WO2000020731A1 - Actionneur electromagnetique de soupape - Google Patents

Actionneur electromagnetique de soupape Download PDF

Info

Publication number
WO2000020731A1
WO2000020731A1 PCT/FR1999/002356 FR9902356W WO0020731A1 WO 2000020731 A1 WO2000020731 A1 WO 2000020731A1 FR 9902356 W FR9902356 W FR 9902356W WO 0020731 A1 WO0020731 A1 WO 0020731A1
Authority
WO
WIPO (PCT)
Prior art keywords
pallet
actuator according
ferromagnetic
valve
coil
Prior art date
Application number
PCT/FR1999/002356
Other languages
English (en)
Other versions
WO2000020731A9 (fr
Inventor
Yves Porcher
Calogero Fiaccabrino
Lucien Donce
Thierry Lanoe
Original Assignee
Sagem Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9812489A external-priority patent/FR2784222B1/fr
Priority claimed from FR9812940A external-priority patent/FR2784712B1/fr
Application filed by Sagem Sa filed Critical Sagem Sa
Priority to US09/806,711 priority Critical patent/US6651954B1/en
Priority to KR1020017004397A priority patent/KR20010080034A/ko
Priority to JP2000574813A priority patent/JP2004506826A/ja
Publication of WO2000020731A1 publication Critical patent/WO2000020731A1/fr
Publication of WO2000020731A9 publication Critical patent/WO2000020731A9/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to electromagnetic actuators intended to move in translation a valve to bring it alternately into an open position and a closed position. It finds a particularly important application in the control of the valves of an internal combustion engine, with spark or compression ignition.
  • the valves of most internal combustion engines are actuated by a camshaft driven by the engine.
  • the opening and closing speeds of the valves controlled by the camshaft are low when the engine is at low speed, in particular at start-up, which is unfavorable for filling the combustion chambers.
  • the valve-spring assembly constitutes an oscillating system excited by alternating periodic supplies of the electromagnets.
  • the electromagnet acting on the pallet in the direction of the opening of the valve begins to be supplied as the vane approaches a location where it comes to stick on the core of the electromagnet.
  • the invention aims in particular to provide an electromagnetic actuator which responds better than those previously known to the requirements of practice, in particular because it has a reduced overall dimensions and connections.
  • the electromagnetic means comprise a single coil mounted on a ferromagnetic circuit of constitution such that it has, in combination with the pallet, two stable paths of magnetic flux, each corresponding to a low value (generally zero ) air gap.
  • One configuration corresponds to full opening and the other to closing.
  • the pallet In its initial state, in the middle position, the pallet will generally have an imbalance in position or magnetic circuit which means that the direction in which it will be attracted when the coil is first energized is predetermined. This imbalance can be deliberately caused.
  • the elastic return means consist of two springs each placed on one side of the pallet, these two springs can be such that they give the pallet at rest a position in which the force resulting from the supply of the coil is exerted in a determined direction and that they present the same potential energy of compression in the closed and full opening positions.
  • An advantageous way of unbalancing the magnetic forces exerted upwards and downwards is to dissymmetry the fluxes in the central part by playing on a sheet notch profile and / or on a pallet profile.
  • the pallet may include an axial boss.
  • Another way to create an asymmetry consists in giving the poles of the ferromagnetic circuit and the pallet a shape such that the surfaces in contact for the two stable paths are different.
  • the single coil actuator is more compact than previous actuators. Its electrical circuit and its control are more simple and less expensive.
  • FIG. 1 shows a valve actuator according to one embodiment, in section along a plane passing through the axis of the valve
  • FIG. 4 and 5 show variants of Figures 1 to 3;
  • FIG. 6 schematically shows the evolution of the oscillations of the pallet when the device is launched.
  • the actuator 10 shown in Figures 1 to 3 consists of an assembly intended to be mounted on the cylinder head 12 of an engine. It comprises a housing made up of several pieces 14 and 16 stacked and assembled by means not shown, such as screws. These parts are made of non-ferromagnetic material, for example a light alloy.
  • the housing can be fixed on the cylinder head 12 by means of a shim 20 also made of non-ferromagnetic material.
  • the actuator comprises a pallet 22 made of ferromagnetic material, advantageously laminated to reduce the losses, fixed on a rod 24 for driving the valve 25.
  • a pallet 22 made of ferromagnetic material, advantageously laminated to reduce the losses, fixed on a rod 24 for driving the valve 25.
  • several valves are mounted side by side and there is only a small width for each actuator in the direction perpendicular to that of FIG. 1 This leads to giving the palette a rectangular shape.
  • the pallet cannot rotate in the part 16.
  • the rod 24 can be fixed to the pallet by welding and guided by another ring 26 fixed to an annular extension of the part 16.
  • the stem of the valve 25 is separated from the rod 24. It is guided by a ring fixed to the cylinder head and can rotate in the latter.
  • Two return springs 28a and 28b are provided to keep the valve at rest in a substantially middle position between the closed position and the fully open position.
  • One of the springs 28a is compressed between a plate 30 fixed to the rod 24 and the extension of the part 16.
  • the other spring 28b is compressed between a plate 31 fixed to the valve stem and the bottom of the valve well formed in the cylinder head.
  • the distribution clearance between the lifted rod and the closed valve guarantees sealing.
  • the actuator can just as easily be used with a single spring working in traction / compression and supplemented with an elastic damper ensuring the tightness when the valve is closed, as indicated in French patent No. 98 11 670.
  • the rod can then be in one piece with the valve.
