal to 3.5 gr;
  • the level / threshold C is equal to 4 g.
  • the level / threshold D is equal to 6 gr.
  • the hysteresis thresholds 43 may be interposed, thus certain charge levels may not appear during a charge 41 or discharge 42. Obviously, in such a case, the hysteresis 43 linked to one of the thresholds A to D is variable for at least two consecutive thresholds, one of the margins formed by this hysteresis 43 of one of these two thresholds being large enough to include the other level / load threshold.
  • the instantaneous temperature of the particulate filter 40 must be greater than a regeneration temperature threshold T (not shown).
  • This threshold of regeneration temperature T may depend on several parameters, including in particular the climatic or external temperature, the altitude and / or the aging (or the number of cycles of use) of the particulate filter 40. hysteresis at this regeneration temperature threshold T, whose value or the margin may also depend on multiple parameters.
  • the temperature threshold is equal to 600 ° C (degree Celsius).
  • the table shown in FIG. 3 represents the combinatorial state between the charge levels A, B, C, D and its ability to self-regenerate.
  • the main abscissa denoted by "charge level (g)" in Figure 3, indicates a level of particle charge increasing from left to right. So, between the origin of the marker and the level noted A, the particle filter is considered empty or not charged with particles. Between the level marked A and the level noted B, the particulate filter is considered as slightly charged with particles. Between the level marked B and the level marked C, the particle filter is considered to be charged with particles. Between the level marked C and the level noted D, the particulate filter is considered to be very charged with particles. Finally, after the level noted D, the particle filter is considered to be critically loaded with particles.
  • FIG. 3 furthermore has a second axis of abscissa denoted "Temperature (° C)", which does not represent a rising temperature from left to right, but which schematizes a division into two parts of each interval between two charge levels A, B, C, D consecutive, previously described and noted by "empty, weak, loaded, very charged, critical".
  • the first portion designated “weak” corresponds to an instantaneous temperature of the filter 40 lower than the aforementioned regeneration temperature T
  • the second part designated “high” corresponds to an instantaneous temperature of the filter 40 greater than the regeneration temperature T.
  • the invention uses the instantaneous temperature measurements of the particle filter 40 and those relating to its level of particulate filler to determine which strategy adopted to regenerate the particulate filter 40, while optimizing the combustion of fossil fuel is ie using at least the heat engine 2.
  • a first strategy Ao corresponding to a first phase Ao will be designated by strategy Ao or phase Ao
  • a second strategy Ai corresponding to a second phase Ai will be designated by strategy Ai or phase Ai, and so on.
  • Each phase corresponds to a particular situation described below.
  • the same simplification will be applied to the thresholds or levels of particulate charges A, B, C, D, which become threshold A, threshold B and so on.
  • FIG. 3 also has a third axis of the abscissa denoted "GMP action" and designating the strategies or phases Ao to Ab bh depending on the thresholds A, B, C, D and the temperature of the particulate filter 40 according to whether it is in below or above the regeneration temperature T.
  • GMP action a third axis of the abscissa denoted "GMP action” and designating the strategies or phases Ao to Ab bh depending on the thresholds A, B, C, D and the temperature of the particulate filter 40 according to whether it is in below or above the regeneration temperature T.
  • phase Ao the particulate filter 40 is empty, or slightly charged (in particles) and cold (at a temperature below the regeneration temperature T). In this situation, the system and method according to the invention does not apply any lever (or strategy) to the powertrain.
  • the particulate filter 40 is weakly charged with particles and sufficiently hot (temperature above the regeneration temperature T) to self-regenerate in case of oxygen supply.
  • Strategy A1 of the system according to the invention for the powertrain associated with this phase A1 is to start and couple the heat engine 2, if it was not already, to the wheels of the vehicle, and in case of deceleration of the a sufficiently large vehicle requested by the driver that corresponds to a demand for instantaneous driving power from the negative driver, the A1 strategy will put the engine into an injection cut-off mode.
  • the injection cutoff consists of a system that cuts off the fuel supply to the engine injection pump. This injection cutting phase will allow the supply of oxygen in the particulate filter 40 and thus initiate its regeneration.
  • the particulate filter 40 is charged or very charged and is not hot enough to self-regenerate in case of oxygen supply, its temperature being below the regeneration temperature.
  • the purpose of the system and method according to the invention is therefore to heat the particulate filter 40 as quickly as possible.
  • the heat engine 2 is started and coupled to the wheels.
  • the analysis and control means imposes on the heat engine a maximum torque limit to be produced for a rise in temperature of the particulate filter for a predetermined time.
  • the heat engine electrically recharges the traction battery 12, the other power source 10, 18 ensuring the traction of the vehicle.
  • the strategies A 2 and A4 therefore impose on the thermal engine the maximum limit in torque to be produced for a rise in temperature of the particulate filter for a predetermined duration.
  • This maximum limit in torque corresponds to a low torque not to be crossed, and not to the maximum torque that can produce the heat engine 2. This maximum torque limit is low enough to allow the engine to remain on optimal operating points vis-à-vis its fuel consumption and its polluting emissions, while allowing the temperature rise of the particulate filter.
  • This maximum torque limit to be produced for a rise in temperature of the particulate filter 40 corresponds to an operating point of the heat engine 2 at optimum efficiency.
  • Phase A3 corresponds to the charged particle filter and whose temperature is higher than the regeneration temperature T.
  • Phase As corresponds to the highly charged particulate filter whose temperature is higher than the regeneration temperature T.
  • the phase Ae corresponds to the overly charged particle filter, and therefore a critical loading, and whose temperature is greater or less than the regeneration temperature T.
  • the threshold D is therefore a critical particle level or threshold of particles of the filter requiring a replacement of the particulate filter 40.
  • the strategy Ae will not therefore provoke a regeneration of this particulate filter 40 at the risk of damaging it.
  • Strategy Ab will indicate to the driver the need to replace the particulate filter.
  • FIG 4 illustrates the principle of the system and the method according to the invention.
  • GMP and GPF respectively illustrate the powertrain and the particulate filter 40.
  • the instantaneous temperature of the particulate filter 40 is compared with the regeneration temperature T. If this instantaneous temperature is at least equal to the regeneration temperature T, the system or method performs the regeneration of the filter 40 is:
  • the fuel injection cutoff of the engine 2 is the strategy Ai,
  • the instantaneous temperature of the particulate filter 40 is lower than the regeneration threshold temperature T for its regeneration, it is desired to heat the particulate filter:
  • strategy A4 On the engine, - or opportunistic depending on the driver's demand for instant driving power, this is strategy A2.
  • Figures 5 and 6 respectively illustrate a situation in which the battery or batteries are not full and can still store electricity, and a situation in which the vehicle batteries are fully charged and can not accept additional electric charge.
  • the particulate filter 40 to heat the particulate filter 40, it imposes the maximum torque limit to be produced to the heat engine 2, for example 100 Nm (Newton meter).
  • the other driving source completes the missing torque.
  • the other motor source here the electrical machine
  • the electric machine in FIGS. 5 to 7, the electric torque is noted Ceiec) no longer draws torque from the heat engine 2.
  • Ceiec the electric torque
  • the heat engine 2 heated the particulate filter 40.
  • the limitation of the electric machine is set to -50 Nm since the electrical torque is saturated (the electric battery being full, it can no longer receive / store energy). Since the demand for instantaneous driving power on the part of the driver has priority over the heating requirement of the particulate filter 40, the maximum limit in torque to be produced required for heating (ie here 100 Nm) between zero and one can not be satisfied. second.
  • phase A3 the particulate filter 40 is charged and sufficiently hot to self-regenerate in case of oxygen supply.
  • the goal here is to again to bring the maximum oxygen to the particulate filter 40, in other words, according to a preferred option, it is necessary to minimize the contribution to traction of the vehicle of the engine torque.
  • the analysis and control means attempts, according to a first possibility, to ask the heat engine 2 a torque equivalent to the pairs of mechanical losses, that is to say a torque corresponding to a fuel injection cut-off, and if the heat engine 2 can not achieve this demand, then the electrical machine or machines realize the demand for instantaneous driving power from the driver and the mechanical losses of the engine 2.
  • the particulate filter 40 In phase As, the particulate filter 40 is very charged and sufficiently hot to self-regenerate in case of oxygen supply. In this case, the charge level of the particulate filter 40 is very important, the supply of oxygen via the injection cutoff can cause a very large combustion and an instantaneous temperature rise of the particulate filter 40 too large. The injection cutoff (in fuel) is prohibited. Oxygen delivery will be done using a strategy used in conventional applications such as low fuel burn combustion.
  • phase Ae the particulate filter 40 is almost clogged, Ae strategy creates visual and / or audible alert informs the driver that a professional intervention is necessary Ae strategy will further prohibit the supply of oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Système de pilotage de la régénération d'un filtre à particules de véhicule à motorisation hybride dans lequel on prédéfinit une pluralité de stratégies de pilotage de régénération du filtre à particules (A2, A4) combinant un pilotage du moteur thermique avec un pilotage d'une autre source motrice, chacune des stratégies de pilotage de régénération du filtre à particules (A2, A4), lorsque une température instantanée du filtre à particules est inférieure à la température de régénération et que le niveau de charge en particules du filtre est supérieur à un niveau de charge minimal, imposant au moteur thermique une limite maximale en couple à produire pour une montée en température du filtre à particules pendant une durée prédéterminée.

