WO2000008175A2 - NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE α-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE - Google Patents

NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE α-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE Download PDF

Info

Publication number
WO2000008175A2
WO2000008175A2 PCT/EP1999/005536 EP9905536W WO0008175A2 WO 2000008175 A2 WO2000008175 A2 WO 2000008175A2 EP 9905536 W EP9905536 W EP 9905536W WO 0008175 A2 WO0008175 A2 WO 0008175A2
Authority
WO
WIPO (PCT)
Prior art keywords
starch
nucleic acid
plant
acid molecule
plants
Prior art date
Application number
PCT/EP1999/005536
Other languages
English (en)
French (fr)
Other versions
WO2000008175A3 (de
Inventor
Claus Frohberg
Original Assignee
Aventis Cropscience Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Cropscience Gmbh filed Critical Aventis Cropscience Gmbh
Priority to AU57297/99A priority Critical patent/AU770735B2/en
Priority to EP99944315A priority patent/EP1100931A2/de
Priority to US09/744,926 priority patent/US6794558B1/en
Priority to CA002338003A priority patent/CA2338003A1/en
Priority to JP2000563799A priority patent/JP2002524045A/ja
Publication of WO2000008175A2 publication Critical patent/WO2000008175A2/de
Publication of WO2000008175A3 publication Critical patent/WO2000008175A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2425Beta-amylase (3.2.1.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/0102Alpha-glucosidase (3.2.1.20)

Definitions

  • Nucleic acid molecules coding for an ⁇ -glucosidase plants that synthesize a modified starch, process for producing the plants, their use and the modified starch
  • the present invention relates to nucleic acid molecules which encode a protein with the activity of an ⁇ -glucosidase from potato and to processes for the production of transgenic plant cells and plants which synthesize a modified starch. Furthermore, the present invention relates to vectors and host cells which contain the nucleic acid molecules according to the invention, the plant cells and plants resulting from the processes according to the invention, the starch synthesized by the plant cells and plants according to the invention and processes for producing this starch.
  • polysaccharides are important, renewable raw materials from plants.
  • starch which is one of the most important storage substances in higher plants, plays a central role in the polysaccharides.
  • the potato plays an important role in starch production.
  • the polysaccharide starch is a polymer made up of chemically uniform building blocks, the glucose molecules. However, it is a very complex mixture of different molecular forms differ with regard to their degree of polymerization and the occurrence of branches of the glucose chains. Starch is therefore not a uniform raw material. A distinction is made in particular between amylose starch, an essentially unbranched polymer composed of ⁇ -1,4-glycosidically linked glucose molecules, and amylopectin starch, which in turn is a complex mixture of differently branched glucose chains. The branches come about through the occurrence of additional ⁇ -1, 6-glycosidic linkages. In typical plants used for starch production, such as corn or potatoes, the synthesized starch consists of approximately 25% amylose starch and approximately 75% amylopectin starch.
  • the molecular structure of the starch which is largely determined by the degree of branching, the amylose / amylopectin ratio, the average length and distribution of the side chains and the presence of phosphate groups, is crucial for important functional properties of the starch or its aqueous solutions .
  • important functional properties are solubility, retrograding behavior, film-forming properties, viscosity, color stability, gelatinization properties, and binding and adhesive properties.
  • the starch grain size can also be important for various applications.
  • the production of starches containing high amylose is of particular interest for certain applications.
  • a modified starch contained in plant cells can advantageously change the behavior of the plant cell under certain conditions.
  • the biochemical pathways that lead to starch building are essentially known.
  • the starch synthesis in plant cells takes place in the plastids. These are the ones in photosynthetically active tissues Chloroplasts, the amyloplasts in photosynthetically inactive, starch-storing tissues.
  • Important enzymes involved in starch metabolism are e.g. the branching enzymes, ADP-glucose pyrophosphorylases, starch-bound starch synthases, soluble starch synthases, debranching enzymes, disproportionation enzymes, plastidary starch phosphorylases, the R1 enzymes, amylases or glucoside.
  • the object of the present invention is to develop further or alternative genetic engineering approaches for modifying the starch metabolism in starch-forming plants (for example rye, barley, oats, maize, wheat, millet, sago, rice, pea, marker pea, cassava, potato, tomato, rape, Soybean, hemp, flax, sunflower, cow pea, mung bean, bean, banana or arrowroot) to provide suitable nucleic acid molecules by means of which plant cells can be transformed, so that the synthesis of modified, advantageous starch varieties is made possible.
  • starch-forming plants for example rye, barley, oats, maize, wheat, millet, sago, rice, pea, marker pea, cassava, potato, tomato, rape, Soybean, hemp, flax, sunflower, cow pea, mung bean, bean, banana or arrowroot
  • Such changed starch varieties e.g. Modifications related to their degree of branching, the amylose / amylopectin ratio, the phosphate content, the starch grain size and / or the average length and distribution of the side chains (i.e. side chain structure).
  • Another object of the invention is to provide methods which enable the production of transgenic plants which synthesize an altered starch variety.
  • transgenic plants which have been transformed with the nucleic acid molecules according to the invention synthesize a starch which is changed in a special way in its physicochemical properties and / or in its side chain structure, so that the stated objects are achieved by the provision of the embodiments specified in the claims.
  • the invention therefore relates to a nucleic acid molecule, coding for a protein with the function of an ⁇ -glucosidase from potato, selected from the group consisting of a) nucleic acid molecules which code for a protein which contains the protein identified under Seq ID NO. 2 amino acid sequence specified or their derivatives or parts, b) nucleic acid molecules which the Seq ID No.
  • nucleotide sequence shown or their derivatives or parts comprise or a corresponding ribonucleotide sequence; c) nucleic acid molecules which hybridize or are complementary to the nucleic acid molecules mentioned under (a) or (b), preferably specifically hybridize, and d) nucleic acid molecules whose nucleotide sequence is due to the degeneracy of the genetic code from the sequence of under (a), (b) or (c) the nucleic acid molecules mentioned deviate.
  • the present invention relates to a nucleic acid molecule coding for an ⁇ -glucosidase, which has an amino acid sequence according to Seq. ID No. 2 or their derivatives or parts thereof encoded according to the cDNA insert of the plasmid (DSM No. 1 2347).
  • the above-mentioned ⁇ -glucosidase is involved in the starch metabolism of the potato and is directly or indirectly involved in the starch biosynthesis.
  • the term “derivative” in relation to the ⁇ -glucosidase protein (or its polypeptide, amino acid sequence) of the invention encompasses one of Seq. ID No. 2 derived polypeptide containing at least 1 63 i
  • amino acid residues preferably at least 227, in particular at least 293 and very particularly preferably about 309-322 amino acid residues, which consists of the group of amino acid residues consisting of 18 H, 25 R, 34 G, 37 H, 38 G, 39 V, 41 L, 42 L, 44 S, 45 N, 46 G, 47 M, 48 D, 51 Y, 53 G, 55 R, 56 I, 58 Y, 60 V, 61 I, 62 G, 63 G, 65 I, 66 D, 67 L, 68 Y, 70 F, 71 A, 72 G, 75 P, 78 V, 81 Q, 83 T, 86 I, 87 G, 88 R, 89 P, 90 A, 92 M, 93 P, 94 Y , 95 W, 97 F, 98 G, 99 F, 101 Q, 102 C, 103 R, 105 G, 106 Y, 115V, 116V, 119 Y, 120 A, 124 I, 125 P, 126
  • ID No. 2 are selected and which contains at least about 1 -69, preferably at least 1 39, in particular at least 1 94, more preferably at least 249 and very particularly preferably about 263-274 amino acid residues, which consists of the group of amino acid residues consisting of 1 P, 2 K, 3 L, 4 R, 5 P, 6 R, 7 V, 8 H, 9 P, 10 S, 1 1 Q, 1 2 H, 1 3 H, 14 P, 1 5 I, 1 6 Q, 1 7 L, 1 9 R, 20 P, 21 P, 22 A, 23 L, 24 H, 27 Y, 28 S, 29 F, 30 R, 31 Y, 32 F, 35 V, 36 S, 43 S, 49 I, 50 V, 57 S, 64 L, 84 Q, 91 A, 1 09 I, 1 1 0 D, 1 1 2 V, 1 14 L, 1 1 8 S, 1 22 S, 1 52 E, 1 53 R, 1 54 V, 1 55 1, 1 56 F, 1 58 L, 1 59 R, 1 63 Q
  • the term “part” in relation to the ⁇ -glucosidase protein (polypeptide, amino acid sequence) according to the invention comprises a poly- or oligopeptide consisting of at least about 10-50, preferably at least 100, more preferably at least 200, particularly preferably at least 400 and most preferably about 550-675 of the amino acid residues of the ⁇ -glucosidase or their derivatives encoded by the nucleic acid molecule according to the invention.
  • the present invention further relates to a nucleic acid molecule which a nucleic acid molecule according to Seq. ID No. 1 contains, according to the cDNA insert of the plasmid DSM No. 12347 deposited with the DSZM on July 24, 1998 or its derivatives or parts, in particular the coding region or its derivatives or parts.
  • the term “derivative” in relation to the nucleic acid molecule according to the invention comprises a polynucleotide which contains at least 478 nucleotides, preferably at least 668, in particular at least 860, and very particularly preferably about 907-945 nucleotides, selected from the group consisting of 4 A, 6 A, 12 A, 13 C, 17 G, 25 C, 32 A, 34 C, 38 A, 45 T, 47 A, 49 C, 51 T, 56 G, 62 C, 65 C, 68 T, 73 C, 76 G, 77 G, 78 A, 79 T, 97 G, 100 G, 101 G, 106 A, 108 T, 109 C, 110 A, 111 T, 112 G, 113 G, 114G, 115 G, 116 T, 119T, 122 T, 125 T, 127 A, 130 A, 131 G, 132 C, 133 A
  • ID No. 1 which further contains at least about 1 -93 nucleotides, preferably at least 1 87, in particular at least 261, more preferably at least 336 and very particularly preferably about 354-369 nucleotides, selected from the group consisting of 1 C, 10 A, 1 6 A, 1 9 G, 21 T, 23 A, 24 C, 26 C, 30 A, 33 A, 36 C, 39 T, 43 A, 48 G, 52 C, 53 A, 54 C, 57 T, 58 C, 59 C, 60 G, 63 G, 64 G, 66 G, 67 C, 69 C, 70 C, 71 A, 72 C, 74 G, 75 G, 80 A, 81 C, 86 T, 88 C , 89 G, 91 T, 93 C, 94 T, 96 C, 99 C, 102 A, 103 G, 104 T, 105 T, 1 07 G, 1 23 T, 1 28 G, 1 38 C, 145 A, 1 49 T, 1 56 G, 1 70 G
  • Seq ID No. 1 or Seq. ID no. 2 are also understood as derivatives of said sequences according to the invention in which the numbering of the individual sequence elements can differ from that of the sequences ID no. 1 or no. 2 according to the invention.
  • the decisive factor here is a significant correspondence of at least one sequence section (“part”) with the sequence according to the invention. According to the general technical knowledge, such matches can easily be determined, for example, by suitable computer programs, for example by comparing the sequences of the invention Sequence is carried out with a sequence in question to be compared (so-called "sequence alignment").
  • Such computer programs for example, be purchased (eg Omiga ⁇ version 1 .1 .3. The company Oxford Molecular Ltd., Oxford, UK) and in part also an integral part of sequence databases (eg EMBL, GenBank) are , identify, for example, the best possible match of identical or possibly chemically equivalent sequence elements and take into account in particular the presence of insertions and / or deletions, which can lead to a shift of individual sequence elements or of sequence segments and in this way can influence the numbering of the sequence elements or sequence segments.
  • the term “derivative” in relation to the nucleic acid molecule according to the invention which codes for an ⁇ -glucosidase encompasses a nucleic acid molecule which is obtained by addition, deletion, insertion or recombination of one or more nucleotides from Seq. ID No. 1 deviates and fulfills the conditions as defined above.
  • the term “derivative” with respect to the nucleic acid molecule according to the invention which codes for an ⁇ -glucosidase includes a complementary or a reversely complementary sequence (polynucleotide) of the nucleic acid molecule according to the invention or of derivatives or parts thereof.
  • part which relates to the nucleic acid molecule coding for an ⁇ -glucosidase according to this invention, encompasses a poly- or oligonucleotide consisting of at least approximately 1-535, preferably at least approximately 36-100, in particular at least 200, more preferably at least 400, particularly preferably at least 800 and most preferably about 1400-1 700 of the nucleotides of a nucleic acid molecule according to the invention which codes for an ⁇ -glucosidase, or their derivatives.
  • the terms “derivative” and / or “part” according to the present invention comprise a polynucleotide, or a poly- or oligopeptide as defined above, which has a functional and / or structural equivalence of the ⁇ - obtained from potato Glucosidase gene (ie the nucleic acid molecule which codes for the ⁇ -glucosidase) or ⁇ -glucosidase polypeptide.
  • the term “functional and / or structural equivalence” generally means the same, an equivalent or similar function of the corresponding molecule of the invention, if appropriate in particular a biological function.
  • Another object of the invention is a recombinant nucleic acid molecule, comprising a) a nucleotide sequence coding for a protein with the function of an ⁇ -glucosidase, preferably from potato, or parts of said nucleotide sequence and b) one or more nucleotide sequences which code for a protein selected from the Group A, consisting of proteins with the function of branching enzymes, ADP-glucose pyrophosphorylases, starch-bound starch synthases, soluble starch synthases, debranching enzymes, disproportionation enzymes, plastid starch phosphorylases, R1 enzymes, amylases, glucosidases, selected from parts of the nucleotides for nucleotides Group A and nucleic acid molecules which hybridize with one of said nucleotide sequences or parts thereof, preferably a deoxyribonucleic acid or ribonucleic acid molecule, particularly preferably
  • a nucleic acid molecule which hybridizes specifically with one of said nucleotide sequences or parts thereof is particularly preferred.
  • the nucleotide sequence according to the invention coding for a protein with the function of an ⁇ -glucosidase from potato is described by Seq. ID No. 1, the protein encoded by the nucleotide sequence by Seq. ID No. 2. Seq. ID NO.
  • the ⁇ -glucosidase nucleotide sequence according to the invention points to known ⁇ -glucosidase-coding molecules (Taylor et al., 1 998, Plant J. 1 3: 41 9-424; Sugimoto et al., 1 997, Plant Mol. Biol. 33 , 765-768; EMBL database entries: U22450, P1 0253, D86624) have a comparatively low sequence homology.
  • the amino acid sequence differs significantly from the ⁇ -glucosidases described in the prior art, particularly in the 5 'region, as can be seen from a sequence comparison with sequence ID No. 2. ;
  • Nucleotide sequences which are suitable according to the invention and which code for a protein of group A are described, for example, for soluble (type I, II, IM or IV) or starch-grain-bound starch synthase isoforms in Hergersberg,
  • nucleotide sequences to be used according to the invention are of pro- or eukaryotic origin, preferably of bacterial, fungal or vegetable origin.
  • parts of nucleotide sequences means parts of the nucleotide sequences to be used according to the invention which are at least 15 bp, preferably at least 150 bp, particularly preferably at least 500 bp, but a length of 5000 bp, preferably 2500 bp do not exceed.
  • hybridization means hybridization under conventional hybridization conditions, preferably under stringent conditions, as described, for example, in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd edition (1,989) Cold Spring Harbor Laboratory Press , Cold Spring Harbor, NY).
  • a “specific hybridization” is particularly preferably carried out under the following highly stringent conditions:
  • the molecules hybridizing with the nucleic acid molecules according to the invention also include fragments, derivatives and allelic variants of the nucleic acid molecules according to the invention. Fragments are understood to mean parts of the nucleic acid molecules that are long enough to encode part of the proteins described.
  • derivative in this context means that the sequences of these molecules differ from the sequences of the nucleic acid molecules according to the invention at one or more positions and a high degree of homology to these sequences t
  • Homology means a sequence identity of at least 60%, preferably over 70% and particularly preferably over 85%.
  • the deviations from the nucleic acid molecules according to the invention can be caused by deletions, substitutions, insertions or recombinations.
  • nucleic acid molecules which are homologous to the molecules according to the invention and which are derivatives of these molecules are generally variations of these molecules which are modifications which have the same biological function. These can be both naturally occurring variations, for example sequences from other plant species, or mutations, wherein these mutations can have occurred naturally or have been introduced by targeted mutagenesis. Furthermore, the variations can be synthetically produced sequences.
  • allelic variants can be both naturally occurring variants and also synthetically produced variants or those produced by recombinant DNA techniques.
  • the nucleic acid molecules according to the invention can be DNA molecules, in particular cDNA or genomic molecules. Furthermore, the nucleic acid molecules according to the invention can be RNA molecules.
  • the nucleic acid molecules according to the invention or parts thereof can e.g. B. obtained from natural sources, be produced by recombinant techniques or synthetically.
  • nucleic acid molecules according to the invention in sense or antisense orientation in plant cells, these are compared with regulatory cells Linked DNA elements that ensure transcription in plant cells.
  • Linked DNA elements that ensure transcription in plant cells.
  • These include promoters in particular.
  • any promoter active in plant cells can be used for the expression.
  • the promoter can be selected so that the expression takes place constitutively or only in a certain tissue, at a certain time in plant development or at a time determined by external influences, which can be chemically or biologically inducible, for example.
  • the promoter - like the nucleotide sequence - can be homologous or heterogeneous.
  • Suitable promoters are, for example, the 35S RNA promoter of the Cauliflower Mosaic Virus for constitutive expression, the patatin gene promoter B33 (Rocha-Sosa et al., 1,989, EMBO J. 8: 23-29) for tuber-specific expression in potatoes or a promoter which ensures expression only in photosynthetically active tissues, for example the ST-LS1 promoter (Stockhaus et al., 1,987, Proc. Natl. Acad. Sci. USA 84: 7943-7947; Stockhaus et al., 1 989, EMBO J. 8: 2445-2451) or for endosperm-specific expression the HMG promoter from wheat or promoters from zein genes from maize.
  • the patatin gene promoter B33 (Rocha-Sosa et al., 1,989, EMBO J. 8: 23-29) for tuber-specific expression in potatoes or a promoter which ensures expression only in photos
  • a termination sequence terminating the nucleic acid molecule according to the invention can serve for the correct termination of the transcription and the addition of a poly-A tail to the transcript, which is assigned a function in stabilizing the transcripts.
  • Such elements are described in the literature (cf. Gielen et al., 1 989, EMBO J. 8: 23-29) and are interchangeable.
  • the nucleic acid molecules according to the invention can be used for the production of transgenic plant cells and plants which are increased or decreased in the activity of ⁇ -glucosidase or in the activity of ⁇ -glucosidase and at least one further enzyme of starch metabolism.
  • the nucleic acid molecules according to the invention are converted into suitable vectors introduced, provided with the necessary regulatory nucleic acid sequences for efficient transcription in plant cells and introduced into plant cells.
  • the nucleic acid molecules according to the invention for inhibiting the synthesis of the endogenous ⁇ -glucosidase or the endogenous ⁇ -glucosidase and at least one further protein of group A in the cells.
  • nucleic acid molecules according to the invention can be used to express the ⁇ -glucosidase or the ⁇ -glucosidase and at least one further protein from group A in cells of transgenic plants and thus lead to an increase in the activity of the respectively expressed enzymes in the cells.
  • nucleic acid molecules according to the invention to inhibit the synthesis of the endogenous ⁇ -glucosidase and the overexpression of at least one further Group A protein in the cells.
  • nucleic acid molecules according to the invention can also be used for the expression of ⁇ -glucosidase and the inhibition of at least one further protein of group A in cells of transgenic plants.
  • the latter two embodiments of the invention thus lead to a simultaneous inhibition and increase in the activities of the respectively inhibited or expressed enzymes in the cells.
  • vector containing a nucleic acid molecule according to the invention.
  • the term "vector” encompasses plasmids, cosmids, viruses, bacteriophages and other vectors which are common in genetic engineering and which contain the nucleic acid molecules according to the invention and are suitable for transforming cells. Such vectors are preferably suitable for transforming plant cells. They particularly preferably allow the nucleic acid molecules according to the invention, optionally together with flanking regulatory regions, to be integrated into the genome of the plant cell. Examples of this are binary vectors, such as pBinAR or pBinB33, which can be used in the gene transfer mediated by agrobacteria.
  • the vector according to the invention is characterized in that the nucleotide sequence which codes for a protein with the function of an ⁇ -glucosidase or whose parts are present in the sense or anti-sense direction.
  • the vector according to the invention is characterized in that the nucleotide sequence which codes for one or more proteins selected from group A or parts thereof is present in the sense or anti-sense direction.
  • the vector according to the invention is characterized in that the nucleotide sequence which codes for a plurality of proteins selected from group A or parts thereof is present partly in the sense direction and partly in the anti-sense direction.
  • the vector according to the invention is very particularly preferably linked to regulatory elements which ensure the expression, for example the transcription and synthesis, of an RNA which can be translated in the case of a nucleotide sequence which is present in the sense direction, in a pro- or eukaryotic cell.
  • regulatory elements which ensure the expression, for example the transcription and synthesis, of an RNA which can be translated in the case of a nucleotide sequence which is present in the sense direction, in a pro- or eukaryotic cell.
  • it is possible to use conventional molecular biological techniques see, for example, Sambrook et al., 1,989, Molecuiar Cloning, A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) to introduce various mutations into the DNA according to the invention. Introduce sequences, which leads to the synthesis of proteins with possibly changed biological properties.
  • deletion mutants in which progressive deletions generate from the 5 'or from the 3' end of the coding DNA sequences, which lead to the synthesis of correspondingly shortened proteins.