  • the housing contains a ferromagnetic material core 36, advantageously laminated, delimiting a ferromagnetic circuit with the pallet, and a coil 38 placed in the core.
  • the core shown can be in two complementary parts, pressing against each other in a plane 40 ( Figure 2) or in one piece.
  • the sheets constituting each half of the core are E-shaped ( Figures 2 and 3).
  • the upper branches 42 engage in the coil 36 which they support by through a mandrel 44.
  • the two other branches of each half define a volume of movement of the pallet.
  • the support of the pallet against the bottom 46 of the volume defines the position of full opening of the valve.
  • the ceiling 48 of the volume is at a location relative to the valve seat such that the air gap is practically zero when the valve is closed.
  • a central notch 49 corresponding to the rest position of the pallet 22, can be provided in the chamber, of length slightly greater than the thickness of the pallet. Above and below the notch, the volume wall leaves only the clearance necessary for the travel.
  • the core may as well be in one piece and wound on an automatic machine, which avoids the presence of an air gap and guarantees the precision of the notches 49.
  • the pallet 22, advantageously laminated or of material with high electrical resistivity has bevelled edges parallel to the poles of the core 36 ( Figure 4). In this arrangement, the armature is not magnetically saturated in its operating range and the flow closes, passing mainly through the armature, thanks to the shape of the pole pieces of the core.
  • the asymmetry of the upper flow circuit relative to the lower flow circuit is accentuated by different inclinations of the upper 80 and lower 82 polar surfaces of the core, each surface of the pallet opposite a pole being parallel to it.
  • the pallet 84 has a central boss in the form of a bar which increases the asymmetry of the magnetic circuit.
  • this flux closes on its way through the boss 84, as indicated by the arrow f, which reduces the length of the air gaps.
  • this boss is short-circuited and does not weaken the bonding forces. This arrangement significantly reduces the reluctance in the rest position and increases the ease of launching the device.
  • the assembly constituted by the pallet, the valve and the spring constitutes an oscillating system having a natural frequency.
  • the moving element constituted by the valve and the pallet is alternately drawn up and down, by applying to the coil of electric pulses at a frequency close to the natural frequency of the system.
  • the coil 38 is initially supplied for a period corresponding to a fraction of the natural period, which causes a small amplitude displacement of the pallet. If the system has an asymmetry that can be caused:
  • the current flowing through the coil 38 can be controlled by observing the position of the pallet 22 using a position sensor integrated in the device.
  • the pulses of current in the coil are supplied at times such that, when the force is applied, the speed of the paddle has the same direction as the force applied.
  • the initial force being of a given sign, as a result of the asymmetry, it suffices to apply an impulse only once per period.
  • Figure 6 schematically shows a phase of the launch of the device.
  • the pallet is in a position corresponding to line L, for which the forces exerted by the springs 28a and 28b are balanced. This position is offset from the position L 'for which the electromagnetic force exerted on the pallet 22 by the field created by the coil 38 is zero.
  • the first current pulse in the coil 38 causes an elongation of the pallet, which then returns with its own period to a position which generally will be still above that indicated by the line L '.
  • the amplitude of the oscillations increases.
  • the monitoring of the position signal makes it possible to know at each instant the last duration T which separates two successive zero crossings.
  • the process is continued until the range of motion is such that the paddle sticks against the cylinder head. From this moment, and in steady state, it will suffice to supply the coil at full power only during the time required to return the moving element to its extreme position and then to a lower holding current, until the moving element is moved in the other direction.
  • the sensor 52 is connected to a computer 50 which controls the supply of the coil 38 by an amplifier 54. This sensor 52 can be carried by the housing 16 and protrude downwards, so as to detect the approximation of the plate 30, made for this purpose of magnetic material. From the output signal from the sensor 52, the computer 50, which can be the engine control computer, determines the position reached by the moving element.
  • the sensor 52 also enables, by varying the signal it provides to determine the instant at which the amplitude of the oscillation of the moving element brings in 'the - extreme position.
  • the order can be carried out by means of the kind described in patent application FR 98 12940 of the applicant. More generally, launching can be carried out in minimal time thanks to the combination of position measurement and a paddle movement algorithm which controls the current in the coil so as never to generate magnetic braking forces.
  • the invention is susceptible of numerous variant embodiments.
  • the springs 28a and 28b can be placed, for example, one inside the other to reduce the size of the housing.
  • Each coil can consist of a number N of windings greater than 1 (two or three for example) supplied in parallel, which divides by N the resistance and increases the maximum total current and which divides by N the inductance.
  • the electrical inertia is reduced.
  • the dynamics of the engine system are improved.
  • the cutting a winding wire does not disable the device.
  • the dynamics are improved: the magnetic field can be varied more quickly, since the inductance / resistance ratio is unchanged while the resistance of each winding is a fraction of the resistance of a single coil: the maximum value of the current is higher and, since the inductance is lower, the dynamics are faster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electromagnets (AREA)

