WO2000018357A1 - Selbstemulgierende w/o-emulsionsgrundlagen - Google Patents

Selbstemulgierende w/o-emulsionsgrundlagen Download PDF

Info

Publication number
WO2000018357A1
WO2000018357A1 PCT/EP1999/006865 EP9906865W WO0018357A1 WO 2000018357 A1 WO2000018357 A1 WO 2000018357A1 EP 9906865 W EP9906865 W EP 9906865W WO 0018357 A1 WO0018357 A1 WO 0018357A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
esters
alcohols
waxes
linear
Prior art date
Application number
PCT/EP1999/006865
Other languages
English (en)
French (fr)
Inventor
Achim Ansmann
Stefan BRÜNING
Rolf Kawa
Gabriele Strauss
Original Assignee
Cognis Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh filed Critical Cognis Deutschland Gmbh
Priority to AU60844/99A priority Critical patent/AU6084499A/en
Priority to JP2000571879A priority patent/JP2002525301A/ja
Priority to EP99947369A priority patent/EP1115365A1/de
Publication of WO2000018357A1 publication Critical patent/WO2000018357A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/064Water-in-oil emulsions, e.g. Water-in-silicone emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the invention is in the field of cosmetics and relates to self-emulsifying W / 0 emulsion bases containing selected emulsifiers, oil bodies and lipophilic waxes.
  • the known self-emulsifying bases for the production of W / O emulsions generally contain metal soaps and lipophilic waxes, e.g. Beeswax or micro waxes, which serve to improve phase stability and the oil binding capacity.
  • lipophilic waxes e.g. Beeswax or micro waxes
  • the person skilled in the art also knows the basics which have an oil body content.
  • the prior art emulsion bases are only available in solid form due to the lipophilic waxes which have so far been mandatory. with a melting or dropping point of 50 to 60 ° C are available.
  • the complex object of the present invention was to provide bases for W / O emulsions which simultaneously contain emulsifiers, oil bodies and the lipophilic waxes which are important in terms of formulation, but at the same time are liquid, low-viscosity and pumpable at room temperature, i.e. are cold processable and also allow the production of emulsions with excellent heat stability.
  • the invention relates to self-emulsifying W / O emulsion bases containing
  • Emulsion bases of this type are liquid at room temperature, are phase-stable even when stored at a high temperature, and are outstandingly suitable for the cold production of W / O emulsions.
  • Another advantage is that the use of metal soaps is only optional, so it is no longer mandatory.
  • the end products produced using the agents are distinguished by very good thermal stability.
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • glycerol monoesters and diesters and sorbitan monoesters and diesters of saturated and unsaturated fatty acids having 6 to 22 carbon atoms and their ethylene oxide addition products such as e.g. Glyceryl stearate, glyceryl isostearate, glyceryl oleate, sorbitan sesquileate or sorbitan oleate;
  • polyglycerol esters such as e.g. Diisostearoyl polyglyceryl-3-diisostearate, polyglyceryl-3-diisostearate, triglyceryl diisostearate, polyglyceryl-2-sequiisostearate or polyglycerol dimerate. Mixtures of compounds from several of these classes of substances are also suitable;
  • polysiloxane-polyalkyl-polyether copolymers or corresponding derivatives such as e.g. Cetyl dimethicone copolyol;
  • mixed esters of pentaerythritol, fatty acids, citric acid and fatty alcohol according to DE-PS 1165574 and / or mixed esters of fatty acids with 6 to 22 carbon atoms, methyl glucose and polyols, preferably glycerol or polyglycerol, such as polyglyceryl dioleates, Polyglyceryl Distearate, Methyl Glucose Dioleate or Dicocoyl Pentaerythrityl Distearyl Citrate.
  • oils from the group mentioned which is an exemplary and by no means complete list
  • This selection can be made by a person skilled in the art without having to be inventive, especially since the example part illustrates a number of particularly advantageous embodiments of the invention.
  • the use of dicaprylyl ether and coco glycerides and their mixtures is particularly preferred.
  • lipophilic waxes are preferably understood to mean those substances which
  • suitable wax bodies are natural plant or animal waxes, such as Candelilla wax, camauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin, pretzel fat, mineral waxes, e.g. Ceresin or ozokerite, petrochemical waxes, such as petrolatum, paraffin and micro waxes.
  • Synthetic hard waxes such as Montanester waxes, Sasol waxes, hydrogenated jojoba waxes, polyalkylene waxes and polyethylene glycol waxes.
  • Beeswax, lanolin or montan wax are preferably used.
  • Metal soaps which may be present as optional component (d) preferably follow the formula (I),
  • R 1 CO is a linear or branched, saturated or unsaturated acyl radical having 6 to 22, preferably 12 to 18 carbon atoms and X is lithium, calcium, magnesium, aluminum or zinc and n is a number corresponding to the valence of X.
  • Typical examples are the corresponding lithium, calcium, magnesium, aluminum and / or zinc salts of the following carboxylic acids: caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, Elaidic acid, petroselinic acid, linoleic acid, linolenic acid, ricinoleic acid, 12-hydroxystearic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical see mixtures that occur, for example, in the pressure splitting of natural fats and oils, in the reduction of aldehydes from Roelen's oxosynthesis or as a monomer fraction in the dimerization of unsaturated fatty acids.
