WO2000017678A2 - Lichtleitfaser mit kreisförmigem und nichtkreisförmigem querschnitt - Google Patents

Lichtleitfaser mit kreisförmigem und nichtkreisförmigem querschnitt Download PDF

Info

Publication number
WO2000017678A2
WO2000017678A2 PCT/EP1999/006970 EP9906970W WO0017678A2 WO 2000017678 A2 WO2000017678 A2 WO 2000017678A2 EP 9906970 W EP9906970 W EP 9906970W WO 0017678 A2 WO0017678 A2 WO 0017678A2
Authority
WO
WIPO (PCT)
Prior art keywords
section
optical fiber
cross
circular cross
tool
Prior art date
Application number
PCT/EP1999/006970
Other languages
English (en)
French (fr)
Other versions
WO2000017678A3 (de
Inventor
Hans Kragl
Michael Loddoch
Original Assignee
Harting Elektro-Optische Bauteile Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1998143164 external-priority patent/DE19843164C2/de
Application filed by Harting Elektro-Optische Bauteile Gmbh & Co. Kg filed Critical Harting Elektro-Optische Bauteile Gmbh & Co. Kg
Priority to US09/463,258 priority Critical patent/US6473555B1/en
Priority to CA002344809A priority patent/CA2344809A1/en
Priority to JP2000571285A priority patent/JP3436743B2/ja
Priority to EP99947392A priority patent/EP1123521A2/de
Publication of WO2000017678A2 publication Critical patent/WO2000017678A2/de
Publication of WO2000017678A3 publication Critical patent/WO2000017678A3/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2852Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using tapping light guides arranged sidewardly, e.g. in a non-parallel relationship with respect to the bus light guides (light extraction or launching through cladding, with or without surface discontinuities, bent structures)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3865Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using moulding techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3886Magnetic means to align ferrule ends
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3023Segmented electronic displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/241Light guide terminations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3818Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • G02B6/3839Means for centering or aligning the light guide within the ferrule using grooves for light guides for a plurality of light guides