  • deletions at the 5 'end of the DNA sequence make it possible, for example, to specifically produce enzymes which, by removing the corresponding transit or signal sequences, no longer in their original (homologous) compartment, but in the cytosol, or due to the addition of others Signal sequences are located in one or more other (heterologous) compartments.
  • mutants can be produced which have a changed K M or k cat value or which are no longer subject to the regulatory mechanisms normally present in the cell via allosteric regulation or covalent modification.
  • the DNA sequences according to the invention or parts of these sequences can be introduced into plasmids which permit mutagenesis or a sequence change by recombination of DNA sequences.
  • base exchanges can be made or natural or synthetic sequences added.
  • adapters or links can be attached to the fragments.
  • Manipulations which provide suitable restriction sites or which remove excess DNA or restriction sites can also be used. Where insertions, deletions or substitutions are possible, w ' f / O mutagenesis, "primer repair", restriction or ligation can be used. Sequence analysis, restriction analysis and possibly other biochemical-molecular biological methods are generally carried out as the analysis method.
  • Another object of the invention is a host cell, in particular prokaryotic or eukaryotic cells, preferably bacterial or plant cells (for example from E. coli, Agrobacterium, Solananceae, Poideae, rye, barley, oats, corn, wheat, millet, sago, rice, pea , Marker pea, cassava, potato, tomato, rapeseed, soybean, hemp, flax, sunflower, cow pea, mung bean, bean, banana or arrowroot), which contains a nucleic acid molecule or a vector according to the invention or that of a cell containing a nucleic acid molecule according to the invention or a vector according to the invention was transformed.
  • prokaryotic or eukaryotic cells preferably bacterial or plant cells (for example from E. coli, Agrobacterium, Solananceae, Poideae, rye, barley, oats, corn, wheat, millet, sago, rice,
  • Another object of the invention is a host cell, in particular prokaryotic or eukaryotic cells, preferably bacterial or plant cells (for example from E. coli, Agrobacterium, Solananceae, Poideae, rye, barley, oats, corn, wheat, millet, sago, rice, Pea, marker pea, cassava, potato, tomato, rapeseed, soybean, hemp, flax, sunflower, cow pea, mung bean, bean, banana or arrowroot), which in addition to a recombinant nucleic acid molecule coding for a protein with the function of a ß-amylase, one or several other recombinant nucleic acid molecules (
  • the host cells according to the invention can optionally also be produced by successive transformation (so-called "super transformation"), in that individual nucleotide sequences or vectors containing nucleotide sequences which code for a protein with the function of branching enzymes, ADP-glucose pyrophosphorylases , Starch grain-bound starch synthases, soluble starch synthases I, II, III or IV, debranching enzymes,
  • Disproportionation enzymes plastid starch phosphorylases, R1 enzymes, amylases, glucosidases, parts thereof, as well as nucleic acid molecules which hybridize with one of said nucleotide sequences or parts thereof, are used in a number of transformations of the cells which follow.
  • Another embodiment of the present invention relates to a method for producing a transgenic plant cell which synthesizes a modified starch, characterized in that a nucleic acid molecule or a vector according to the invention is integrated into the genome of a plant cell.
  • nucleic acid molecules according to the invention it is possible, using genetic engineering methods, to intervene in the starch metabolism of plants and to change it in such a way that a modified starch is synthesized which, for example, in terms of structure, water content, protein content, lipid content, fiber content, Ash / phosphate content, amylose / amylopectin ratio, molecular weight distribution, degree of branching, grain size and shape as well as crystallization or also in their physicochemical properties such as flow and sorption behavior, gelatinization temperature, viscosity, thickening performance, solubility, Paste structure, transparency, heat, shear and acid stability, tendency to retrogradation, gel formation, freeze / thaw stability, complex formation, iodine binding, film formation, adhesive strength, enzyme stability, digestibility or reactivity compared to starch synthesized in wild-type plants is changed.
  • a modified starch which, for example, in terms of structure, water content, protein content, lipid content, fiber content, Ash
  • the synthesized protein can be localized in any compartment of the plant cell.
  • the transit or signal sequence ensuring the localization may have to be deleted (removed) and the remaining coding region may have to be linked to DNA sequences, which ensure localization in the respective compartment.
  • sequences are known (see for example Braun et al., EMBO J. 1 1 (1 992), 321 9-3227; Wolter et al., Proc. Natl. Acad. Sci.
  • the production of plant cells with a reduced activity of a protein involved in starch metabolism can be achieved, for example, by the expression of a corresponding antisense RNA, a sense RNA to achieve a cosuppression effect, in vivo mutagenesis or the expression of a correspondingly constructed ribozyme that specifically cleaves transcripts which encode one of the proteins involved in starch metabolism, using a nucleic acid molecule according to the invention, preferably by expression of an antisense transcript.
  • a DNA molecule can be used that comprises the entire sequence coding for a protein involved in starch metabolism, including any flanking sequences that may be present, as well as DNA molecules that only comprise parts of the coding sequence, these parts having a minimum length of 1 5 bp, preferably of at least 100-500 bp, and in particular of over 500 bp.
  • DNA molecules are used which are shorter than 5000 bp, preferably shorter than 2500 bp.
  • DNA sequences which have a high degree of homology to the sequences of the DNA molecules according to the invention, but which are not completely identical.
  • the minimum homology should be greater than approximately 65%.
  • sequences with a homology of 75% and in particular 80% is preferred.
  • ribozymes for reducing the activity of certain proteins in cells is known to the person skilled in the art and is described, for example, in EP-B1-0 321 201.
  • the expression of ribozymes in plant cells have been described, for example, in Feyter et al. (Mol. Gen. Genet. 250 (1,996), 329-338). t
  • the reduction of the proteins involved in starch metabolism in the plant cells according to the invention can also be achieved by the so-called "in vivo mutagenesis", in which a hybrid RNA-DNA oligonucleotide ("chimeroplast”) is introduced into cells by transforming cells (Kipp PB et al., Poster session at "5 , h International Congress of Plant Molecular Biology, 21-27, September 1, 997, Singapore; RA Dixon and CJ Arntzen, meeting report on” Metabolie Engineering in Transgenic Plants ", Keystone Symposia, Copper Mountain, CO, USA, TIBTECH 1 5 (1 997), 441-447; international patent application WO 95/1 5972; Kren et al., Hepatology 25 (1 997), 1462-1468; Cole-Strauss et al., Science 273 (1,996), 1386-1 389).
  • in vivo mutagenesis in which a hybrid RNA-DNA oligonucleotide (“chimeroplast”) is
  • Part of the DNA component of the RNA-DNA oligonucleotide used here is homologous to a nucleic acid sequence of an endogenous protein, but has a mutation or contains a heterologous region which is enclosed by the homologous regions in comparison with the nucleic acid sequence of the endogenous protein.
  • the mutation or heterologous region contained in the DNA component of the RNA-DNA oligonucleotide can be transferred into the genome of a plant cell. This leads to a reduction in the activity of the protein involved in starch metabolism.
  • the enzyme activities involved in starch metabolism in the plant cells can be reduced by a cosuppression effect.
  • This method is known to the person skilled in the art and is described, for example, in Jorgensen (Trends Biotechnol. 8 (1 990), 340-344), Niebel et al., (Curr. Top. Microbiol. Immunol. 1 97 (1 995), 91-103 ), Flavell et al. (Curr. Top. Microbiol. Immunol. 1 97 (1 995), 43-46), Palaqui and Vaucheret (Plant. Mol. Biol. 29 (1 995), 1 49-1 59), Vaucheret et al., ( Mol. Gen. Genet. 248 (1,995), 31 1 -31 7), de Borne et al. (Mol. Gen. Genet. 243 (1,994), 61 3-621) and other sources.
  • DNA molecules can be used for the transformation, which simultaneously contain several regions coding for the corresponding enzymes in antisense orientation under the control of a suitable promoter.
  • Each sequence can alternatively be under the control of its own promoter, or the sequences can be transcribed as a fusion from a common promoter, so that the synthesis of the proteins in question is inhibited to approximately the same or different extent.
  • the length of the individual coding regions which are used in such a construct what has already been stated above for the production of antisense constructs applies. In principle, there is no upper limit for the number of antisense fragments transcribed from a promoter in such a DNA molecule. However, the resulting transcript should generally not exceed a length of 25 kb, preferably 1 5 kb.
  • nucleic acid molecules With the aid of the nucleic acid molecules according to the invention, it is possible to transform plant cells and to inhibit the synthesis of several enzymes at the same time.
  • nucleic acid molecules according to the invention can be introduced into classic mutants which are defective or defective with regard to one or more genes of starch biosynthesis (Shannon and Garwood, 1,984, in Whistler, BeMiller and Paschall, Starch: Chemistry and Technology, Academic Press, London , 2nd Edition: 25-86).
  • These defects can relate, for example, to the following proteins: starch-grain-bound (GBSS I) and soluble starch synthases (SSS I, II, IM and IV), branching enzymes (BE I, ILA and Mb), "debranching" - Enzymes (R-enzymes, isoamylases, pullulanases), disproportionation enzymes and plastid starch phosphorylases.
  • the present invention thus also relates to transgenic plant cells obtainable by a method according to the invention, which have been transformed with a nucleic acid molecule or vector according to the invention, and to transgenic plant cells which originate from cells transformed in this way.
  • the cells according to the invention contain a nucleic acid molecule according to the invention, this being preferably linked to regulatory DNA elements which ensure transcription in plant cells, in particular with a promoter.
  • the cells according to the invention can be distinguished from naturally occurring plant cells, inter alia, in that they contain a nucleic acid molecule according to the invention which does not naturally occur in these cells or in that such a molecule is integrated at a location in the genome of the cell where it is not otherwise occurs, ie in a different genomic environment.
  • the transgenic plant cells according to the invention can be distinguished from naturally occurring plant cells in that they contain at least one copy of a nucleic acid molecule according to the invention stably integrated into their genome, if appropriate in addition to copies of such a molecule which occur naturally in the cells. If the nucleic acid molecule (s) introduced into the cells are additional copies of molecules already naturally occurring in the cells, the plant cells according to the invention can be distinguished from naturally occurring cells in particular by the fact that these additional copy (s) ) is located at locations in the genome where it does not naturally occur. This can be checked, for example, using a Southern blot analysis. ⁇
  • Plant cells according to the invention are preferred in which the enzyme activity of individual enzymes involved in starch metabolism is increased or decreased by at least 10%, particularly preferably at least 30% and very particularly preferably by at least 50%.
  • the plant cells according to the invention can preferably be distinguished from naturally occurring plant cells by at least one of the following features: If the introduced nucleic acid molecule according to the invention is heterologous in relation to the plant cell, the transgenic plant cells have transcripts of the introduced nucleic acid molecules according to the invention. These can e.g. B. by Northem blot analysis.
  • the plant cells according to the invention contain one or more proteins which are encoded by an introduced nucleic acid molecule according to the invention. This can e.g. B. by immunological methods, in particular by Western blot analysis.
  • the cells according to the invention can be distinguished from naturally occurring cells, for example due to the additional expression of nucleic acid molecules according to the invention.
  • the transgenic plant cells contain, for example, more or fewer transcripts of the nucleic acid molecules according to the invention. This can e.g. B. can be detected by Northern blot analysis.
  • "More” or “less” preferably means at least 10% more or less, preferably at least 20% more or less and particularly preferably at least 50% more or less transcripts than corresponding non-transformed cells.
  • the cells preferably also have a corresponding (at least 10%, 20% or 50%) increase or decrease in the content of the invention Protein on.
  • the transgenic plant cells can be regenerated into whole plants using techniques known to those skilled in the art.
  • the plants obtainable by regeneration of the transgenic plant cells according to the invention and processes for producing transgenic plants by regeneration of whole plants from the plant cells according to the invention are likewise the subject of the present invention.
  • the invention furthermore relates to plants which contain the transgenic plant cells according to the invention.
  • the transgenic plants can in principle be plants of any species, i.e. both monocot and dicot plants. They are preferably useful plants, i.e. Plants that are cultivated by humans for purposes of nutrition or for technical, especially industrial purposes. These are preferably starch-storing plants, e.g.
  • Cereals (rye, barley, oats, maize, wheat, millet, sago etc.), rice, peas, marker peas, cassava, potatoes, tomatoes, rapeseed, soybeans, hemp, flax, sunflower, cow peas, mung beans or arrowroot.
  • the invention also relates to propagation material of the plants according to the invention, for example fruits, seeds, tubers, rhizomes, seedlings, cuttings, calli, protoplasts, cell cultures etc.
  • the change in the enzymatic activities of the enzymes involved in the starch metabolism results in the synthesis of a starch with a different structure in the plants produced by the process according to the invention.
  • a large number of cloning vectors are available to prepare the introduction of foreign genes into higher plants, which contain a replication signal for E. coli and a marker gene for the selection of transformed bacterial cells.
  • examples of such vectors are pBR322, pUC series, M 1 3mp- Series, pACYC1 84 etc.
  • the desired sequence can be introduced into the vector at a suitable restriction site.
  • the plasmid obtained is used for the transformation of £ .co // cells.
  • Transformed E.coli cells are grown in a suitable medium, then harvested and lysed. The plasmid is recovered.
  • Restriction analyzes, gel electrophoresis and other biochemical-molecular biological methods are generally used as the analysis method for characterizing the plasmid DNA obtained (Sambrook et al. Loc.cit.). After each manipulation, the plasmid DNA can be cleaved and DNA fragments obtained can be linked to other DNA sequences. Each plasmid DNA sequence can be cloned into the same or different plasmids.
  • a variety of techniques are available for introducing DNA into a plant host cell. These techniques include the transformation of plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as a transformation agent, the fusion of protoplasts using polyethylene glycol (PEG), the injection, the electroporation of DNA, the introduction of DNA using the biolistic method and More options.
  • Agrobacterium tumefaciens or Agrobacterium rhizogenes as a transformation agent
  • PEG polyethylene glycol
  • DNA When DNA is injected and electroporated into plant cells, there are no special requirements for the plasmids or DNA used. Simple plasmids such as e.g. pUC derivatives can be used. If whole plants are to be regenerated from such transformed cells, the presence of a selectable marker gene is necessary.
  • Simple plasmids such as e.g. pUC derivatives can be used. If whole plants are to be regenerated from such transformed cells, the presence of a selectable marker gene is necessary.
  • the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but often the right and left boundary of the Ti and Ri Plasmid T-DNA can be connected as a flank region with the genes to be introduced.
  • the DNA to be introduced must be cloned into special plasmids, either in an intermediate vector or in a binary vector.
  • the intermediate vectors can be integrated into the Ti or Ri plasmid of the agrobacteria on the basis of sequences which are homologous to sequences in the T-DNA by homologous recombination. This also contains the v / ⁇ region necessary for the transfer of the T-DNA. Intermediate vectors cannot replicate in agrobacteria. Using a helper plasmid, the intermediate vector can be transferred to Agrobacterium tumefaciens (conjugation). Binary vectors can replicate in both E. coli and agrobacteria.
  • the agrobacterium serving as the host cell should contain a plasmid bearing an ' r region. The r region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present.
  • the agrobacterium transformed in this way is used to transform plant cells.
  • T-DNA for the transformation of plant cells has been intensively investigated and is sufficiently described in EP 1 2051 6; Hoekema, In: The Binary Plant Vector System Offsetdrukkerij Kanters B.V., Alblasserdam (1 985), Chapter V; Fraley et al., Crit. Rev. Plant. Sci., 4: 1-46 and An et al. (1 985) EMBO J. 4: 277-287.
  • plant explants can expediently use Agrobacterium tumefaciens or Agrobacterium rhizogenes are cultivated. Whole plants can then be regenerated from the infected plant material (for example leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which can contain antibiotics or biocides for the selection of transformed cells. The plants thus obtained can then be examined for the presence of the introduced DNA.
  • suitable medium which can contain antibiotics or biocides for the selection of transformed cells.
  • the plants thus obtained can then be examined for the presence of the introduced DNA.
  • Other possibilities of introducing foreign DNA using the biolistic method or by protoplast transformation are known (cf., for example, Willmitzer, L, 1 993 Transgenic plants. In: Biotechnology, A Multi-Volume Comprehensive Treatise (HJ Rehm, G. Reed, A. Pühler , P. Stadler, eds.), Vol. 2, 627-659, VCH Weinheim-New York
  • Protoplast transformation the electroporation of partially permeabilized cells, the introduction of DNA using glass fibers.
  • EP 292 435 describes a process by means of which fertile plants can be obtained starting from a slimy, soft (friable) granular corn callus.
  • Shillito et al. (Bio / Technology 7 (1 989), 581) have observed in this connection that it is also necessary for the regenerability to fertile plants to start from callus suspension cultures from which a dividing protoplast culture with the ability to regenerate plants can be produced. After an in vitro cultivation time of 7 to 8 months, Shillito et al. Plants with viable offspring, but which have abnormalities in morphology and reproductivity.
  • Prioli and Sondahl (Bio / Technology 7 (1 989), 589) also describe the regeneration and extraction of fertile maize plants from maize protoplasts.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the progeny of the originally transformed cell. It normally contains a selection marker that shows the transformed plant cells resistance to a biocide or an antibiotic such as Kanamycin, G 41 8, bleomycin, hygromycin or phosphinothricin and others. taught.
  • the individually chosen marker should therefore allow the selection of transformed cells from cells that lack the inserted DNA.
  • the transformed cells grow within the plant in the usual way (see also McCormick et al. (1 986) Plant Cell Reports 5:81 -84).
  • the resulting plants can be grown normally and crossed with plants that have the same transformed genetic makeup or other genetic makeup.
  • the resulting hybrid individuals have the corresponding phenotypic characteristics.
  • Two or more generations should be grown to ensure that the phenotypic trait is stably maintained and inherited. Seeds should also be harvested to ensure that the appropriate phenotype or other traits have been preserved.
  • Another object of the invention is a process for the production of starch in a manner known per se, in which plant cells according to the invention, /
  • Plants, parts of plants or propagation material are processed or integrated into the process.
  • Processes for extracting the starch from plants or from starch-storing parts of plants are known to the person skilled in the art.
  • Processes for extracting starch from corn seeds are e.g. B. in Eckhoff et al. (Cereal Chem. 73 (1 996) 54-57).
  • the extraction of maize starch on an industrial scale is usually achieved by so-called "wet milling”.
  • methods for extracting the starch from various starch-storing plants are described, e.g. B. in "Starch: Chemistry and Technology (Ed .: Whistler, BeMiller and Paschall (1 994), 2nd edition, Academic Press Inc. London Ltd; ISBN 0-1 2-746270-8; see e.g.
  • the transgenic plant cells and plants according to the invention synthesize a starch whose physicochemical properties have been changed, for example, compared to starch synthesized in wild-type plants.
  • Yet another object of the invention is starch, which can be obtained from a plant cell, plant, its propagation material or a method according to the invention.
  • Another embodiment of the present invention also includes the industrial use of the starch according to the invention for the production of foods, packaging materials or disposable articles.
  • the starch according to the invention can be modified by methods known to the person skilled in the art and is suitable in unmodified or modified form for various uses in the food or non-food area.
  • the possible uses of the starch according to the invention can basically be divided into two large areas.
  • One area comprises the hydrolysis products of starch, mainly glucose and glucose building blocks, which are obtained by enzymatic or chemical processes. They serve as the starting material for further chemical modifications and processes, such as fermentation.
  • the simplicity and cost-effective execution of a hydrolysis process can be important here, as is currently carried out essentially enzymatically using amyloglucosidase. It would be conceivable to save costs by using fewer enzymes.
  • Starch is a classic additive for many foods, where it essentially takes on the function of binding aqueous additives or increases the viscosity or increases gel formation. Important characteristics are the flow and sorption behavior, the swelling and gelatinization temperature, the viscosity and thickening performance, the solubility of the starch, the transparency and paste structure, the heat, shear and acid stability, the tendency to retrogradation, the ability to form films, the Freeze / thaw stability, digestibility and the ability to form complexes with e.g. inorganic or organic ions.
  • starch is used as an additive for different manufacturing processes or as an additive in technical products.
  • starch is primarily used for retardation (retention of solids), the setting of filler and fine particles, as a strengthening agent and for drainage.
  • the favorable properties of starch in terms of rigidity, hardness, sound, grip, gloss, smoothness, spa strength and surfaces are exploited.
  • Starch amount 8% as line thickness, 7% as mass and 5% as
  • the requirements for the strength in relation to the surface treatment are essentially a high degree of whiteness, an adapted viscosity, a high one Viscosity stability, good film formation and low dust formation.
  • the solids content, an adapted viscosity, a high binding capacity and high pigment affinity play an important role.
  • rapid, even, loss-free distribution, high mechanical stability and complete restraint in the paper flow are important.
  • an adapted solids content, high viscosity and high binding capacity are also important.
  • starches A large area of use of starches is in the adhesive industry, where the possible uses are divided into four areas: use as pure starch glue, use with starch glues prepared with special chemicals, use of starch as an additive to synthetic resins and polymer dispersions, and use of starches as an extender for synthetic adhesives.
  • 90% of the starch-based adhesives are used in the fields of corrugated cardboard, paper bags, bags and pouches, composite materials for paper and aluminum, cardboard packaging and rewetting glue for envelopes, stamps, etc.
  • starch as a sizing agent, i.e. as an auxiliary for smoothing and strengthening the Velcro behavior to protect against the tensile forces applied during weaving and to increase the abrasion resistance during weaving
  • starch as a means of textile upgrading after quality deteriorating pretreatments such as bleaching, dyeing etc.
  • starch as a thickener in the manufacture of Color pastes to prevent dye diffusion and starch as an additive to chaining agents for sewing threads.
  • the fourth area of application is the use of starches as an additive in building materials.
  • One example is the production of gypsum plasterboard, in which the starch mixed in the gypsum slurry pastes with the water, diffuses to the surface of the gypsum board and binds the cardboard to the board there.