  • carboxylic acids caproic acid, cap
  • emulsion bases which have the following composition:
  • weight information may be supplemented with water to 100% by weight.
  • the agents according to the invention are liquid and are particularly suitable for the cold production of W / O emulsions.
  • Another object of the invention relates to the use of mixtures containing
  • cosmetic preparations in the form of W / O emulsions, preferably in amounts of 1 to 25, preferably 5 to 20 and in particular 10 to 15% by weight, based on the final preparations.
  • the preparations obtainable using the emulsion bases according to the invention can be used as further auxiliaries and additives, mild surfactants, superfatting agents, pearlescent waxes, consistency agents, thickeners, polymers , Silicone compounds, biogenic agents, deodorants, anti-dandruff agents, film formers, preservatives, hydrotropes, solubilizers, UV light protection factors, antioxidants, inorganic color pigments, insect repellents, self-tanners, perfume oils, dyes and the like.
  • Suitable mild, i.e. Particularly skin-compatible surfactants which preferably have 8 to 18 carbon atoms in the hydrophobic residue, are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ether carboxylic acids, alkyl amide / fatty acid fatty acids, alkylolamidoble acid fatty acids, alkylolamidobluoroacetic acid, alkylolamidobloyl fatty acid fatty acids, alkylolamidobluoroacetic acid, alkylolamidobluoroacetic acid, alkylolamidobluoroacetic acid, alkylolamidobluoroacetic acid, alkylolamidobluoroacetic acid, alkyl
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • suitable pearlescent waxes are: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanoiamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atom
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 14 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxy fatty acids.
  • alkyl oligoglucos is the and / or fatty acid N-methylgiucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates.
  • Suitable thickeners are, for example, polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, (for example Carbopole® from Goodrich or Synthalene® from Sigma ), Polyacrylic amides, polyvinyl alcohol and polyvinyl pyrrolidone, surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as, for example, pentaerythritol or trimethylol propane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglycosides, and electrolytes such as sodium chloride and ammonium chloride.
  • polysaccharides in particular xanthan gum, guar
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylic amides, quaternized vinylpyrroiidone / vinylimidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, e.g. Amidomethicones, copolymers of adipic acid and dimethylaminohydroxypropyidiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyamino polyamides, e.g.
  • cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline, condensation products of dihaloalkylene, such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1, 3-propane, cationic guar gum, e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers, e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1, 3-propane
  • cationic guar gum e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese
  • quaternized ammonium salt polymers e.g. Mirapol® A
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and esters thereof, uncrosslinked and polyol-crosslinked Poiyacryl Acid, acrylamidopropyl - Trimethylammonium chloride / acrylate copolymers, octylacryiamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinyipyrrolidone, vinyl pyrrolidone / vinyl acetate copolymers, vinyl pyrrolidone / dimethylaminoethylolol methacryl
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976).
  • Biogenic active substances are, for example, tocopherol, tocopherol acetate, tocopheroipalmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamine complexes.
  • Antiperspirants such as aluminum chlorohydrates are suitable as deodorant active ingredients. These are colorless, hygroscopic crystals that easily melt in the air and are produced when aqueous aluminum chloride solutions are evaporated.
  • Aluminum chlorohydrate is used in the manufacture of antiperspirant and deodorant preparations and is likely to act by partially occluding the sweat glands through protein and / or polysaccharide precipitation [cf. J.Soc.Cosm.Chem. 24, 281 (1973)].
  • there is an aluminum chlorohydrate commercially available under the brand Locron® from Hoechst AG, Frankfurt / FRG, which corresponds to the formula [A (OH) 5CI] * 2.5 H 2 0 and whose use is particularly preferred [cf.
  • esterase inhibitors can be added as further deodorant active ingredients. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG). The substances inhibit enzyme activity and thereby reduce odor. The cleavage of the citric acid ester probably releases the free acid, which lowers the pH value on the skin to such an extent that the enzymes are inhibited.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • the cleavage of the citric acid ester probably releases the free acid, which lowers the pH value on
  • esterase inhibitors are dicarboxylic acids and esters thereof such as glutaric acid, Glutarklamo- noethylester, diethyl glutarate, adipic acid, adipic acid monoethyl ester, Adipinklaredie- methyl ester, malonic acid and diethyl malonate, hydroxycarboxylic acids and esters thereof such as citric acid, malic acid, tartaric acid or Tartaric acid diethyl ester.