Description

SYSTEME ET PROCEDE DE PILOTAGE DE LA REGENERATION
D’UN FILTRE A PARTICULES DE VEHICULE, ET VEHICULE
AUTOMOBILE LES INCORPORANT
L’invention a pour objet un système de pilotage de la régénération d’un filtre à particules de véhicule à motorisation hybride. Plus particulièrement, l’invention entend proposer une solution pour gérer de façon optimum la régénération de tels filtres équipant ce type de véhicules, placés, à l’heure actuelle, dans la ligne d’échappement des gaz de combustion émis par un moteur thermique d’un véhicule.
Dans la suite, l’invention est présentée en lien avec l’une de ces applications, plus précisément une application à un véhicule automobile à hybridation électrique, c’est-à-dire comportant le moteur thermique et au moins un moteur électrique associé à des moyens de stockage d’énergie 12, soit un bloc batterie.
Toutefois, il doit être noté que la présente invention n’est pas limitée à l’utilisation d’une machine (moteur) électrique dans un véhicule hybride, le véhicule pouvant par exemple comporter une chaîne de transmission comprenant au moins le moteur thermique et au moins une machine (ou moteur) hydraulique ou encore à air comprimé.
Les constructeurs automobiles s’efforcent de diminuer ou même d’éliminer la pollution de leurs véhicules par différents moyens, par exemple en diminuant la consommation en carburant et/ou en filtrant les gaz d’échappement.
Des filtres à particules ont alors été développés et équipent maintenant de plus en plus de véhicules, qu’ils soient à moteur à essence ou diesel. Ces filtres, catalysés ou non, sont généralement constitués par des blocs cylindriques en céramiques formant une multitude de canaux parallèles de petits diamètres (de l’ordre de la dizaine de microns). Les gaz d’échappement traversent le filtre et les particules qu’ils contiennent sont piégées dans les canaux. Ces filtres à particules fonctionnent correctement mais présentent cependant l’inconvénient de devoir être régénérés régulièrement pour éliminer les particules qui tendent à obstruer les canaux du filtre. L’élimination des particules s’effectuent généralement par combustion en chauffant le filtre.
Lorsque la température du filtre à particules atteint un seuil, et en présence d’oxygène, alors les particules vont brûler et le filtre va se décharger des particules.
Pour un véhicule automobile conventionnel, c’est-à-dire à motorisation thermique uniquement, lorsque le filtre à particules est suffisamment chargé, des stratégies de pilotage du moteur thermique interviennent pour monter en température le filtre via par exemple une dégradation de la combustion du moteur thermique afin de libérer plus d’énergie thermique pour chauffer le filtre. Une fois le filtre à particules chaud, c’est-à-dire lorsqu’il a atteint ou dépassé sa température de seuil de régénération permettant la combustion des particules, l’apport d’oxygène se fait soit lors des phases de décélération dépendant d’une demande de puissance motrice instantanée de la part du conducteur, soit en injectant un mélange pauvre en carburant, donc riche en oxygène, soit en injectant de l’air dans la ligne d’échappement par des moyens spécifiques.
Dans un véhicule automobile hybride, par exemple comportant une motorisation électrique ne dégageant pas la chaleur d’un moteur thermique, l’apport en couple de la motorisation électrique a pour effet de diminuer la fréquence des situations de vie permettant la régénération du filtre à particules telles qu’envisagées dans un véhicule automobile conventionnel. Par ailleurs, la modification des points de fonctionnement du moteur thermique, qui dégradent volontairement la combustion du moteur thermique afin de libérer plus d’énergie thermique pour chauffer le filtre, cela dégrade le rendement global du moteur : consommation de carburant, et plus d’émissions polluantes durant cette phase.
Néanmoins on connaît à l’heure actuelle des procédés permettant de régénérer le filtre à particules d’un véhicule à motorisation hybride mais ces systèmes ne permettent pas de gérer de façon optimum à la fois la régénération du filtre à particules et la gestion des couples moteur thermique et électrique au regard d’une part de la demande de puissance motrice instantanée de la part du conducteur prioritaire et d’autre part d’une utilisation optimisée du couple électrique vis-à-vis du couple moteur thermique.
Ainsi, on connaît par exemple le brevet DE-A-10 201 1 050 980 qui décrit, pour un mode de conduite purement électrique (dans lequel le véhicule hybride est entraîné uniquement par la machine électrique), une régénération du filtre à particules par la simple mise en marche du moteur à combustion en fonction de la vitesse du véhicule, ce qui n’est pas optimisé ni pour la consommation de carburant, ni pour les émissions polluantes.
La présente invention a notamment pour but d’éviter ces inconvénients de la technique antérieure et de proposer un système de pilotage de la régénération d’un filtre à particules de véhicule hybride permettant de gérer le plus efficacement possible, sans nécessiter de changements structurels, le groupe motopropulseur afin de minimiser l’utilisation d’une carburation spécifique du moteur thermique pour la gestion du filtre à particules.
Dans ce but, la présente invention propose un système de pilotage de la régénération d’un filtre à particules de véhicule à motorisation hybride, comportant :
- un moteur thermique;
- au moins une autre source motrice;
- un filtre à particules du gaz d’échappement du moteur thermique, ce filtre présentant une température de régénération destinée à permettre la combustion des particules et étant chauffé lors de l’utilisation du moteur thermique; et
- un moyen d’analyse et de commande apte à déterminer une température instantanée du filtre à particules et un niveau de charge en particules du filtre;
ce système étant tel que qu’une pluralité de stratégies de pilotage de régénération du filtre à particules combinant un pilotage du moteur thermique avec un pilotage de l’autre source motrice sont prédéfinis dans le moyen d’analyse et de commande, chacune des stratégies de pilotage de régénération du filtre à particules, lorsque le moyen d’analyse et de commande détecte que la température instantanée du filtre à particules est inférieure à la température de régénération et que le niveau de charge en particules du filtre est supérieur à un niveau de charge minimal, imposant au moteur thermique une limite maximale en couple à produire pour une montée en température du filtre à particules.
On comprendra par « pour une montée en température du filtre à particules », dans tout le texte de ce document, le fait que la température du filtre à particules augmente jusqu’à atteindre la température de régénération. Ainsi chacune des stratégies de pilotage de régénération du filtre à particules impose au moteur thermique la limite maximale en couple à produire pendant une durée prédéterminée correspondant au temps nécessaire pour l’atteinte de la température de régénération par le filtre à particules.