Definitions

  • the invention relates to a polymer optical fiber.
  • the polymer optical fiber with a circular cross-section is to be coupled to modules by the user, which, for example, take over the functions of light coupling, light coupling and light distribution, the circular cross-section proves to be of limited advantage because it is used for optimally loss-free input and output
  • Uncoupling on the module also requires connecting parts with a circular cross section.
  • Round structures can be created mechanically by drilling and turning; However, the production of circular structures using impression techniques, which are preferred today for the production of inexpensive integrated optical components, is difficult.
  • Such components produced in impression technology contain optical waveguides which, for manufacturing reasons, normally have a non-circular cross section. If a polymer optical fiber with a circular cross-section is coupled to an integrated optical waveguide that has the same cross-sectional area with a square shape, coupling losses of approx Waveguide and then coupled back to the optical fiber. If the non-round waveguide cross section is chosen so large that it covers the round polymer optical fiber, one obtains no losses during the transition from the optical fiber to the waveguide; however, the losses in the reverse light path are all the greater.
  • a disadvantage of circular cross sections is the reduced packing density. If circular cross sections are used closely lined up, a large surface area remains unused, namely the surface area lying between the circular cross sections. Similar disadvantages arise in the construction of micro-optical splitters. In these, the input fiber with a circular cross section is usually placed on the adjacent output fibers with a circular cross section. The light falling into the gusset area of the circular output fibers is lost and contributes to the excess loss of the component.
  • the object of the invention is to create an optical fiber which enables the loss of light guided in the optical fiber with almost any desired cross-sectional shape.
  • the polymer optical fiber according to the invention is provided with a section which has a circular cross section and a section which has a non-circular cross section, a continuous transition from one cross-sectional shape to the other being provided between these two sections.
  • the idea on which the invention is based consists in reshaping the polymer optical fiber at the desired location, for example in the region of its end face, in such a way that the desired cross-sectional shape is obtained.
  • the cross-sectional shape can be polygonal, angular, square, elliptical, semi-ring-shaped or in some other way.
  • the cross-sectional shape is only determined by the prevailing requirements. If light is to be coupled into a waveguide with a square cross section using the optical fiber, a square cross section of the optical fiber is selected in the deformed section. Thus, the two cross sections can be congruent with each other, so that there is no coupling loss.
  • a wide variety of optical components can be formed with an optical fiber configured in this way. According to one embodiment of the invention, it is provided that a splitter is formed with an input fiber and two output fibers, each of which has a rectangular cross section. In this way, the resulting losses are reduced since the two output fibers can be arranged directly next to one another, without there being an area between them which remains unused for the coupling.
  • a splitter can also be formed with an input fiber and an output fiber, the input fiber having a circular cross section and the two output fibers each having a semi-ring-shaped cross section, the inside diameter of the two semi-ring-shaped cross sections being equal to the outside diameter of the circular cross section.
  • the two semi-ring-shaped optical fibers completely surround the input fiber in a contact area, so that the loss-free coupling from the input fiber to the output fibers is obtained in this area.
  • the component can be an array of several optical fibers, each of which is rectangular
  • the optical component can also be a lighting element.
  • the end face through which the light is emitted can be designed according to optical criteria. For example, by bundling several optical fibers, a numerical display element can be obtained in which the free end faces of the optical fibers have an elliptical cross section.
  • a polymer optical fiber with a circular cross section can be partially reshaped by a method which has the following steps: First, the optical fiber is joined the section that is to be reshaped, placed between two parts of a tool, which in the closed state define a recess whose cross section corresponds to the cross section of the deformed optical fiber. The tool is then heated and the two parts of the tool are pressed together. The optical fiber adapts to the recess between the two tool parts. The tool is then cooled. After the tool and the optical fiber contained therein have cooled, the tool is opened and the optical fiber can be removed. With this method, the optical fiber can be formed in the desired manner with comparatively little effort and high precision.
  • a holding device for the optical fiber is preferably provided outside the tool. This serves to shorten the
  • FIG. 1 shows schematically in a cross section an optical fiber and a waveguide, which can be coupled to each other by means of a connector part according to the invention
  • FIG. 2 shows a comparison of the cross sections shown in FIG. 1;
  • FIG. 3 is a plan view of optical fibers which form a splitter
  • FIG. 4 is a comparison of the cross sections of the optical fibers of the component of Figure 3;
  • FIG. 5 schematically shows an optical fiber and a tool for Manufacture of an optical fiber
  • FIG. 6 schematically shows the optical fiber and the tool after the reshaping of the optical fiber
  • FIG. 7 schematically shows a further step in the production of a component provided with the deformed optical fiber
  • FIG. 9 shows a numerical display element which is formed with optical fibers according to the invention.
  • FIG. 11 shows a splitter which is formed with optical fibers according to the invention.
  • a polymer optical fiber 10 usually has a circular cross section. This results from the extrusion process used for the production.
  • waveguides 52 are usually used which, for reasons of moldability, have a preferably polygonal cross section; a round cross-section can hardly be achieved for the waveguide due to the undercuts in the impression technique.
  • FIG. 2 the two different cross sections of an optical fiber and a waveguide are compared with one another with the same cross-sectional area, the regions of the cross sections which do not overlap one another and which are the cause of radiation losses being marked in gray. Similar problems arise with a splitter shown in FIG. 3.
  • the splitter consists of an input fiber 10, which is coupled to two output fibers 10 ', 10 ".
  • a section 12 of the optical fiber is shaped so that the desired cross section is achieved.
  • the shaping can be carried out by means of a tool, which is shown schematically in FIG. 5.
  • the tool consists of a bottom part 96 and a cover part 98.
  • a recess 94 is formed in the form of a guide groove, the cross section of which corresponds to the cross section of the optical fiber in the deformed state.
  • the optical fiber 10 is with its to be reshaped
  • Section 12 inserted into the guide groove 94.
  • the cover part 98 is then shut down until it lies on the optical fiber in the section 12 to be formed.
  • the optical fiber is now slightly fixed in the guide groove.
  • the tool and thus the optical fiber is then heated. This is preferably done by heating both the bottom part 96 and the cover part 98.
  • heating polymer optical fibers however, it can be observed that these increase their cross section, while at the same time reducing the length. The reason for this behavior is the extrusion process used in production, which leads to freezing of the axially directed stresses in the plastic when the plastic cools. When heated, these tensions are released, which leads to thickening of the fiber. The fiber thickening must be avoided, however, since it leads to an increase in the number of modes, which leads to radiation losses when the light passes from the thicker to the thinner part.
  • the fiber In order to avoid the thickening of the fiber by dissolving the frozen tension states, the fiber must be fixed outside the area in which it is subjected to the deformation so that it cannot contract in the axial direction during the deformation process.
  • a holding device (not shown in the figures) is provided outside the tool, which holds the optical fiber in a suitable manner
  • the base part 96 and the cover part 98 By heating the base part 96 and the cover part 98, the section 12 of the optical fiber 10 to be formed is heated up to the glass temperature range. Now the cover part 98 can be moved against the optical fiber with higher pressure, as a result of which it deforms.
  • the contact pressure between the cover part and the base part prevents the length contraction of the optical fiber.
  • the bottom part 96, the cover part 98 and the optical fiber are cooled together.
  • the optical fiber solidifies in the shape specified by the tool.
  • a recess can also be used to receive the section 12 of the optical fiber to be deformed, which recess is formed partly in the bottom part 96 and partly in the cover part 98.
  • the recess in the bottom or in the cover part need not be constant; the cross-sectional shape can change.
  • the deformed optical fiber can be cast with a plug part 100, with which it can be attached to a substrate in which a waveguide with a trapezoidal cross section is also formed.
  • FIG. 9 shows a numerical display element which consists of a total of eight optical fibers. Seven of the optical waveguides are formed with a deformed, highly flattened section 12 with an elliptical cross section in the region of their end face.
  • FIG. 10 shows an array of a total of nine optical waveguides, each of which has a square cross section. To this A high packing density can be achieved in this way.
  • the optical fibers can be coupled to an array of surface-imitating light-emitting diodes 110, which are also arranged in an array of 3 ⁇ 3 elements.
  • FIG. 1 A micro-optical splitter is shown in FIG. This consists of an input fiber 10 with a circular cross-section and two output fibers 10 ', 10 ", each of which has a semi-annular cross-section.
  • the inside diameter of the semi-ring-shaped cross sections corresponds to the outside diameter of the circular
  • the optical fiber has a transition section starting from a section with a round cross section and then a section with a non-circular cross section. Due to the continuous transition between the deformed section with a non-circular cross-section and the undeformed section with a circular cross-section, there are no losses in the transition from one cross-sectional shape to another.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Es wird eine Polymer-Lichtleitfaser beschrieben, die einen Abschnitt aufweist, der einen kreisförmigen Querschnitt aufweist, und einen Abschnitt, der einen nicht kreisförmigen Querschnitt aufweist. Weiterhin werden optische Bauteile beschrieben, die eine solche Lichtleitfaser enthalten, sowie ein Verfahren zur Herstellung einer solchen Lichtleitfaser. Gemäß einer Ausführungsform der Erfindung wird vorgesehen, daß ein Splitter mit einer Eingangsfaser und zwei Ausgangsfasern gebildet wird, wobei die beiden Ausgangsfasern jeweils einen halbringförmigen Querschnitt haben. Die beiden halbringförmigen Lichtleitfasern umgeben die Eingangsfaser.