  • Other areas of application are admixing to plaster and mineral fibers.
  • starch products are used to delay setting.
  • a quantity-limited market for starch products lends itself to the manufacture of soil stabilization agents that are used to temporarily protect soil particles from water during artificial earth movements.
  • Combined products of starch and polymer emulsions are, according to current knowledge, to be equated with the previously used products in their erosion and incrustation-reducing effects, but their prices are significantly lower.
  • starch in crop protection agents to change the specific properties of the preparations. This is how starches are used to improve the wetting of crop protection agents and fertilizers, to release the active substances in a dosed manner, to convert liquid, volatile and / or malodorous substances into microcrystalline, stable, moldable substances, to mix incompatible compounds and to extend the duration of action by reducing decomposition used. 2.7. Pharmaceuticals, medicine and cosmetics industry
  • starches are used as binders for tablets or for binder dilution in capsules. Starches also serve as tablet disintegrants since they absorb liquid after swallowing and swell to such an extent after a short time that the active substance is released. Medical lubricant and wound powders are based on starch for qualitative reasons. In the field of cosmetics, starches are used, for example, as carriers for powder additives such as fragrances and salicylic acid. A relatively large area of application for starch is toothpaste.
  • Starch is used as an additive to coal and briquette. Coal can be agglomerated or briquetted with a high-quality addition of starch, which prevents the briquettes from breaking down prematurely.
  • the added starch is between 4 and 6% for barbecued coal and between 0, 1 and 0.5% for calorized coal. Furthermore, starches are becoming increasingly important as binders, since their addition to coal and briquette can significantly reduce the emissions of harmful substances.
  • Starch can also be used as a flocculant in ore and coal sludge processing.
  • Another area of application is as an additive to foundry additives.
  • Various casting processes require cores that are made from binder-mixed sands.
  • Bentonite which is mixed with modified starches, mostly swelling starches, is predominantly used today as a binder.
  • the purpose of the starch addition is to increase the flow resistance and to improve the binding strength.
  • the swelling starches can have other production requirements, such as dispersibility in cold water, rehydration, good miscibility in sand and high water retention capacity.
  • Starch is used in the rubber industry to improve technical and optical quality. The reasons for this are the improvement of the surface gloss, the improvement of the handle and the appearance, for this reason starch is sprinkled on the sticky rubberized surfaces of rubber materials before the cold vulcanization, and the improvement of the printability of the rubber.
  • starch secondary products in the processing process (starch is only a filler, there is no direct link between synthetic polymer and starch) or, alternatively, the integration of starch secondary products in the production of polymers (starch and polymer are one firm bond).
  • starch as a pure filler is not competitive compared to other substances like talc. It is different if the specific starch properties come into play and this significantly changes the property profile of the end products.
  • An example of this is the use of starch products in the processing of thermoplastics, like polyethylene.
  • the starch and the synthetic polymer are combined by co-expression in a ratio of 1: 1 to form a 'master batch', from which various products are made using granulated polyethylene using conventional processing techniques.
  • the incorporation of starch in polyethylene foils can result in increased material permeability in the case of hollow bodies, improved water vapor permeability, improved antistatic behavior, improved antiblocking behavior and improved printability with aqueous inks. Current disadvantages include insufficient transparency, reduced tensile strength, and reduced ductility.
  • starch in polyurethane foams.
  • starch derivatives By adapting the starch derivatives and by optimizing the process, it is possible to control the reaction between synthetic polymers and the hydroxyl groups of the starches.
  • the result is polyurethane foils, which get the following property profiles through the use of starch: a reduction in the coefficient of thermal expansion, a reduction in shrinkage behavior, an improvement in pressure / stress behavior, an increase in water vapor permeability without changing the water absorption, a reduction in flammability and tear density, no dripping of flammable parts, Halogen free and reduced aging.
  • Disadvantages that are currently still present are reduced compressive strength and reduced impact resistance.
  • Solid plastic products such as pots, plates and bowls can also be manufactured with a starch content of over 50%.
  • starch / polymer mixtures can be assessed favorably because they have a much higher biodegradability.
  • starch graft polymers have also become extremely important. These are products with a backbone made of starch and a side grid of a synthetic monomer grafted on according to the principle of the radical chain mechanism.
  • the starch graft polymers available today are characterized by better binding and retention properties of up to 1000 g of water per g of starch with high viscosity.
  • the areas of application for these superabsorbents have expanded considerably in recent years and are in the hygiene area with products of diapers and pads as well as in the agricultural sector, for example in seed pilling.
  • modified starches by means of genetic engineering methods can, on the one hand, change the properties of the starch obtained, for example, from the plant in such a way that further modifications by means of chemical or physical changes no longer appear necessary.
  • starches modified by genetic engineering processes can also be subjected to further chemical modifications, which leads to further improvements in quality for certain of the areas of use described above.
  • chemical modifications are fundamental known. In particular, these are modifications by heat and pressure treatment, treatment with organic or inorganic acids, enzymatic treatment, oxidations and esterifications, which lead, for example, to the formation of phosphate, nitrate, sulfate, xanthate, acetate and citrate starches.
  • monohydric or polyhydric alcohols can be used in the presence of strong acids to produce starch ethers, so that starch alkyl ether, O-allyl ether, hydroxyl alkyl ether, 0-carboxylmethyl ether, N-containing starch ether, P-containing starch ether, S-containing starch ether , crosslinked starches or starch graft polymers result.
  • the starches according to the invention are used in industrial applications, preferably for food or in the production of packaging materials and disposable articles.
  • IPTG isopropyl ß-D-thiogalacto pyranoside
  • Buffer B 50mM Tris-HCl pH 7.6 2.5mM DTT 2mM EDTA
  • Buffer C 0.5 M sodium citrate pH 7.6 50 mM Tris-HCl pH 7.6 2.5 mM DTT 2 mM EDTA
  • RVA temperature profile (viscosity vs. time
  • the vector pBluescript II SK (Stratagene) was used for cloning in E. co // ' .
  • the gene constructions were cloned into the binary vector pBinAR Hyg (Höfgen & Willmitzer, 1 990, Plant Sei. 66: 221-230) and pBinB33-Hyg.
  • the plasmid pBinAR is a derivative of the binary vector plasmid pBin1 9 (Bevan, 1 984, Nucl. Acid Res. 1 2: 871 1 -8721), which was constructed as follows: A 529 bp fragment which contains the nucleotides 6909-7437 of the 35S Promoter of the cauliflower mosaic virus was isolated as an EcoRI / Kpnl fragment from the plasmid pDH51 (Pietrzak et al., 1 986) and ligated between the EcoRI and Kpnl sites of the polylinker of pUC1 8 and became plasmid pUC1 Designated 8-35S.
  • a fragment of 1 92 bp in length was isolated from the plasmid pAGV40 (Herrera-Estrella et al., 1 983) using the restriction endonucleases Hindlll and Pvull, DNA of the Ti plasmid pTiACH ⁇ (Gielen et al, 1 984, EMBO J.: 835 -846) (nucleotides 1 1 749-1 1 939). After adding Sphl linkers to the Pvull site, the fragment was ligated between the SpHI and Hindill sites of pUC18-35S and was designated plasmid pA7.
  • the promoter of the Patatin gene B33 from Solanum tuberosum (Rocha-Sosa et al., 1 989) was inserted as a Dral fragment (nucleotides -1 51 2 - + 1 4) in the vector pUC1 9 cut with Sst I, the ends of which with the help of the T4 DNA polymerase had been smoothed. This resulted in the plasmid pUC1 9-B33.
  • the B33 promoter was cut out from this plasmid with EcoRI and Smal and ligated into the correspondingly cut vector pBinAR. This gave rise to the plant expression vector pBinB33.
  • the DNA was transferred by direct transformation using the Höfgen & Willmitzer method (1 988, Nucleic Acids Res. 1 6: 9877).
  • the plasmid DNA of transformed agrobacteria was isolated by the method of Birnboim & Doly (1 979, Nucleic Acids Res. 7: 1 51 3-1 523) and analyzed by gel electrophoresis after a suitable restriction cleavage.
  • the radiocative labeling of DNA fragments was carried out using a DNA random primer labeling kit from Boehringer Mannheim (Germany) according to the manufacturer's instructions.
  • the starch synthase activity was determined by determining the incorporation of 14 C-glucose from ADP [ 14 C-glucose] into a product insoluble in methanol / KCI as described in Denyer & Smith, 1 992, Planta 1 86: 609-61 7.
  • the activity gels were then incubated in 50 mM Tricine-NaOH pH 8.5, 25 mM potassium acetate, 2 mM EDTA, 2 mM DTT, 1 mM ADP-glucose, 0.1% (w / v) amylopectin and 0.1 5 M sodium citrate. Glucans formed were stained with Lugol's solution.
  • the starch produced by the transgenic potato plants was as follows
  • Starch was isolated from potato plants using standard methods and the amylose to amylopectin ratio according to the method described by Hovenkamp-Hermelink et al. described method (Potato Research 31 (1 988) 241 -246).
  • glucose units may be phosphorylated at the carbon atoms of positions C2, C3 and C6.
  • 1 00 mg starch in 1 ml 0.7 M HCl was hydrolyzed for 4 hours at 95 ° C. (Nielsen et. Al. (1 994) Plant Physiol. 1 05: 1 1 1 - 1 1 7).
  • 50 ml of the hydrolyzate was subjected to an optical-enzymatic test to determine glucose-6-phosphate.
  • the total phosphate was determined as described in Ames, 1 996, Methods in Enzymology VIII, 1 1 5-1 1 8.
  • the grain size was determined using a "Lumosed" photo sedimentometer from Retsch GmbH, Germany. For this purpose, 0.2 g of starch was suspended in approx. 150 ml of water and measured immediately. The program supplied by the manufacturer calculated the average diameter of the starch granules on the assumption of an average density of the starch of 1.5 g / l.
  • the gelatinization or viscosity properties of the starch were recorded with a Viscograph E from Brabender oHG, Germany, or with a Rapid Visco Analyzer, Newport Scientific Pty Ltd, Investment Support Group, Warriewood NSW 2102, Australia.
  • a suspension of 30 g of starch in 450 ml of water subjected to the following heating program: heating from 50 ° C to 96 ° C with 37min., holding constant for 30 minutes, cooling to 30 ° C with 37min. and keep it constant for another 30 minutes.
  • the temperature profile provided characteristic gelatinization properties.
  • RVA Rapid Visco Analyzer
  • a suspension of 2 g starch in 25 ml water was subjected to the following heating program: suspend for 60 s at 50 ° C, heat from 50 ° C to 95 ° C with 1 27min., 2, Keep constant for 5 minutes, cool to 50 ° C at 1 2 ° C / min. and keep it constant for another 2 minutes.
  • the RVA temperature profile provided the viscometric parameters of the examined starches for the maximum (Max) and final viscosity (Fin), the gelatinization temperature (T), the minimum viscosity (Min) occurring after the maximum viscosity, and the difference between the minimum and final viscosity (setback, Set) (see Table 1 and Fig. 1).
  • Example 1 Isolation of a cDNA fragment coding for ⁇ -glucosidase from potato
  • RNA from potato tuber tissue, directly below (approx. 1 cm) germinating shoots was determined by standard methods (Sambrook et al., 1 989) parried.
  • the purified total RNA served as the starting material for the production of poly A + RNA (Oligotex, mRNA purification kit, according to the manufacturer's instructions). 5 ⁇ g of this poly A + RNA was used to prepare a cDNA library ( ⁇ ZAPII, Stratagene).
  • plaque forming units of this unamplified cDNA library (Prim TM bank) were plated according to the manufacturer's instructions (Stratagene) for "plaque lifting".
  • the sequence of the Genbank Accession No. served as the radio-labeled probe (Random Primed DNA Labeling Kit, according to the manufacturer's instructions) for plaque hybridization. T76451.
  • the filters were hybridized for 4 hours at 42 ° C. pr TM (buffer: 5 x SSC, 0.5% BSA, 5 x Denhardt, 1% SDS, 40 mM phosphate buffer, pH 7.2, 100 mg / l herring sperm DNA, 25% formamide) and then hybridized at the same temperature for 14 hours.
  • the filters were washed 3 ⁇ for 20 minutes with 3 ⁇ SSC, 0.5% SDS at 42 ° C. and autoradiographed. Hybridizing plaques were isolated and the isolated phages used for "in vivo excision" according to the manufacturer's instructions. Plasmid DNA from the bacterial colonies obtained was isolated, used for sequence analysis and as Seq. ID # 1 identified.
  • a 2384 bp long EcoRI fragment containing a cDNA coding for SS I from potato (Abel 1 995, loc.cit.) was smoothed and inserted in the vector pBinAR precut with Smal in a "sense" orientation with respect to the 35S promoter .
  • a 1,650 bp Hind III fragment which contains a partial cDNA coding for the BE enzyme from potato (Kossmann et al., 1 991, Mol. & Gen. Genetics 230 (1 -2): 39-44) smoothed and introduced in "antisense" orientation with respect to the B33 promoter into the vector pBinB33 precut with Smal.
  • the plasmid obtained was cut open with BamHI.
  • a 1 362 bp BamHI fragment containing a partial cDNA coding for the SS III enzyme from potato (Abel et al., 1 996, loc.cit.) was also inserted into the cleavage, also in an "antisense" orientation with regard to B33 promoter introduced.
  • a 2384 bp EcoRI fragment containing a cDNA coding for SS I from potato (Abel, 1 995, loc.cit.) was smoothed and inserted into the Smal site of the pBinB33 vector in an "antisense" orientation with respect to the B33 promoter cloned.
  • a 1 362 bp BamHI fragment containing a partial cDNA coding for the SS IM from potato (Abel et al., 1 996, loc.cit.) was also inserted into the BamHI site of the resulting vector in an "antisense" orientation of the B33 promoter.
  • Example 1 2 Introduction of the plasmids into the genome of potato cells
  • Example 1 3 Characterization of the physico-chemical properties of the modified starches
  • the transgenic potato plants showed a change in the physico-chemical properties of the starches they synthesized.
  • the starch formed by these plants differs, for example, from starch synthesized in wild type plants in their phosphate or amylose content, the viscosity or gelatinization properties determined by means of RVA, and their chromatographic behavior.
  • microorganism referred to under I has been received by this international depository on (date of first deposit) and an application for conversion of this first deposit into a deposit under the Budapest Treaty has been received on (date of receipt of the application for conversion)

Abstract

Die vorliegende Erfindung betrifft Nukleinsäuremoleküle, die ein Protein mit der Aktivität einer α-Glukosidase aus Kartoffel kodieren sowie Verfahren zur Herstellung transgener Pflanzenzellen und Pflanzen, die eine modifizierte Stärke synthetisieren. Des weiteren betrifft die vorliegende Erfindung Vektoren und Wirtszellen, welche die erfindungsgemäßen Nukleinsäuremoleküle enthalten, die aus den erfindungsgemäßen Verfahren hervorgehenden Pflanzenzellen und Pflanzen, die von den erfindungsgemäßen Pflanzenzellen und Pflanzen synthetisierte Stärke sowie Verfahren zur Herstellung dieser Stärke.

Description

Nukleinsäuremoleküle kodierend für eine α-Glukosidase, Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
Die vorliegende Erfindung betrifft Nukleinsäuremoleküle, die ein Protein mit der Aktivität einer α-Glukosidase aus Kartoffel kodieren sowie Verfahren zur Herstellung transgener Pflanzenzellen und Pflanzen, die eine modifizierte Stärke synthetisieren. Desweiteren betrifft die vorliegende Erfindung Vektoren und Wirtszellen, welche die erfindungsgemäßen Nukleinsäuremoleküle enthalten, die aus den erfindungsgemäßen Verfahren hervorgehenden Pflanzenzellen und Pflanzen, die von den erfindungsgemäßen Pflanzenzellen und Pflanzen synthetisierte Stärke sowie Verfahren zur Herstellung dieser Stärke.
Im Hinblick auf die zunehmende Bedeutung, die pflanzlichen Inhaltsstoffen als erneuerbaren Rohstoffquellen beigemessen wird, ist die biotechnologische Forschung um eine Anpassung pflanzlicher Rohstoffe an die Anforderungen der verarbeitenden Industrie bemüht. Um die Anwendung von nachwachsenden Rohstoffen in möglichst vielen Einsatzgebieten zu ermöglichen, ist es insofern erforderlich, eine große Stoffvielfalt zur Verfügung zu stellen.
Neben Ölen, Fetten und Proteinen stellen Polysaccharide wichtige, nachwachsende Rohstoffe aus Pflanzen dar. Eine zentrale Stellung bei den Polysacchariden nimmt neben Cellulose die Stärke ein, die einer der wichtigsten Speicherstoffe in höheren Pflanzen ist. Neben Mais, Reis und Weizen spielt die Kartoffel insbesondere bei der Stärkeproduktion eine wichtige Rolle.
Das Polysaccharid Stärke ist ein Polymer aus chemisch einheitlichen Grundbausteinen, den Glukosemoiekülen. Es handelt sich dabei jedoch um ein sehr komplexes Gemisch aus unterschiedlichen Molekülformen, die sich hinsichtlich ihres Polymerisationsgrades und des Auftretens von Verzweigungen der Glukoseketten unterscheiden. Daher stellt Stärke keinen einheitlichen Rohstoff dar. Man unterscheidet insbesondere die Amylose-Stärke, ein im wesentlichen unverzweigtes Polymer aus α-1 ,4-glykosidisch verknüpften Glukosemolekülen, von der Amylopektin-Stärke, die ihrerseits ein komplexes Gemisch aus unterschiedlich verzweigten Glukoseketten darstellt. Die Verzweigungen kommen dabei durch das Auftreten von zusätzlichen α-1 ,6- glykosidischen Verknüpfungen zustande. In typischen für die Stärkeproduktion verwendeten Pflanzen, wie z.B. Mais oder Kartoffel, besteht die synthetisierte Stärke zu ca. 25% aus Amylosestärke und zu ca. 75% aus Amylopektin-Stärke.
Die molekulare Struktur der Stärke, die zu einem großen Teil durch den Verzweigungsgrad, das Amylose/Amylopektin-Verhältnis, die durchschnittliche Länge und Verteilung der Seitenketten sowie das Vorhandensein von Phosphatgruppen bestimmt wird, ist ausschlaggebend für wichtige funktioneile Eigenschaften der Stärke bzw. ihrer wäßrigen Lösungen. Als wichtige funktionelle Eigenschaften sind hierbei beispielsweise zu nennen, die Löslichkeit, das Retrogradierungsverhalten, die Filmbildungseigenschaften, die Viskosität, die Farbstabilität, die Verkleisterungseigenschaften sowie Binde- und Klebeeigenschaften. Auch die Stärkekorngröße kann für verschiedene Anwendungen von Bedeutung sein. Für bestimmte Anwendungen ist auch die Erzeugung von hochamylosehaltigen Stärken von besonderem Interesse. Ferner kann eine in Pflanzenzellen enthaltene modifizierte Stärke das Verhalten der Pflanzenzelle unter bestimmten Bedingungen vorteilhaft verändern. Denkbar ist beispielsweise eine Verringerung des Stärkeabbaus während der Lagerung von Stärke-enthaltenden Organen, wie z.B. Samen oder Knollen, vor deren weiterer Verarbeitung, z.B. zur Extraktion der Stärke. Ferner ist es von Interesse, modifizierte Stärken herzustellen, die dazu führen, daß Pflanzenzellen oder pflanzliche Organe, die diese Stärke enthalten, besser zur Weiterverarbeitung geeignet sind, beispielsweise bei der Herstellung von Lebensmitteln wie "Popcorn" oder "Cornflakes" aus Mais oder von Pommes frites, Chips oder Kartoffelpulver aus Kartoffeln. Von besonderem Interesse ist hierbei die Verbesserung der Stärken in der Hinsicht, daß sie ein reduziertes "cold sweetening" aufweisen, d.h. eine verringerte Freisetzung von reduzierenden Zuckern (insbesondere Glucose) bei einer längeren Lagerung bei niedrigen Temperaturen. Gerade Kartoffeln werden häufig bei Temperaturen von 4 bis 8°C gelagert, um den Stärkeabbau während der Lagerung zu minimieren. Die hierbei freigesetzten reduzierenden Zucker, insbesondere Glucose, führen beispielsweise bei der Herstellung von Pommes frites oder Chips zu unerwünschten Bräunungsreaktionen (sogennannte Mailiard-Reaktionen).
Die Anpassung der aus Pflanzen isolierbaren Stärke an bestimmte industrielle Verwendungszwecke erfolgt häufig mit Hilfe chemischer Modifikationen, die in der Regel zeit- und kostenintensiv sind. Es erscheint daher wünschenswert, Möglichkeiten zu finden, Pflanzen herzustellen, die eine Stärke synthetisieren, die in ihren Eigenschaften bereits den spezifischen Anforderungen der verarbeitenden Industrie entsprechen und somit ökonomische und ökologische Vorteile in sich vereinen
Eine Möglichkeit, derartige Pflanzen bereitzustellen, besteht - neben züchterischen Maßnahmen - in der gezielten genetischen Veränderung des Stärkemetabolismus stärkeproduzierender Pflanzen durch gentechnologische Methoden. Voraussetzung hierfür ist jedoch die Identifizierung und Charakterisierung der an der Stärkesynthese -modifikation und -abbau (Stärkemetabolismus) beteiligten Enzyme sowie die Isolierung der entsprechenden, für diese Enzyme kodierenden DNA-Sequenzen.
Die biochemischen Synthesewege, die zum Aufbau von Stärke führen, sind im wesentlichen bekannt. Die Stärkesynthese in pflanzlichen Zellen findet in den Piastiden statt. In photosynthetisch aktiven Geweben sind dies die Chloroplasten, in photosynthetisch inaktiven, stärkespeichernden Geweben die Amyloplasten.