Abstract

L'actionneur électromagnétique a une palette (22) en matériau ferromagnétique fixée à la queue de soupape, des ressorts prévus pour maintenir au repos la soupape dans une position médiane entre des positions d'ouverture complète et de fermeture et une bobine unique (38) montée sur un circuit ferromagnétique. Ce circuit présente, en combinaison avec la palette, deux cheminements stables de flux magnétiques correspondant l'un et l'autre à une valeur faible d'entrefer.

Description

ACTIONNEUR ELECTROMAGNETIQUE DE SOUPAPE
L' invention concerne les actionneurs électromagnétiques destinés à déplacer en translation une soupape pour l'amener alternativement dans une position d'ouverture et une position de fermeture. Elle trouve une application particulièrement importante dans la commande des soupapes d'un moteur à combustion interne, à allumage par étincelles ou par compression. A l'heure actuelle, les soupapes de la plupart des moteurs à combustion interne sont actionnées par un arbre à cames entraîné par le moteur. Les vitesses d'ouverture et de fermeture des soupapes commandée par l'arbre à cames sont faibles lorsque le moteur est à bas régime, notamment au démarrage, ce qui est défavorable au remplissage des chambres de combustion.
On a également déjà proposé (US-A-4 614 170) des actionneurs électromagnétiques permettant de réduire les inconvénients ci- dessus, ayant une palette en matériau ferromagnétique fixée à la queue de soupape, des moyens de rappel élastiques prévus pour maintenir au repos la soupape dans une position médiane entre les position d'ouverture complète et de fermeture, et des moyens électromagnétiques permettant d'amener alternativement les soupapes dans les deux positions. Les moyens électromagnétiques décrits dans le document US-A-4 614 170 ont un premier électro- aimant à noyau ferromagnétique placé d'un côté de la palette et dont l'excitation attire la palette dans un sens tendant à fermer la soupape et un second électro-aimant, placé de l'autre côté de la palette, dont l'excitation tend à amener la soupape dans la position de pleine ouverture. L'ensemble soupape-ressort constitue un système oscillant excité par alimentations périodiques alternées des électroaimants. L' électro-aimant agissant sur la palette dans le sens de l'ouverture de la soupape commence à être alimenté alors que la palette approche d'un emplacement où elle vient se coller sur le noyau de l' électro-aimant .
L'invention vise notamment à fournir un actionneur électromagnétique répondant mieux que ceux antérieurement connus aux exigences de la pratique, en particulier du fait qu'il a un encombrement et une connectique réduits.
Pour cela, les moyens électromagnétiques comprennent une bobine unique montée sur un circuit ferromagnétique de constitution telle qu'il présente, en combinaison avec la palette, deux cheminements stables de flux magnétique correspondant l'un et l'autre à une valeur faible (généralement nulle) d'entrefer.
L'une des configurations correspond à l'ouverture complète et l'autre à la fermeture. Dans son état initial, en position médiane, la palette présentera en général un déséquilibre de position ou de circuit magnétique qui fait que le sens dans lequel elle sera attirée à la première mise sous tension de la bobine est prédéterminé. Ce déséquilibre peut être délibérément provoqué. Lorsque par exemple les moyens élastiques de rappel sont constitués de deux ressorts placés chacun d'un côté de la paletre, ces deux ressorts peuvent être tels qu'ils donnent à la palette au repos une position dans laquelle la force résultant de l'alimentation de la bobine s'exerce dans un sens déterminé et qu'ils présentent la même énergie potentielle de compression dans les positions de fermeture et de pleine ouverture.
Une façon avantageuse de déséquilibrer les forces magnétiques exercées vers le haut et le bas est de dissymétriser les flux dans la partie centrale en jouant sur un profil d'encoche de tôle et/ou sur un profil de palette.
Pour assurer une dissymétrie, la palette peut comporter un bossage axial. Une autre façon de créer une dissymétrie consiste a donner aux pôles du circuit ferromagnétique et a la palette une forme telle que les surfaces en contact pour les deux cheminements stables soient différentes.
L' actionneur, ayant une seule bobine, est plus compact que les actionneurs antérieurs. Son circuit électrique et sa commande sont plαs simples et moins coûteux.
Les caractéristiques ci-dessus ainsi que d'autres, avantageusement utilisables en liaison avec les précédentes mais pouvant l'être indépendamment, apparaîtront mieux a la lecture de la description qui suit de modes particuliers de réalisation, αonnes a titre d'exemples non limitatifs.
La description se réfère aux dessins qui l'accompagnent, dans lesquels :
- la figure 1 montre un actionneur de soupape selon un mode de réalisation, en coupe suivant un plan passant par l'axe de la soupape ;
- les figures 2 et 3 sont des coupes partielles de la partie électromagnétique suivant les lignes II-II et III-III ;
- les figures 4 et 5 montrent des variantes des figures 1 a 3 ; la figure 6 montre schematiquement l'évolution des oscillations de la palette lors du lancement du dispositif.