Grâce à l’invention, il est dorénavant possible d’optimiser la consommation globale de carburant fossile, tout en assurant une régénération parfaite du filtre à particules d’un véhicule hybride. En effet, la limite maximale en couple à produire pour une montée en température du filtre à particules autorise le moteur thermique à rester sur des points de fonctionnement optimaux vis-à-vis de sa consommation en carburant, et de ses émissions polluantes, tout en permettant la montée en température du filtre à particules.
Avantageusement, la limite maximale en couple à produire pour une montée en température du filtre à particules correspond à un point de fonctionnement du moteur thermique à rendement optimal.
On entendra par point de fonctionnement du moteur thermique à rendement optimal, le fait que les paramètres de combustion du moteur thermique comme la richesse du mélange air carburant, l’avance ou le retard à l’injection de carburant par rapport au point mort haut d’un piston du moteur thermique, l’avance ou le retard à l’allumage par rapport au point mort haut d’un piston du moteur thermique, ou le remplissage ou taux de compression du moteur thermique (pour ne citer que les paramètres les plus courants) ne sont pas dégradés vis-à-vis de la consommation de carburant ou des émissions polluantes. Avantageusement, les stratégies de pilotage de régénération du filtre à particules sont établies en fonction d’une pluralité de seuils de niveau de charge en particules du filtre à particules, d’une demande de puissance motrice instantanée de la part du conducteur, de la température instantanée du filtre, et d’une sollicitation maximum de l’autre source motrice.
Ainsi, le système selon l’invention permet en outre une régénération passive du filtre à particules lorsque cela est possible : c’est-à-dire que, compte tenu d’une température particulière supérieures à la température de régénération et d’un niveau de charge du filtre à particules élevé, aucune stratégie spécifique n’est alors mise en œuvre pour la régénération du filtre à particules par rapport à celle mise en œuvre avec un véhicule conventionnel, à savoir qu’un simple apport en oxygène est suffisant. Le système selon l’invention permet également d’éviter d’avoir à utiliser un filtre à particules actif nécessitant un ou plusieurs composants supplémentaires dont notamment un cinquième injecteur de carburant dans une ligne d’échappement du moteur thermique.
Enfin, grâce au système selon l’invention, on peut réaliser un gain économique car, du fait de son processus optimisé de régénération, un dimensionnement important du filtre à particules n’est plus une nécessité, autrement dit un filtre à particules à faible capacité de charge en particules est parfaitement envisageable/utilisable.
On entend par l’expression « niveau de charge » relativement au filtre à particules la masse de particules présentes, ou piégées, dans le filtre à particules. Outre un poids ou une masse de particules, ce niveau de charge du filtre à particules peut également s’exprimer avec un pourcentage de remplissage dudit filtre par les particules au regard d’une capacité maximum de présence, ou de capture, de particules dans le filtre. Ainsi, par exemple, un niveau de charge de 50% du filtre à particules signifie que ce dernier retient, ou a piégé, une quantité de particules (exprimé en masse, et éventuellement en volume) égale à la moitié de sa capacité maximum.
On entend par l’expression « demande de puissance motrice instantanée de la part du conducteur », la volonté du conducteur d’accélérer ou de freiner le déplacement du véhicule. Cette demande de puissance motrice instantanée de la part du conducteur s’exprime en puissance (Watt, noté de façon abrégé W), mais à une vitesse et une masse donnée du véhicule s’exprime de façon équivalente en couple (Newton mètre, noté de façon abrégé Nm), en accélération (en mètre par seconde au carré, soit m.s 2) et dépend principalement, par exemple, des positions d’une pédale d’accélération et d’une pédale de frein, de l’état d’un levier de vitesse d’une boîte de vitesses, du mode de conduite sélectionné, de la vitesse du véhicule et/ou des aides à la conduite.
On entend par l’expression « moyen d’analyse et de commande » un système embarqué équipant à l’heure actuelle les véhicules, notamment ceux du type à motorisation hybride, et qui a pour fonction d’analyser, enregistrer/stocker des informations/données, contrôler (notamment via des capteurs) et commander les différents organes fonctionnels d’un véhicule. Un tel moyen est bien connu de l’homme du métier. On notera que, de façon classique, le moyen d’analyse et de commande est relié à l’ensemble des capteurs ou analogues du véhicule, ce qui lui permet de mesurer, ou de calculer, des paramètres extérieurs tels que la température extérieure, l’altitude ou une pente (via une géo-localisation), ou encore des caractéristiques propres au véhicule telles que la température du catalyseur ou le niveau de charge du bloc batterie (le stockeur d’énergie de l’autre source motrice). Ces capteurs ou analogues sont ainsi considérés comme partie intégrante du moyen d’analyse et de commande du système selon l’invention.
Avantageusement, les seuils de niveau de charge en particules sont prédéfinis dans le moyen d’analyse et de commande.
Avantageusement, la valeur d’au moins un seuil de niveau de charge en particules du filtre à particules présente un hystérésis destiné à confirmer la détermination, par le moyen d’analyse et de commande, du niveau de charge.
La valeur d’au moins un seuil de charge en particules du filtre à particules présente ainsi un hystérésis représentant entre 0,5% et 10% de la valeur dudit seuil de niveau. Cet hystérésis permet de confirmer que le seuil en question est bien effectivement atteint. De préférence, chaque seuil de niveau de charge du filtre présente un tel hystérésis destiné à anticiper la valeur du seuil considéré lors de la mesure.
Cet hystérésis se retrouve dans les systèmes de commande électrique/électronique, et est variable dans une large gamme allant de 0,5% à 10% de la valeur du seuil considéré, préférentiellement de 1 % à 7% et de façon encore préférée de 1 % à 5% de ladite valeur.
Selon une possibilité offerte par l’invention, le système selon l’invention comprend un seuil critique de niveau de charge en particules dudit filtre nécessitant un remplacement du filtre à particules.
Avantageusement, la température de régénération du filtre à particules est variable en fonction de la température climatique, de l’altitude et/ou du nombre de cycles d’utilisation du filtre à particules.
Bien entendu, ce sont les paramètres principaux influant a priori sur la température de seuil de régénération mais il est bien entendu que cette liste n’est pas exhaustive et que la détermination de cette température de seuil de régénération pourra être fonction d’autres critères.
Avantageusement la température de régénération du filtre à particules est définie par le moyen d’analyse et de commande.
Avantageusement l’autre source motrice consiste en au moins un moteur électrique.
Dans le même but, la présente invention propose également un véhicule automobile hybride comportant au moins un système de pilotage tel que précédemment décrit.