  • Antibacterial agents that influence the bacterial flora and kill sweat-killing bacteria or inhibit their growth can also be contained in the stick preparations. Examples include chitosan, phenoxyethanol and chlorhexidine diconate. 5-Chloro-2- (2,4-dichloro-oxy) phenol, which is sold under the Irgasan® brand by the
  • Ciba-Geigy, Basel / CH. Climbazole, octopirox and zinc pyrethione can be used as antidandruff agents.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Montmorillonites, clay minerals, pemulene and alkyimodified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 3-benzylidene camphor or 3-benzylidene norcampher and its derivatives e.g. 3- (4-methylbenzyiiden) camphor as described in EP-B1 0693471;
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, 2-cyano-3,3-phenylcinnamate 2-ethylhexyl 4-methoxycinnamate (octocrylene);
  • esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomethyl salicylic acid;
  • esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives e.g. 2,4,6-trianiiino- (p-carbo-2'-ethyl-1'-hexyloxy) -1J, 5-triazine and octyl triazone, as described in EP-A1 0818450;
  • Propane-1,3-dione e.g. 1- (4-tert-butylphenyl) -3- (4'methoxyphenyl) propane-1,3-dione;
  • Sulfonic acid derivatives of 3-benzylidene camphor e.g. 4- (2-oxo-3-bornylidene-methyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) sulfonic acid and their salts.
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyi) propane-1,3-dione, 4-tert-butyl
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyi) propane-1,3-dione, 4-tert-butyl
  • typical UV-A filters -4'-methoxy-dibenzoyi-methane (Parsol 1789), or 1-phenyl-3- (4'-isopropylphenyl) propane-1,3-dione.
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • Combinations of octocrylene or camphor derivatives and butyl methoxydibenzoyl methane are characterized by special photostability.
  • insoluble light-protection pigments namely finely dispersed metal oxides or salts, such as, for example, titanium dioxide, zinc oxide, iron oxide, aluminum oxide, cerium oxide, zirconium oxide, silicates (talc), barium sulfate and zinc stearate are also suitable for this purpose.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or shape which differs from the spherical shape in some other way. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996).
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-camosine, D-camosine, L-carosin and their derivatives (e.g. Anserine), carotenoids, carotenes (e.g.
  • ⁇ -carotene, ß-carotene, lycopene) and their derivatives chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g. dihydroliponic acid), aurothioglucose, propyithiouracil and other thiols (e.g.
  • thioredoxin glutathione, cysteine, Cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts , Dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and its derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (eg buthioninsulfoximines, homocysteine sulfoximine, butioninsulfones, penta-, hexa-, heptiminoxininsulfonins) tolerable dosages (e.g.
  • (metal) chelators e.g. -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, bilirubin, biliverdin , EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g. ⁇ - Linolenic acid, linoleic acid, oleic acid), folic acid and its derivatives, ubiquinone and ubiquinol and their derivatives, vitamin C and derivatives (e.g.
  • Hydrotropes such as ethanol, isopropyl alcohol or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyo compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides in particular those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Sugar alcohols with 5 to 12 carbon atoms such as sorbitol or mannitol,
  • Aminosugars such as glucamine.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol and / or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Regulation.
  • N, N-diethyl-m-touluamide, 1, 2-pentanediol or Insect repellent 3535 are suitable as insect repellents, and dihydroxyacetone is suitable as a self-tanner.
  • Perfume oils include mixtures of natural and synthetic fragrances.
  • Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbynyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenylglycinate, allyl cyclohexylalylpylyl allyl pro-xylpropylyl allyl pro-xylpropylate allyl pro-xylpropylate allyl pro-xylpropylate allyl pro-xylpropylate allyl pro-xylpropylate allyl pro-xylpropylate allyl pro-xylpropylate
  • the ethers include, for example, benzylethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citroneliyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, Liliai and bourgeonal, and the ketones include, for example, the jonones, o -lso-methylionone and methylcedryl ketone , the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and te ⁇ ineol, the hydrocarbons mainly include the te ⁇ ene and balsams.
  • fragrance oils of low volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labola oil and lavandin oil.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40,% by weight, based on the composition.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.
  • Various emulsion bases were prepared by homogenizing the components of phase 1 at about 120 ° C. until a clear solution was obtained. The components of phase 2 were then added successively, clearly dissolved and the mixture was cooled to room temperature. The viscosity was determined according to the Brookfield method in an RVF viscometer (23 ° C., spindle 5, 10 rpm or spindle E, 5 rpm). The results are summarized in Table 1. Preparations 1 to 4 are according to the invention, formulations V1 and V2 are used for comparison. Table 2 contains a number of formulation examples.
  • Emulsion bases (quantities as% by weight)