L' actionneur 10 montre en figures 1 à 3 est constitue d'un ensemble destine a être monte sur la culasse 12 d'un moteur. Il comporte un boîtier constitue de plusieurs pièces 14 et 16 empilées et assemblées par des moyens non représentes, tels que des vis. Ces pièces sont en matériau non ferromagnétique, par exemple en alliage léger. Le boîtier peut être fixe sur la culasse 12 par l'intermédiaire d'une cale 20 également en matériau non ferromagnétique.
L' actionneur comporte une palette 22 en matériau ferromagnétique, avantageusement feuilleté pour réduire les pertes, fixée sur une tige 24 d'entraînement de la soupape 25. En général, plusieurs soupapes sont montées côte-à-côte et on ne dispose que d'une largeur faible pour chaque actionneur dans la direction perpendiculaire à celui de la figure 1. Cela conduit à donner à la palette une forme rectangulaire. La palette ne peut pas tourner dans la pièce 16. La tige 24 peut être fixée à la palette par soudure et guidée par une autre bague 26 fixée à un prolongement annulaire de la pièce 16.
Dans le mode de réalisation illustré, la queue de la soupape 25 est séparée de la tige 24. Elle est guidée par une bague fixée à la culasse et peut tourner dans celle-ci.
Deux ressorts de rappel 28a et 28b sont prévus pour maintenir la soupape au repos dans une position sensiblement médiane entre la position de fermeture et la position de pleine ouverture. Un des ressorts 28a est comprimé entre un plateau 30 fixé à la tige 24 et le prolongement de la pièce 16. L'autre ressort 28b est comprimé entre un plateau 31 fixé à la queue de soupape et le fond du puits de soupape ménagé dans la culasse. Le jeu de distribution entre la tige levée et la soupape fermée garantit l' étanchéité. L' actionneur peut tout aussi bien être utilisé avec un ressort unique travaillant en traction/compression et complété d'un amortisseur élastique assurant l' étanchéité à la fermeture de la soupape, comme indiqué dans le brevet français No. 98 11 670. La tige peut être alors d'une seule pièce avec la soupape. Le boîtier contient un noyau en matériau ferromagnétique 36, avantageusement feuilleté, délimitant un circuit ferromagnétique avec la palette, et une bobine 38 placée dans le noyau. Le noyau représenté peut être en deux parties complémentaires, en appui l'une contre l'autre dans un plan 40 (figure 2) ou d'un seul tenant. Les tôles constitutives de chaque moitié du noyau sont en forme de E (figures 2 et 3) . Les branches supérieures 42 s'engagent dans la bobine 36 qu'elles supportent par l'intermédiaire d'un mandrin 44. Les deux autres branches de chaque moitié délimitent un volume de débattement de la palette. L'appui de la palette contre le fond 46 du volume définit la position de pleine ouverture de la soupape. Le plafond 48 du volume est à un emplacement par rapport au siège de soupape tel que l'entrefer soit pratiquement nul lorsque la soupape est fermée. Une encoche médiane 49, correspondant à la position de repos de la palette 22, peut être prévue dans la chambre, de longueur légèrement supérieure à l'épaisseur de la palette. En- dessus et en-dessous de l'encoche, la paroi du volume ne laisse que le jeu nécessaire au débattement. Le noyau peut aussi bien être d' une seule pièce et bobiné sur machine automatique, ce qui évite la présence d'un entrefer et garantit la précision des encoches 49. Dans la variante de réalisation montrée en figure 4, la palette 22, avantageusement feuilletée ou en matériau à forte résistivité électrique, présente des bords biseautés parallèlement aux pôles du noyau 36 (figure 4). Dans cette disposition, l'armature n'est pas saturée magnétiquement dans sa plage de fonctionnement et le flux se referme en passant principalement par l'armature, grâce à la forme des pièces polaires du noyau. Dans une autre variante encore, avantageuse du fait qu'elle impose le sens initial de déplacement de la palette 22 à partir de sa position de repos est imposée, la dissymétrie du circuit de flux supérieur par rapport au circuit de flux inférieur est accentuée par des inclinaisons différentes des surfaces polaires supérieure 80 et inférieure 82 du noyau, chaque surface de la palette en regard d'un pôle étant parallèle à lui.
Dans une autre variante encore de réalisation, montrée en figure 5, la palette 84 présente un bossage central en forme de barrette qui augmente la dissymétrie du circuit magnétique. Lorsque la palette 22 est dans la position de repos où elle est montrée en figure 5 et qu'un flux magnétique est généré par la bobine 38, ce flux se referme en cheminant par le bossage 84, comme indiqué par la flèche f, ce qui réduit la longueur des entrefers. Lorsque la palette se colle contre le noyau, en position extrême haute, ce bossage se trouve court-circuité et n'affaiblit pas les forces de collage. Cette disposition réduit notablement la reluctance en position de repos et accroît la facilité de lancement du dispositif.
L'ensemble constitué par la palette, la soupape et le ressort constitue un système oscillant ayant une fréquence propre. Au cours d'une phase initiale de fonctionnement, l'équipage mobile constitué par la soupape et la palette est alternativement attiré vers le haut et vers le bas, par application à la bobine d'impulsions électriques à une fréquence proche de la fréquence propre du système. La bobine 38 est initialement alimentée pendant une durée correspondant à une fraction de la période propre, ce qui provoque un déplacement de faible amplitude de la palette. Si le système présente une dissymétrie qui peut être provoquée :