Toujours dans le même but, la présente invention propose un procédé de pilotage de la régénération d’un filtre à particules d’un véhicule à motorisation hybride, ayant une pluralité de stratégies de pilotage de régénération du filtre à particules combinant un pilotage d’un moteur thermique avec un pilotage d’une autre source motrice, qui sont prédéfinis dans un moyen d’analyse et de commande, chacune des stratégies de pilotage de régénération du filtre à particules, lorsque le moyen d’analyse et de commande détecte qu’une température instantanée du filtre à particules est inférieure à sa température de régénération et que le niveau de charge en particules du filtre est supérieur à un niveau de charge minimal, impose au moteur thermique une limite maximale en couple à produire pour une montée en température du filtre à particules.
Les avantages du procédé et du véhicule automobile hybride conformes à l’invention étant similaires à ceux du système de pilotage de la régénération d’un filtre à particules de véhicule à motorisation hybride énumérés plus haut, ils ne sont pas répétés ici.
D’autres aspects et avantages de l’invention apparaîtront à la lecture de la description qui suit d’un mode particulier de réalisation, donné à titre d’exemple non limitatif et en référence aux dessins qui l’accompagnent, dans lesquels :
- la figure 1 est un schéma d’un véhicule hybride selon un mode de réalisation du système selon l’invention ;
- la figure 2 est un schéma illustrant quatre niveaux ou états de charge d’un filtre à particules selon un mode d’exécution du système et du procédé selon l’invention ;
- la figure 3 est un autre schéma illustrant les différentes actions ou stratégies de gestion du groupe motopropulseur en fonction d’une part de la charge du filtre à particules et de sa température ;
- la figure 4 illustre schématiquement, sur un organigramme ou un logigramme, le principe du système et du procédé selon l’invention ;
- la figure 5 illustre un exemple d’exécution d’une action ou stratégie de gestion du groupe motopropulseur dans les cas (ou phases) notés A2 et A4 présentés sur la figure 3 ;
- la figure 6 illustre un autre exemple d’exécution d’une action ou stratégie de gestion du groupe motopropulseur dans les cas notés A2 et A4 présentés sur la figure 3 ;
- la figure 7 illustre un autre exemple d’exécution d’une action ou stratégie de gestion du groupe motopropulseur dans le cas noté A3 présenté sur la figure 3.
A nouveau, il est rappelé que l’invention est illustrée ici dans un exemple avec un véhicule hybride électrique mais la machine électrique peut être remplacée par exemple par une technologie pneumatique ou hydraulique, de préférence hydraulique.
Par ailleurs, il doit être noté que la présente invention n’entend pas modifier le filtre à particules utilisé classiquement pour un véhicule à motorisation hybride, voire pour un véhicule conventionnel. En outre, l’invention ne prévoit aucune modification, ajout ou suppression, au niveau de la structure ou de l’architecture du véhicule, plus précisément dans la ligne d’échappement.
La figure 1 présente un véhicule automobile, pouvant servir à illustrer l’invention, comprenant par exemple les équipements et organes suivants.
Cette figure présente un véhicule hybride comportant un moteur thermique 2 , qu’il soit un moteur à essence ou diesel, entraînant par un embrayage 4 piloté de manière automatique, une transmission 6 présentant différents rapports de vitesse, reliée aux roues avant motrices 8 de ce véhicule.
Une ligne d’échappement 50 dispose de moyens aptes à traiter les gaz d’échappement, dont notamment les imbrulés, provenant de la chambre de combustion du moteur thermique 2. Dans le cadre de la présente invention, ces moyens consistent plus particulièrement en un filtre à particules 40 de ligne d’échappement 50. Ce filtre à particules 40 peut être catalysé ou non.
L’arbre d’entrée de la transmission 6 recevant le mouvement de l’embrayage 4, comporte une machine électrique avant de traction 10 alimentée par une batterie basse tension de traction 12. De cette manière la machine électrique avant 10 peut délivrer un couple sur les roues motrices 8 sans passer par l’embrayage 4, en utilisant les différents rapports de vitesse proposés par la transmission 6.
Un chargeur embarqué 14 peut être relié par une prise extérieure 16 à un réseau de distribution d’électricité, pour recharger la batterie de traction 12 quand le véhicule est à l’arrêt. La batterie de traction 12 présente une basse tension, qui peut être par exemple de 220 ou 300 Volts (V).
La batterie de traction 12 alimente aussi une machine électrique arrière de traction 18 reliée successivement par un réducteur 20 et un système de crabotage 22, à un différentiel arrière 24 répartissant le mouvement vers les roues arrière du véhicule 26.
Un alternateur, également désigné alterno-démarreur, 30 relié en permanence par une courroie 32 au moteur thermique 2, alimente un réseau de bord 34 comportant une batterie très basse tension. En complément la batterie du réseau de bord 34 peut être chargée par un convertisseur de tension continue DC/DC 36, recevant une énergie électrique de la batterie de traction 12, ou d’une machine électrique avant 10 ou arrière 18 si le niveau d’énergie de cette batterie de traction est insuffisant.
Lors des freinages du véhicule ou d’un relâchement de la pédale d’accélérateur, les machines électriques 10, 18 travaillent en génératrice en délivrant un couple de freinage, pour recharger la batterie de traction 12 et récupérer une énergie.
Un moyen d’analyse et de commande, non représenté sur les figures annexées, contrôle le fonctionnement de ce groupe motopropulseur pour répondre aux demandes du conducteur tout en optimisant les consommations d’énergie et les émissions de gaz polluants selon des stratégies classiques.
Dans cet exemple d’exécution, la batterie de traction 12 constitue le stockeur d’énergie selon l’invention tandis que l’ensemble formé par la machine électrique avant de traction 10 et la machine électrique arrière de traction 18 constitue l’autre source motrice (hybride) selon l’invention.
Sur la figure 2 sont visibles cinq états de charge en particules du filtre à particules 40 lors d’une charge 41 puis d’une décharge 42 d’un filtre à particules 40 de véhicule à motorisation hybride. Le passage entre chaque niveau dépend d’un seuil représentatif d’une masse en particules ou d’un pourcentage de remplissage du filtre à particules 40. L’état de charge peut être calculé ou mesuré, par le moyen d’analyse et de commande, selon diverses méthodes connues de l’homme du métier.
Les niveaux (ou seuils) de charge A, B, C et D peuvent dépendre de différents paramètres, tels que par exemple l’altitude ou le vieillissement du filtre à particules 40. On peut associer un hystérésis 43 à chacun de ces seuils respectifs A à D, dont la valeur peut également dépendre de multiples paramètres. Cet hystérésis correspond à une marge représentant entre 0,5% et 10% de la valeur dudit niveau de charge.