Wichtige am Stärkemetabolismus beteiligte Enzyme sind z.B. die Verzweigungsenzyme (branching enzyme), ADP-Glukose-Pyrophosphorylasen, Stärkekorn-gebundene Stärkesynthasen, lösliche Stärkesynthasen, Entzweigungsenzyme (debranching enzyme), Disproportionierungsenzyme, plastidäre Stärkephosphorylasen, die R1 - Enzyme (R1 -Proteine), Amylasen oder Glukosidasen.
Aufgabe der vorliegenden Erfindung ist es, weitere bzw. alternative gentechnische Ansätze zur Modifizierung des Stärkemetabolismus in stärkebildenden Pflanzen (z.B. Roggen, Gerste, Hafer, Mais, Weizen, Hirse, Sago, Reis, Erbse, Markerbse, Maniok, Kartoffel, Tomate, Raps, Sojabohne, Hanf, Flachs, Sonnenblume, Kuherbse, Mungbohne, Bohne, Banane oder Arrowroot) geeignete Nukleinsäuremoleküle zur Verfügung zu stellen, mittels derer Pflanzenzellen transformiert werden können, so daß die Synthese von veränderten, vorteilhaften Stärkevarietäten ermöglicht wird.
Solche veränderten Stärkevarietäten weisen z.B. Modifikationen in bezug auf ihren Verzweigungsgrad, das Amylose/Amylopektin-Verhältnis, den Phosphatgehalt, die Stärkekorngröße und/oder die durchschnittliche Länge und Verteilung der Seitenketten (d.h. Seitenkettenstruktur) auf.
Eine weitere Aufgabe der Erfindung ist es, Verfahren zur Verfügung zu stellen, die die Herstellung transgener Pflanzen ermöglichen, die eine veränderte Stärkevarietät synthetisieren.
Überraschenderweise synthetisieren transgene Pflanzen, die mit den erfindungsgemäßen Nukleinsäuremolekülen transformiert wurden, eine Stärke, die in der besonderer Weise in ihren physikochemischen Eigenschaften und/oder in ihrer Seitenkettenstruktur verändert ist, so daß die genannten Aufgaben durch die Bereitstellung der in den Ansprüchen bezeichneten Ausführungsformen gelöst werden.
Gegenstand der Erfindung ist daher ein Nukleinsäuremolekül, codierend für ein Protein mit der Funktion einer α-Glukosidase aus Kartoffel, ausgewählt aus der Gruppe bestehend aus a) Nukleinsäuremolekülen, die ein Protein codieren, das die unter Seq ID NO. 2 angegebene Aminosäuresequenz umfaßt oder deren Derivate oder Teile, b) Nukleinsäuremolekülen, die die unter Seq ID No. 1 dargestellte Nucleotidsequenz oder deren Derivate oder Teile umfassen oder eine korrespondierende Ribonucleotidsequenz; c) Nukleinsäuremoleküle, die mit den unter (a) oder (b) genannten Nukleinsäuremolekülen hybridisieren oder komplementär sind, vorzugsweise spezifisch hybridisieren und d) Nukleinsäuremolekülen, deren Nucleotidsequenz aufgrund der Degeneration des genetischen Codes von der Sequenz der unter (a), (b) oder (c) genannten Nukleinsäuremoleküle abweicht.
Entsprechend betrifft die vorliegende Erfindung ein für eine α-Glukosidase codierendes Nukleinsäuremolekül, das eine Aminosäuresequenz gemäß Seq. ID Nr. 2 oder deren Derivate oder Teile davon gemäß dem cDNA-lnsert des Plasmids (DSM Nr. 1 2347) codiert, enthält. Die genannte erfindungsgemäße α-Glukosidase ist am Stärkestoffwechsel der Kartoffel beteiligt und ist direkt oder indirekt an der Stärkebiosynthese beteiligt.
Im Sinne der vorliegenden Erfindung umfaßt der Begriff "Derivat" in bezug auf das α-Glukosidase-Protein (bzw. dessen Polypeptid, Aminosäuresequenz) der Erfindung ein von Seq. ID Nr. 2 abgeleitetes Polypeptid, das mindestens 1 63 i
Aminosäurereste, vorzugsweise mindestens 227, insbesondere mindestens 293 und ganz besonders bevorzugt etwa 309-322 Aminosäurereste enthält, die aus der Gruppe der Aminosäurereste bestehend aus 18 H, 25 R, 34 G, 37 H, 38 G, 39 V, 41 L, 42 L, 44 S, 45 N, 46 G, 47 M, 48 D, 51 Y, 53 G, 55 R, 56 I, 58 Y, 60 V, 61 I, 62 G, 63 G, 65 I, 66 D, 67 L, 68 Y, 70 F, 71 A, 72 G, 75 P, 78 V, 81 Q, 83 T, 86 I, 87 G, 88 R, 89 P, 90 A, 92 M, 93 P, 94 Y, 95 W, 97 F, 98 G, 99 F, 101 Q, 102 C, 103 R, 105 G, 106 Y, 115V, 116V, 119 Y, 120 A, 124 I, 125 P, 126 L, 127 E, 128 V, 129 M, 130 W, 131 T, 132 D, 133 I, 134 D, 135 Y, 136 M, 137 D, 140 K, 141 D, 142 F, 143 T, 144 L, 145 D, 146 P, 147 V, 149 F, 150 P, 157 F, 161 L, 162 H, 164 N, 166 Q, 168 Y, 169 V, 171 I, 173 D, 174 P, 175 G, 176 I, 182 Y, 184 T, 187 R, 188 G, 189 M, 193 V, 194 F 196 K, 197 R, 201 P, 202 Y, 204 G, 206 V, 207 W, 208 P, 209 G, 211 V, 212 Y, 214 P, 215 D, 216 F, 217 L, 219 P, 224 F, 225 W, 228 E, 229 I, 232 F, 237 P, 239 D, 240 G, 242 W, 244 D, 245 M, 246 N, 247 E, 249 S, 250 N, 251 F, 252 I, 254 S, 260 S, 263 D, 265 P, 266 P, 267 Y, 268 K, 269 I, 270 N, 271 N, 272 S, 273 G, 277 P, 278 I, 282 T, 284 P, 286 T, 289 H, 291 G, 295 E, 296 Y, 299 H, 300 N, 301 L, 303 G, 305 L, 306 E, 310 T, 313 A, 322 P, 323 F, 325 L, 327 R, 328 S, 329 T, 330 F, 333 S, 334 G, 336 Y, 337 T, 339 H, 340 W, 341 T, 342 G, 343 D, 344 N, 345 A, 346 A, 348 W, 350 D, 351 L, 353 Y, 354 S, 355 I, 356 P, 359 L, 361 F, 362 G, 363 L, 364 F, 365 G, 367 P, 368 M, 370 G, 371 A, 372 D, 373 I, 374 C, 375 G, 376 F, 380 T, 381 T, 382 E, 383 E, 384 L, 385 C, 387 R, 388 W, 389 I, 390 Q, 391 L, 392 G, 393 A, 394 F, 395 Y, 396 P, 397 F, 399 R, 400 D, 401 H, 402 S, 406 T, 409 Q, 410 E, 411 L, 412 Y, 414 W, 416 S, 417 V, 418 A, 421 A, 424 V, 425 L, 426 G, 427 L, 428 R, 431 L, 432 L, 433 P, 436 Y, 438 L, 439 M, 440 Y, 442 A, 446 G, 448 P, 449 I, 450 A, 451 R, 452 P, 453 L, 455 F, 457 F, 458 P, 460 D, 463 T, 466 I, 469 Q, 470 F, 471 L, 473 G, 477 M, 479 S, 480 P, 482 L, 485 G, 489 V, 491 A, 492 Y, 494 P, 496 G, 497 N, 498 W, 501 L, 504 Y, 508 V, 513 G, 518 L, 521 P, 523 D, 524 H, 526 N, 527 V, 528 H, 531 E, 532 G, 534 I, 537 M, 538 Q, 539 G, 541 A, 543 T, 544 T, 547 A, 550 T, 554 L, 555 L, 556 V, 557 V, 559 S, 566 G, 567 E, 568 L, 569 F, 571 D, 579 G, 583 G, 585 W, 586 T, 588 V, 590 F, 603 S, 605 V, 606 V, 61 1 A, 620 K, 622 T, 625 G, 635 Y, 658 F, 664 S, 669 L, 671 G, 674 F und 678 L gemäß Seq. ID Nr. 2 ausgewählt sind, und das mindestens etwa 1 -69, vorzugsweise mindestens 1 39, insbesondere mindestens 1 94, bevorzugter mindestens 249 und ganz besonders bevorzugt etwa 263-274 Aminosäurereste enthält, die aus der Gruppe der Aminosäurereste bestehend aus 1 P, 2 K, 3 L, 4 R, 5 P, 6 R, 7 V, 8 H, 9 P, 10 S, 1 1 Q, 1 2 H, 1 3 H, 14 P, 1 5 I, 1 6 Q, 1 7 L, 1 9 R, 20 P, 21 P, 22 A, 23 L, 24 H, 27 Y, 28 S, 29 F, 30 R, 31 Y, 32 F, 35 V, 36 S, 43 S, 49 I, 50 V, 57 S, 64 L, 84 Q, 91 A, 1 09 I, 1 1 0 D, 1 1 2 V, 1 14 L, 1 1 8 S, 1 22 S, 1 52 E, 1 53 R, 1 54 V, 1 55 1, 1 56 F, 1 58 L, 1 59 R, 1 63 Q, 1 65 D, 1 72 V, 1 78 I, 1 80 N, 1 83 D, 186 R, 1 98 D, 1 99 N, 200 M, 203 Q, 205 V, 210 N, 221 T, 222 E, 223 V, 226 R, 230 E, 231 K, 236 V, 238 F, 243 L, 259 S, 262 F, 275 H, 280 Y, 281 R, 288 T, 293 T, 294 M, 31 1 Y, 31 2 S, 31 6 N, 31 7 V, 326 V, 331 L, 335 R, 338 S, 360 S, 378 S, 404 K, 408 P, 41 3 S, 420 A, 422 K, 430 Q, 437 M, 444 I, 445 K, 447 T, 461 A, 464 F, 465 D, 468 T, 478 I, 481 I, 487 T, 510 L, 51 1 N, 51 2 Q, 51 6 M, 536 V, 548 Q, 549 R, 551 A, 553 K, 558 L, 560 S, 561 S, 562 K, 570 V, 573 D, 574 D, 577 Q, 580 R, 581 E, 584 R, 591 N, 592 S, 593 N, 594 I, 595 l, 598 K, 599 I, 601 V, 602 K, 609 R, 61 2 L, 61 3 D, 61 5 G, 61 6 L, 61 8 L, 61 9 E, 623 L, 630 R, 631 G, 632 L, 634 S, 637 L, 638 V, 639 G, 641 H, 642 Q, 643 Q, 644 G, 645 N, 646 T, 647 T, 648 M, 649 K, 650 E, 651 S, 652 L, 653 K, 654 Q, 656 G, 657 Q, 659 V, 660 T, 661 M, 666 M, 668 I, 670 l, 679 Y, 680 I, 681 I, 682 T, 693 H, 700 R, 703 G, 705 H, 706 G, 707 V, 709 L, 710 L, 71 2 S, 71 3 N, 714 G, 71 5 M, 71 6 D, 71 8 Y, 720 G, 721 R, 722 l, 724 Y, 726 V, 727 I, 728 G, 729 G, 730 I, 731 D, 732 L, 733 Y, 734 F, 735 A, 736 G, 739 P, 742 V, 743 Q, 745 T, 747 I, 748 G, 749 R, 750 P, 751 A, 753 M, 754 P, 755 Y, 756 W, 757 F, 758 G, 759 F, 761 Q, 762 C, 763 R, 764 G, 765 Y, 768 V, 769 V, 771 Y, 772 A, 775 I, 776 P, 777 L, 778 E, 779 V, 780 M, 781 W, 782 T, 783 D, 784 I, 785 D, 786 Y, 787 M, 788 D, 789 K, 790 D, 791 F, 792 T, 793 L, 794 D, 795 P, 796 V, 798 F, 799 P, 804 F, 806 L, 807 H, 808 N, 810 Q, 812 Y, 813 V, 814 I, 816 D, 817 P, 818 G, 819 I, 821 Y, 822 T, 824 R, 825 G, 826 M, 828 V, 829 F, 831 K und 832 R (hier durch Einbuchstabencode für Aminosäuren angegeben) gemäß Seq. ID Nr.2 ausgewählt sind.
Im Sinne der vorliegenden Erfindung umfaßt der Begriff "Teil" in bezug auf das erfindungsgemäße α-Glukosidase-Protein (Polypeptid, Aminosäuresequenz) ein Poly- oder Oligopeptid, bestehend aus mindestens etwa 10-50, vorzugsweise mindestens 100, bevorzugter mindestens 200, besonders bevorzugt mindestens 400 und am meisten bevorzugt etwa 550-675 der Aminosäurereste der durch das erfindungsgemäße Nukleinsäuremolekül codierten α-Glukosidase oder deren Derivate.
Die vorliegende Erfindung betrifft ferner ein Nukleinsäuremolekül, das ein Nukleinsäuremolekül gemäß Seq. ID Nr.1 enthält, gemäß dem cDNA-lnsert des bei der DSZM am 24.07.1998 hinterlegten Plasmids DSM Nr.12347 oder dessen Derivate oder Teile, insbesondere der codierenden Region oder deren Derivate oder Teile.
Im Sinne dieser Erfindung umfaßt der Begriff "Derivat" in bezug auf das erfindungsgemäße Nukleinsäuremolekül (Nucleotidsequenz oder Polynucleotid) ein Polynucleotid, das mindestens 478 Nucleotide, vorzugsweise mindestens 668, insbesondere mindestens 860, und ganz besonders bevorzugt etwa 907- 945 Nucleotide enthält, ausgewählt aus der Gruppe bestehend aus 4 A, 6 A, 12 A, 13 C , 17 G, 25 C, 32 A, 34 C, 38 A, 45 T, 47 A, 49 C, 51 T, 56 G, 62 C, 65 C, 68 T, 73 C, 76 G, 77 G, 78 A, 79 T, 97 G, 100 G, 101 G, 106 A, 108 T, 109 C, 110 A, 111 T, 112 G, 113 G, 114G, 115 G, 116 T, 119T, 122 T, 125 T, 127 A, 130 A, 131 G, 132 C, 133 A, 134 A, 135 T, 136 G, 137 G, 139 A, 140T, 141 G, 142 G, 143 A, 144T, 146T, 151 T, 152 A, 153T, 157 G, 158 G, 161 A, 162 T, 164 G, 166 A, 167 T, 169 A, 171 T, 172 T, t
173 A, 174 C, 175 A, 176 A, 178 G, 179 T, 181 A, 182 T, 183 T, 184 G, 185 G, 187 G, 188 G, 191 T, 193 A, 194 T, 195 T, 196 G, 197 A, 200 T, 202 T, 203 A, 206 T, 208 T, 209 T, 211 G, 212 C, 214 G, 215 G, 216 A, 217 C, 221 C, 223 C, 224 C, 226 G, 232 G, 233 T, 236 T, 237 G, 239 A, 241 C, 242 A, 243 G, 244 T, 247 A, 248 C, 249 T, 254 T, 256 A, 257 T, 259 G, 260 G, 263 G, 265 C, 266 C, 268 G, 269 C, 272 C, 274 A, 275 T, 276 G, 277 C, 278 C, 280 T, 281 A, 283 T, 284 G, 285 G, 289 T, 290 T, 292 G, 293 G, 297 T, 298 C, 299 A, 301 C, 302 A, 304 T, 305 G, 308 G, 310 T, 313 G, 314 G, 316 T, 317 A, 323 A, 324 T, 326 T, 331 G, 332 A, 335 T, 338 A, 343 G, 344 T, 346 G, 347 T, 349 G, 355 T, 356 A, 357 T, 358 G, 359 C, 360 A, 362 A, 365 C, 366 T, 370 A, 371 T, 373 C, 374 C, 377 T, 379 G, 380 A, 382 G, 383 T, 385 A, 386 T, 387 G, 388 T, 389 G, 390 G, 391 A, 392 C, 394 G, 395 A, 397 A, 398 T, 399 T, 400 G, 401 A, 402 T, 403 T, 404 A, 406 A, 407 T, 408 G, 409 G, 410 A, 411 T, 412 G, 415 T, 418 A, 419 A, 421 G, 422 A, 424 T, 425 T, 426 C, 427 A, 428 C, 431 T, 433 G, 434 A, 436 C, 437 C, 439 G, 440 T, 443 A, 445 T, 446 T, 448 C, 449 C, 454 G, 455 A, 459 G, 461 T, 469 T, 470 T, 471 T, 473 T, 478 A, 481 C, 482 T, 484 C, 485 A, 489 G, 490 A, 491 A, 492 T, 493 G, 496 C, 497 A, 499 A, 501 A, 502 T, 503 A, 505 G, 506 T, 511 A, 512 T, 515 T, 517 G, 518 A, 519 T, 520 C, 521 C, 523 G, 524 G, 526 A, 527 T, 536 A, 538 A, 542 C, 544 T, 545 A, 546 T, 547 G, 550 A, 551 C, 553 T, 556 A, 559 A, 560 G, 562 G, 563 G, 565 A, 566 T, 567 G, 569 A, 570 A, 575 A, 576 T, 577 G, 578 T, 580 T, 581 T, 584 T, 586 A, 587 A, 590 G, 593 A, 594 T, 597 T, 601 C, 602 C, 604 T, 605 A, 607 C, 610 G, 611 G, 616 G, 617 T, 619 T, 620 G, 621 G, 622 C, 623 C, 625 G, 626 G, 631 G, 632 T, 634 T, 635 A, 637 T, 640 C, 641 C, 643 G, 644 A, 646 T, 647 T, 650 T, 653 A, 655 C, 656 C, 659 C, 660 T, 662 C, 663 T, 670 T, 671 T, 673 T, 674 G, 675 G, 680 A, 682 G, 683 A, 685 A, 686 T, 689 A, 690 G, 694 T, 695 T, 697 C, 701 A, 704 T, 707 T, 709 C, 710 C, 713 T, 715 G, 716 A, 717 T, 718 G, 719 G, 722 T, 724 T, 725 G, 726 G, 728 T, 730 G, 731 A, 733 A, 734 T, 735 G, 736 A, 737 A, 739 G, 740 A, 745 T, 746 C, 748 A, 749 A, 751 T, 752 T, 754 A, 755 T, 758 C, 759 T, 760 T, 761 C, 764 C, 766 C, 773 C, 778 T, 779 C, 780 T, 782 C, 785 T, 787 G, 788 A, 791 A, 792 T, 793 C, 794 C, 796 C, 797 C, 799 T, 800 A, 802 A, 803 A, 805 A, 806 T, 808 A, 809 A, 811 A, 812 A, 814 T, 815 C, 817 G, 818 G, 820 G, 829 C, 830 C, 832 A, 833 T, 835 A, 841 A, 844 A, 845 C, 848 T, 850 C, 851 C, 854 C, 856 A, 857 C, 860 C, 862 A, 865 C, 866 A, 868 T, 870 T, 871 G, 872 G, 875 A, 883 G, 884 A, 886 T, 887 A, 890 A, 891 T, 892 G, 895 C, 896 A, 897 T, 898 A, 899 A, 902 T, 904 T, 906 T, 907 G, 908 G, 914 T, 916 G, 917 A, 918 A, 920 C, 921 T, 924 A, 925 G, 927 C, 928 A, 929 C, 937 G, 938 C, 941 T, 944 T, 953 C, 958 A, 962 G, 964 C, 965 C, 967 T, 968 T, 971 T, 974 T, 979 A, 980 G, 982 T, 983 C, 985 A, 986 C, 988 T, 989 T, 990 T, 995 G, 997 T, 998 C, 1000 G, 1001 G, 1003 A, 1006 T, 1007 A, 1008 C, 1009 A, 1010 C, 1013 C, 1015 C, 1016 A, 1018 T, 1019 G, 1020 G, 1021 A, 1022 C, 1024 G, 1025 G, 1027 G, 1028 A, 1029 T, 1030 A, 1031 A, 1032 T, 1033 G, 1034 C, 1035 T, 1036 G, 1037 C, 1039 A, 1042 T, 1043 G, 1044 G, 1046 A, 1048 G, 1049 A, 1052 T, 1057 T, 1058 A, 1059 C, 1060 T, 1061 C, 1063 A, 1064 T, 1066 C, 1067 C, 1072 A, 1073 T, 1076 T, 1080 C, 1081 T, 1082 T, 1083 T, 1084 G, 1085 G, 1088 T, 1090 T, 1091 T, 1092 T, 1093 G, 1094 G, 1096 A, 1097 T, 1099 C, 1100 C, 1102 A, 1103 T, 1104 G, 1106 T, 1108 G, 1109 G, 1111 G, 1112 C, 1114 G, 1115 A, 1116 T, 1117 A, 1118 T, 1120 T, 1121 G, 1123 G, 1124 G, 1125 T, 1126 T, 1127 T, 1138 A, 1139 C, 1141 A, 1142 C, 1144G, 1145 A, 1147 G, 1148 A, 1151 T, 1153 T, 1154 G, 1157 G, 1159 C, 1160 G, 1162 T, 1163 G, 1164 G, 1165 A, 1166 T, 1168 C, 1169 A, 1170 G, 1171 C, 1172 T, 1174 G, 1175 G, 1177 G, 1178 C, 1180 T, 1181 T, 1183 T, 1184 A, 1186 C, 1187 C, 1189 T, 1190 T, 1193 C, 1195 A, 1196 G, 1198 G, 1199 A, 1201 C, 1202 A, 1204 T, 1205 C, 1208 C, 1213 G, 1216 A, 1217 C, 1220 C, 1225 C, 1226 A, 1228 G, 1229 A, 1231 C, 1232 T, 1234 T, 1235 A, 1240 T, 1241 G, 1242 G, 1243 G, 1244 A, 1246 T, 1247 C, 1249 G, 1250 T, 1252 G, 1253 C, 1254 T, 1256 C, 1259 C, 1261 G, 1262 C, 1264 A, 1267 A, 1270 G, 1271 T, 1274 T, 1276 G, 1277 G, 1279 C, 1280 T, 1281 C, 1283 G, 1292 T, 1294 C, 1295 T, 1297 C, 1298 C, 1301 A, 1306 T, 1307 A, 1309 A, 1313 T, 1315 A, 1316 T, 1317 G, 1318 T, 1319 A, 1321 G, 1322 A, 1324 G, 1325 C, 1328 A, 1331 T, 1333 A, 1336 G, 1337 G, 1339 A, 1342 C, 1343 C, 1345 A, 1346 T, 1348 G, 1349 C, 1351 C, 1352 G, 1354 C, 1355 C, 1357 C, 1358 T, 1360 T, 1362 C, 1363 T, 1364 T, 1367 C, 1369 T, 1370 T, 1372 C, 1373 C, 1376 A, 1378 G, 1379 A, 1387 A, 1388 C, 1390 T, 1393 G, 1396 A, 1397 T, 1403 C, 1405 C, 1406 A, 1407 G, 1408 T, 1409 T, 1412 T, 1415 T, 1417 G, 1418 G, 1420 A, 1422 A, 1424 G, 1427 T, 1429 A, 1430 T, 1431 G, 1433 T, 1435 T, 1436 C, 1438 C, 1439 C, 1444 C, 1445 T, 1448 A, 1450 C, 1453 G, 