- par une forme dissymétrique des encoches 49, - par une dissymétrie de la palette, et/ou
- par la présence d'un bossage (figure 5), le sens de déplacement initial de la palette se trouve déterminé.
Le courant qui parcourt la bobine 38 peut être piloté en observant la position de la palette 22 à l'aide d'un capteur de position intégré dans le dispositif. Les impulsions de courant dans la bobine sont fournies à des instants tels que, au moment de l'application de la force, la vitesse de la palette ait le même sens que la force appliquée. La force initiale étant d'un signe donné, par suite de la dissymétrie, il suffit d'appliquer une impulsion une seule fois par période.
La figure 6 montre schématiquement une phase du lancement du dispositif. Initialement, la palette est dans une position correspondant à la ligne L, pour laquelle les forces exercées par les ressorts 28a et 28b s'équilibrent. Cette position est décalée par rapport à la position L' pour laquelle la force électromagnétique exercée sur la palette 22 par le champ créé par la bobine 38 est nulle. La première impulsion de courant dans la bobine 38 provoque une elongation de la palette, qui revient ensuite avec sa période propre jusqu'à une position qui généralement sera encore au-dessus de celle indiquée par la ligne L'. Progressivement, l'amplitude des oscillations augmente. Le suivi du signal de position permet de connaître à chaque instant la dernière durée T qui sépare deux passages à zéro successifs. D'un instant de passage à zéro et de la durée T on peut déduire l'instant tA auquel un extremum A est atteint. A partir de l'instant suivant de passage à zéro (croisement de la ligne L) , donné par le capteur, on peut déduire un instant optimum d'application de la tension pour faire croître le courant. La durée d'application sera par exemple celle donnée par αT sur la figure 6. A l'issue de - cette période, la tension de commande est inversée pour faire décroître le courant. Le retard à l'application de la tension, ainsi que l'instant d'inversion, sont choisis en fonction de la capacité du courant à varier rapidement dans la bobine. Dans la pratique, on pourra souvent appliquer instantanément la tension après passage de l' extremum A. L'inversion de la tension après l'intervalle de temps αT permet au courant de décroître avant d'arriver à l' extremum B où la vitesse s'inverse. Le courant doit être revenu à zéro à cet instant pour éviter de freiner l'équipage mobile.
Le processus est poursuivi jusqu'à ce que l'amplitude du mouvement soit tel que la palette vient se coller contre la culasse. A partir de ce moment, et en régime permanent, il suffira d'alimenter la bobine à pleine puissance uniquement pendant le temps nécessaire pour ramener l'équipage mobile dans sa position extrême puis sous un courant de maintien plus faible, jusqu'à ce qu'on provoque le déplacement de l'équipage mobile dans l'autre sens . Sur la figure 2, le capteur 52 est relié à un calculateur 50 qui commande l'alimentation de la bobine 38 par un amplificateur 54. Ce capteur 52 peut être porté par le boîtier 16 et faire saillie vers le bas, de façon à détecter le rapprochement du plateau 30, constitué à cet effet en matériau magnétique. A partir du signal de sortie du capteur 52, le calculateur 50, qui peut être le calculateur de contrôle moteur, détermine la position atteinte par l'équipage mobile.
Le capteur 52 permet également, par la variation du signal qu'il fournit, de déterminer l'instant auquel l'amplitude de l'oscillation de l'équipage mobile l'amène dans ' sa - position extrême .
A partir de là, la commande peut être effectuée par des moyens du genre décrit dans la demande de brevet FR 98 12940 de la demanderesse . De façon plus générale, le lancement peut être effectué en un temps minimal grâce à l'association de la mesure de position et d'un algorithme de mise en mouvement de la palette qui commande le courant dans la bobine de façon à ne jamais générer des forces magnétiques de freinage. L' invention est susceptible de nombreuses variantes de réalisation. Les ressorts 28a et 28b peuvent être placés par exemple l'un dans l'autre pour réduire l'encombrement du boîtier. Chaque bobine peut être constituée d'un nombre N d'enroulements supérieur à 1 (deux ou trois par exemple) alimentés en parallèle ce qui divise par N la résistance et augmente le courant total maximum et ce qui divise par N l'inductance. L'inertie électrique est diminuée. La dynamique du système moteur est améliorée. La coupure d'un fil d'enroulement ne met pas hors service le dispositif. La dynamique est améliorée : on peut faire varier de façon plus rapide le champ magnétique, du fait que le rapport inductance/résistance est inchangé alors que la résistance de chaque enroulement est une fraction de la résistance d'une bobine unique : la valeur maximale du courant est plus élevée et, l'inductance étant plus faible, la dynamique est plus rapide.