A titre d’exemple, les valeurs suivantes sont considérées pour les différents niveaux ou seuils de charge, le décalage pour chaque niveau/seuil étant considéré équivalent pour chaque niveau/seuil et égal à 0,8 gramme (gr) :
- le niveau/seuil A est égal à 2,5 gr ;
- le niveau/seuil B est égal à 3,5 gr ;
- le niveau/seuil C est égal à 4 gr ; et
- le niveau/seuil D est égal à 6 gr.
Les seuils d’hystérésis 43 peuvent s’intercaler, ainsi certains niveaux de charge peuvent ne pas apparaître lors d’une charge 41 ou décharge 42. Evidemment, dans un tel cas, l’hystérésis 43 lié à l’un des seuils A à D s’avère variable pour au moins deux seuils consécutifs, l’une des marges formées par cet hystérésis 43 de l’un de ces deux seuils étant suffisamment important pour inclure l’autre niveau/seuil de charge.
Pour qu’il y ait une combustion des particules, la température instantanée du filtre à particules 40 doit être supérieure à un seuil de température de régénération T (non représenté). Ce seuil de température de régénération T peut dépendre de plusieurs paramètres, dont en particulier la température climatique ou extérieure, l’altitude et/ou le vieillissement (ou le nombre de cycles d’utilisation) du filtre à particules 40. On peut associer un hystérésis à ce seuil de température de régénération T, dont la valeur ou la marge peut également dépendre de multiples paramètres.
A titre d’exemple, on considère ici que le seuil de température est égal à 600°C (degré Celsius).
Le tableau représenté sur la figure 3 représente la combinatoire entre l’état ou le niveau de charge du filtre à particules 40 entre les niveaux de charge A, B, C, D et sa capacité à s’auto-régénérer. L’axe des abscisses principal, repéré par « niveau de charge (g) » sur la figure 3, indique un niveau de charge en particules croissant de gauche à droite. Ainsi, entre l’origine du repère et le niveau noté A, le filtre à particules est considéré comme vide soit non chargé en particules. Entre le niveau noté A et le niveau noté B, le filtre à particules est considéré comme faiblement chargé en particules. Entre le niveau noté B et le niveau noté C, le filtre à particules est considéré comme chargé en particules. Entre le niveau noté C et le niveau noté D, le filtre à particules est considéré comme très chargé en particules. Enfin, après le niveau noté D, le filtre à particules est considéré comme critiquement chargé en particules.
La figure 3 présente en outre un second axe des abscisses noté « Température (°C) », qui ne représente pas une température croissante de gauche à droite, mais qui schématise une division en deux parties de chaque intervalle entre deux niveaux de charge A, B, C, D consécutifs, précédemment décrits et notés par « vide, faible, chargé, très chargé, critique ». La première partie désignée « faible » correspond à une température instantanée du filtre 40 inférieure à la susdite température de régénération T, et la deuxième partie désignée « élevée » correspond à une température instantanée du filtre 40 supérieure à la température de régénération T.
L’invention utilise les mesures de température instantanée du filtre à particules 40 et celles relatives à son niveau de charge en particules pour déterminer quelle stratégie adoptée afin de régénérer le filtre à particules 40, tout en optimisant la combustion de carburant fossile, c’est-à-dire en utilisant au minimum le moteur thermique 2.
Ainsi, dans le mode d’exécution choisi ici pour illustrer l’invention, sept stratégies Ao à Ab sont définis et en fonction de chacune d’elle, une réponse appropriée va être mise en œuvre par le système selon l’invention.
On notera dans tout le texte de ce document, et par soucis de clarté, que les références Ao à Ae sont confondues avec leur désignation. Ainsi, une première stratégie Ao correspondant à une première phase Ao sera désignée par stratégie Ao ou phase Ao, une deuxième stratégie Ai correspondant à une deuxième phase Ai sera désignée par stratégie Ai ou phase Ai, et ainsi de suite. Chaque phase correspond à une situation particulière décrite ci-dessous. On appliquera la même simplification pour les seuils ou niveaux de charges en particules A, B, C, D, qui deviennent seuil A, seuil B et ainsi de suite.
La figure 3 a également un troisième axe des abscisses noté « action GMP » et désignant les stratégies ou phases Ao à Ab bh fonction des seuils A, B, C, D et de la température du filtre à particules 40 selon qu’elle est en dessous ou au-dessus de la température de régénération T.
Dans la phase Ao, le filtre à particules 40 est vide, ou faiblement chargé (en particules) et froid (à une température inférieure à la température de régénération T). Dans cette situation, le système et procédé selon l’invention n’applique aucun levier (ou stratégie) au groupe motopropulseur.
On comprendra par groupe motopropulseur dans tout le texte de ce document, l’ensemble des moteurs contribuant à la traction du véhicule hybride.
Dans la phase Ai, le filtre à particules 40 est faiblement chargé en particules et suffisamment chaud (température supérieure à la température de régénération T) pour s’auto-régénérer en cas d’apport d’oxygène. La stratégie A1 du système selon l’invention pour le groupe motopropulseur associée à cet phase A1 est de démarrer et de coupler le moteur thermique 2, s’il ne l’était pas déjà, aux roues du véhicule, et en cas de décélération du véhicule suffisamment importante demandée par le conducteur qui correspond à une demande de puissance motrice instantanée de la part du conducteur négative, la stratégie A1 mettra le moteur en mode de coupure injection. La coupure injection consiste en un système qui coupe l’arrivée du carburant à la pompe à injection du moteur. Cette phase de coupure injection permettra l’apport de l’oxygène dans le filtre à particules 40 et donc d’amorcer sa régénération.
Dans les phases A2 et A4, le filtre à particules 40 est chargé ou très chargé et n’est pas suffisamment chaud pour s’auto-régénérer en cas d’apport d’oxygène, sa température étant inférieure à la température de régénération T. L’objectif du système et du procédé selon l’invention est donc de chauffer le filtre à particules 40 le plus rapidement possible. Ainsi, au niveau du groupe motopropulseur, le moteur thermique 2 est démarré et couplé aux roues. Le moyen d’analyse et de commande impose au moteur thermique une limite maximale en couple à produire pour une montée en température du filtre à particules pendant une durée prédéterminée.
Ainsi, en cas de faible demande de puissance motrice instantanée de la part du conducteur, la pédale d’accélération n’étant pas suffisamment enfoncée, le moteur thermique réalise une recharge électrique de la batterie de traction 12, l’autre source motrice 10, 18 assurant la traction du véhicule.
Pour chauffer le filtre à particule, les stratégies A2 et A4 imposent donc au moteur thermique la limite maximale en couple à produire pour une montée en température du filtre à particules pendant une durée prédéterminée.
Cette limite maximale en couple correspond à un faible couple à ne pas franchir, et non pas au couple maximal que peut produire le moteur thermique 2. Cette limite maximale en couple est suffisamment faible pour autoriser le moteur thermique à rester sur des points de fonctionnement optimaux vis-à-vis de sa consommation en carburant et de ses émissions polluantes, tout en permettant la montée en température du filtre à particules.