Abstract

Vorgeschlagen werden selbstemulgierende W/O-Emulsionsgrundlagen, enthaltend: (a) Emulgatoren mit einem HLB-Wert im Bereich von 2,5 bis 10; (b) Ölkörper mit einer Polarität von kleiner oder gleich 5 Debey und (c) lipophile Wachse.

Description

Selbstemulgierende W/O-Emulsionsgrundlagen
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der Kosmetik und betrifft selbstemulgierende W/0- Emulsionsgrundlagen mit einem Gehalt an ausgewählten Emulgatoren, Ölkörpern und lipophilen Wachsen.
Stand der Technik
Die bekannten selbstemulgierenden Grundlagen zur Herstellung von W/O-Emulsionen enthalten neben emulgierenden Komponenten in der Regel zur Viskositätsstabilisierung Metallseifen sowie lipophile Wachse, wie z.B. Bienenwachs oder Mikrowachse, die zur Verbesserung der Phasenstabilität und des Ölbindevermögens dienen. Daneben kennt der Fachmann auch Grundlagen, die einen Gehalt an Ölkörpern aufweisen. Nachteilig ist jedoch, daß die Emulsionsgrundiagen des Stands der Technik aufgrund der bislang zwingend vorhandenen lipophilen Wachse ausschließlich in fester Form, d.h. mit einem Schmelz- bzw. Tropfpunkt von 50 bis 60°C zur Verfügung stehen. Aus der deutschen Patentanmeldung DE-A1 4338999 (Henkel) sind zwar sogenannte kaltemul- gierbaren Mittel bekannt, die Emulgatoren, Metallseifen und Ölkörper, jedoch keine lipophilen Wachse enthalten, die mit diesen Mitteln hergestellten Endprodukte weisen jedoch insbesondere in der Wärme eine nicht ausreichende Phasenstabilität und ein unbefriedigendes Ölbindevermögen auf.
Dementsprechend hat die komplexe Aufgabe der vorliegenden Erfindung darin bestanden, Grundlagen für W/O-Emulsionen zur Verfügung zu stellen, die gleichzeitig Emulgatoren, Ölkörper und die formulierungstechnisch wichtigen lipophilen Wachse enthalten und dabei aber gleichzeitig bei Raumtemperatur flüssig, niedrigviskos und pumpbar, d.h. kalt verarbeitbar sind und zudem die Herstellung von Emulsionen mit einer ausgezeichneten Wärmestabilität erlauben.
Beschreibung der Erfindung
Gegenstand der Erfindung sind selbstemulgierende W/O-Emulsionsgrundlagen, enthaltend
(a) Emulgatoren mit einem HLB-Wert im Bereich von 2,5 bis 10, vorzugsweise von 3,5 bis 7, (b) Ölkörper mit einer Polarität von kleiner oder gleich 5 , vorzugsweise kleiner oder gleich 4 Debey und
(c) iipophile Wachse.
Überraschenderweise wurde gefunden, daß Mischungen von Emulgatoren und Ölkörpern, dann besonders geeignet sind, Iipophile Wachse zu lösen, wenn die Emulgatoren eine bestimmte Hy- drophilie und die Ölkörper eine definierte Polarität besitzen. Derartige Emulsionsgrundlagen sind bei Raumtemperatur flüssig, auch bei Temperaturtagerung phasenstabil und eignen sich hervorragend zur Kaltherstellung von W/O-Emulsionen. Ein weiterer Vorteil besteht ferner darin, daß die Mitverwendung von Metallseifen nur noch fakultativ, also nicht mehr zwingend ist. Die unter Verwendung der Mittel hergestellten Endprodukte zeichnen sich durch eine sehr gute Wärmestabilitä aus.
Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
(1) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungspro- dukte, wie z.B. Glyceryl Stearate, Glyceryl Isostearate, Glyceryl Oleate, Sorbitan Sesquio- leate oder Sorbitan Oleate;
(2) Polyol- und insbesondere Polyglycerinester, wie z.B. Diisostearoyl Polyglyceryl-3-Diisostea- rate, Polyglyceryl-3-Diisostearate, Triglyceryl Diisostearate, Polyglyceryl-2-sequiisostearate oder Poiyglycerindimerat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
(3) Partialester auf Basis iinearer, verzweigter, ungesättigter bzw. gesättigter Cβm-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Di- peπtaerythrit, Zuckeralkohole (z.B. Sorbit), Alkylgiucoside (z.B. Methylglucosid, Butylgluco- sid, Laurylgiucosid) sowie Polyglucoside (z.B. Cellulose), wie z.B. Polyglyceryl-2 Dihydroxy- ricinoleate oder Polyglyceryl- 2 Di- und Polyhydroxystearate;
(4) Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate, wie z.B. Cetyl Dimethicone Copolyol;
(5) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 1165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglu- cose und Polyolen, vorzugsweise Glycerin oder Polyglycerin, wie z.B. Polyglyceryl Dioleate, Polyglyceryl Distearate, Methyl Glucose Dioleate oder Dicocoyl Pentaerythrityl Distearyl Citrate.
Ölkörper
Als Ölköφer kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen Ce-C^Fettsäuren mit linearen Cβ- C22-Fettalkoholen, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten Cβ-C∑∑-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Trigiyceride auf Basis Cδ-CiQ-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Cβ-C-iβ-Fettsäu- ren, Ester von C6-C22-Fettalkohoien und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte Cε-C∑∑-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siiiconöle und/oder aliphati- sche bzw. naphthenische Kohlenwasserstoffe in Betracht. Bei der Auswahl der Öle aus der genannten Gruppe, die eine beispielhafte und keineswegs vollständige Aufzählung darstellt, ist darauf zu achten, daß in Abhängigkeit der Struktur, beispielsweise der Kettenlänge oder des Veresterungsgrades die Polaritätsbedingung eingehalten wird. Diese Auswahl kann vom Fachmann getroffen werden, ohne hierzu erfinderisch tätig werden zu müssen, zumal der Beispielteil eine Reihe von besonders vorteilhaften Ausgestaltungen der Erfindung illustriert. Besonders bevorzugt ist indes der Einsatz von Dicaprylyl Ether und Coco Glycerides sowie deren Abmischungen.
Lipophile Wachse
Unter lipophilen Wachsen sind im Sinne der Erfindung vorzugsweise solche Stoffe zu verstehen, die
• bei 20°C knetbar, fest bis brüchig hart, grob bis feinkristallin, durchscheinend bis opak, aber nicht glasartig sind,
• oberhalb von 40°C ohne Zersetzung schmelzen sowie
• schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos sind und dabei keine Fäden ziehen.
Typische Beispiele für geeignete Wachsköφer sind natürliche pflanzliche oder tierische Wachse, wie z.B. Candelillawachs, Camaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guaru- mawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin, Bürzelfett, Mineraiwachse, wie z.B. Ceresin oder Ozokerit, petro- chemische Wachse, wie etwa Petrolatum, Paraffin- und Mikrowachse. Weiterhin in Frage kommen auch synthetische Hartwachse, wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojoba- wachse, Polyalkylenwachse und Polyethylenglycolwach.se. Vorzugsweise werden Bienenwachs, Lanolin oder Montanwachs eingesetzt.
Metallseifen
Metallseifen, die als fakultative Komponente (d) enthalten sein können, folgen vorzugsweise der Formel (I),