Claims

REVENDICATIONS
1. Actionneur électromagnétique de soupape ayant une palette (22) en matériau ferromagnétique d'entraînement de la queue de soupape, des moyens de rappel élastiques (28a, 28b) prévus pour maintenir au repos la soupape dans une position médiane entre des positions d'ouverture complète et de fermeture et des moyens électromagnétiques permettant d'amener alternativement les soupapes dans les deux positions, caractérisé en ce que les moyens électromagnétiques comprennent une bobine unique (38) montée sur un circuit ferromagnétique de constitution telle qu'il présente, en combinaison avec la palette, deux cheminements stables de flux magnétique correspondant l'un et l'autre à une valeur faible ou nulle d'entrefer et correspondant l'un à l'ouverture complète et l'autre à la fermeture.
2. Actionneur selon la revendication 1, caractérisé en ce que le circuit ferromagnétique est tel que les valeurs faibles d'entrefer sont sensiblement nulles.
3. Actionneur selon la revendication 1 ou 2, caractérisé en ce que le circuit ferromagnétique est constitué par un noyau (36) feuilleté en deux moitiés en appui l'une contre l'autre, présentant des encoches (49) à mi-course.
4. Actionneur selon la revendication 3, caractérisé en ce que les tôles constitutives de chaque moitié de culasse sont en forme de E ayant une branche supérieure qui s'engage dans la bobine (36) et dont les branches inférieures délimitent un volume de débattement de la palette.
5. Actionneur selon la revendication 4, caractérisé en ce que le volume présente un chambrage médian correspondant à la position de repos de la palette.
6. Actionneur selon l'une quelconque des revendications précédentes, comportant un capteur (52) de position de l'équipage constitué par la palette et la soupape.
7. Actionneur selon l'une quelconque des revendications différentes, caractérisé en ce que les moyens de rappel élastiques sont prévus pour donner à la palette une position dissymétrique dans le circuit ferromagnétique.
8. Actionneur selon l'une quelconque des revendications précédentes, caractérisé en ce que la palette (22) porte un bossage axial (84) de création d'une dissymétrie du circuit ferromagnétique .
9. Actionneur selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit ferromagnétique et la palette ont une constitution telle que les surfaces en contact soient différentes pour les deux cheminements stables de flux magnétique.
10. Actionneur selon l'une quelconque des revendications précédentes, caractérisé en ce que les circuits ferro-magnétiques présentent des encoches (49) médianes décalées dans le sens de l'ouverture ou de la fermeture pour rendre les circuits ferromagnétiques asymétriques et définir un sens de déplacement initiai de la palette.
11. Actionneur selon la revendication 1 ou 2, caractérisé en ce que le circuit ferromagnétique est constitué par un noyau monobloc, présentant des encoches (49) à mi-course.
12. Actionneur selon l'une quelconque des revendications 10 à 11, caractérisé en ce que la bobine est constituée d'un nombre N supérieur à 1 d'enroulements en parallèle.
PCT/FR1999/002356 1998-10-06 1999-10-04 Actionneur electromagnetique de soupape WO2000020731A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/806,711 US6651954B1 (en) 1998-10-06 1999-10-04 Electromagnetic valve actuator
KR1020017004397A KR20010080034A (ko) 1998-10-06 1999-10-04 전자 밸브 액추에이터
JP2000574813A JP2004506826A (ja) 1998-10-06 1999-10-04 電磁バルブアクチュエータ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR98/12489 1998-10-06
FR9812489A FR2784222B1 (fr) 1998-10-06 1998-10-06 Actionneur electromagnetique de soupape
FR98/12940 1998-10-15
FR9812940A FR2784712B1 (fr) 1998-10-15 1998-10-15 Procede et dispositif d'actionnement electromagnetique de soupape