Cette limite maximale en couple à produire pour une montée en température du filtre à particules 40 correspond à un point de fonctionnement du moteur thermique 2 à rendement optimal.
La phase A3 correspond au filtre à particules chargé et dont sa température est supérieure à la température de régénération T.
La phase As correspond au filtre à particules très chargé et dont sa température est supérieure à la température de régénération T.
La phase Ae correspond au filtre à particules trop chargé, et donc un chargement critique, et dont sa température est supérieure ou inférieure à la température de régénération T. Le seuil D est donc un niveau ou seuil de charge critique en particules du filtre nécessitant un remplacement du filtre à particules 40. La stratégie Ae ne provoquera donc pas une régénération de ce filtre à particules 40 sous peine de l’endommager. La stratégie Ab indiquera au conducteur la nécessité de remplacer le filtre à particules.
La figure 4 illustre le principe du système et du procédé selon l’invention. Sur cette figure, les termes GMP et GPF illustrent respectivement le groupe motopropulseur et le filtre à particules 40.
Cet organigramme présente les réponses apportées par le système et le procédé selon l’invention en fonction des stratégies Ao à Ab définies en lien avec la figure 3.
Ainsi, lorsque le niveau de charge du filtre à particules 40 est inférieur au seuil A, ou supérieur au seuil D, on n’envisage aucune action GMP spécifique et cela correspond respectivement à la stratégie Ao et Ab précédemment décrites.
Lorsque ce niveau de charge est compris entre le seuil A et le seuil D, on compare la température instantanée du filtre à particules 40 à la température de régénération T. Si cette température instantanée est au moins égale à la température de régénération T, le système ou procédé réalise la régénération du filtre 40 soit :
- si la demande de puissance motrice instantanée de la part du conducteur le permet, la coupure d’injection de carburant du moteur thermique 2, c’est la stratégie Ai,
- soit par une coupure impérative d’injection de carburant pour envoyer plus d’oxygène au niveau du filtre à particules 40 et permettre sa régénération, c’est la stratégie A3,
- ou encore sans action particulière sur le groupe motopropulseur, c’est la stratégie As : La coupure de l’injection de carburant est interdite.
Si, au contraire, la température instantanée du filtre à particules 40 est inférieure à la température de seuil de régénération T pour sa régénération, on cherche à chauffer le filtre à particules :
- de façon impérative. C’est l’action de la stratégie A4 sur le moteur thermique, - ou opportuniste en fonction de la demande de puissance motrice instantanée de la part du conducteur, c’est la stratégie A2.
Les figures 5 et 6 illustrent respectivement une situation dans laquelle la ou les batteries ne sont pas pleines et peuvent encore stocker de l’électricité, et une situation dans laquelle les batteries du véhicule sont pleinement chargées et ne peuvent accepter un complément de charge électrique.
Par exemple, pour chauffer le filtre à particules 40, on impose le limite maximale en couple à produire au moteur thermique 2, par exemple de 100 Nm (Newton mètre). Pour respecter l’Interprétation de la demande de puissance motrice instantanée de la part du conducteur, désignée par IVC sur les figures, l’autre source motrice complète le couple manquant.
Sur la figure 5, l’autre source motrice ici la machine électrique, prélève de façon dégressive du couple moteur thermique noté CMOT sur les figures 5 à 7, jusqu’à deux secondes, pour charger les batteries afin que le moteur thermique 2 puisse réaliser la limite maximale en couple à produire de 100 Nm. Comme cela est visible sur cette figure, à partir de deux secondes, la demande de puissance motrice instantanée de la part du conducteur est supérieure à la limite maximale en couple à produire. De ce fait la machine électrique (sur les figures 5 à 7, le couple électrique est noté Ceiec) ne prélève plus de couple au moteur thermique 2. Par ce biais, l’utilisation du couple moteur thermique se fait au juste nécessaire.
Durant l’exécution du mode de réalisation représenté sur la figure 5, le moteur thermique 2 a chauffé le filtre à particules 40.
Sur la figure 6, la limitation de la machine électrique est défini à -50 Nm étant donné que le couple électrique est saturé (la batterie électrique étant pleine, elle ne peut plus recevoir/stocker d’énergie). La demande de puissance motrice instantanée de la part du conducteur étant prioritaire sur le besoin de chauffe du filtre à particules 40, on ne peut pas satisfaire la limite maximale en couple à produire requis pour la chauffe (soit ici 100 Nm) entre zéro et une seconde.
Dans la phase A3, le filtre à particules 40 est chargé et suffisamment chaud pour s’auto-régénérer en cas d’apport d’oxygène. L’objectif est ici à nouveau d’apporter le maximum d’oxygène au filtre à particules 40, autrement dit, suivant une option préférée, il est nécessaire de réduire au maximum la contribution à la traction du véhicule du couple moteur thermique. Le moyen d’analyse et de commande tente, selon une première possibilité, de demander au moteur thermique 2 un couple équivalent aux couples de pertes mécaniques, c’est-à-dire un couple correspondant à une coupure d’injection de carburant, et si le moteur thermique 2 ne peut réaliser cette demande, alors la ou les machines électriques réalisent la demande de puissance motrice instantanée de la part du conducteur et les pertes mécaniques du moteur thermique 2.
Sur la figure 7, un exemple d’une telle stratégie est représenté. Les pertes du moteur thermique 2 sont considérées ici de -25 Nm. Après 3,5 secondes, la machine/moteur électrique est saturé du fait d’une demande de puissance motrice instantanée de la part du conducteur importante et le moteur thermique 2 réalise le complément de couple pour satisfaire l’IVC.
Dans l’hypothèse où la demande de puissance motrice instantanée de la part du conducteur devient trop importante, on applique la stratégie des phases A2 et A4 décrite précédemment.
Dans la phase As, le filtre à particules 40 est très chargé et suffisamment chaud pour s’auto-régénérer en cas d’apport d’oxygène. Dans ce cas, le niveau de charge du filtre à particules 40 est très important, l’apport d’oxygène via la coupure injection peut entraîner une combustion très importante et une montée en température instantanée du filtre à particules 40 trop importante. La coupure injection (en carburant) est donc interdite. L’apport d’oxygène se fera à l’aide d’une stratégie utilisée dans les applications conventionnelles telle que la combustion en mélange pauvre en carburant.
Dans la phase Ae, le filtre à particules 40 est quasiment colmaté, la stratégie Ae crée alerte visuelle et/ou sonore informe le conducteur qu’une intervention chez un professionnel est nécessaire la stratégie Ae va en outre interdire l’apport d’oxygène.