(R1C00)„-X (I)
in der R1CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für Lithium, Calcium, Magnesium, Aluminium oder Zink und n für eine Zahl entsprechend der Wertigkeit von X steht. Typische Beispiele sind die entsprechenden Lithium-, Calcium- Magnesium- Aluminium- und/oder Zinksalze der folgenden Carbonsäuren: Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotri- decansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Ricinolsäure, 12-Hydroxystearinsäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren techni- sehe Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Reduktion von Aldehyden aus der Roelen'schen Oxosynthese oder als Monomerfraktion bei der Dimerisierung von ungesättigten Fettsäuren anfallen. Vorzugsweise werden Magnesiumstearat, Aluminiumstearat oder Zinkstearat eingesetzt.
Selbstemulgierende Emulsionsgrundiagen
In einer bevorzugten Ausführungsform der Erfindung kommen Emulsionsgrundiagen zum Einsatz, die folgende Zusammensetzung aufweisen:
(a) 5 bis 60, vorzugsweise 20 bis 45 Gew.-% Emulgatoren mit einem HLB-Wert im Bereich von 2,5 bis 10,
(b) 10 bis 80, vorzugsweise 40 bis 70 Gew.-% Ölköφer mit einer Polarität von kleiner oder gleich 5 Debey,
(c) 1 bis 40, vorzugsweise 4 bis 20 Gew.-% Iipophile Wachse und
(d) 0 bis 20, vorzugsweise 0,5 bis 10 Gew.-% Metallseifen,
mit der Maßgabe, daß sich die Gewichtsangaben gegebenenfalls mit Wasser zu 100 Gew.-% ergänzen.
Gewerbliche Anwendbarkeit
Die erfindungsgemäßen Mittel sind flüssig und eignen sich vorzüglich zur Kaltherstellung von W/O- Emulsionen. Ein weiterer Gegenstand der Erfindung betrifft die daher Verwendung von Mischungen, enthaltend
(a) Emulgatoren mit einem HLB-Wert im Bereich von 2,5 bis 10, vorzugsweise 3,5 bis 7
(b) Ölköφer mit einer Polarität von kleiner oder gleich 5 Debey, vorzugsweise kleiner oder gleich 4 und
(c) Iipophile Wachse
als selbstemulgierende Grundlagen zur Herstellung von kosmetischen Zubereitungen in Form von W/O-Emulsionen, vorzugsweise in Mengen von 1 bis 25, vorzugsweise 5 bis 20 und insbesondere 10 bis 15 Gew.-% - bezogen auf die Endzubereitungen. Kosmetische Zubereitungen
Die unter Verwendung der erfindungsgemäßen Emulsionsgrundlagen erhältlichen Zubereitungen, wie beispielsweise Haarshampoos, Haarlotionen, Schaumbäder, Sonnenschutzmittel, Gesichtsund Köφerlotionen, Babypflegeprodukte, dekorative Kosmetik, Salben und dergleichen, können als weitere Hilfs- und Zusatzstoffe milde Tenside, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Polymere, Silicon Verbindungen, biogene Wirkstoffe, Deowirkstoffe, Antischuppenmittel, Filmbildner, Konservierungsmittel, Hydrotrope, Solubilisatoren, UV- Lichtschutzfaktoren, Antioxidantien, anorganische Farbpigmente, Insektenrepellentien, Selbst- bräuner, Parfümöle, Farbstoffe und dergleichen enthalten.
Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche Tenside, die vorzugsweise 8 bis 18 Kohlenstoffatome im hydrophoben Rest aufweisen, sind Fettalkoholpolyglycole- thersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, Ethercarbonsäuren, Alkyloligogluco- side, Fettsäureglucamide, Alkylamidobetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Perlgianzwachse kommen beispielsweise in Frage : Alkylenglycolester, speziell Ethylenglycol- distearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanoiamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 14 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosi- den und/oder Fettsäure-N-methylgiucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12- hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma), Polyacryiamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Tri- methylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligogiu- coside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quatemierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acryiamiden, quatemierte Vinylpyrroiidon/Vinyl-imidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quatemierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxypropyl hydrolyzed Collagen (Lamequat®L/Grünau), quatemierte Weizen- polypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amidomethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyidiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polya- minopolyamide, wie z.B. beschrieben in der FR-A 2252840 sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quatemiertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1 ,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quatemierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylace- tat/Butylmaleat/ Isobomylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Poiyacrylsäuren, Acrylamidopropyl- trimethylammoniumchlorid/ Acrylat-Copolymere, Octylacryiamid/Me- thylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere, Polyvinyipyrrolidon, Vinylpyrroiidon/Vinylacetat-Copolymere, Vinylpyrroli-don/Dimethylaminoethyl- methacrylat/Vinylcaprolactam-Teφolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysi- loxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976).
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopheroipal- mitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Als Deowirkstoffe kommen z.B. Antiperspirantien wie etwa Aluminiumchlorhyrdate in Frage. Hierbei handelt es sich um farblose, hygroskopische Kristalle, die an der Luft leicht zerfließen und beim Eindampfen wäßriger Aluminiumchloridiösungen anfallen. Aluminiumchlorhydrat wird zur Herstellung von schweißhemmenden und desodorierenden Zubereitungen eingesetzt und wirkt wahrscheinlich über den partiellen Verschluß der Schweißdrüsen durch Eiweiß- und/oder Polysaccha- ridfällung [vgl. J.Soc.Cosm.Chem. 24, 281 (1973)]. Unter der Marke Locron® der Hoechst AG, Frankfurt/FRG, befindet beispielsweise sich ein Aluminiumchlorhydrat im Handel, das der Formel [A (OH)5CI]*2,5 H20 entspricht und dessen Einsatz besonders bevorzugt ist [vgl. J.Pharm.Pharmacol. 26, 531 (1975)]. Neben den Chlorhydraten können auch Aluminiumhy- droxylactate sowie saure Aluminium/Zirkoniumsalze eingesetzt werden. Als weitere Deowirkstoffe können Esteraseinhibitoren zugesetzt werden. Hierbei handelt es sich vorzugsweise um Trialkyl- citrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Trie- thylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Wahrscheinlich wird dabei durch die Spaltung des Citronensäureesters die freie Säure freigesetzt, die den pH-Wert auf der Haut soweit absenkt, daß dadurch die Enzyme inhibiert werden. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremo- noethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäuredie- thylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester. Antibakterielle Wirkstoffe, die die Keimflora beeinflussen und schweißzersetzende Bakterien abtöten bzw. in ihrem Wachstum hemmen, können ebenfalls in den Stiftzubereitungen enthalten sein. Beispiele hierfür sind Chitosan, Phenoxyethanol und Chlorhexidingiuconat. Besonders wirkungsvoll hat sich auch 5-Chlor-2-(2,4-dichlθφhen-oxy)-phenol erwiesen, das unter der Marke Irgasan® von der