Publications (2)

Publication Number Publication Date
WO2000020731A1 true WO2000020731A1 (fr) 2000-04-13
WO2000020731A9 WO2000020731A9 (fr) 2003-03-06

Family

ID=26234581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002356 WO2000020731A1 (fr) 1998-10-06 1999-10-04 Actionneur electromagnetique de soupape

Country Status (6)

Country Link
US (1) US6651954B1 (fr)
EP (1) EP0992658B1 (fr)
JP (1) JP2004506826A (fr)
KR (1) KR20010080034A (fr)
DE (1) DE69908057T2 (fr)
WO (1) WO2000020731A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062104A (ja) * 2000-05-23 2002-02-28 Soc Appl Gen Electr Mec <Sagem> 軸方向に可動なロッドのための軸位置センサー、及びこれが備えられているバルブの電磁アクチュエータ

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808375B1 (fr) * 2000-04-27 2002-09-06 Sagem Actionneur electromagnetique de soupape, de type monobobine
JP3707354B2 (ja) * 2000-06-02 2005-10-19 日産自動車株式会社 電磁駆動弁の制御装置
JP3617414B2 (ja) * 2000-06-06 2005-02-02 日産自動車株式会社 電磁駆動弁の制御装置
FR2812121B1 (fr) * 2000-07-21 2002-11-08 Renault Actionneur lineaire electromagnetique de soupape comportant une seule bobine
FR2818432B1 (fr) * 2000-12-20 2003-02-14 Sagem Actionneur electromagnetique de soupape de moteur a combustion interne
US6724606B2 (en) 2002-03-08 2004-04-20 Joseph B. Seale Single-winding dual-latching valve actuation solenoid
FR2849466B1 (fr) 2002-12-27 2005-02-18 Renault Sa Ationneur lineaire de soupape comportant un aimant mobile dans un entrefer magnetique
US8083206B2 (en) * 2008-07-08 2011-12-27 Caterpillar Inc. Precision ground armature assembly for solenoid actuator and fuel injector using same
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
EP2868970B1 (fr) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Dispositif de régulation
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US9502167B1 (en) 2015-11-18 2016-11-22 Hamilton Sundstrand Corporation High temperature electromagnetic actuator
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
CN112178213B (zh) * 2020-09-30 2022-05-06 扬州苏油油成商贸实业有限公司 高温高压环境电磁阀

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19518056A1 (de) * 1995-05-17 1996-11-21 Fev Motorentech Gmbh & Co Kg Einrichtung zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung und Verfahren zur Ansteuerung
DE19718038C1 (de) * 1997-04-29 1998-05-07 Daimler Benz Ag Elektromagnetischer Aktuator für Gaswechselventile einer Brennkraftmaschine
JPH10196328A (ja) * 1997-01-10 1998-07-28 Satoshi Yamada 磁力で開閉するエンジンのバルブ
DE19712064A1 (de) * 1997-03-24 1998-10-01 Braunewell Markus Elektromagnetischer Antrieb