Description

Lichtleitfaser
Die Erfindung betrifft eine Polymer-Lichtleitfaser.
Kommerzielle Polymer-Lichtleitfasern werden mit kreisrunden Querschnitten geliefert. Diese entstehen bei der Herstellung der Lichtleitfasern durch das zur Anwendung gelangende Extrusionsverfahren. Der runde Querschnitt ist hierbei die am einfachsten und mit der höchsten Präzision herstellbare geometrische Form.
Wenn die Polymer-Lichtleitfaser mit kreisförmigem Querschnitt jedoch beim Anwender an Module angekoppelt werden soll, welche beispielsweise die Funktionen Lichteinkopplung, Lichtauskopplung und Lichtverteilung übernehmen, erweist sich der kreisförmige Querschnitt nur bedingt als vorteilhaft, weil er für optimal verlustfreie Ein- und
Auskopplung an dem Modul ebenfalls Anschlußteile mit kreisförmigem Querschnitt voraussetzt. Mechanisch können runde Strukturen durch Bohren und Drehen erzeugt werden; die Herstellung von kreisrunden Strukturen mit Abformtechniken, die heute bevorzugt zur Herstellung von kostengünstigen integriert-optischen Bauteilen eingesetzt werden, ist jedoch schwierig. Solche in Abformtechnik hergestellten Bauteile enthalten optische Wellenleiter, die aus fertigungstechnischen Gründen normalerweise einen nicht kreisförmigen Querschnitt haben. Wird eine Polymer-Lichtleitfaser mit kreisförmigem Querschnitt an einen inte- griert-optischen Wellenleiter angekoppelt, der dieselbe Querschnittsfläche bei quadratischer Form aufweist, so ergeben sich unter der Annahme einer gleichmäßigen Ausleuchtung der Lichtleitfaser Koppelverluste von ca. 1 dB, wenn von der Lichtleitfaser auf den Wellenleiter und anschließend wieder zurück auf die Lichtleitfaser gekoppelt wird. Falls der nicht runde Wellenleiterquerschnitt so groß gewählt wird, daß er die runde Polymer-Lichtleitfaser überdeckt, so erhält man zwar beim Übergang von der Lichtleitfaser auf den Wellenleiter keine Verluste; die Verluste beim umgekehrten Lichtweg sind jedoch um so größer.
Nachteilig bei kreisförmigen Querschnitten ist weiterhin die reduzierte Packungsdichte. Werden kreisförmige Querschnitte dicht aneinandergereiht verwendet, bleibt ein großer Flächenbereich ungenutzt, nämlich der zwischen den kreisförmigen Querschnitten liegende Flächenbereich. Ähnliche Nachteile ergeben sich bei der Konstruktion von mikro-optisch aufgebauten Splittern. Bei diesen wird üblicherweise die Eingangsfaser mit kreisförmigem Querschnitt auf die nebeneinander liegenden Ausgangsfasern mit ebenfalls kreisförmigem Querschnitt aufgesetzt. Das in den Zwickelbereich der kreisförmigen Ausgangsfasern fallende Licht ist verloren und trägt zum Excess Loss des Bauteils bei.
Die Aufgabe der Erfindung besteht darin, eine Lichtleitfaser zu schaffen, welche einen möglichst verlustfreien Austritt von in der Lichtleitfaser geleiteten Licht mit einer nahezu beliebigen Quer- schnittsform ermöglicht.
Zu diesem Zweck ist die erfindungsgemäße Polymer-Lichtleitfaser mit einem Abschnitt versehen, der einen kreisförmigen Querschnitt aufweist, sowie einem Abschnitt, der einen nicht kreisförmigen Querschnitt aufweist, wobei zwischen diesen beiden Abschnitten ein kontinuierlicher Übergang von einer Querschnittsform zur anderen vorgesehen ist. Die der Erfindung zugrunde liegende Idee besteht vereinfacht ausgedrückt darin, die Polymer-Lichtleitfaser an der gewünschten Stelle, beispielsweise im Bereich ihrer Stirnfläche, so umzuformen, daß die gewünschte Querschnittsform erhalten wird. Diese
Querschnittsform kann polygonförmig, eckig, quadratisch, elliptisch, halbringförmig oder sonstwie ausgestaltet sein. Die Querschnittsform wird lediglich von den herrschenden Anforderungen bestimmt. Wenn mit der Lichtleitfaser Licht in einen Wellenleiter mit quadratischem Querschnitt eingekoppelt werden soll, wird ein quadratischer Querschnitt der Lichtleitfaser im verformten Abschnitt gewählt. Somit können die beiden Querschnitte einander deckungsgleich gegenüberliegen, so daß sich kein Koppelverlust ergibt. Mit einer derart ausgestalteten Lichtleitfaser können die verschiedensten optischen Bauteile gebildet werden. Gemäß einer Ausführungsform der Erfindung ist vorgesehen, daß ein Splitter mit einer Eingangsfaser und zwei Ausgangsfasern gebildet wird, die jeweils einen rechteckigen Querschnitt haben. Auf diese Weise werden die sich ergebenden Verluste verringert, da die beiden Ausgangsfasern unmittelbar nebeneinanderliegend angeordnet werden können, ohne daß sich zwischen ihnen ein Bereich ergibt, der für die Kopplung ungenutzt bleibt.
Gemäß einer alternativen Ausführungsform kann auch ein Splitter mit einer Eingangsfaser und einer Ausgangsfaser gebildet werden, wobei die Eingangsfaser einen kreisförmigen Querschnitt hat und die beiden Ausgangsfasern jeweils einen halbringförmigen Querschnitt haben, wobei der Innendurchmesser der beiden halbringförmigen Querschnitte gleich dem Außendurchmesser des kreisförmigen Querschnitts ist. Die beiden halbringförmigen Lichtleitfasern umgeben die Eingangsfaser in einen Berührungsbereich vollständig, so daß in diesem Bereich die verlustfreie Kopplung von der Eingangsfaser zu den Ausgangsfasern erhalten wird.