Ciba-Geigy, Basel/CH vertrieben wird. Als Antischuppenmittel können Climbazol, Octopirox und Zinkpyrethion eingesetzt werden. Gebräuchliche Filmbiidner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acryisäurereihe, quatemäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen. Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyimodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllösiich oder wasserlöslich sein. Als öllösiiche Substanzen sind z.B. zu nennen:
• 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methyl- ben-zyiiden)campher wie in der EP-B1 0693471 beschrieben;
• 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
• Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimt- säurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhe- xylester (Octocrylene);
• Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropyl- benzylester, Salicylsäurehomomenthylester;
• Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4- meth-oxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
• Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
• Triazinderivate, wie z.B. 2,4,6-Trianiiino-(p-carbo-2'-ethyl-1'-hexyloxy)-1J,5-triazin und Octyl Triazon, wie in der EP-A1 0818450 beschrieben;
• Propan-1 ,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion;
• Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP-B1 0694521 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
• 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammo- nium-, Alkanolammonium- und Glucammoniumsalze; • Sulfonsäurederivate von Benzophenonen vorzugsweise 2-Hydroxy-4-methoxybenzophenon- 5-sulfonsäure und ihre Salze;
• Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenme- thyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bomyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyi)propan-1 ,3-dion, 4-tert.-Butyl-4'-methoxy- dibenzoyi-methan (Parsol 1789), oder 1-Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Hierbei zeichnen sich Kombinationen aus Octocrylene bzw. Campherderivaten und Butyl Methoxydibenzoyl- methane durch besondere Photostabilität aus. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage, wie beispielsweise Titandioxid, Zinkoxid, Eisenoxid, Aluminiumoxid, Ceroxid, Zirkoniumoxid, Silicate (Talk), Bariumsulfat und Zinkstearat. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Licht-schutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Camosin, D-Camosin, L-Car- nosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propyithiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester ) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathio- ninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)- Chelatoren (z.B. -Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ- Linolensäure, Linolsäure, Ölsäure), Folsäur und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbyla- cetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-pal- mitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Camosin, Butyihydroxytoluol, Butyihydroxyanisol, Nordihydro- guajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnS0 ) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Zur Verbesserung des Fließverhaltens können femer Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Typische Beispiele sind
• Glycerin;
• Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
• technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
• Methyoiverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
• Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
• Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
• Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
• Aminozucker, wie beispielsweise Glucamin.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol und/oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. Als Insekten-Repellentien kommen N,N-Diethyl- m-touluamid, 1 ,2-Pentandiol oder Insect repellent 3535 in Frage, als Selbstbräuner eignet sich Dihydroxyaceton. Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzyla- cetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbiny- lacetat, Phenylethylacetat, Linalylbenzoat, Benzylfor iat, Ethylmethylphenylglycinat, Allylcyclohe- xylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzy- lethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citroneliyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Liliai und Bourgeonal, zu den Ketonen z.B. die Jonone, o -lso-methylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Teφineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Teφene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöie, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Min- zenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labola- numöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Liliai, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Oran- genöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evemyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt. Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt- oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Figure imgf000015_0001
Beispiele
Es wurden verschiedene Emulsionsgrundlagen hergestellt, indem man die Komponenten der Phase 1 bei ca. 120°C solange homogenisierte, bis eine klare Lösung entstand. Anschließend wurden die Bestandteile der Phase 2 sukzessive zugegeben, klar gelöst und die Mischung auf Raumtemperatur abgekühlt. Die Viskosität wurde nach der Brookfield-Methode in einem RVF-Vis- kosimeter (23°C, Spindel 5, 10 UpM bzw. Spindel E, 5 UpM) bestimmt. Die Ergebnisse sind in Tabelle 1 zusammengefaßt. Die Zubereitungen 1 bis 4 sind dabei erfindungsgemäß, die Rezepturen V1 und V2 dienen zum Vergleich. Tabelle 2 enthält eine Reihe von Formulierungsbeispielen.
Tabelle 1
Emulsionsgrundiagen (Mengenangaben als Gew.-%)
Figure imgf000016_0001
Tabelle 2
Formulierungsbeispiele (Mengenangaben als Gew.-%)
Figure imgf000017_0001
(1,2) Sonnenschutzlotionen; (3,4) Sonnenschutzcremes; (5) After Sun Lotion; (6) Nachtcreme; (7,8) Bodylotionen; (9,10) Babyschutzcremes für den Windelbereich; (11) Tönungscreme; (12) Salbengrundlage