1454 G, 1456 G, 1463 C, 1465 G, 1466 T, 1470 T, 1471 G, 1472 C, 1474 T, 1475 A, 1477 T, 1480 C, 1481 C, 1486 G, 1487 G, 1488 A, 1489 A, 1490 A, 1492 T, 1493 G, 1494 G, 1496 T, 1501 C, 1502 T, 1504 T, 1508 A, 1510 T, 1511 A, 1514 C, 1520 C, 1522 G, 1523 T, 1527 T, 1533 T, 1537 G, 1538 G, 1540 A, 1544 A, 1547 T, 1549 A, 1552 C, 1559 C, 1561 C, 1562 C, 1565 C, 1567 G, 1568 A, 1569 T, 1570 C, 1571 A, 1575 T, 1577 A, 1578 A, 1579 G, 1580 T, 1582 C, 1583 A, 1586 T, 1588 C, 1591 G, 1592 A, 1593 A, 1594 G, 1595 G, 1597 A, 1600 A, 1601 T, 1604 T, 1605 G, 1606 G, 1609 A, 1610 T, 1611 G, 1612 C, 1613 A, 1614 A, 1615 G, 1616 G, 1619 A, 1621 G, 1622 C, 1625 T, 1626 G, 1627 A, 1628 C, 1630 A, 1631 C, 1636 G, 1639 G, 1640 C, 1645 A, 1648 A, 1649 C, 1652 C, 1654 T, 1658 A, 1660 C, 1661 T, 1664 T, 1666 G, 1667 T, 1669 G, 1670 T, 1675 A, 1676 G, 1689 C, 1690 A, 1692 C, 1696 G, 1697 G, 1699 G, 1700 A, 1703 T, 1705 T, 1706 T, 1709 T, 1711 G, 1712 A, 1715 A, 1717 G, 1724 A, 1727 T, 1732 A, 1733T, 1735 G, 1736 G, 1745 G, 1746 A, 1747 G, 1748 G, 1750 A, 1753 T, 1754 G, 1755 G, 1756 A, 1757 C, 1760 T, 1762 G, 1763 T, 1765 A, 1768 T, 1769 T, 1775 G, 1776 C, 1781 T, 1783 A, 1789 A, 1796 T, 1802 T, 1807 T, 1808 C, 1809 A, 1810 G, 1811 A, 1813 G, 1814 T, 1816 G, 1817 T, 1828 T, 1830 T, 1831 G, 1 832 C, 1 836 G, 1 845 A, 1 846 T, 1 848 G, 1 851 C, 1 853 T, 1 855 G, 1 858 A, 1 859 A, 1 862 T, 1 864 A, 1 865 C, 1 868 T, 1 871 T, 1 873 G, 1 874 G, 1 876 T, 1 877 T, 1 881 A, 1 890 A, 1 894 T, 1 897 A, 1 901 G, 1 908 G, 1 925 A, 1 929 A, 1 945 A, 1 953 T, 1 958 A, 1 966 G, 1 972 T, 1 973 T, 1 976 T, 1 984 G, 1 988 T, 1 990 T, 1 991 C, 1 997 T, 2006 T, 2009 T, 201 1 G, 201 2 G, 2020 T, 2021 T, 2024 A, 2027 T und 2033 T gemäß Seq. ID Nr. 1 und das ferner mindestens etwa 1 -93 Nucleotide, vorzugsweise mindestens 1 87, insbesondere mindestens 261 , bevorzugter mindestens 336 und ganz besonders bevorzugt etwa 354-369 Nucleotide enthält, ausgewählt aus der Gruppe, bestehend aus 1 C, 10 A, 1 6 A, 1 9 G, 21 T, 23 A, 24 C, 26 C, 30 A, 33 A, 36 C, 39 T, 43 A, 48 G, 52 C, 53 A, 54 C, 57 T, 58 C, 59 C, 60 G, 63 G, 64 G, 66 G, 67 C, 69 C, 70 C, 71 A, 72 C, 74 G, 75 G, 80 A, 81 C, 86 T, 88 C, 89 G, 91 T, 93 C, 94 T, 96 C, 99 C, 102 A, 103 G, 104 T, 105 T, 1 07 G, 1 23 T, 1 28 G, 1 38 C, 145 A, 1 49 T, 1 56 G, 1 70 G, 1 89 G, 1 90 T, 1 92 A, 1 99 T, 201 G, 264 T, 271 G, 279 A, 291 C, 294 A, 309 G, 325 A, 327 T, 328 G, 333 T, 334 G, 340 C, 341 T, 342 G, 348 G, 354 T, 363 G, 364 T, 375 G, 384 T, 420 G, 429 A, 432 C, 438 A, 444 C, 456 G, 457 C, 458 G, 460 G, 462 A, 464 T, 465 T, 467 T, 468 T, 472 C, 476 G, 477 G, 480 G, 486 T, 487 C, 494 A, 507 A, 51 3 A, 514 G, 51 6 A, 522 A, 525 A, 534 C, 537 C, 540 T, 543 A, 549 C, 552 C, 557 G, 558 G, 564 C, 573 A, 592 G, 595 A, 596 A, 599 T, 603 C, 608 A, 609 A, 61 2 G, 61 4 T, 627 G, 636 T, 639 T, 651 A, 661 A, 665 A, 667 G, 668 T, 669 A, 678 A, 687 T, 688 G, 692 A, 706 G, 708 A, 727 C, 744 G, 771 A, 774 A, 775 T, 776 C, 783 C, 784 T, 798 C, 807 A, 81 3 C, 81 9 C, 825 C, 834 C, 838 T, 842 G, 843 A, 855 C, 858 T, 863 C, 864 A, 878 C, 879 A, 881 T, 882 G, 885 G, 888 T, 903 T, 91 2 A, 931 T, 934 A, 935 G, 940 T, 949 G, 954 T, 957 T, 976 G, 977 T, 987 T, 991 C, 1 002 C, 1 004 G, 1 01 2 T, 1038 T, 1 041 C, 1062 C, 1068 T, 1079 G, 1087 T, 1095 A, 1 1 32 A, 1 140 T, 1 1 61 C, 1 1 67 T, 1 1 79 A, 1 1 88 A, 1 203 C, 1 206 T, 1 21 0 A, 1 21 1 A, 1 21 2 G, 1 21 5 C, 1 223 C, 1 224 C, 1 239 T, 1 258 G, 1 263 C, 1 265 A, 1 275 T, 1 278 G, 1 287 T, 1 288 C, 1 291 T, 1293 A, 1296 T, 1305 T, 1310 T, 1311 G, 1312 C, 1314 T, 1330 A, 1338 G, 1340 C, 1341 T, 1344 C, 1347 T, 1353 A, 1356 C, 1386 G, 1389 A, 1391 T, 1402 A, 1416 C, 1432 A, 1441 A, 1443 A, 1446 T, 1455 A, 1459 A, 1460 C, 1461 C, 1467 T, 1497 T, 1500 C, 1503 C, 1518 C, 1521 T, 1528 T, 1530 G, 1531 A, 1534 C, 1535 A, 1546 A, 1557 C, 1563 A, 1566 A, 1575 A, 1581 A, 1590 T, 1596 G, 1602 A, 1603 T, 1607 T, 1608 C, 1632 A, 1641 T, 1643 A, 1644 G, 1650 T, 1651 G, 1653 A, 1657 A, 1659 A, 1665 T, 1668 C, 1672 C, 1678 A, 1680 C, 1681 A, 1683 C, 1684 A, 1695 A, 1698 A, 1704 A, 1708 G, 1718 A, 1719 C, 1738 A, 1743 G, 1749 G, 1751 G, 1752 G, 1758 G, 1761 A, 1772 A, 1773 C, 1774 A, 1784 T, 1785 T, 1788 C, 1791 T, 1792 A, 1795 A, 1800 G, 1801 G, 1803 T, 1805 A, 1812 G, 1815 T, 1825 C, 1834 C, 1837 G, 1842 A, 1843 G, 1847 T, 1852 C, 1857 A, 1869 A, 1875 A, 1878 T, 1884 T, 1886 T, 1891 G, 1895 T, 1896 G, 1902 C, 1903 T, 1904 A, 1905 T, 1906 G, 1909 C, 1911 T, 1913 T, 1914 T, 1915 G, 1918 T, 1919 C, 1920 A, 1922 A, 1923 C, 1924 C, 1932 G, 1936 A, 1940 C, 1948 G, 1949 A, 1955 T, 1957 A, 1959 G, 1960 C, 1962 G, 1964 G, 1969 C, 1975 G, 1979 C, 1981 A, 1986 A, 1989 C, 1995 G, 1996 A, 2001 A, 2002 A, 2005 T, 2007 G, 2008 A, 2035 T, 2038 A, 2040 C, 2042 T, 2044 A, 2045 C, 2046 T, 2047 T und 2048 A gemäß Seq. ID Nr.1.
Bei der oben explizit angegebenen Numerierung der Positionen der einzelnen Elemente der erfindungsgemäßen Nukleotid- bzw. Aminosäure-Sequenzen gemäß Seq ID Nr. 1 bzw. Seq. ID Nr. 2 werden als Derivate der besagten erfindungsgemäßen Sequenzen auch solche Sequenzen verstanden, in denen die Numerierung der einzelnen Sequenzelemente von denen der erfindungsgemäßen Sequenzen ID Nr. 1 bzw. Nr. 2 abweichen kann. Maßgebend ist hierbei eine signifikante Übereinstimmung von mindestens einem Sequenzabschnitt ("Teil") mit der erfindungsgemäßen Sequenz. Solche Übereinstimmungen können gemäß dem allgemeinen Fachwissen z.B. durch geeignete Computer-Programme einfach ermittelt werden, indem z.B. ein Sequenzvergleich der erfindungsgemäßen Sequenz mit einer in Frage stehenden, zu vergleichenden Sequenz durchgeführt wird (sog. "Sequenz-Alignment"). Derartige Computer-Programme, die z.B. käuflich zu erwerben sind (z.B. OmigaΦ, Version 1 .1 .3. der Firma Oxford Molecular Ltd., Oxford, UK) und die zum Teil auch integraler Bestandteil von Sequenzdatenbanken (z.B. EMBL, GenBank) sind, identifizieren z.B. die bestmögliche Übereinstimmung von identischen bzw. gegebenenfalls chemisch äquivalenten Sequenzelementen und berücksichtigen insbesondere das Vorliegen von Insertionen und/oder Deletionen, die zu einer Verschiebung einzelner Sequenzelemente oder von Sequenzabschnitten führen können und auf diese Weise die Numerierung der Sequenzelemente oder Sequenzabschnitte beeinflussen können.
Ferner umfaßt der Begriff "Derivat" in bezug auf das erfindungsgemäße Nukleinsäuremolekül, das für eine α-Glukosidase codiert, ein Nukleinsäuremolekül, das durch Addition, Deletion, Insertion oder Rekombination eines oder mehrerer Nucleotide von Seq. ID Nr. 1 abweicht und die Bedingungen wie oben definiert erfüllt.
Außerdem beinhaltet der Begriff "Derivat" in bezug auf das erfindungsgemäße Nukleinsäuremolekül, das für eine α-Glukosidase codiert, eine komplementäre oder eine revers komplementäre Sequenz (Polynucleotid) des erfindungsgemäßen Nukleinsäuremoleküls oder von Derivaten oder Teilen davon.
Der Begriff "Teil", der sich auf das für eine α-Glukosidase codierendes Nukleinsäuremolekül gemäß dieser Erfindung bezieht, umfaßt ein Poly- oder Oligonucleotid, bestehend aus mindestens etwa 1 5-35, vorzugsweise mindestens etwa 36-1 00, insbesondere mindestens 200, bevorzugter mindestens 400, besonders bevorzugt mindestens 800 und am meisten bevorzugt etwa 1400-1 700 der Nucleotide eines erfindungsgemäßen Nukleinsäuremoleküls, das für eine α-Glukosidase codiert, oder deren Derivate. In einer bevorzugten Ausführungsform dieser Erfindung umfassen die Begriffe "Derivat" und/oder "Teil" gemäß der vorliegenden Erfindung ein Polynucleotid, bzw. ein wie oben definiertes Poly- oder Oligopeptid, das eine funktionale und/oder strukturelle Äquivalenz des aus Kartoffel gewonnenen α-Glukosidase-Gens (d.h. des Nukleinsäuremoleküls, das für die α-Glukosidase codiert) bzw.α-Glukosidase-Polypeptids zeigt. Der Begriff "funktionale und/oder strukturelle Äquivalenz" bedeutet im allgemeinen die gleiche, eine äquivalente oder ähnliche Funktion des entsprechenden Moleküls der Erfindung, gegebenenfalls insbesondere biologische Funktion.
Ein weiterer Erfindungsgegenstand ist ein rekombinantes Nukleinsäuremolekül, enthaltend a) eine Nukleotidsequenz codierend für ein Protein mit der Funktion einer α-Glukosidase, vorzugsweise aus Kartoffel, oder Teile besagter Nucleotidsequenz und b) ein oder mehrere Nucleotidsequenzen, die für ein Protein kodieren, ausgewählt aus der Gruppe A, bestehend aus Proteinen mit der Funktion von Verzweigungsenzymen, ADP-Glukose-Pyrophosphorylasen, Stärkekorn-gebundenen Stärkesynthasen, löslichen Stärkesynthasen, Entzweigungsenzymen, Disproportionierungsenzymen, plastidären Stärkephosphorylasen, R1 - Enzymen, Amylasen, Glukosidasen, Teilen von Nukleotidsequenzen kodierend für Proteine ausgewählt aus der Gruppe A und Nukleinsäuremoleküle, die mit einem der besagten Nukleotidsequenzen oder deren Teilen hybridisiert, vorzugsweise ein Desoxyribonukleinsäure- oder Ribonukleinsäure-Molekül, besonders bevorzugt ein cDNA-Molekül. Besonders bevorzugt ist ein Nukleinsäuremolekül, das mit einem der besagten Nukleotidsequenzen oder deren Teilen spezifisch hybridisiert. Die erfindungsgemäße Nukleotidsequenz codierend für ein Protein mit der Funktion einer α-Glukosidase aus Kartoffel ist durch Seq. ID Nr. 1 dargestellt, das durch die Nukleotidsequenz kodierte Protein durch Seq. ID Nr. 2. Seq. ID Nr. 1 : cgaatacgaataaccgacgctaaccatcaacgatgggaagtgccggaagaaattctccac cgtccaccaccgccgtcgccgccgtcaacctccaactcctcatcagaaaaccactcccca attaccctctctaacccaaactcagacctagagttcacccttcacaacaccatcccattc agcttcaccgtccgccggcgctccaccggggatactcttttcgatacttcgccggagtta gtcatggggttttgcttctgagtagcaatggcatggatattgtgtatacgggtgatagga ttagttacaaggtgattggagggttaattgatttgtatttctttgccggaccttcgccgg aaatggtggtggatcagtatactcagcttattggtcgtcctgctgctatgccatattggt ctttcggatttcaccaatgccggtggggttacaagaatattgatgatgttgaactggtag tggatagttatgcaaagtctagaataccgctggaggttatgtggactgatattgattaca tggatggttttaaggacttcacactcgatccagttaacttcccactggagcgggtaattt tttttctcaggaagcttcatcagaatgatcagaaatatgtactaatagtagatccaggaa ttagcatcaacaatacatatgacacctataggagaggcatggaagcagatgtcttcataa aacgcgataatatgccctaccaaggggttgtttggccagggaatgtttattatcctgatt ttctaaatccagctactgaagtattttggagaaatgaaattgagaagttccaggatctcg taccttttgatggcctgtggcttgacatgaatgaattgtcaaacttcataacttcccctc ctacaccatcatctacctttgatgatcctccctacaagataaacaactctggcgatcact tgcccatcaattatagaacagttccagccacttctacacattttggtgatacaatggagt ataatgtccataacctttatggattacttgaatctagagccacttatagtgcattggtta atgtcactggtaaaaggccattcattcttgtaagatcaacttttcttggctctggcagat acacgtcacattggactggagataatgctgctacctggaacgatttggcatactccattc ctactatcttgagctttggattgtttggaattccaatggttggagctgatatatgtggtt tttcaagtaacactactgaagagctttgccgccgctggattcagcttggagcattctatc catttgcaagagaccactctgctaaggacacaaccccccaagagctctatagttgggatt cagttgctgcagcagccaagaaagtccttgggctccgatatcagttacttccatactttt atatgcttatgtacgaggcacatataaaagggactcccattgcacgacccctcttcttct ctttccctcaagatgccaagacatttgatatcagcacacagttccttctcggtaaaggtg tcatgatctcacctatacttaagcaaggagcaacctctgttgatgcatatttccctgctg gaaactggtttgacctcttcaattactctcgctctgtgagtttgaatcaaggaacatata tgacacttgacgcaccaccagatcatataaatgtacatgttcgtgaagggaacatattgg tcatgcaaggggaagcaatgacaacacaagctgctcagaggactgcattcaaactccttg tcgtgctgagcagcagcaaaaacagcacaggagaactatttgtggacgatgacgatgagg tgcagatgggaagagagggagggaggtggacgctagttaagtttaacagcaatatcattg gcaataaaattgtggttaaatcagaggttgtgaatggacgatatgcgctggatcaaggat tggtccttgaaaaggtgacattattgggatttgaaaatgtgagaggattgaagagctatg agcttgttggatcacaccagcaagggaacacaacaatgaaggaaagtcttaagcagagtg gacagtttgttactatggaaatctcagggatgtcaatattgatagggaaagagttcaaat tggagctatacatcattacttaacaaatgaattaagttatatacgcttgttgtatgaaat tttctttcatttatcaatgcagtttaatttatgataaaaaaaaaaaaaaaaa
Seq. ID Nr. 2:
PKLRPRVHPSQHHPIQLHRPPALHRGYSFRYFAGVSHGVLLLSSNGMDIVYTGDRISYKV
IGGLIDLYFFAGPSPEMVVDQYTQLIGRPAAMPYWSFGFHQCRWGYKNIDDVELVVDSYA
KSRIPLEVMWTDIDYMDGFKDFTLDPVNFPLERVIFFLRKLHQNDQKYVLIVDPGISINN
TYDTYRRGMEADVFIKRDNMPYQGVVWPGNVYYPDFLNPATEVFWRNEIEKFQDLVPFDG
LWLDMNELSNFITSPPTPSSTFDDPPYKINNSGDHLPINYRTVPATSTHFGDTMEYNVHN
LYGLLESRATYSALVNVTGKRPFILVRSTFLGSGRYTSHWTGDNAATWNDLAYSIPTILS
FGLFGIPMVGADICGFSSNTTEELCRRWIQLGAFYPFARDHSAKDTTPQELYSWDSVAAA
AKKVLGLRYQLLPYFYMLMYEAHIKGTPIARPLFFSFPQDAKTFDISTQFLLGKGVMISP
ILKQGATSVDAYFPAGNWFDLFNYSRSVSLNQGTYMTLDAPPDHINVHVREGNILVMQGE
AMTTQAAQRTAFKLLVVLSSSKNSTGELFVDDDDEVQMGREGGRWTLVKFNSNIIGNKIV
VKSEVVNGRYALDQGLVLEKVTLLGFENVRGLKSYELVGSHQQGNTTMKESLKQSGQFVT
MEISGMSILIGKEFKLELYIIT
Die erfindungsgemäße α-Glukosidase-Nukleotidsequenz weist zu bekannten α-Glukosidase-kodierenden Molekülen (Taylor et al., 1 998, Plant J. 1 3: 41 9- 424; Sugimoto et al., 1 997, Plant Mol. Biol. 33, 765-768; EMBL Datenbank- Einträge: U22450, P1 0253, D86624) eine vergleichsweise geringe Sequenzhomologie auf. Die Aminosäuresequenz unterscheidet sich deutlich von den im Stand der Technik beschriebenen α-Glukosidasen insbesondere im 5'- Bereich, wie einem Sequenzvergleich mit Sequenz ID Nr. 2 zu entnehmen ist. ;
18
Erfindungsgemäß geeignete Nukleotidsequenzen, die für ein Protein der Gruppe A kodieren, sind beispielsweise für lösliche (Typ I, II, IM oder IV) oder Stärkekorn-gebundene Stärkesynthase-Isoformen beschrieben in Hergersberg,
1988, Dissertation Universität Köln; Abel, 1995, Dissertation FU Berlin; Abel et al., 1996, Plant Journal 10(6):981-991; Visser et al., 1989, Plant Sei.64:185- 192; van der Leij et al., 1991, Mol. Gen. Genet.228:240-248; EP-A-0779363; WO 92/11376; WO 96/15248; WO 97/26362; WO 97/44472; WO 97/45545; Delrue et al., 1992, J. Bacteriol.174: 3612-3620; Baba et al., 1993, Plant Physiol. 103:565-573; Dry et al., 1992, The Plant Journal 2,2: 193-202 oder auch in den EMBL Datenbank Einträgen X74160; X58453; X88789; X 94400; für Verzweigungsenzym-Isoformen (branching enzyme I, lia oder llb), Entzweigungsenzym-Isoformen (debranching enzyme, Isoamylasen, Pullulanasen, R1- Enzyme) oder Disproportionierungsenzym-Isoformen beispielsweise beschrieben in WO 92/14827; WO 95/07335; WO 95/09922; WO 96/19581; WO 97/22703; WO 97/32985; WO 97/42328; Takaha et al., 1993, J. Biol. Chem.268: 1391-1396 oder auch in dem EMBL Datenbank Eintrag X83969 und solche für ADP-Glukose-Pyrophosphorylasen und plastidäre Stärkephosphorylase-Isoformen beispielsweise beschrieben in EP-A-0368506; EP-A-0455316; WO 94/28146; DE 19653176.4; WO 97/11188; Brisson et al.,
1989, The Plant Cell 1:559-566; Buchner et al., 1996, Planta 199:64-73; Camirand et al., 1989, Plant Physiol.89(4 Suppl.) 61; Bhatt & Knowler, J. Exp. Botany 41 (Suppl.) 5-7; Lin et al., 1991, Plant Physiol.95:1250-1253; Sonnewald et al.,1995, Plant Mol. Biol.27:567-576; DDBJ Nr. D23280; Lorberth et al., 1998, Nature Biotechnology 16:473-477.