Gemäß einer weiteren Ausführungsform kann das Bauteil ein Array aus mehreren Lichtleitfasern sein, die jeweils einen rechteckigen
Querschnitt haben. Aufgrund der gewählten Querschnittsform kann eine sehr viel höhere Packungsdichte erzielt werden als bei Lichtleitfasern mit kreisförmigem Querschnitt.
Das optische Bauteil kann auch ein Beleuchtungselement sein. Dabei kann die Stirnfläche, durch die die Lichtabstrahlung erfolgt, frei nach optischen Gesichtspunkten gestaltet werden. Beispielsweise kann durch Bündelung mehrerer Lichtleitfasern ein numerisches Anzeigeelement erhalten werden, bei dem die freien Stirnflächen der Lichtleitfasern einen elliptischen Querschnitt haben.
Eine Polymer-Lichtleitfaser mit kreisförmigem Querschnitt kann erfindungsgemäß partiell durch ein Verfahren umgeformt werden, welches die folgenden Schritte aufweist: Zuerst wird die Lichtleitfaser mit dem Abschnitt, der umgeformt werden soll, zwischen zwei Teile eines Werkzeugs gelegt, die in geschlossenem Zustand eine Aussparung definieren, deren Querschnitt dem Querschnitt der verformten Lichtleitfaser entspricht. Anschließend wird das Werkzeug erwärmt, und die beiden Teile des Werkzeugs werden zusammengedrückt. Dabei paßt sich die Lichtleitfaser an die Aussparung zwischen den beiden Werkzeugteilen an. Anschließend wird das Werkzeug abgekühlt. Nachdem das Werkzeug und die darin enthaltene Lichtleitfaser abgekühlt sind, wird das Werkzeug geöffnet, und die Lichtleitfaser kann entnommen werden. Mit diesem Verfahren können die Lichtleitfaser mit vergleichsweise geringem Aufwand und hoher Präzision in der gewünschten Weise umgeformt werden.
Vorzugsweise ist außerhalb des Werkzeugs eine Haltevorrichtung für die Lichtleitfaser vorgesehen. Diese dient dazu, ein Verkürzen der
Lichtleitfaser während des Erwärmens zu verhindern.
Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen .
Die Erfindung wird nachfolgend unter Bezugnahme auf verschiedene Ausführungsformen beschrieben, die in den beigefügten Zeichnungen dargestellt sind. In diesen zeigen:
- Figur 1 schematisch in einem Querschnitt eine Lichtleitfaser und einen Wellenleiter, die mittels eines erfindungsgemäßen Steckerteils miteinander gekoppelt werden können;
- Figur 2 eine Gegenüberstellung der in Figur 1 gezeigten Quer- schnitte;
- Figur 3 eine Draufsicht auf Lichtleitfasern, die einen Splitter bilden;
- Figur 4 eine Gegenüberstellung der Querschnitte der Lichtleitfasern des Bauteils von Figur 3;
- Figur 5 schematisch eine Lichtleitfaser und ein Werkzeug zur Herstellung einer Lichtleitfaser;
- Figur 6 schematisch die Lichtleitfaser und das Werkzeug nach dem Umformen der Lichtleitfaser;
- Figur 7 schematisch einen weiteren Schritt bei der Herstellung eines mit der umgeformten Lichtleitfaser versehenen Bauteils;
- Figur 8 das fertige Bauteil beim Abheben von dem zu seiner Her- Stellung verwendeten Werkzeug;
- Figur 9 ein numerisches Anzeigeelement, das mit erfindungsgemäßen Lichtleitfasern gebildet ist;
- Figur 10 ein Array von erfindungsgemäßen Lichtleitfasern; und
- Figur 11 einen Splitter, der mit erfindungsgemäßen Lichtleitfasern gebildet ist.
Anhand der Figuren 1 bis 4 werden zunächst die Probleme beschrieben, die auftreten, wenn eine Lichtleitfaser mit kreisförmigem Querschnitt mit einem anderen Bauteil gekoppelt werden soll, das nicht ebenfalls einen kreisförmigen Querschnitt hat, der mit der Stirnfläche der Lichtleitfaser in Deckung gebracht werden kann.
Eine Polymer-Lichtleitfaser 10 weist üblicherweise einen kreisförmigen Querschnitt auf. Dieser ergibt sich durch das zur Herstellung verwendete Extrusionsverfahren. In integriert-optischen Bauteilen werden üblicherweise Wellenleiter 52 verwendet, die aus Gründen der Abformbarkeit einen vorzugsweise polygonförmigen Querschnitt aufweisen; ein runder Querschnitt läßt sich für den Wellenleiter aufgrund der Hinterschneidungen in Abformtechnik kaum erzielen. In Figur 2 sind die beiden unterschiedlichen Querschnitte einer Lichtleitfaser und eines Wellenleiters bei gleicher Querschnittsfläche einander gegen- übergestellt, wobei die Bereiche der Querschnitte, die einander nicht überlappen und die Ursache von Abstrahlverlusten sind, grau gekennzeichnet wurden. Ähnliche Probleme ergeben sich bei einem Splitter, der in Figur 3 gezeigt ist. Der Splitter besteht aus einer Eingangs- faser 10, die mit zwei Ausgangsfasern 10' , 10" gekoppelt ist. Wie der Gegenüberstellung der Querschnitte von Figur 4 zu entnehmen ist, ergeben sich erhebliche Verluste, da beim Koppeln von der Eingangsfaser 10 auf die Ausgangsfaser 10' , 10" der zwischen den beiden Ausgangsfasern liegende Zwickelbereich nicht zur Kopplung herangezogen wird. Falls dagegen Licht aus den Ausgangsfasern 10' , 10" in die Eingangsfaser 10 eingekoppelt werden soll, ergeben sich Verluste durch die außenliegenden Querschnittsbereiche jeder Lichtleitfaser, die dem Querschnitt der Eingangsfaser nicht gegenüberliegen.