Claims

Patentansprüche
1. Selbstemulgierende W/O-Emulsionsgrundlagen, enthaltend
(a) Emulgatoren mit einem HLB-Wert im Bereich von 2,5 bis 10,
(b) Ölköφer mit einer Polarität von kleiner oder gleich 5 Debey und
(c) Iipophile Wachse.
2. Mittel nach Anspruch 2, dadurch gekennzeichnet, daß sie als Komponente (a) Emulgatoren enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Glycerinmono- und - diestem und Sorbitanmono- und -diestem von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohienstoffatomen und deren Ethylenoxidanlagerungsprodukten; Polyolestern; Par- tiaiestem auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie 12-Hy-droxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipen- taerythrit, Zuckeralkoholen, Alkylglucosiden sowie Polyglucosiden; Polysiloxan-Polyalkyl-Po- lyether-Copolymeren; und/oder Mischestem aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol und/oder Mischestem von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglu- cose und Polyolen.
3. Mittel nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß sie als Komponente (b) Ölköφer enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Guerbetalkoholen auf Basis von Fettalkoholen mit 6 bis 18 Kohlenstoffatomen, Estern von linearen C6-C22-Fettsäuren mit linearen Cβ-C∑∑-Fettalkoholen, Estern von verzweigten C6-C13- Carbonsäuren mit linearen Cδ-C∑∑-Fettalkoholen, Estern von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, Estern von Hydroxycarbonsäuren mit linearen oder verzweigten Cε- C22-Fettalkoholen, Estern von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen und/oder Guerbetalkoholen, Triglyceriden auf Basis C6-Cιo-Fettsäuren, flüssigen Mono-/Di- Triglyceridmischungen auf Basis von Cδ-Ciβ-Fettsäuren, Estern von C6-C22-Fettal- koholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, Estern von C2-Ci2-Di- carbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzlichen Ölen, verzweigten primären Alkoholen, substituierten Cyclohexanen, linearen und verzweigten C6-C22- Fettalkoholcarbonaten, Guerbetcarbonaten, Estern der Benzoesäure mit linearen und/oder verzweigten Cβ-C∑∑-Alkoholen, linearen oder verzweigten, symmetrischen oder unsymmetrischen Dialkylethem mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukten
ERSATZBUTT (REGEL 26) von epoxidierten Fettsäureestern mit Polyolen, Siliconölen und/oder aliphatischen bzw. naphthenischen Kohlenwasserstoffen.
4. Mittel nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Komponente (c) Iipophile Wachse enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Candelillawachs, Camaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin, Bürzelfett, Ceresin, Ozokerit, Petrolatum, Paraffinwachse, Mikrowachse, Montanesterwachse, Sasolwachse, hydrierte Jojobawachse, Polyal- kylenwachse und Polyethylen-glycolwachse.
5. Mittel nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie als weitere Komponente (d) Metallseifen enthalten.
6. Mittel nach Anspruch 5, dadurch gekennzeichnet, daß sie als Komponente (d) Metallseifen der Formel (I) enthalten,
(RΙCOO)π-X
(I)
in der R1CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für Lithium, Calcium, Magnesium, Aluminium oder Zink und n für eine Zahl entsprechend der Wertigkeit von X steht.
7. Mittel nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man Mittel einsetzt, enthaltend
(a) 5 bis 60 Gew.-% Emulgatoren mit einem HLB-Wert im Bereich von 2,5 bis 10,
(b) 10 bis 80 Gew.-% Ölkörper mit einer Polarität von kleiner oder gleich 5 Debey,
(c) 1 bis 40 Gew.-% Iipophile Wachse und
(d) 0 bis 20 Gew.-% Metallseifen,
mit der Maßgabe, daß sich die Mengenangaben gegebenenfalls mit Wasser zu 100 Gew.-% ergänzen.
8. Verwendung von Mischungen, enthaltend
ERSATZBLATT (REGa 26) (a) Emulgatoren mit einem HLB-Wert im Bereich von 2,5 bis 10,
(b) Ölköφer mit einer Polarität von kleiner oder gleich 5 Debey und
(c) Iipophile Wachse
als selbstemulgierende Grundlagen zur Herstellung von W/O-Emulsionen.
PCT/EP1999/006865 1998-09-25 1999-09-16 Selbstemulgierende w/o-emulsionsgrundlagen WO2000018357A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU60844/99A AU6084499A (en) 1998-09-25 1999-09-16 Self-emulsifying water-in-oil emulsion bases
JP2000571879A JP2002525301A (ja) 1998-09-25 1999-09-16 自己乳化性の油中水型エマルジョンベース
EP99947369A EP1115365A1 (de) 1998-09-25 1999-09-16 Selbstemulgierende w/o-emulsionsgrundlagen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843876.1 1998-09-25
DE19843876A DE19843876A1 (de) 1998-09-25 1998-09-25 Selbstemulgierende W/O-Emulsionsgrundlagen

Publications (1)

Publication Number Publication Date
WO2000018357A1 true WO2000018357A1 (de) 2000-04-06

Family

ID=7882142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006865 WO2000018357A1 (de) 1998-09-25 1999-09-16 Selbstemulgierende w/o-emulsionsgrundlagen

Country Status (5)

Country Link
EP (1) EP1115365A1 (de)
JP (1) JP2002525301A (de)
AU (1) AU6084499A (de)
DE (1) DE19843876A1 (de)
WO (1) WO2000018357A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000223A1 (en) * 2001-06-20 2003-01-03 The Procter & Gamble Company Personal care composition comprising polyol-in-silicone emulsion
US7270828B2 (en) 2001-06-20 2007-09-18 The Procter & Gamble Company Personal care composition comprising hydrophobic gel
US7604812B2 (en) 2000-12-15 2009-10-20 Patrick Franke Hypoallergenic and non-irritant skin care formulations