Claims

REVENDICATIONS
1. Système de pilotage de la régénération d’un filtre à particules de véhicule à motorisation hybride, comportant :
- un moteur thermique (2) ;
- au moins une autre source motrice (10, 18) ;
- un filtre à particules (40) du gaz d’échappement dudit moteur thermique (2), le filtre (40) présentant une température de régénération destinée à permettre la combustion desdites particules et étant chauffé lors de l’utilisation du moteur thermique
(2) ; et
- un moyen d’analyse et de commande apte à déterminer une température instantanée du filtre à particules (40) et un niveau de charge en particules dudit filtre (40) ;
caractérisé en ce qu’une pluralité de stratégies de pilotage de régénération du filtre à particules (A2, A4) combinant un pilotage du moteur thermique (2) avec un pilotage de l’autre source motrice (10, 18) sont prédéfinis dans le moyen d’analyse et de commande, chacune desdites stratégies de pilotage de régénération du filtre à particules (A2, A4), lorsque le moyen d’analyse et de commande détecte que la température instantanée du filtre à particules (40) est inférieure à la température de régénération et que le niveau de charge en particules dudit filtre (40) est supérieur à un niveau de charge minimal (A), imposant audit moteur thermique (2) une limite maximale en couple à produire pour une montée en température du filtre à particules.
2. Système selon la revendication 1 , caractérisé en ce que chacune desdites stratégies de pilotage de régénération du filtre à particules (A2, A4) impose audit moteur thermique (2) la limite maximale en couple à produire pendant une durée prédéterminée correspondant au temps nécessaire pour l’atteinte de la température de régénération par le filtre (40).
3. Système selon la revendication l’une des revendications précédentes, caractérisé en ce que ladite limite maximale en couple à produire pour une montée en température du filtre à particules correspond à un point de fonctionnement du moteur thermique (2) à rendement optimal.
4. Système selon l’une des revendications précédentes, caractérisé en ce que les stratégies de pilotage de régénération du filtre à particules (A2, A4) sont établies en fonction d’une pluralité de seuils de niveau de charge en particules (A, B, C, D) du filtre à particules (40), d’une demande de puissance motrice instantanée de la part du conducteur, et de la température instantanée dudit filtre (40).
5. Système selon l’une quelconque des revendications précédentes, caractérisé en ce que les seuils de niveau de charge en particules (A, B, C, D) sont prédéfinis dans le moyen d’analyse et de commande.
6. Système selon l’une quelconque des revendications précédentes, caractérisé en ce que la valeur d’au moins un seuil de niveau de charge en particules (A, B, C, D) du filtre à particules (40) présente un hystérésis (43) destiné à confirmer la détermination, par le moyen d’analyse et de commande, dudit niveau de charge (A, B, C ou D).
7. Système selon l’une quelconque des revendications précédentes, caractérisé en ce que la température de régénération du filtre à particules (40) est variable en fonction de la température climatique, de l’altitude et/ou du nombre de cycles d’utilisation du filtre à particules (40).
8. Système selon l’une quelconque des revendications précédentes, caractérisé en ce que la température de régénération du filtre à particules (40) est définie par le moyen d’analyse et de commande.
9. Système selon l’une quelconque des revendications précédentes, caractérisé en ce que l’autre source motrice (10, 18) consiste en au moins un moteur électrique.
10. Véhicule automobile hybride, caractérisé en ce qu’il comporte au moins un système de pilotage selon l’une quelconque des revendications précédentes.
1 1 . Procédé de pilotage de la régénération d’un filtre à particules d’un véhicule à motorisation hybride, caractérisé en ce qu’une pluralité de stratégies de pilotage de régénération du filtre à particules (A2, A4) combinant un pilotage d’un moteur thermique (2) avec un pilotage d’une autre source motrice (10, 18) sont prédéfinis dans un moyen d’analyse et de commande, chacune desdites stratégies de pilotage de régénération du filtre à particules (A2, A4), lorsque le moyen d’analyse et de commande détecte qu’une température instantanée du filtre à particules (40) est inférieure à sa température de régénération et que le niveau de charge en particules dudit filtre (40) est supérieur à un niveau de charge minimal (A), impose audit moteur thermique (2) une limite maximale en couple à produire pour une montée en température du filtre à particules.
EP19703158.6A 2018-01-26 2019-01-08 Systeme et procede de pilotage de la regeneration d'un filtre a particules de vehicule, et vehicule automobile les incorporant Withdrawn EP3743610A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1850614A FR3077341B1 (fr) 2018-01-26 2018-01-26 Systeme et procede de pilotage de la regeneration d’un filtre a particules de vehicule, et vehicule automobile les incorporant
PCT/FR2019/050032 WO2019145618A1 (fr) 2018-01-26 2019-01-08 Systeme et procede de pilotage de la regeneration d'un filtre a particules de vehicule, et vehicule automobile les incorporant