Die erfindungsgemäß geeignet einzusetzenden Nukleotidsequenzen sind pro- oder eukaryontischen Ursprungs, vorzugsweise bakteriellen, pilzlichen oder pflanzlichen Ursprungs. i
19
Der Begriff "Teile von Nukleotidsequenzen" bedeutet im Sinne der vorliegenden Erfindung Teile der erfindungsgemäß zu verwendenden Nukleotidsequenzen, die mindestens 1 5 bp, vorzugsweise mindestens 1 50 bp, besonders bevorzugt mindestens 500 bp lang sind, jedoch eine Länge von 5000 bp, vorzugsweise 2500 bp nicht überschreiten.
Der Begriff "Hybridisierung" bedeutet im Rahmen dieser Erfindung eine Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2. Aufl. (1 989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) beschrieben sind.
Besonders bevorzugt erfolgt eine "spezifische Hybridisierung", unter den folgenden hoch-stringenten Bedingungen:
Hybridisierungspuffer: 2 x SSC; 10 x Denhardt-Lösung (Fikoli 400 + PEG + BSA; Verhältnis 1 : 1 : 1 ); 0, 1 % SDS; 5 mM EDTA; 50 mM Na2HPO4; 250 μg/ml Heringssperma-DNA; 50 μg/ml tRNA; oder 0,25 M Natriumphosphatpuffer pH 7,2; 1 mM EDTA; 7% SDS bei einer Hybridisierungstemperatur: T = 55 bis 68°C, Waschpuffer: 0,2 x SSC; 0, 1 % SDS und
Waschtemperatur: T = 40 bis 68°C.
Die mit den erfindungsgemäßen Nukleinsäuremolekülen hybridisierenden Moleküle umfassen auch Fragmente, Derivate und allelische Varianten der erfindungsgemäßen Nukleinsäuremoleküle. Unter Fragmenten werden dabei Teile der Nukleinsäuremoleküle verstanden, die lang genug sind, um einen Teil der beschriebenen Proteine zu codieren. Der Ausdruck Derivat bedeutet in diesem Zusammenhang, daß die Sequenzen dieser Moleküle sich von den Sequenzen der erfindungsgemaßen Nukleinsäuremoleküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu diesen Sequenzen t
20 aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 60 %, vorzugsweise über 70 % und besonders bevorzugt über 85 %. Die Abweichungen zu den erfindungsgemaßen Nukleinsäuremolekülen können dabei durch Deletionen, Substitutionen, Insertionen oder Rekombinationen entstanden sein.
Homologie bedeutet ferner, daß funktionelle und/oder strukturelle Äquivalenz zwischen den betreffenden Nukleinsäuremolekülen oder den durch sie kodierten Proteinen, besteht. Bei den Nukleinsäuremolekülen, die homolog zu den erfindungsgemaßen Molekülen sind und Derivate dieser Moleküle darstellen, handelt es sich in der Regel um Variationen dieser Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürlicherweise auftretende Variationen handeln, beispielsweise um Sequenzen aus anderen Pflanzenspezies, oder um Mutationen, wobei diese Mutationen auf natürliche Weise aufgetreten sein können oder durch gezielte Mutagenese eingeführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende Varianten handeln, als auch um synthetisch hergestellte oder durch rekombinante DNA-Techniken erzeugte Varianten.
Bei den erfindungsgemäßen Nukleinsäuremolekülen kann es sich um DNA- Moleküle handeln, insbesondere um cDNA- oder genomische Moleküle. Ferner können die erfindungsgemäßen Nukleinsäuremoleküle RNA-Moleküle sein. Die erfindungsgemäßen Nukleinsäuremoleküle oder Teile davon können z. B. aus natürlichen Quellen gewonnen sein, durch rekombinante Techniken oder synthetisch hergestellt sein.
Zur Expression der erfindungsgemäßen Nukleinsäuremoleküle in sense- oder antisense-Orientierung in pflanzlichen Zellen werden diese mit regulatorischen DNA-Elementen verknüpft, die die Transkription in pflanzlichen Zellen gewährleisten. Hierzu zählen insbesondere Promotoren. Generell kommt für die Expression jeder in pflanzlichen Zellen aktive Promotor in Frage. Der Promotor kann dabei so gewählt sein, daß die Expression konstitutiv erfolgt oder nur in einem bestimmten Gewebe, zu einem bestimmten Zeitpunkt der Pflanzenentwicklung oder zu einem durch äußere Einflüsse determinierten Zeitpunkt, der z.B. chemisch oder biologisch induzierbar sein kann. In Bezug auf die transformierte Pflanze kann der Promotor - wie auch die Nukleotidsequenz- homolog oder heteroiog sein. Geeignete Promotoren sind z.B. der Promotor der 35S RNA des Cauliflower Mosaic Virus für eine konstitutive Expression, der Patatingen-Promotor B33 (Rocha-Sosa et al., 1 989, EMBO J. 8:23-29) für eine knollenspezifische Expression in Kartoffeln oder ein Promotor, der eine Expression lediglich in photosynthetisch aktiven Geweben sicherstellt, z.B. der ST-LS1 -Promotor (Stockhaus et al., 1 987, Proc. Natl. Acad. Sei. USA 84: 7943-7947; Stockhaus et al., 1 989, EMBO J. 8: 2445-2451 ) oder für eine endosperm-spezifische Expression der HMG-Promotor aus Weizen oder Promotoren von Zein-Genen aus Mais.
Eine das erfindungsgemäße Nukleinsäuremolekül abschließende Terminationssequenz kann der korrekten Beendigung der Transkription dienen, sowie der Addition eines Poly-A-Schwanzes an das Transkript, dem eine Funktion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben (vgl. Gielen et al., 1 989, EMBO J. 8:23-29) und sind beliebig austauschbar.
Die erfindungsgemäßen Nukleinsäuremoleküle können für die Herstellung transgener Pflanzenzellen und Pflanzen verwendet werden, die in der Aktivität der α-Glukosidase oder in der Aktivität der α-Glukosidase und mindestens eines weiteren Enzyms des Stärkemetabolismus erhöht oder erniedrigt sind. Hierfür werden die erfindungsgemäßen Nukleinsäuremoleküle in geeignete Vektoren eingebracht, mit den notwendigen regulatorischen Nukleinsäure-Sequenzen für eine effiziente Transkription in pflanzlichen Zellen versehen und in pflanzliche Zellen eingeführt. Es besteht zum einen die Möglichkeit, die erfindungsgemäßen Nukleinsäuremoleküle zur Inhibierung der Synthese der endogenen α-Glukosidase oder der endogenen α-Glukosidase und mindestens eines weiteren Proteins der Gruppe A in den Zellen zu verwenden. Dies kann mit Hilfe von antisense-Konstrukten, in vivo Mutagenese, eines auftretenden Cosuppressionseffektes oder mit Hilfe von in entsprechender Weise konstruierten Ribozymen erreicht werden. Andererseits können die erfindungsgemäßen Nukleinsäuremoleküle zur Expression der α-Glukosidase oder der α-Glukosidase und mindestens eines weiteren Proteins der Gruppe A in Zellen transgener Pflanzen verwendet werden und so zu einer Steigerung der Aktivität der jeweils exprimierten Enzyme in den Zellen führen.
Darüber hinaus besteht die Möglichkeit, die erfindungsgemäßen Nukleinsäuremoleküle zur Inhibierung der Synthese der endogenen α-Glukosidase und der Überexpression mindestens eines weiteren Proteins der Gruppe A in den Zellen zu verwenden.
Schließlich können die erfindungsgemäßen Nukleinsäuremoleküle auch zur Expressionn der α-Glukosidase und der Inhibierung mindestens eines weiteren Proteins der Gruppe A in Zellen transgener Pflanzen verwendet werden. Die beiden letztgenannten Ausführungsformen der Erfindung führen so zu einer gleichzeitigen Hemmung und Steigerung der Aktivitäten der jeweils inhibierten bzw. exprimierten Enzyme in den Zellen.
Ein weiterer Gegenstand der Erfindung ist ein Vektor, enthaltend ein erfindungsgemäßes Nukleinsäuremolekül. Der Begriff "Vektor" umfaßt Plasmide, Cosmide, Viren, Bacteriophagen und andere in der Gentechnik gängige Vektoren, die die erfindungsgemäßen Nukleinsäuremoleküle enthalten und zur Transformation von Zellen geeignet sind. Vorzugsweise sind derartige Vektoren zur Transformation pflanzlicher Zellen geeignet. Besonders bevorzugt erlauben sie die Integration der erfindungsgemäßen Nukleinsäuremoleküle, gegebenenfalls zusammen mit flankierenden regulatorischen Regionen, in das Genom der Pflanzenzelle. Beispiele hierfür sind binäre Vektoren, wie pBinAR oder pBinB33, die bei dem Agrobakterien-vermittelten Gentransfer eingesetzt werden können.
In einer bevorzugten Ausführungsform zeichnet sich der erfindungsgemäße Vektor dadurch aus, daß die Nukleotidsequenz, die für ein Protein mit der Funktion einer α-Glukosidase codiert oder deren Teile in sense- oder anti-sense- Richtung vorliegt.
In einer weiteren bevorzugten Ausführungsform zeichnet sich der erfindungsgemäße Vektor dadurch aus, daß die Nukleotidsequenz, die für ein oder mehrere Proteine ausgewählt aus der Gruppe A oder Teilen davon kodiert, in sense- oder anti-sense-Richtung vorliegt.
In noch einer weiteren bevorzugten Ausführungsform zeichnet sich der erfindungsgemäße Vektor dadurch aus, daß die Nukleotidsequenz, die für mehrere Proteine ausgewählt aus der Gruppe A oder Teilen davon kodiert, teilweise in sense-Richtung und teilweise in anti-sense-Richtung vorliegt.
Der erfindungsgemäße Vektor ist ganz besonders bevorzugt mit regulatorischen Elementen verknüpft, die die Expression, d.h. z.B. die Transkription und Synthese einer RNA, die im Fall einer in sense-Richtung vorliegenden Nukleotidsequenz translatierbar ist, in einer pro- oder eukaryontischen Zelle gewährleisten. Darüberhinaus ist es möglich, mittels gängiger molekularbiologischer Techniken (siehe z.B. Sambrook et al., 1 989, Molecuiar Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, NY) verschiedenartige Mutationen in die erfindungsgemäßen DNA-Sequenzen einzuführen, wodurch es zur Synthese von Proteinen mit gegebenfalls veränderten biologischen Eigenschaften kommt. Hierbei ist zum einen die Erzeugung von Deletionsmutanten möglich, bei denen durch fortschreitende Deletionen vom 5'- oder vom 3'- Ende der kodierenden DNA-Sequenzen erzeugt werden, die zur Synthese entsprechend verkürzter Proteine führen. Durch derartige Deletionen am 5 '-Ende der DNA-Sequenz ist es beispielsweise möglich, gezielt Enzyme herzustellen, die durch Entfernen der entsprechenden Transitoder Signal-Sequenzen nicht mehr in ihrem ursprünglichen (homologen) Kompartiment, sondern im Cytosol, oder aufgrund der Addition von andereren Signalsequenzen in einem oder mehreren anderen (heterologen) Kompartimenten lokalisiert sind.
Andererseits ist auch die Einführung von Punktmutationen denkbar an Positionen, bei denen eine Veränderung der Aminosäuresequenz einen Einfluß beispielweise auf die Enzymaktivität oder die Regulierung des Enzyms hat. Auf diese Weise können z.B. Mutanten hergestellt werden, die einen veränderten KM- oder kcat-Wert besitzen oder die nicht mehr den normalerweise in der Zelle vorliegenden Regulationsmechanismen über allosterische Regulation oder kovalente Modifizierung unterliegen.
Für die gentechnische Manipulation in prokaryontischen Zellen können die erfindungsgemäßen DNA-Sequenzen oder Teile dieser Sequenzen in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von molekularbiologischen Standardverfahren (vgl. Sambrook et al., 1 989, loc.cit.) können Basenaustausche vorgenommen oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder linker angesetzt werden. Ferner können Manipulationen, die passende Restriktionsschnittstellen zur Verfügung stellen oder die überfüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen in Frage kommen, können in w'f/O-Mutagenese, "primer repair", Restriktion oder Ligation verwendet werden. Als Analysemethode werden im allgemeinen eine Sequenzanalyse, eine Restriktionsanalyse und ggf. weitere biochemisch- molekularbiologische Methoden durchgeführt.
Ein weiterer Gegenstand der Erfindung ist eine Wirtszelle, insbesondere prokaryontische oder eukaryontische Zellen, vorzugsweise bakterielle oder pflanzliche Zellen (z.B. aus E.coli, Agrobacterium, Solananceae, Poideae, Roggen, Gerste, Hafer, Mais, Weizen, Hirse, Sago, Reis, Erbse, Markerbse, Maniok, Kartoffel, Tomate, Raps, Sojabohne, Hanf, Flachs, Sonnenblume, Kuherbse, Mungbohne, Bohne, Banane oder Arrowroot), die ein erfindungsgemäßes Nukleinsäuremolekül oder einen erfindungsgemäßen Vektor enthält oder die von einer Zelle, die mit einem erfindungsgemäßen Nukleinsäuremolekül oder einem erfindungsgemäßen Vektor transformiert wurde, abstammt.
Noch ein weiterer Gegenstand der Erfindung ist eine Wirtszelle, insbesondere prokaryontische oder eukaryontische Zellen, vorzugsweise bakterielle oder pflanzliche Zellen (z.B. aus E.coli, Agrobacterium, Solananceae, Poideae, Roggen, Gerste, Hafer, Mais, Weizen, Hirse, Sago, Reis, Erbse, Markerbse, Maniok, Kartoffel, Tomate, Raps, Sojabohne, Hanf, Flachs, Sonnenblume, Kuherbse, Mungbohne, Bohne, Banane oder Arrowroot), die neben einem rekombinanten Nukleinsäuremolekül codierend für ein Protein mit der Funktion einer ß-Amylase, ein oder mehrere weitere rekombinante Nukleinsäuremoleküle (
26 enthält, die für ein Protein ausgewählt aus der Gruppe A kodieren, oder deren Teilen oder mit diesen Nukleinsäuremolekülen hybridisierende Nukleotidsequenzen.
Neben der Verwendung der erfindungsgemäßen Nukleinsäuremoleküle lassen sich die erfindungsgemäßen Wirtszellen ggf. auch durch sukzessive Transformation herstellen (sog. "Supertransformation"), indem einzelne Nukleotidsequenzen oder Vektoren enthaltend Nukleotidsequenzen, die für ein Protein codieren mit der Funktion von Verzweigungsenzymen, ADP-Glukose- Pyrophosphorylasen, Stärkekorn-gebundenen Stärkesynthasen, löslichen Stärkesynthasen I , II, III oder IV, Entzweigungsenzymen,
Disproportionierungsenzymen, plastidären Stärkephosphorylasen, R1 - Enzymen, Amylasen, Glukosidasen, Teilen davon, sowie Nukleinsäuremoleküle, die mit einem der besagten Nukleotidsequenzen oder deren Teilen hybridisiert, in mehreren, auf einderf olgenden Transformationen der Zellen eingesetzt werden. Eine weitere Ausführungsform der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung einer transgenen Pflanzenzelle, die eine modifizierte Stärke synthetisiert, dadurch gekennzeichnet, daß ein erfindungsgemäßes Nukleinsäuremolekül oder ein erfindungsgemäßer Vektor in das Genom einer Pflanzenzelle integriert wird.
Durch die Bereitstellung der erfindungsgemäßen Nukleinsäuremoleküle ist es möglich, mit Hilfe gentechnischer Methoden in den Stärkemetabolismus von Pflanzen einzugreifen und ihn dahingehend zu verändern, daß es zur Synthese einer modifizierten Stärke kommt, die beispielsweise in bezug auf Struktur, Wassergehalt, Proteingehalt, Lipidgehalt, Fasergehalt, Asche/Phosphatgehalt, Amylose/Amylopektinverhältnis, Molmassenverteilung, Verzweigungsgrad, Korngröße und -form sowie Kristallisation oder auch in ihren physikalischchemischen Eigenschaften wie Fließ- und Sorptionsverhalten, Verkleisterungstemperatur, Viskosität, Dickungsleistung, Löslichkeit, Kleisterstruktur, Transparenz, Hitze-, Scher- und Säurestabilität, Retrogradationsneigung, Gelbildung, Gefrier/Taustabilität, Komplexbildung, Jodbindung, Filmbildung, Klebekraft, Enzymstabilität, Verdaulichkeit oder Reaktivität im Vergleich zu in Wildtyp-Pflanzen synthetisierter Stärke verändert ist. Durch eine Erhöhung der Aktivität von am Stärkemetabolismus beteiligten Proteinen, beispielsweise durch Überexpression entsprechender Nukleinsäuremoleküle, oder durch die Bereitstellung von Mutanten, die nicht mehr den zelleigenen Regulationsmechanismen unterliegen und/oder unterschiedliche Temperaturabhängigkeiten in bezug auf ihre Aktivität besitzen, besteht die Möglichkeit der Ertragssteigerung in entsprechend gentechnisch veränderten Pflanzen. Durch die Steigerung der Aktivität einer oder mehrerer am Stärkemetabolismus beteiligten Proteinen in bestimmten Zellen der stärkespeichernden Gewebe transformierter Pflanzen wie z.B. in der Knolle bei der Kartoffel oder in dem Endosperm von Mais oder Weizen kann es zu einer besonders ausgeprägten Ertragssteigerung kommen. Die wirtschaftliche Bedeutung und die Vorteile dieser Möglichkeiten des Eingriffs in den Stärkemetabolismus liegen auf der Hand.
Bei der Expression der erfindungsgemäßen Nukleinsäuremoleküle in Pflanzen besteht grundsätzlich die Möglichkeit, daß das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein kann. Um die Lokalisation in einem bestimmten Kompartiment (Cytosol, Vakuole, Apoplast, Piastiden, Mitochondrien) zu erreichen, muß die die Lokalisation gewährleistende Transit- oder Signalsequenz ggf. deletiert (entfernt) werden und die verbleibende codierende Region gegebenenfalls mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in dem jeweiligen Kompartiment gewährleisten. Derartige Sequenzen sind bekannt (siehe beispielsweise Braun et al., EMBO J. 1 1 (1 992), 321 9-3227; Wolter et al., Proc. Natl. Acad. Sei. USA 85 (1 988), 846-850; Sonnewald et al., Plant J. 1 ( 1 991 ), 95-106). Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines am Stärkemetabolismus beteiligten Proteins kann beispielsweise erzielt werden durch die Expression einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes, in vivo Mutagenese oder die Expression eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte spaltet, die eines der am Stärkemetabolismus beteiligten Proteine codieren, unter Verwendung eines erfindungsgemäßen Nukleinsäuremoleküls, vorzugsweise durch Expression eines antisense-Transkripts.
Hierzu kann zum einen ein DNA-Molekül verwendet werden, das die gesamte für ein am Stärkemetabolismus beteiligtes Protein codierende Sequenz einschließlich eventuell vorhandener flankierender Sequenzen umfaßt, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile eine Mindestlänge von 1 5 bp, vorzugsweise von mindestens 100-500 bp, und insbesondere von über 500 bp aufweisen. In der Regel werden DNA-Moleküle verwendet, die kürzer als 5000 bp, vorzugsweise kürzer als 2500 bp sind.
Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den Sequenzen der erfindungsgemäßen DNA-Moleküle aufweisen, aber nicht vollkommen identisch sind. Die minimale Homologie sollte größer als ca. 65 % sein. Die Verwendung von Sequenzen mit einer Homologie von 75% und insbesondere 80 % ist zu bevorzugen.
Die Expression von Ribozymen zur Verringerung der Aktivität von bestimmten Proteinen in Zellen ist dem Fachmann bekannt und ist beispielsweise beschrieben in EP-B1 -0 321 201 . Die Expression von Ribozymen in pflanzlichen Zellen wurden z.B. beschrieben in Feyter et al. (Mol. Gen. Genet. 250 (1 996), 329-338) . t
29
Ferner kann die Verringerung der am Stärkemetabolismus beteiligten Proteine in den erfindungsgemäßen Pflanzenzellen auch durch die sogenannte "in vivo- Mutagenese" erreicht werden, bei der durch Transformation von Zellen ein hybrides RNA-DNA-Oligonucleotid ("Chimeroplast") in Zellen eingeführt wird (Kipp P.B. et al., Poster Session beim "5,h International Congress of Plant Molecular Biology, 21 -27, September 1 997, Singapore; R.A. Dixon und C.J. Arntzen, Meeting report zu "Metabolie Engineering in Transgenic Plants", Keystone Symposia, Copper Mountain, CO, USA, TIBTECH 1 5 (1 997), 441 - 447; internationale Patentanmeldung WO 95/1 5972; Kren et al., Hepatology 25 (1 997), 1462-1468; Cole-Strauss et al., Science 273 (1 996), 1386-1 389).
Ein Teil der DNA-Komponente des hierbei verwendeten RNA-DNA- Oligonucleotids ist homolog zu einer Nucleinsäuresequenz eines endogenen Proteins, weist jedoch im Vergleich zur Nucleinsäuresequenz des endogenen Proteins eine Mutation auf oder enthält eine heterologe Region, die von den homologen Regionen umschlossen ist.
Durch Basenpaarung der homologen Regionen des RNA-DNA-Oligonucleotids und des endogenen Nucleinsäuremoleküls, gefolgt von homologer Rekombination kann die in der DNA-Komponente des RNA-DNA-Oligonucleotids enthaltene Mutation oder heterologen Region in das Genom einer Pflanzenzelle übertragen werden. Dies führt zu einer Verringerung der Aktivität des am Stärkemetabolismus beteiligten Proteins.
Alternativ kann die Verringerung der am Stärkemetabolismus beteiligten Enzymaktivitäten in den Pflanzenzellen durch einen Cosuppressionseffekt erfolgen. Dieses Verfahren ist dem Fachmann bekannt und beispielsweise beschrieben in Jorgensen (Trends Biotechnol. 8 (1 990), 340-344), Niebel et al., (Curr. Top. Microbiol. Immunol. 1 97 (1 995), 91 -103), Flavell et al. (Curr. Top. Microbiol. Immunol. 1 97 ( 1 995), 43-46), Palaqui und Vaucheret (Plant. Mol. Biol. 29 (1 995), 1 49-1 59), Vaucheret et al., (Mol. Gen. Genet. 248 (1 995), 31 1 -31 7), de Borne et al. (Mol. Gen. Genet. 243 (1 994), 61 3-621 ) und anderen Quellen.
Zur Inhibierung der Synthese mehrerer an der Stärkebiosynthese beteiligter Enzyme in den transformierten Pflanzen können DNA-Moleküle zur Transformation verwendet werden, die gleichzeitig mehrere, die entsprechenden Enzyme codierenden Regionen in antisense-Orientierung unter der Kontrolle eines geeigneten Promotors enthalten. Hierbei kann alternativ jede Sequenz unter der Kontrolle eines eigenen Promotors stehen, oder die Sequenzen können als Fusion von einem gemeinsamen Promotor transkribiert werden, so daß die Synthese der betreffenden Proteine in etwa gleichem oder unterschiedlichem Ausmaß inhibiert wird. Für die Länge der einzelnen codierenden Regionen, die in einem derartigen Konstrukt verwendet werden, gilt das, was oben bereits für die Herstellung von antisense-Konstrukten ausgeführt wurde. Eine obere Grenze für die Anzahl der in einem derartigen DNA-Molekül von einem Promotor aus transkribierten anti- sense-Fragmente gibt es im Prinzip nicht. Das entstehende Transkript sollte aber in der Regel eine Länge von 25 kb, vorzugsweise von 1 5 kb nicht überschreiten.
Mit Hilfe der erfindungsgemäßen Nukleinsäuremoleküle ist es möglich, Pflanzenzellen zu transformieren und die Synthese mehrerer Enzyme gleichzeitig zu inhibieren.
Weiterhin können die erfindungsgemäßen Nukleinsäuremoleküle in klassische Mutanten eingebracht werden, die in bezug auf ein oder mehrere Gene der Stärkebiosynthese defizient oder defekt sind (Shannon und Garwood, 1 984, in Whistler, BeMiller und Paschall, Starch:Chemistry and Technology, Academic Press, London, 2nd Edition: 25-86). Diese Defekte können sich z.B. auf folgende Proteine beziehen: Stärkekorn-gebundene (GBSS I) und lösliche Stärkesynthasen (SSS I, II, IM und IV), Verzweigungsenzyme (BE I, lla und Mb), "Debranching"- Enzyme (R-Enzyme, Isoamylasen, Pullulanasen), Disproportionierungsenzyme und plastidäre Stärkephosphorylasen.
Die vorliegende Erfindung betrifft somit auch transgene Pflanzenzellen, erhältlich nach einem erfindungsgemäßen Verfahren, die mit einem erfindungsgemäßen Nukleinsäuremolekül oder Vektor transformiert wurden, sowie transgene Pflanzenzellen, die von derartig transformierten Zellen abstammen. Die erfindungsgemäßen Zellen enthalten ein erfindungsgemäßes Nukleinsäuremolekül, wobei dieses vorzugsweise mit regulatorischen DNA- Elementen verknüpft ist, die die Transkription in pflanzlichen Zellen gewährleisten, insbesondere mit einem Promotor. Die erfindungsgemäßen Zellen lassen sich von natürlicherweise vorkommenden Pflanzenzellen unter anderem dadurch unterscheiden, daß sie ein erfindungsgemäßes Nukleinsäuremolekül enthalten, das natürlicherweise in diesen Zellen nicht vorkommt oder dadurch, daß ein solches Molekül an einem Ort im Genom der Zelle integriert vorliegt, an dem es sonst nicht vorkommt, d.h. in einer anderen genomischen Umgebung. Ferner lassen sich die erfindungsgemäßen transgenen Pflanzenzellen von natürlicherweise vorkommenden Pflanzenzellen dadurch unterscheiden, daß sie mindestens eine Kopie eines erfindungsgemäßen Nukleinsäuremoleküls stabil integriert in ihr Genom enthalten, gegebenenfalls zusätzlich zu natürlicherweise in den Zellen vorkommenden Kopien eines solchen Moleküls. Handelt es sich bei dem (den) in die Zellen eingeführten Nukleinesäuremolekül(en) um zusätzliche Kopien zu bereits natürlicherweise in den Zellen vorkommenden Molekülen, so lassen sich die erfindungsgemäßen Pflanzenzellen von natürlicherweise vorkommenden insbesondere dadurch unterscheiden, daß diese zusätzliche(n) Kopie(n) an Orten im Genom lokalisiert ist (sind) an denen sie natürlicherweise nicht vorkommt (vorkommen). Dies läßt sich beispielsweise mit Hilfe einer Southern Blot-Analyse nachprüfen. ι
32
Bevorzugt sind solche erfindungsgemäßen Pflanzenzellen, in denen die Enzymaktivität einzelner, am Stärkemetabolismus beteiligter Enzyme zu mindestens 10%, besonders bevorzugt zu mindestens 30% und ganz besonders bevorzugt um mindestens 50% erhöht oder erniedrigt ist.
Weiterhin lassen sich die erfindungsgemäßen Pflanzenzellen von natürlicherweise vorkommenden Pflanzenzellen vorzugsweise durch mindestens eines der folgenden Merkmale unterscheiden: Ist das eingeführte erfindungsgemäße Nukleinsäuremolekül heterolog in Bezug auf die Pflanzenzelle, so weisen die transgenen Pflanzenzellen Transkripte der eingeführten erfindungsgemäßen Nukleinsäuremoleküle auf. Diese lassen sich z. B. durch Northem-Blot-Analyse nachweisen. Beispielsweise enthalten die erfindungsgemäßen Pflanzenzellen ein oder mehrere Proteine, die durch ein eingeführtes erfindungsgemäßes Nukleinsäuremolekül codiert werden. Dies kann z. B. durch immunologische Methoden, insbesondere durch eine Western-Blot-Analyse nachgewiesen werden.
Ist das eingeführte erfindungsgemäße Nukleinsäuremolekül homolog in Bezug auf die Pflanzenzelle, können die erfindungsgemäßen Zellen von natürlicherweise auftretenden beispielsweise aufgrund der zusätzlichen Expression erfindungsgemäßer Nukleinsäuremoleküle unterschieden werden. Die transgenen Pflanzenzellen enthalten z.B. mehr oder weniger Transkripte der erfindungsgemäßen Nukleinsäuremoleküle. Dies kann z. B. durch Northern-Blot- Analyse nachgewiesen werden. "Mehr" bzw. "weniger"bedeutet dabei vorzugweise mindestens 1 0% mehr bzw. weniger, bevorzugt mindestens 20% mehr bzw. weniger und besonders bevorzugt mindestens 50% mehr bzw. weniger Transkripte als entsprechende nicht-transformierte Zellen. Vorzugsweise weisen die Zellen ferner eine entsprechende (mindestens 10%, 20% bzw. 50%ige) Steigerung bzw. Verminderung des Gehalts an erfindungsgemäßen Protein auf. Die transgenen Pflanzenzellen können nach dem Fachmann bekannten Techniken zu ganzen Pflanzen regeneriert werden.
Die durch Regeneration der erfindungsgemäßen transgenen Pflanzenzellen erhältlichen Pflanzen sowie Verfahren zur Herstellung transgener Pflanzen durch Regeneration von ganzen Pflanzen aus den erfindungsgemäßen Pflanzenzellen sind ebenfalls Gegenstand der vorliegenden Erfindung. Ferner sind Gegenstand der Erfindung Pflanzen, die die erfindungsgemäßen transgenen Pflanzenzellen enthalten. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Spezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. Bevorzugt handelt es sich um Nutzpflanzen, d.h. Pflanzen, die vom Menschen kultiviert werden für Zwecke der Ernährung oder für technische, insbesondere industrielle Zwecke. Vorzugsweise sind dies stärkespeichernde Pflanzen, wie z.B. Getreidearten (Roggen, Gerste, Hafer, Mais, Weizen, Hirse, Sago etc.), Reis, Erbse, Markerbse, Maniok, Kartoffel, Tomate, Raps, Sojabohne, Hanf, Flachs, Sonnenblume, Kuherbse, Mungbohne oder Arrowroot.
Die Erfindung betrifft ebenfalls Vermehrungsmaterial der erfindungsgemäßen Pflanzen, beispielsweise Früchte, Samen, Knollen, Wurzelstöcke, Sämlinge, Stecklinge, Kalli, Protoplasten, Zellkulturen etc..
Durch die Veränderung der enzymatischen Aktivitäten der in den Stärkemetabolismus involvierten Enzyme kommt es zur Synthese einer in ihrer Struktur veränderten Stärke in den nach dem erfindungsgemäßen Verfahren hergestellten Pflanzen.
Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen stehen eine große Anzahl von Klonierungsvektoren zur Verfügung, die ein Replikationssignal für E.coli und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M 1 3mp- Serien, pACYC1 84 usw. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird für die Transformation von £.co//-Zellen verwendet. Transformierte E.coli- Zellen werden in einem geeigneten Medium gezüchtet, anschließend geerntet und lysiert. Das Plasmid wird wiedergewonnen. Als Analysemethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch- molekularbiologische Methoden eingesetzt (Sambrook et al. loc.cit.). Nach jeder Manipulation kann die Plasmid DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden. Jede Plasmid-DNA-Sequenz kann in den gleichen oder anderen Plasmiden kloniert werden.
Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl von Techniken zur Verfügung. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel, die Fusion von Protoplasten, mittels Polyethylenglykol (PEG), die Injektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.
Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden an sich keine speziellen Anforderungen an die verwendeten Plasmide bzw. DNA gestellt. Es können einfache Plasmide wie z.B. pUC-Derivate verwendet werden. Sollen aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist jedoch die Anwesenheit eines selektierbaren Markergens notwendig.
Je nach Einführungsmethode gewünschter Gene in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden z.B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der Ti- und Ri- Plasmid T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden.
Werden für die Transformation Agrobakterien verwendet, muß die einzuführende DNA in spezielle Plasmide kloniert werden, und zwar entweder in einen intermediären Vektor oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige v/Λ-Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation). Binäre Vektoren können sowohl in E.coli als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsters et al. (1 978) Mol. Gen. Genet. 1 63: 1 81 -1 87). Das als Wirtszelle dienende Agrobakterium sollte ein Plasmid, das eine 'r-Region trägt, enthalten. Die r-Region ist für den Transfer der T- DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet.
Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 1 2051 6; Hoekema, In: The Binary Plant Vector System Offsetdrukkerij Kanters B.V., Alblasserdam ( 1 985), Chapter V; Fraley et al., Crit. Rev. Plant. Sei., 4: 1 -46 und An et al. (1 985) EMBO J. 4: 277-287 beschrieben worden.
Für den Transfer der DNA in die Pflanzenzelle können Pflanzen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kokultiviert werden. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensions-kultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert werden. Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden. Andere Möglichkeiten der Einführung fremder DNA unter Verwendung des biolistsischen Verfahrens oder durch Protoplastentransformation sind bekannt (vgl. z.B. Willmitzer, L, 1 993 Transgenic plants. In: Biotechnology, A Multi-Volume Comprehensive Treatise (H.J. Rehm, G. Reed, A. Pühler, P. Stadler, eds.), Vol. 2, 627-659, VCH Weinheim-New York-Basel-Cambridge).
Während die Transformation dikotyler Pflanzen über Ti-Plasmid-Vektorsysteme mit Hilfe von Agrobacterium tumefaciens wohl etabliert ist, weisen neuere Arbeiten darauf hin, daß auch monokotyle Pflanzen der Transformation mittels Agrobacterium basierender Vektoren sehr wohl zugänglich sind (Chan et al., Plant Mol. Biol. 22 (1 993), 491 -506; Hiei et al., Plant J. 6 (1 994), 271 -282).
Alternative Systeme zur Transformation von monokotylen Pflanzen sind die Transformation mittels des biolistischen Ansatzes, die
Protoplastentransformation, die Elektroporation von partiell permeabilisierten Zellen, die Einbringung von DNA mittels Glasfasern.
Spezifisch die Transformation von Mais wird in der Literatur verschiedentlich beschrieben (vgl. z.B. WO95/061 28, EP 0 51 3 849; EP 0 465 875). In EP 292 435 wird ein Verfahren beschrieben, mit Hilfe dessen, ausgehend von einem schleimlosen, weichen (friable) granulösen Mais-Kallus, fertile Pflanzen erhalten werden können. Shillito et al. (Bio/Technology 7 (1 989), 581 ) haben in diesem Zusammenhang beobachtet, daß es ferner für die Regenerierbarkeit zu fertilen Pflanzen notwendig ist, von Kallus-Suspensionskulturen auszugehen, aus denen eine sich teilende Protoplastenkultur, mit der Fähigkeit zu Pflanzen zu regenerieren, herstellbar ist. Nach einer in vitro Kultivierungszeit von 7 bis 8 Monaten erhalten Shillito et al. Pflanzen mit lebensfähigen Nachkommen, die jedoch Abnormalitäten in der Morphologie und der Reproduktivität aufweisen. Prioli und Söndahl (Bio/Technology 7 (1 989), 589) beschreiben ebenfalls die Regeneration und die Gewinnung fertiler Mais-Pflanzen aus Mais-Protoplasten.
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 41 8, Bleomycin, Hygromycin oder Phosphinothricin u.a. vermittelt. Der individuelle gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten.
Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al. (1 986) Plant Cell Reports 5:81 -84). Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, gekreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotypischen Merkmale.
Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Merkmale erhalten geblieben sind.
Ebenfalls ist ein weiterer Erfindungsgegenstand ein Verfahren zur Herstellung von Stärke in an sich bekannter Weise, worin erfindungsgemäße Pflanzenzellen, /
38
Pflanzen, Pflanzenteilen oder Vermehrungsmaterial verarbeitet bzw. in das Verfahren integriert werden.
Verfahren zur Extraktion der Stärke aus Pflanzen oder aus stärkespeichernden Teilen von Pflanzen sind dem Fachmann bekannt. Verfahren zur Extraktion von Stärke aus Maissamen sind z. B. in Eckhoff et al. (Cereal Chem. 73 (1 996) 54- 57) beschrieben. Die Extraktion von Maisstärke im industriellen Maßstab wird in der Regel durch das sogenannte "wet milling" erreicht. Weiterhin sind Verfahren zur Extraktion der Stärke aus verschiedenen stärkespeichernden Pflanzen beschrieben, z. B. in "Starch: Chemistry and Technology (Hrsg.: Whistler, BeMiller und Paschall (1 994), 2. Ausgabe, Academic Press Inc. London Ltd; ISBN 0-1 2-746270-8; siehe z. B. Kapitel XII, Seite 41 2-468: Mais und Sorghum-Stärken: Herstellung; von Watson; Kapitel XIII, Seite 469-479: Tapioca-, Arrowroot- und Sagostärken: Herstellung; von Corbishley und Miller; Kapitel XIV, Seite 479-490: Kartoffelstärke: Herstellung und Verwendungen; von Mitch; Kapitel XV, Seite 491 bis 506: Weizenstärke: Herstellung, Modifizierung und Verwendungen; von Knight und Oson; und Kapitel XVI, Seite 507 bis 528: Reisstärke: Herstellung und Verwendungen; von Rohmer und Klem) . Vorrichtungen, die für gewöhnlich bei Verfahren zur Extraktion von Stärke von Pflanzenmaterial verwendet werden, sind Separatoren, Dekanter, Hydrocyclone, Sprühtrockner und Wirbelschichttrockner.
Die erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen synthetisieren aufgrund der Expression eines erfindungsgemäßen Nukleinsäuremoleküls eine Stärke, die beispielsweise in ihren physikalisch-chemischen Eigenschaften im Vergleich zu in Wildtyp-Pflanzen synthetisierter Stärke verändert ist.
Noch ein weiterer Erfindungsgegenstand ist auch die Stärke, die aus einer erfindungsgemäßen Pflanzenzelle, Pflanze, deren Vermehrungsmaterial oder einem erfindungsgemäßen Verfahren erhältlich ist. Zu einer weiteren Ausführungsform der vorliegenden Erfindung zählt auch die industrielle Verwendung der erfindungsgemäßen Stärke zur Herstellung von Nahrungsmitteln, Verpackungsmaterialien oder Einwegartikeln.
Die erfindungsgemäßen Stärke kann nach dem Fachmann bekannten Verfahren modifiziert werden und eignet sich in unmodifizierter oder modifizierter Form für verschiedene Verwendungen im Nahrungsmittel- oder Nicht- Nahrungsmittelbereich.
Die Einsatzmöglichkeiten der erfindungsgemäßen Stärke iassen sich grundsätzlich in zwei große Bereiche unterteilen. Der eine Bereich umfaßt die Hydrolyseprodukte der Stärke, hauptsächlich Glukose und Glukosebausteine, die über enzymatische oder chemische Verfahren erhalten werden. Sie dienen als Ausgangsstoff für weitere chemische Modifikationen und Prozesse, wie Fermentation. Von Bedeutung kann hier die Einfachheit und kostengünstige Ausführung eines Hydrolyseverfahrens sein, wie es gegenwärtig im wesentlichen enzymatisch unter Verwendung von Amyloglukosidase verläuft. Vorstellbar wäre eine Kosteneinsparung durch einen geringeren Einsatz von Enzymen. Eine Strukturveränderung der Stärke, z.B. Oberflächenvergrößerung des Korns, leichtere Verdaulichkeit durch geringeren Verzweigungsgrad oder eine sterische Struktur, die die Zugänglichkeit für die eingesetzten Enzyme begrenzt, könnte dies bewirken.
Der andere Bereich, in dem die erfindungsgemäße Stärke wegen ihrer polymeren Struktur als sogenannte native Stärke verwendet werden kann, gliedert sich in zwei weitere Einsatzgebiete: f
40
1 . Nahrungsmittelindustrie
Stärke ist ein klassischer Zusatzstoff für viele Nahrungsmittel, bei denen sie im wesentlichen die Funktion des Bindens von wäßrigen Zusatzstoffen übernimmt bzw. eine Erhöhung der Viskosität oder aber eine erhöhte Gelbildung hervorruft. Wichtige Eigenschaftsmerkmale sind das Fließ- und Sorptionsverhalten, die Quell- und Verkleisterungstemperatur, die Viskosität und Dickungsleistung, die Löslichkeit der Stärke, die Transparenz und Kleisterstruktur, die Hitze-, Scher- und Säurestabilität, die Neigung zur Retrogradation, die Fähigkeit zur Filmbildung, die Gefrier/Taustabilität, die Verdaulichkeit sowie die Fähigkeit zur Komplexbildung mit z.B. anorganischen oder organischen Ionen.