Um die Abstrahlverluste möglichst gering zu halten, ist es wünschenswert, daß die miteinander zu koppelnden Querschnitte identisch sind. Zu diesem Zweck wird ein Abschnitt 12 der Lichtleitfaser so umgeformt, daß der gewünschte Querschnitt erzielt wird. Die Umformung kann mittels eines Werkzeugs erfolgen, das schematisch in Figur 5 gezeigt ist. Das Werkzeug besteht aus einem Bodenteil 96 und einem Deckelteil 98. Im Bodenteil 96 ist eine Aussparung 94 in der Form einer Führungsnut ausgebildet, deren Querschnitt dem Querschnitt der Lichtleitfaser im umgeformten Zustand entspricht. Die Lichtleitfaser 10 wird mit ihrem umzuformenden
Abschnitt 12 in die Führungsnut 94 eingelegt. Anschließend wird das Deckelteil 98 heruntergefahren, bis es auf der Lichtleitfaser im umzuformenden Abschnitt 12 anliegt. Nun ist die Lichtleitfaser in der Führungsnut leicht fixiert.
Anschließend wird das Werkzeug und damit die Lichtleitfaser erwärmt. Dies geschieht vorzugsweise durch Erwärmen sowohl des Bodenteils 96 als auch des Deckelteils 98. Beim Erwärmen von Polymer- Lichtleitfasern ist jedoch zu beobachten, daß diese ihren Querschnitt vergrößern, während sich gleichzeitig die Länge reduziert. Ursache für dieses Verhalten ist der bei der Herstellung eingesetzte Extrudier- prozeß, der bei der Erkaltung des Kunststoffes zum Einfrieren der axial gerichteten Spannungen im Kunststoff führt. Bei der Erwärmung lösen sich diese Spannungen, was zur Verdickung der Faser führt. Die Faserverdickung muß jedoch vermieden werden, da sie zu einer Erhöhung der Modenanzahl führt, welche beim Durchlauf des Lichtes vom dickeren zum dünneren Teil zu Abstrahlverlusten führt. Um die Verdickung der Faser durch Auflösen der eingefrorenen Spannungszustände zu vermeiden, muß die Faser außerhalb des Bereiches, in dem sie der Verformung unterzogen wird, so fixiert werden, daß sie sich beim Verformungsvorgang nicht in axialer Richtung zusammenziehen kann. Zu diesem Zweck ist außerhalb des Werkzeugs eine (nicht in den Figuren gezeigte) Haltevorrichtung vorgesehen, welche die Lichtleitfaser in geeigneter
Weise fixiert und die Verkürzung verhindert. Durch das Erwärmen des Bodenteils 96 und des Deckelteils 98 wird der umzuformende Abschnitt 12 der Lichtleitfaser 10 bis in den Bereich der Glastemperatur erwärmt. Nun kann das Deckelteil 98 mit höherem Druck gegen die Licht- leitfaser bewegt werden, wodurch sie sich verformt. Innerhalb des
Werkzeuges verhindert der Anpreßdruck zwischen dem Deckelteil und dem Bodenteil die Längenkontraktion der Lichtleitfaser. Wenn die Lichtleitfaser die gewünschte Geometrie erreicht hat, werden das Bodenteil 96, das Deckelteil 98 und die Lichtleitfaser zusammen abgekühlt. Dabei erstarrt die Lichtleitfaser in der vom Werkzeug vorgegebenen Form.
Wird das Deckelteil 98 dann abgehoben, kann die verformte Faser entnommen werden (siehe Figur 6). Abweichend von der gezeigten Ausgestaltung des Werkzeugs kann zur Aufnahme des zu verformenden Abschnittes 12 der Lichtleitfaser auch eine Aussparung verwendet werden, die teilweise im Bodenteil 96 und teilweise im Deckelteil 98 ausgebildet ist. Auch muß die Aussparung im Boden bzw. im Deckelteil nicht konstant ausgeführt sein; die Querschnittsform kann sich ändern.
Durch die Form der Aussparung kann eine Lichtleitfaser mit einem verformten Abschnitt 12 erhalten werden, der eine nahezu beliebige
Querschnittsform hat. Bei dem in den Figuren 5 und 6 dargestellten Beispiel kann die umgeformte Lichtleitfaser mit einem Steckerteil 100 vergossen werden, mit dem sie an einem Substrat befestigt werden kann, in welchem ein Wellenleiter mit ebenfalls trapezförmigem Querschnitt ausgebildet ist.
In Figur 9 ist ein numerisches Anzeigeelement dargestellt, das aus insgesamt acht Lichtwellenleitern besteht. Sieben der Lichtwellenleiter sind mit einem verformten, stark abgeflachten Abschnitt 12 mit elliptischem Querschnitt im Bereich ihrer Stirnfläche ausgebildet.
In Figur 10 ist ein Array aus insgesamt neun Lichtwellenleitern gezeigt, die jeweils einen quadratischen Querschnitt haben. Auf diese Weise läßt sich eine hohe Packungsdichte erzielen. Die Lichtwellenleiter können mit einem Array von oberflächenimmitierenden Leuchtdioden 110 gekoppelt werden, die ebenfalls in einem Array von 3 x 3 Elementen angeordnet sind.
In Figur 11 ist ein mikro-optischer Splitter gezeigt. Dieser besteht aus einer Eingangsfaser 10 mit kreisförmigem Querschnitt sowie zwei Ausgangsfasern 10' , 10", die jeweils einen halb ringförmigen Querschnitt haben. Der Innendurchmesser der halbringförmigen Quer- schnitte entspricht dabei dem Außendurchmesser des kreisförmigen
Querschnittes, so daß die beiden halbringförmigen Ausgangsfasern 10' , 10" die Eingangsfaser in einem Koppelbereich dicht umschließen. Die Auskopplung des Lichts aus der Eingangsfaser 10 erfolgt in dem Bereich, in dem die Eingangsfasern und die Ausgangsfasern einander berühren, da in diesem Bereich keine Totalreflexion an der Außenfläche der Faser mehr erfolgt.
Allen Ausführungsformen gemeinsam ist, daß die Lichtleitfaser ausgehend von einem Abschnitt mit rundem Querschnitt einen Übergangs- abschnitt und an diesen anschließend einen Abschnitt mit nicht kreisförmigem Querschnitt aufweist. Aufgrund des kontinuierlichen Übergangs zwischen dem verformten Abschnitt mit nicht kreisförmigem Querschnitt und dem unverformten Abschnitt mit kreisförmigem Querschnitt ergeben sich keinerlei Verluste beim Übergang von einer Querschnittsform zur anderen.