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059430A1 (de) * 2000-11-30 2002-06-06 Cognis Deutschland Gmbh Feinteilige Emulsionen
DK1214930T3 (da) * 2000-12-15 2004-07-26 Patrick Dr Franke Hypoallergene og ikke-irriterende formuleringer til hudpleje
US6905697B2 (en) 2001-01-19 2005-06-14 Sca Hygiene Products Gmbh Lotioned fibrous web having a short water absorption time
US6860967B2 (en) 2001-01-19 2005-03-01 Sca Hygiene Products Gmbh Tissue paper penetrated with softening lotion
JP4861561B2 (ja) * 2001-02-23 2012-01-25 株式会社セラリカ野田 セラック含有コーティング剤及びその製法
DE10148264B4 (de) * 2001-09-28 2004-12-02 Beiersdorf Ag Kosmetische und/oder dermatologische Zubereitungen und deren Verwendung
DE10158838A1 (de) * 2001-11-30 2003-06-12 Henkel Kgaa Zubereitungen zur Anti-Fingerabdruck-Beschichtung von Metalloberflächen
DE102021000268A1 (de) 2021-01-20 2022-07-21 Beiersdorf Aktiengesellschaft Mineralölfreie kosmetische W/O-Emulsion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846546A (en) * 1966-12-08 1974-11-05 Oreal New emulsions, and cosmetic products made from such emulsions
GB2002652A (en) * 1977-08-22 1979-02-28 Oreal Process for the preparation of water-in-oil or oil-in-water emulsions containing polyethylene powder
EP0273619A2 (de) * 1986-12-12 1988-07-06 Unilever Plc Kosmetische Zusammensetzung
DE4337030A1 (de) * 1993-10-29 1995-05-04 Henkel Kgaa Verfahren zur Herstellung von Wachsdispersionen
DE4411557A1 (de) * 1994-04-02 1995-10-05 Henkel Kgaa Verfahren zur Herstellung von Mikroemulsionen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846546A (en) * 1966-12-08 1974-11-05 Oreal New emulsions, and cosmetic products made from such emulsions
GB2002652A (en) * 1977-08-22 1979-02-28 Oreal Process for the preparation of water-in-oil or oil-in-water emulsions containing polyethylene powder
EP0273619A2 (de) * 1986-12-12 1988-07-06 Unilever Plc Kosmetische Zusammensetzung
DE4337030A1 (de) * 1993-10-29 1995-05-04 Henkel Kgaa Verfahren zur Herstellung von Wachsdispersionen
DE4411557A1 (de) * 1994-04-02 1995-10-05 Henkel Kgaa Verfahren zur Herstellung von Mikroemulsionen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604812B2 (en) 2000-12-15 2009-10-20 Patrick Franke Hypoallergenic and non-irritant skin care formulations
WO2003000223A1 (en) * 2001-06-20 2003-01-03 The Procter & Gamble Company Personal care composition comprising polyol-in-silicone emulsion
US7270828B2 (en) 2001-06-20 2007-09-18 The Procter & Gamble Company Personal care composition comprising hydrophobic gel

Also Published As

Publication number Publication date
DE19843876A1 (de) 2000-04-13
AU6084499A (en) 2000-04-17
JP2002525301A (ja) 2002-08-13
EP1115365A1 (de) 2001-07-18

Similar Documents

Publication Publication Date Title
DE19917743C2 (de) Desodorierende Zubereitungen
EP1066024A1 (de) Verfahren zur herstellung von kosmetischen reinigungsmitteln mit erhöhter viskosität
EP1096993B1 (de) W/o-emulsionsgrundlagen
EP1105085A1 (de) Verwendung von wässrigen wachsdispersionen als konsistenzgeber
WO2000033794A2 (de) Ölbäder
WO2000066075A1 (de) Sonnenschutzmittel
WO2000018357A1 (de) Selbstemulgierende w/o-emulsionsgrundlagen
EP1112058B1 (de) Verwendung von cyclischen carbonaten als feuchthaltemittel
WO2000053156A1 (de) Ölbäder
DE19916211C2 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19916208B4 (de) Sonnenschutzmittel
EP1162941A2 (de) Sonnenschutzmittel
EP0980683A1 (de) Verfahren zur Herstellung von stabilen Emulsionen
WO1999066895A1 (de) Kosmetische zubereitungen in stiftform
EP1171096B1 (de) Kosmetische zubereitungen
EP0982024A2 (de) Kosmetische und/oder pharmazeutische W/O-Emulsionen
DE19956603A1 (de) Verwendung von Alkyl- und/oder Alkenyloligoglykosid-Fettsäureestern als Pigmetndispergator
WO1999009935A2 (de) Kosmetische zubereitungen enthaltend fettsäurepolyglycolestersulfate und polymere
EP1004355A2 (de) Verwendung von Esterquats als Pigmentdispergatoren
DE19830374A1 (de) Kosmetische Zubereitungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR BY CA CN CZ HU ID IN IS JP KR LT LV MX NO NZ PL RO RU SI SK TR UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999947369

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 571879

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09787985

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999947369

Country of ref document: EP

CFP Corrected version of a pamphlet front page

Free format text: UNDER (57) PUBLISHED ABSTRACT REPLACED BY CORRECT ABSTRACT

WWW Wipo information: withdrawn in national office

Ref document number: 1999947369

Country of ref document: EP