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB779364A (en) * 1954-09-30 1957-07-17 Welding Engineers Treatment of plastic materials
IL54107A (en) * 1978-02-22 1981-06-29 Yeda Res & Dev Electromagnetic linear motion devices
WO1993002905A1 (fr) * 1991-07-30 1993-02-18 Aura Systems, Inc. Servomecanisme a gain variable
US5548263A (en) * 1992-10-05 1996-08-20 Aura Systems, Inc. Electromagnetically actuated valve
US5515818A (en) * 1993-12-15 1996-05-14 Machine Research Corporation Of Chicago Electromechanical variable valve actuator
US5636601A (en) * 1994-06-15 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Energization control method, and electromagnetic control system in electromagnetic driving device
JP3186462B2 (ja) * 1994-09-22 2001-07-11 トヨタ自動車株式会社 内燃機関の電磁式弁駆動装置
US5730091A (en) * 1996-11-12 1998-03-24 Ford Global Technologies, Inc. Soft landing electromechanically actuated engine valve
US5961097A (en) * 1996-12-17 1999-10-05 Caterpillar Inc. Electromagnetically actuated valve with thermal compensation
DE29712502U1 (de) * 1997-07-15 1997-09-18 Fev Motorentech Gmbh & Co Kg Elektromagnetischer Aktuator mit Gehäuse
FR2784712B1 (fr) * 1998-10-15 2001-09-14 Sagem Procede et dispositif d'actionnement electromagnetique de soupape
FR2808375B1 (fr) * 2000-04-27 2002-09-06 Sagem Actionneur electromagnetique de soupape, de type monobobine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19518056A1 (de) * 1995-05-17 1996-11-21 Fev Motorentech Gmbh & Co Kg Einrichtung zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung und Verfahren zur Ansteuerung
JPH10196328A (ja) * 1997-01-10 1998-07-28 Satoshi Yamada 磁力で開閉するエンジンのバルブ
DE19712064A1 (de) * 1997-03-24 1998-10-01 Braunewell Markus Elektromagnetischer Antrieb
DE19718038C1 (de) * 1997-04-29 1998-05-07 Daimler Benz Ag Elektromagnetischer Aktuator für Gaswechselventile einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 098, no. 012 31 October 1998 (1998-10-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062104A (ja) * 2000-05-23 2002-02-28 Soc Appl Gen Electr Mec <Sagem> 軸方向に可動なロッドのための軸位置センサー、及びこれが備えられているバルブの電磁アクチュエータ
JP4683765B2 (ja) * 2000-05-23 2011-05-18 ジョンソン コントロールズ オートモーティブ エレクトロニクス 軸方向に可動なロッドのための軸位置センサー、及びこれが備えられているバルブの電磁アクチュエータ

Also Published As

Publication number Publication date
JP2004506826A (ja) 2004-03-04
US6651954B1 (en) 2003-11-25
EP0992658B1 (fr) 2003-05-21
KR20010080034A (ko) 2001-08-22
WO2000020731A9 (fr) 2003-03-06
DE69908057T2 (de) 2004-03-18
EP0992658A1 (fr) 2000-04-12
DE69908057D1 (de) 2003-06-26

Similar Documents

Publication Publication Date Title
EP0992658B1 (fr) Actionneur électromagnétique de soupape
EP1121511B1 (fr) Procede et dispositif d&#39;actionnement electromagnetique de soupape
FR2792765A1 (fr) Actionneur lineaire electromagnetique a capteur de position
FR2545574A1 (fr) Electro-aimant pour commander une vanne ou un clapet
EP1174595B1 (fr) Actionneur de soupapes de moteurs à combustion interne
EP1561914B1 (fr) Perfectionnements apportés à un actionneur électromécanique de soupape de moteur à combustion interne
FR2784497A1 (fr) Actionneur electromagnetique a palette aimantee
FR2784222A1 (fr) Actionneur electromagnetique de soupape
FR2886669A1 (fr) Electrovanne
EP1421590B1 (fr) Actionneur electromagnetique a deux positions stables de fin de course, notamment pour la commande de vannes de conduits d&#39;admission d&#39;air pour moteurs a combustion interne
WO2002084082A1 (fr) Dispositif de commande de soupape a point mort
FR2865238A1 (fr) Actionneur electromecanique de commande de soupape pour moteur a combustion interne et moteur a combustion interne muni d&#39;un tel actionneur
FR2849101A1 (fr) Actionneur electromagnetique de soupape bibobine a aimant permanent
EP1132581B1 (fr) Soupape à commande électromagnétique, à ressort pneumatique et articulation par genouillère
EP1774143A1 (fr) Dispositif de commande a electroaimant pour une soupape de moteur a combustion interne
WO2003075293A1 (fr) Actionneur electromagnetique a force d&#39;attraction controlee.
FR2792451A1 (fr) Dispositif d&#39;actionnement electromagnetique
EP1229560B1 (fr) Actionneur électromagnétique à un électroaimant pour soupape de moteur à combustion interne
FR2783631A1 (fr) Actionneur electromagnetique, notamment pour soupape
EP1703089B1 (fr) Actionneur électromécanique de commande de soupape pour moteur à combustion interne et moteur à combustion interne muni d&#39;un tel actionneur
WO1997026667A1 (fr) Actionneur electromagnetique monophase rotatif a ressort magnetique et vanne electrique mettant en oeuvre un tel actionneur
EP1288450B1 (fr) Dispositif de commande de soupape pour moteur à combustion interne
EP1561915A2 (fr) Actionneur électromécanique de soupape de moteur à combustion interne
FR2812683A1 (fr) Procede et dispositif de commande de soupape a commande electromagnetique
FR2812121A1 (fr) Actionneur lineaire electromagnetique de soupape comportant une seule bobine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09806711

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 574813

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017004397

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017004397

Country of ref document: KR

COP Corrected version of pamphlet

Free format text: PAGES 1/3-3/3, DRAWINGS, ADDED

WWR Wipo information: refused in national office

Ref document number: 1020017004397

Country of ref document: KR