Claims

Patentansprüche
1. Polymer-Lichtleitfaser mit einem Abschnitt (10), der einen kreisförmigen Querschnitt aufweist, und einem Abschnitt (12), der einen nicht kreisförmigen Querschnitt aufweist, wobei zwischen diesen beiden Abschnitten ein kontinuierlicher Übergang von einer Querschnittsform zur anderen vorgesehen ist.
2. Polymer-Lichtleitfaser nach Anspruch 1, dadurch gekennzeichnet, daß der nicht kreisförmige Querschnitt polygonförmig ist.
3. Polymer-Lichtleitfaser nach Anspruch 1, dadurch gekennzeichnet, daß der nicht kreisförmige Querschnitt rechteckig ist.
4. Polymer-Lichtleitfaser nach Anspruch 3, dadurch gekennzeichnet, daß der nicht kreisförmige Querschnitt quadratisch ist.
5. Polymer-Lichtleitfaser nach Anspruch 1, dadurch gekennzeichnet, daß der nicht kreisförmige Querschnitt elliptisch ist.
6. Polymer-Lichtleitfaser nach Anspruch 1, dadurch gekennzeichnet, daß der nicht kreisförmige Querschnitt halbringförmig ist.
7. Optisches Bauteil mit einer Lichtleitfaser (10) nach einem der vorhergehenden Ansprüche.
8. Optisches Bauteil nach Anspruch 7, dadurch gekennzeichnet, daß es ein Splitter mit einer Eingangsfaser (10) und zwei Ausgangsfasern (10' , 10") ist, die jeweils einen rechteckigen Querschnitt haben.
9. Optisches Bauteil nach Anspruch 7, dadurch gekennzeichnet, daß es ein Splitter mit einer Eingangsfaser (10) und zwei Ausgangsfasern (10' , 10") ist, wobei die Eingangsfaser (10) einen kreisförmigen Querschnitt hat und die beiden Ausgangsfasern (10' , 10") jeweils einen halbringförmigen Querschnitt haben, wobei der Innendurchmesser der beiden halb ringförmigen Querschnitte gleich dem Außendurchmesser des kreisförmigen Querschnitts ist.
10. Optisches Bauteil nach Anspruch 7, dadurch gekennzeichnet, daß es ein Array aus mehreren Lichtleitfasern ist, die jeweils einen rechteckigen Querschnitt haben.
11. Optisches Bauteil nach Anspruch 7, dadurch gekennzeichnet, daß es ein Beleuchtungselement ist.
12. Optisches Bauteil nach Anspruch 7, dadurch gekennzeichnet, daß es ein Anzeigelement ist.
13. Optisches Bauteil nach Anspruch 12, dadurch gekennzeichnet, daß es ein numerisches Anzeigeelement ist, bei dem die freien Stirn- flächen der Lichtleitfasern einen elliptischen Querschnitt haben.
14. Verfahren zur partiellen Umformung einer Polymer-Lichtleitfaser, die einen kreisförmigen Querschnitt aufweist, mittels der folgenden Schritte: die Lichtleitfaser wird mit dem Abschnitt (12), der umgeformt werden soll, zwischen zwei Teile (96, 98) eines Werkzeugs gelegt, die in geschlossenem Zustand eine Aussparung (94) definieren, deren Querschnitt dem Querschnitt der verformten Lichtleitfaser entspricht, das Werkzeug (96, 98) wird erwärmt, die beiden Teile (96, 98) des Werkzeugs werden zusammengedrückt, das Werkzeug wird abgekühlt, das Werkzeug wird geöffnet, und die Lichtleitfaser wird entnommen.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß ein Haltevorrichtung für die Lichtleitfaser außerhalb des Werkzeugs vorgesehen ist.
16. Verfahren nach einem der Ansprüche 14 und 15, dadurch gekennzeichnet, daß nur ein Teil (96) des Werkzeugs erwärmt wird.
17. Verfahren nach einem der Ansprüche 14 und 15, dadurch gekennzeichnet, daß beide Teile (96, 98) des Werkzeugs erwärmt werden.
PCT/EP1999/006970 1998-09-21 1999-09-21 Lichtleitfaser mit kreisförmigem und nichtkreisförmigem querschnitt WO2000017678A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/463,258 US6473555B1 (en) 1998-09-21 1999-09-21 Optical Fiber
CA002344809A CA2344809A1 (en) 1998-09-21 1999-09-21 An optical fiber and an optical component
JP2000571285A JP3436743B2 (ja) 1998-09-21 1999-09-21 光ファイバー
EP99947392A EP1123521A2 (de) 1998-09-21 1999-09-21 Lichtleitfaser mit kreisförmigem und nichtkreisförmigem querschnitt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998143164 DE19843164C2 (de) 1998-09-21 1998-09-21 Steckerteil für eine optische Steckverbindung
DE19843164.3 1998-09-21

Publications (2)

Publication Number Publication Date
WO2000017678A2 true WO2000017678A2 (de) 2000-03-30
WO2000017678A3 WO2000017678A3 (de) 2000-11-16

Family

ID=7881653

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP1999/006970 WO2000017678A2 (de) 1998-09-21 1999-09-21 Lichtleitfaser mit kreisförmigem und nichtkreisförmigem querschnitt
PCT/EP1999/006969 WO2000017689A1 (de) 1998-09-21 1999-09-21 Steckerteil für eine optische steckverbindung und verfahren zu dessen herstellung

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006969 WO2000017689A1 (de) 1998-09-21 1999-09-21 Steckerteil für eine optische steckverbindung und verfahren zu dessen herstellung

Country Status (6)