Publications (1)

Publication Number Publication Date
EP3743610A1 true EP3743610A1 (fr) 2020-12-02

Family

ID=61802185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19703158.6A Withdrawn EP3743610A1 (fr) 2018-01-26 2019-01-08 Systeme et procede de pilotage de la regeneration d'un filtre a particules de vehicule, et vehicule automobile les incorporant

Country Status (3)

Country Link
EP (1) EP3743610A1 (fr)
FR (1) FR3077341B1 (fr)
WO (1) WO2019145618A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110816291B (zh) * 2019-11-11 2021-05-11 常熟理工学院 一种二阶振荡粒子群的分布式驱动汽车能效优化控制方法
FR3111606A1 (fr) * 2020-06-22 2021-12-24 Psa Automobiles Sa Procédé de limitation d’un couple moteur
CN112031942B (zh) * 2020-09-01 2022-09-23 潍柴动力股份有限公司 热保护控制方法及装置
FR3145378A1 (fr) 2023-01-27 2024-08-02 Psa Automobiles Sa Procede de regeneration d’un filtre a particules de vehicule hybride

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127221A (en) * 1979-03-20 1980-10-01 Daihatsu Motor Co Ltd Driving system of vehicle
GB2344059A (en) * 1998-11-27 2000-05-31 Rover Group Engine exhaust with a particulate trap regenerated when a load is applied to the engine
FR2816664B1 (fr) * 2000-11-14 2003-06-27 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur thermique de vehicule automobile
US6901751B2 (en) * 2002-02-01 2005-06-07 Cummins, Inc. System for controlling particulate filter temperature
US20070204594A1 (en) * 2006-03-02 2007-09-06 Nissan Motor Co., Ltd. Exhaust purification system for hybrid vehicle
DE102007015875A1 (de) * 2007-04-02 2008-10-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebes eines Fahrzeugs
FR2919665B1 (fr) * 2007-07-30 2009-10-09 Peugeot Citroen Automobiles Sa Procede de commande de la regeneration d'un filtre a particules d'un vehicule.
JP4973374B2 (ja) * 2007-08-07 2012-07-11 日産自動車株式会社 ハイブリッド原動機の制御装置
FR2920474A1 (fr) * 2007-08-29 2009-03-06 Peugeot Citroen Automobiles Sa Procede d'aide a la regeneration d'un filtre a particules d'un vehicule.
DE102011050980B4 (de) 2011-06-09 2023-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Hybridfahrzeugs
DE102011112343B4 (de) * 2011-09-03 2023-02-02 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Regeneration eines Filters eines Fahrzeugs
DE102014220860B4 (de) * 2014-10-15 2018-10-04 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Hybridfahrzeugs und Hybridfahrzeug
KR20160066243A (ko) * 2014-12-02 2016-06-10 현대자동차주식회사 디젤 하이브리드 자동차의 매연필터 재생방법

Also Published As

Publication number Publication date
WO2019145618A1 (fr) 2019-08-01
FR3077341A1 (fr) 2019-08-02
FR3077341B1 (fr) 2022-03-18

Similar Documents

Publication Publication Date Title
EP3743610A1 (fr) Systeme et procede de pilotage de la regeneration d'un filtre a particules de vehicule, et vehicule automobile les incorporant
FR2986560A1 (fr) Procede et dispositif de regeneration d'un filtre a particules d'un entrainement hybride
EP3724052B1 (fr) Système et procédé de pilotage de la température d'un catalyseur et d'un filtre à particules d'une ligne d'échappement de véhicule, et véhicule automobile les incorporant
WO2013068668A1 (fr) Procede de regeneration d'un filtre a particules pour vehicule automobile hybride
EP3325321A1 (fr) Procede et systeme de commande d'un systeme de propulsion hybride optimisant la consommation de carburant et les emissions polluantes
FR2784626A1 (fr) Groupe motopropulseur hybride
EP3724468B1 (fr) Systeme et procede de pilotage de la temperature d'un catalyseur d'une ligne d'echappement de vehicule, et vehicule automobile les incorporant
FR2994920A1 (fr) Procede pour un vehicule hybride, d'optimisation du roulage avec une energie auxiliaire et d'amorcage du systeme de depollution du moteur thermique
FR2992348A3 (fr) Procede de reduction des niveaux d'emission de polluants d'un vehicule automobile, dispositif apte a mettre en oeuvre le procede, support d'enregistrement et programme informatique associes au procede, vehicule incorporant le dispositif
FR2810369A1 (fr) Dispositif de chauffage pour un moteur a combustion interne et son procede de controle
FR2919665A1 (fr) Procede de commande de la regeneration d'un filtre a particules d'un vehicule.
FR3029964A1 (fr) Procede de regeneration d'un filtre a particules d'une ligne d'echappement d'un moteur a combustion interne appartenant a un groupe motopropulseur hybride et vehicule associe
FR2805222A1 (fr) Systeme de commande des elements d'une chaine de traction hybride parallele d'un vehicule automobile
EP2504212B1 (fr) Procede d'augmentation de la charge d'un moteur thermique
FR3072418A1 (fr) Procede de controle d'un moteur a combustion interne a allumage commande, a l'etat non allume
FR3075260A1 (fr) Systeme et procede de pilotage de la temperature d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR3077256A1 (fr) Systeme et procede de pilotage d’un stockeur d’energie de vehicule hybride, et vehicule automobile les incorporant
WO2024156944A1 (fr) Procede de regeneration d'un filtre a particules de vehicule hybride
EP4021749B1 (fr) Procédé de protection d'un embrayage d'un véhicule hybride contre une surchauffe par arrêt de charge
FR2978983A1 (fr) Procede et dispositif de regeneration d'un filtre a particules dans la ligne d'echappement d'un moteur thermique d'un vehicule hybride
FR3074224A1 (fr) Systeme et procede de pilotage de l’amorcage d’un catalyseur d’une ligne d’echappement de vehicule, et vehicule automobile les incorporant
FR2790428A1 (fr) Procede de gestion de l'energie et vehicule a propulsion hybride
WO2021052806A1 (fr) Procédé de régénération d'un filtre à particules d'un véhicule hybride
EP4021750A1 (fr) Procede de protection d'un embrayage d'un vehicule hybride contre une surchauffe
WO2024083965A1 (fr) Procédé de réduction des émissions polluantes d'un dispositif de motorisation hybride

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230314

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230725