Country Link
US (1) US6473555B1 (de)
EP (2) EP1123521A2 (de)
JP (2) JP2002525675A (de)
CA (2) CA2344809A1 (de)
DE (1) DE19861139C2 (de)
WO (2) WO2000017678A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845776A1 (fr) * 2002-10-10 2004-04-16 Saint Louis Inst Dispositif de collimation d'une matrice de diodes laser haute brillance

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0100369D0 (en) * 2001-01-06 2001-02-14 Corning Ltd Alignment of optical components
DE10103098A1 (de) * 2001-01-24 2002-08-08 Zeiss Carl Jena Gmbh Einrichtung zum Erzeugen eines viereckigen, leuchtenden Feldes und Verwendung einer solchen Einrichtung bei einer Optikvorrichtung mit einer zu beleuchtenden Fläche vorbestimmter Form
US6728448B2 (en) * 2001-01-24 2004-04-27 Carl Zeiss Jena Gmbh Device for generating a quadrangular illuminating field and use of such device in an optical device comprising a surface to be illuminated having a predetermined shape
GB2373063A (en) * 2001-03-09 2002-09-11 Bookham Technology Plc Optical coupling for mounting an optical fibre on a substrate
DE10354008A1 (de) 2003-11-19 2005-06-09 Diemount Gmbh Verfahren zum Erzeugen von Planflächen am Umfang optischer Polymerfasern runden Querschnitts
US8351745B2 (en) 2009-11-13 2013-01-08 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. 2-to-1 plastic optical fiber (POF) optical coupler, a bi-directional optical communications link that employs the 2-to-1 POF optical coupler, and a method for performing 2-to-1 optical coupling
US8260102B2 (en) 2010-02-26 2012-09-04 Avago Technologies Fiber Ip (Singapore) Pte. Ltd 2-to-1 optical coupler that utilizes D-shaped plastic optical fibers (POFs), a bi-directional optical communications link that employs the 2-to-1 POF optical coupler, and a method
US9841556B2 (en) 2015-05-29 2017-12-12 Corning Incorporated Non-circular multicore fiber and method of manufacture
US9835812B2 (en) 2015-08-04 2017-12-05 Corning Incorporated Multi-optical fiber aggregate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878399A (en) * 1972-10-03 1975-04-15 Yamato Scale Co Ltd Optical character display device
GB1493660A (en) * 1975-12-16 1977-11-30 Standard Telephones Cables Ltd Optical waveguide power dividers
DE2910637A1 (de) * 1979-03-17 1980-09-25 Licentia Gmbh Koppelelement zur uebertragung von lichtenergie
US4530565A (en) * 1982-12-20 1985-07-23 The Perkin-Elmer Corporation Optical transformer using curved strip waveguides to achieve a nearly unchanged F/number
US4688884A (en) * 1985-11-12 1987-08-25 Spectra Diode Laboratories, Inc. Fiberoptic coupling system for phased-array semiconductor lasers
EP0363853A1 (de) * 1988-10-08 1990-04-18 KABEL RHEYDT Aktiengesellschaft Verfahren zur Herstellung eines faseroptischen Sternkopplers und nach diesem Verfahren hergestellter faseroptischer Sternkoppler
US4952022A (en) * 1989-03-02 1990-08-28 Xerox Corporation Fiber optic line illuminator with deformed end fibers and method of making same
US5153932A (en) * 1990-10-01 1992-10-06 Blyler Jr Lee L Optical couplers with thermoformed fibers
DE19513616A1 (de) * 1994-04-11 1995-10-19 Morita Mfg Zahnmedizinisches Handstück mit eingebauter Beleuchtungseinrichtung
EP0715192A1 (de) * 1994-12-02 1996-06-05 Alcatel N.V. Methode zur Kopplung einer optischen Mehrkernfaser mit mehreren optischen Fasern, die einen Kern enthalten
EP0833174A2 (de) * 1996-09-30 1998-04-01 Bridgestone Corporation Lichtübertragungssystem mit verzweigtem optischen Wellenleiter

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871935A (en) * 1974-03-14 1975-03-18 Bell Telephone Labor Inc Method of encapsulating and terminating the fibers of an optical fiber ribbon
GB1450019A (en) * 1975-06-19 1976-09-22 Standard Telephones Cables Ltd Optical fibre connector assemblies
JPS5931918A (ja) * 1982-08-18 1984-02-21 Fujitsu Ltd 多芯光フアイバケ−ブルコネクタ
AT383898B (de) * 1985-07-05 1987-09-10 Gebauer & Griller Einrichtung zur loesbaren kupplung zweier lichtleiter
US4763975A (en) * 1987-04-28 1988-08-16 Spectra Diode Laboratories, Inc. Optical system with bright light output
JP2843417B2 (ja) * 1990-05-21 1999-01-06 日本電信電話株式会社 光結合回路に用いるファイバ結合用パイプの製造方法
JP3202296B2 (ja) * 1992-01-24 2001-08-27 富士通株式会社 半導体レーザアレイとシングルモードファイバアレイとの光結合構造
DE4217553C2 (de) * 1992-05-27 2000-06-15 Quante Ag Verfahren und Vorrichtung zum Ankoppeln von mit einem Coating versehenen lichtleitenden Fasern für optische Signale der Nachrichtentechnik oder Sensorik an eine integriert-optische Komponente
JPH0694945A (ja) * 1992-09-10 1994-04-08 Fujitsu Ltd 光ファイバ用コネクタおよびその製造方法
JP3326271B2 (ja) * 1993-04-02 2002-09-17 古河電気工業株式会社 光ファイバ端末部及び端末部と光デバイスとの接続構造
US5500914A (en) * 1994-05-03 1996-03-19 Motorola Optical interconnect unit and method or making
US5473716A (en) * 1994-08-29 1995-12-05 Motorola, Inc. Fiber bundle interconnect and method of making same
TW304233B (de) * 1995-09-07 1997-05-01 At & T Corp
US5712939A (en) * 1995-12-28 1998-01-27 Lucent Technologies Inc. Optical fiber connectors
DE19644758A1 (de) * 1996-10-29 1998-04-30 Sel Alcatel Ag Zentrieranordnung zum Positionieren von mikrostrukturierten Körpern
US5838865A (en) * 1997-06-05 1998-11-17 Clarity Visual Systems, Inc. Fiber optic light homogenizer for use in projection displays
DE19735683A1 (de) * 1997-08-19 1999-02-25 Harting Elektrooptische Bauteile Gmbh & Co Kg Verfahren zur Herstellung eines integriert-optischen Wellenleiterbauteils und einer Steckverbindung

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878399A (en) * 1972-10-03 1975-04-15 Yamato Scale Co Ltd Optical character display device
GB1493660A (en) * 1975-12-16 1977-11-30 Standard Telephones Cables Ltd Optical waveguide power dividers
DE2910637A1 (de) * 1979-03-17 1980-09-25 Licentia Gmbh Koppelelement zur uebertragung von lichtenergie
US4530565A (en) * 1982-12-20 1985-07-23 The Perkin-Elmer Corporation Optical transformer using curved strip waveguides to achieve a nearly unchanged F/number
US4688884A (en) * 1985-11-12 1987-08-25 Spectra Diode Laboratories, Inc. Fiberoptic coupling system for phased-array semiconductor lasers
EP0363853A1 (de) * 1988-10-08 1990-04-18 KABEL RHEYDT Aktiengesellschaft Verfahren zur Herstellung eines faseroptischen Sternkopplers und nach diesem Verfahren hergestellter faseroptischer Sternkoppler
US4952022A (en) * 1989-03-02 1990-08-28 Xerox Corporation Fiber optic line illuminator with deformed end fibers and method of making same
US5153932A (en) * 1990-10-01 1992-10-06 Blyler Jr Lee L Optical couplers with thermoformed fibers
DE19513616A1 (de) * 1994-04-11 1995-10-19 Morita Mfg Zahnmedizinisches Handstück mit eingebauter Beleuchtungseinrichtung
EP0715192A1 (de) * 1994-12-02 1996-06-05 Alcatel N.V. Methode zur Kopplung einer optischen Mehrkernfaser mit mehreren optischen Fasern, die einen Kern enthalten
EP0833174A2 (de) * 1996-09-30 1998-04-01 Bridgestone Corporation Lichtübertragungssystem mit verzweigtem optischen Wellenleiter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845776A1 (fr) * 2002-10-10 2004-04-16 Saint Louis Inst Dispositif de collimation d'une matrice de diodes laser haute brillance
DE10341531B4 (de) * 2002-10-10 2007-10-25 Deutsch-Französisches Forschungsinstitut Saint-Louis, Saint-Louis Vorrichtung zur Kollimation eines Laserdiodenarrays mit hoher Leuchtstärke

Also Published As

Publication number Publication date
EP1123521A2 (de) 2001-08-16
JP2002525669A (ja) 2002-08-13
US6473555B1 (en) 2002-10-29
CA2344809A1 (en) 2000-03-30
DE19861139C2 (de) 2001-03-08
DE19861139A1 (de) 2000-05-18
JP3436743B2 (ja) 2003-08-18
WO2000017689A1 (de) 2000-03-30
EP1116061A1 (de) 2001-07-18
WO2000017678A3 (de) 2000-11-16
CA2344067A1 (en) 2000-03-30
JP2002525675A (ja) 2002-08-13

Similar Documents

Publication Publication Date Title
DE3210506A1 (de) Uebertragungsvorrichtung fuer laserstrahlen
EP0778421A1 (de) Kugelgelenk
EP0110445B1 (de) Mantelelement für Lichtwellenleiter
DE2822221A1 (de) Glasfaserlichtleiter und verfahren zu seiner herstellung
DE2545258A1 (de) Verbindungsanordnung fuer lichtleitkabel und verfahren zu ihrer herstellung
DE3124546C2 (de)
EP0685643A2 (de) Ventilnadel für ein elektromagnetisch betätigbares Ventil
WO2000017678A2 (de) Lichtleitfaser mit kreisförmigem und nichtkreisförmigem querschnitt
DE102007054747B4 (de) Lichtleitkabel-Kontakt, Lichtleitkabel-Verbinder sowie konfektioniertes Lichtleitkabel
EP0747620A2 (de) Zur Herstellung einer Rohrverbindung dienende Kupplungsvorrichtung
DE3818780A1 (de) Anschlussvorrichtung fuer optische fasern
DE3208797A1 (de) Verbinder fuer lichtwellenleiter
DE4338605C2 (de) Lichtleiterkupplung für bandförmige Lichtleiterlitzen
EP1237033A2 (de) Herstellungsverfahren für einen Hohlmischstab und Hohlmischstab
EP0995636A2 (de) Tülle für ein Kabelbündel
DE2747203C2 (de)
EP0660143A2 (de) Kopplervorrichtung zwischen einer Glasfaser und einem dielektrischen Wellenleiter
DE60317012T2 (de) Steckverbindung für Lichtleitfasern mit einem Orientierungsschlüssel
CH632598A5 (en) Plug-in optical fibre connection
DE2650022A1 (de) Lichtleitfaser mit praezisen flaechen, verfahren zu ihrer herstellung und vorrichtung zur durchfuehrung des verfahrens
DE2737538A1 (de) Druckstift
DE3917664A1 (de) Verbindungsstecker fuer einen lichtwellenleiter
DE4211677A1 (de) Lichtwellenleiterverbinder
WO2003085434A1 (de) Lichtwellenleiterstecker mit crimpnoppen
DE60300687T2 (de) Optische Vorrichtung mit einem aufgesteckten Befestigungsmetallring

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09463258

Country of ref document: US

AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2344809

Country of ref document: CA

Ref country code: CA

Ref document number: 2344809

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 571285

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999947392

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999947392

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999947392

Country of ref document: EP