2. Nicht-Nahrungmittelindustrie
In diesem großen Bereich wird Stärke als Hilfsstoff für unterschiedliche Herstellungsprozesse bzw. als Zusatzstoff in technischen Produkten eingesetzt. Bei der Verwendung von Stärke als Hilfsstoff ist hier insbesondere die Papier- und Pappeindustrie zu nennen. Stärke dient dabei in erster Linie zur Retardation (Zurückhaltung von Feststoffen), der Abbindung von Füllstoff- und Feinstoffteilchen, als Festigungsstoff und zur Entwässerung. Darüber hinaus werden die günstigen Eigenschaften der Stärke in bezug auf die Steifigkeit, die Härte, den Klang, den Griff, den Glanz, die Glätte, die Spaitfestigkeit sowie die Oberflächen ausgenutzt.
2.1 . Papier- und Pappeindustrie
Innerhalb des Papierherstellungsprozesses sind vier Anwendungsbereiche, nämlich Oberfläche, Strich, Masse und Sprühen, zu unterscheiden. Auf die
Oberflächenstärke entfällt mit 80 % des Verbrauchs die mit Abstand größte
Stärkemenge, 8 % werden als Strichstärke, 7 % als Massestärke und 5 % als
Sprühstärke eingesetzt.
Die Anforderungen an die Stärke in bezug auf die Oberflächenbehandlung sind im wesentlichen ein hoher Weißegrad, eine angepaßte Viskosität, eine hohe Viskositätsstabilität, eine gute Filmbildung sowie eine geringe Staubbildung. Bei der Verwendung im Strich spielt der Feststoffgehalt, eine angepaßte Viskosität, ein hohes Bindevermögen sowie eine hohe Pigmentaffinität eine wichtige Rolle. Als Zusatz zur Masse ist eine rasche, gleichmäßige, verlustfreie Verteilung, eine hohe mechanische Stabilität und eine vollständige Zurückhaltung im Papierfließ von Bedeutung. Beim Einsatz der Stärke im Sprühbereich sind ebenfalls ein angepaßter Feststoffgehalt, hohe Viskosität sowie ein hohes Bindevermögen von Bedeutung.
2.2. Klebstoffindustrie
Ein großer Einsatzbereich von Stärken besteht in der Klebstoffindustrie, wo man die Einsatzmöglichkeiten in vier Teilbereiche gliedert: die Verwendung als reinem Stärkeleim, die Verwendung bei mit speziellen Chemikalien aufbereiteten Stärkeleimen, die Verwendung von Stärke als Zusatz zu synthetischen Harzen und Polymerdispersionen sowie die Verwendung von Stärken als Streckmittel für synthetische Klebstoffe. 90 % der Klebstoffe auf Stärkebasis werden in den Bereichen Wellpappenherstellung, Herstellung von Papiersäcken, Beuteln und Tüten, Herstellung von Verbundmaterialien für Papier und Aluminium, Herstellung von Kartonagen und Wiederbefeuchtungsleim für Briefumschläge, Briefmarken usw. eingesetzt.
2.3. Textil- und Textilpflegemittelindustrie
Ein großes Einsatzfeld für Stärken als Hilfmittel und Zusatzstoff ist der Bereich Herstellung von Textilien und Textilpflegemitteln. Innerhalb der Textilindustrie sind die folgenden vier Einsatzbereiche zu unterscheiden: Der Einsatz der Stärke als Schlichtmittel, d.h. als Hilfstoff zur Glättung und Stärkung des Klettverhaltens zum Schutz gegen die beim Weben angreifenden Zugkräfte sowie zur Erhöhung der Abriebfestigkeit beim Weben, Stärke als Mittel zur Textilaufrüstung vor allem nach qualitätsverschlechternden Vorbehandlungen, wie Bleichen, Färben usw., Stärke als Verdickungsmittel bei der Herstellung von Farbpasten zur Verhinderung von Farbstoffdiffusionen sowie Stärke als Zusatz zu Kettungsmitteln für Nähgarne.
2.4. Baustoffindustrie
Der vierte Einsatzbereich ist die Verwendung von Stärken als Zusatz bei Baustoffen. Ein Beispiel ist die Herstellung von Gipskartonplatten, bei der die im Gipsbrei vermischte Stärke mit dem Wasser verkleistert, an die Oberfläche der Gipsplatte diffundiert und dort den Karton an die Platte bindet. Weitere Einsatzbereiche sind die Beimischung zu Putz- und Mineralfasern. Bei Transportbeton werden Stärkeprodukte zur Verzögerung der Abbindung eingesetzt.
2.5. Bodenstabilisation
Ein mengenmäßig begrenzter Markt für Stärkeprodukte bietet sich bei der Herstellung von Mitteln zur Bodenstabilisation an, die bei künstlichen Erdbewegungen zum temporären Schutz der Bodenpartikel gegenüber Wasser eingesetzt werden. Kombinationsprodukte aus Stärke und Polymeremulsionen sind nach heutiger Kenntnis in ihrer Erosions- und verkrustungsmindernden Wirkung den bisher eingesetzten Produkten gleichzusetzen, liegen preislich aber deutlich unter diesen.
2.6. Einsatz bei Pflanzenschutz- und Düngemitteln
Ein Einsatzbereich liegt bei der Verwendung der Stärke in Pflanzenschutzmitteln zur Veränderung der spezifischen Eigenschaften der Präparate. So werden Stärken zur Verbesserung der Benetzung von Pflanzenschutz- und Düngemitteln, zur dosierten Freigabe der Wirkstoffe, zur Umwandlung flüssiger, flüchtiger und/oder übelriechender Wirkstoffe in mikrokristalline, stabile, formbare Substanzen, zur Mischung inkompatibler Verbindungen und zur Verlängerung der Wirkdauer durch Verminderung der Zersetzung eingesetzt. 2.7. Pharmaka, Medizin und Kosmetikindustrie
Ein weiteres Einsatzgebiet besteht im Bereich der Pharmaka, Medizin und Kosmetikindustrie. In der pharmazeutischen Industrie werden Stärken als Bindemittel für Tabletten oder zur Bindemittelverdünnung in Kapseln eingesetzt. Weiterhin dienen Stärken als Tablettensprengmittel, da sie nach dem Schlucken Flüssigkeit absorbieren und nach kurzer Zeit soweit quellen, daß der Wirkstoff freigesetzt wird. Medizinische Gleit- und Wundpuder basieren aus qualitativen Gründen auf Stärke. Im Bereich der Kosmetik werden Stärken beispielsweise als Träger von Puderzusatzstoffen, wie Düften und Salicylsäure eingesetzt. Ein relativ großer Anwendungsbereich für Stärke liegt bei Zahnpasta.
2.8. Stärkezusatz zu Kohle und Brikett
Einen Einsatzbereich bietet die Stärke als Zusatzstoff zu Kohle und Brikett. Kohle kann mit einem Stärkezusatz quantitativ hochwertig agglomeriert bzw. brikettiert werden, wodurch ein frühzeitiges Zerfallen der Briketts verhindert wird. Der Stärkezusatz liegt bei Grillkohle zwischen 4 und 6 %, bei kalorierter Kohle zwischen 0, 1 und 0,5 %. Des weiteren gewinnen Stärken als Bindemittel an Bedeutung, da durch ihren Zusatz zu Kohle und Brikett der Ausstoß schädlicher Stoffe deutlich vermindert werden kann.
2.9. Erz- und Kohleschlammaufbereitung
Stärke kann ferner bei der Erz- und Kohieschlammaufbereitung als Flockungsmittel eingesetzt werden.
2.10. Gießereihilfsstoff
Ein weiterer Einsatzbereich besteht als Zusatz zu Gießereihilfsstoffen. Bei verschiedenen Gußverfahren werden Kerne benötigt, die aus Bindemittelversetzten Sänden hergestellt werden. Als Bindemittel wird heute überwiegend Bentonit eingesetzt, das mit modifizierten Stärken, meist Quellstärken, versetzt ist. Zweck des Stärkezusatzes ist die Erhöhung der Fließfestigkeit sowie die Verbesserung der Bindefestigkeit. Darüber hinaus können die Quellstärken weitere produktionstechnische Anforderungen, wie im kalten Wasser dispergierbar, rehydratisierbar, gut in Sand mischbar und hohes Wasserbindungsvermögen, aufweisen.
2.1 1 . Einsatz in der Kautschukindustrie
In der Kautschukindustrie wird Stärke zur Verbesserung der technischen und optischen Qualität eingesetzt. Gründe sind dabei die Verbesserung des Oberflächenglanzes, die Verbesserung des Griffs und des Aussehens, dafür wird Stärke vor der Kaltvulkanisation auf die klebrigen gummierten Flächen von Kautschukstoffen gestreut, sowie die Verbesserung der Bedruckbarkeit des Kautschuks.
2.1 2. Herstellung von Lederersatzstoffen
Eine weitere Absatzmöglichkeit von modifizierten Stärken besteht bei der Herstellung von Lederersatzstoffen.
2.1 3. Stärke in synthetischen Polymeren
Auf dem Kunststoffsektor zeichnen sich folgende Einsatzgebiete ab: die Einbindung von Stärkefolgeprodukten in den Verarbeitungsprozess (Stärke ist nur Füllstoff, es besteht keine direkte Bindung zwischen synthetischem Polymer und Stärke) oder alternativ die Einbindung von Stärkefolgeprodukten in die Herstellung von Polymeren (Stärke und Polymer gehen eine feste Bindung ein) .
Die Verwendung von Stärke als reinem Füllstoff ist verglichen mit den anderen Stoffen wie Talkum nicht wettbewerbsfähig. Anders sieht es aus, wenn die spezifischen Stärkeeigenschaften zum Tragen kommen und hierdurch das Eigenschaftsprofil der Endprodukte deutlich verändert wird. Ein Bespiel hierfür ist die Anwendung von Stärkeprodukten bei der Verarbeitung von Thermoplasten, wie Polyäthylen. Hierbei werden die Stärke und das synthetische Polymer durch Koexpression im Verhältnis von 1 : 1 zu einem 'master batch' kombiniert, aus dem mit granuliertem Polyäthylen unter Anwendung herkömmlicher Verfahrenstechniken diverse Produkte hergestellt werden. Durch die Einbindung von Stärke in Polyäthylenfolien kann eine erhöhte Stoffdurchlässigkeit bei Hohlkörpern, eine verbesserte Wasserdampfdurchlässigkeit, ein verbessertes Antistatikverhalten, ein verbessertes Antiblockverhalten sowie eine verbesserte Bedruckbarkeit mit wäßrigen Farben erreicht werden. Gegenwärtige Nachteile betreffen die ungenügende Transparenz, die verringerte Zugfestigkeit sowie eine verringerte Dehnbarkeit.
Eine andere Möglichkeit ist die Anwendung von Stärke in Polyurethanschäumen. Mit der Adaption der Stärkederivate sowie durch die verfahrenstechnische Optimierung ist es möglich, die Reaktion zwischen synthetischen Polymeren und den Hydroxygruppen der Stärken gezielt zu steuern. Das Ergebnis sind Polyurethanfolien, die durch die Anwendung von Stärke folgende Eigenschaftsprofile erhalten: eine Verringerung des Wärmeausdehnungsoffizienten, Verringerung des Schrumpfverhaltens, Verbesserung des Druck/Spannungsverhaltens, Zunahme der Wasserdampfdurchlässigkeit ohne Veränderung der Wasseraufnahme, Verringerung der Entflammbarkeit und der Aufrißdichte, kein Abtropfen brennbarer Teile, Halogenfreiheit und verminderte Alterung. Nachteile, die gegenwärtig noch vorhanden sind, sind verringerte Druckfestigkeit sowie eine verringerte Schlagfestigkeit.
Die Produktentwicklung beschränkt sich inzwischen nicht mehr nur auf Folien. Auch feste Kunststoffprodukte, wie Töpfe, Platten und Schalen, sind mit einem Stärkegehalt von über 50 % herzustellen. Des weiteren sind Stärke/ Polymermischungen günstig zu beurteilen, da sie eine sehr viel höhere biologische Abbaubarkeit aufweisen. Außerordentliche Bedeutung haben weiterhin auf Grund ihres extremen Wasserbindungsvermögen Stärkepfropfpolymerisate gewonnen. Dies sind Produkte mit einem Rückgrat aus Stärke und einer nach dem Prinzip des Radikalkettenmechanismus aufgepfropften Seitengitters eines synthetischen Monomers. Die heute verfügbaren Stärkepfropfpolymerisate zeichnen sich durch ein besseres Binde- und Rückhaltevermögen von bis zu 1000 g Wasser pro g Stärke bei hoher Viskosität aus. Die Anwendungsbereiche für diese Superabsorber haben sich in den letzten Jahren stark ausgeweitet und liegen im Hygienebereich mit Produkten Windeln und Unterlagen sowie im landwirtschaftlichen Sektor, z.B. bei Saatgutpillierungen.
Entscheidend für den Einsatz von neuen, gentechnisch veränderten Stärken sind zum einen die Struktur, Wassergehalt, Proteingehalt, Lipidgehalt, Fasergehalt, Asche/Phosphatgehalt, Amylose/Amylopektinverhältnis, Molmassenverteilung, Verzweigungsgrad, Korngröße und -form sowie Kristallisation, zum anderen auch die Eigenschaften, die in folgende Merkmale münden: Fließ- und Sorptionsverhalten, Verkleisterungstemperatur, Viskosität, Dickungsleistung, Löslichkeit, Kleisterstruktur, Transparenz, Hitze-, Scher- und Säurestabilität, Retrogradationsneigung, Gelbildung, Gefrier/Taustabilität, Komplexbildung, Jodbindung, Filmbildung, Klebekraft, Enzymstabilität, Verdaulichkeit und Reaktivität.
Die Erzeugung modifizierter Stärken mittels gentechnischer Verfahren kann zum einen die Eigenschaften der z.B. aus der Pflanze gewonnenen Stärke dahingehend verändern, daß weitere Modifikationen mittels chemischer oder physikalischer Veränderungen nicht mehr notwendig erscheinen. Zum anderen können jedoch auch durch gentechnische Verfahren veränderte Stärken weiteren chemischen Modifikationen unterworfen werden, was zu weiteren Verbesserungen der Qualität für bestimmte der oben beschriebenen Einsatzgebiete führt. Diese chemischen Modifikationen sind grundsätzlich bekannt. Insbesondere handelt es sich dabei um Modifikationen durch Hitze- und Druckbehandlung, Behandlung mit organischen oder anorganischen Säuren, enzymatische Behandlung, Oxidationen und Veresterungen, welche z.B. zur Entstehung von Phosphat-, Nitrat-, Sulfat-, Xanthat-, Acetat- und Citratstärken führen. Desweiteren können ein- oder mehrwertige Alkohole in Gegenwart starker Säuren zur Erzeugung von Erzeugung von Stärkeethern eingesetzt werden, so daß Stärke-Alkylether, O-Allylether, Hydroxylalkylether, 0- Carboxylmethylether, N-haltige Stärkeether, P-haltige Stärkeether, S-haltige Stärkeether,vemetzte Stärken oder Stärke-Pfropf-Polymerisate resultieren.
Eine Verwendung der erfindungsgemäßen Stärken liegt in der industriellen Anwendung, vorzugsweise für Lebensmittel oder der Herstellung von Verpackungsmaterialien und Einwegartikeln.
Die nachfolgenden Beispiele dienen der Illustrierung der Erfindung und stellen in keiner Weise eine Einschränkung dar.
Verwendete Abkürzungen:
BE branching enzyme (Verzweigungsenzym) bp Basenpaar
IPTG Isopropyl ß-D-Thiogalacto-Pyranosid
SS soluble starch synthase (lösliche Stärkesynthase)
PMSF Phenylmethylsulfonylfluorid
In den Beispielen verwendete Medien und Lösungen: 20 x SSC 1 75,3 g NaCI
88,2 g Natrium-Citrat ad 1000 ml mit ddH20 pH 7,0 mit 1 0 N NaOH Puffer A 50 mM Tris-HCI pH 8,0
2,5 mM DTT
2 mM EDTA
0,4 mM PMSF
1 0% Glycerin
0, 1 % Natriumdithionit
Puffer B 50 mM Tris-HCI pH 7,6 2,5 mM DTT 2 mM EDTA
Puffer C 0,5 M Natriumeitrat pH 7,6 50 mM Tris-HCI pH 7,6 2,5 mM DTT 2 mM EDTA
10 x TBS 0,2 M Tris-HCI pH 7,5 5,0 M NaCI
10 x TBST 1 0 x TBS
0, 1 % (v/v) Tween 20
Elutionspuffer 25 mM Tris pH 8,3 250 mM Glycin
Dialysepuffer 50 mM Tris-HCI pH 7,0
50 mM NaCI
2 mM EDTA
14,7 mM ß-Mercaptoethanol
0,5 mM PMSF Proteinpuffer 50 mM Natriumphosphatpuffer pH 7,2
10 mM EDTA 0,5 mM PMSF 14,7 mM ß-Mercaptoethanol
Beschreibung der Abbildungen:
Fig. 1 stellt ein schematisches RVA-Temperaturprofil (Viskosität vs. Zeit
[min]) dar mit den viskosimetrischen Parametern T = Verkleisterungstemperatur, Temperatur zum Zeitpunkt des Verkleisterungsbeginns; Max bezeichnet die maximale Viskosität; Min bezeichnet die minimale Viskosität; Fin bezeichnet die Viskosität am Ende der Messung; Set ist die Differenz (Δ) aus Min und Fin (Setback).
In den Beispielen wurden die folgenden Methoden verwendet:
1 . Klonierungsverfahren
Zur Klonierung in E. co//' wurde der Vektor pBluescript II SK (Stratagene) verwendet.
Für die Pflanzentransformation wurden die Genkonstruktionen in den binären Vektor pBinAR Hyg (Höfgen & Willmitzer, 1 990, Plant Sei. 66:221 -230) und pBinB33-Hyg kloniert.
2. Bakterienstämme und Plasmide
Für den Bluescript-Vektor p Bluescript II KS (Stratagene) und für die pBinAR Hyg- und pBinB33 Hyg-Konstrukte wurde der E. co//-Stamm DH5α (Bethesda Research Laboratories, Gaithersburgh, USA) verwendet. Für die in vivo excision wurde der E. cσ//-Stamm XL1 -Blue verwendet.
pBinAR
Das Plasmid pBinAR ist ein Derivat des binären Vektorplasmids pBin1 9 (Bevan, 1 984, Nucl. Acid Res. 1 2:871 1 -8721 ), das folgendermaßen konstruiert wurde: Ein 529 bp langes Fragment, das die Nukleotide 6909-7437 des 35S-Promotor des Blumenkohl-Mosaik-Virus umfaßt, wurde als EcoRI/Kpnl-Fragment aus dem Plasmid pDH51 (Pietrzak et al., 1 986) isoliert und zwischen die EcoRI- und Kpnl- Schnittstellen des Polylinkers von pUC1 8 ligiert und wurde Plasmid pUC1 8-35S bezeichnet. Aus dem Plasmid pAGV40 (Herrera-Estrella et al., 1 983) wurde mit Hilfe der Restriktionsendonucleasen Hindlll und Pvull ein 1 92 bp langes Fragment isoliert, DNA des Ti-Plasmids pTiACHδ (Gielen et al, 1 984, EMBO J. :835-846) umfaßt (Nukleotide 1 1 749-1 1 939). Nach Addition von Sphl-Linkern an die Pvull-Schnittstelle wurde das Fragment zwischen die SpHI- und Hindill- Schnittstellen von pUC18-35S ligiert und wurde Plasmid pA7 bezeichnet. Desweiteren wurde der gesamte Polylinker enthaltend den 35S-Promotor und ocs-Terminator mit EcoRI und Hindlll herausgeschnitten und in den entsprechend geschnittenen pBin1 9 ligiert. Dabei entstand der pflanzliche Expressionsvektor pBinAR (Höfgen und Willmitzer, 1 990) .
pBinB33
Der Promotor des Patatin Gens B33 aus Solanum tuberosum (Rocha-Sosa et al., 1 989) wurde als Dral-Fragment (Nukleotide -1 51 2 - + 1 4) in den mit Sst I geschnittenen Vektor pUC1 9, dessen Enden mit Hilfe der T4-DNA Polymerase geglättet worden waren, ligiert. Daraus entstand das Plasmid pUC1 9-B33. Aus diesem Plasmid wurde der B33-Promotor mit EcoRI und Smal herausgeschnitten und in den entsprechend geschnittenen Vektor pBinAR ligiert. Hieraus entstand der pflanzliche Expressionsvektor pBinB33. pBinAR-Hyg
Ausgehend vom Plasmid pA7 (vgl. Beschreibung des Vektors pBinAR) wurde das EcoRI-Hindlll Fragment umfassend den 35S-Promotor, den ocs-Terminator sowie den zwischen 35S-Promotor und ocs-Terminator gelegenen Teil des Polylinker in das entsprechend geschnittene pBin-Hyg Plasmid gesetzt.
pBinB33-Hyg
Ausgehend vom Plasmid pBinB33 wurde das EcoRI-Hindlll Fragment umfassend den B33-Promotor, einen Teil des Polylinkers sowie den ocs-Terminator herausgeschnittenen und in den entsprechend geschnittenen Vektor pBin-Hyg ligiert. Hieraus entstand der pflanzliche Expressionsvektor pBinB33-Hyg.
3. Transformation von Agrobacterium tumefaciens
Der Transfer der DNA erfolgte durch direkte Transformation nach der Methode von Höfgen&Willmitzer ( 1 988, Nucleic Acids Res. 1 6:9877). Die Plasmid-DNA transformierter Agrobakterien wurde nach der Methode von Birnboim&Doly (1 979, Nucleic Acids Res. 7: 1 51 3-1 523) isoliert und nach geeigneter Restriktionsspaltung gelelektrophoretisch analysiert.
4. Transformation von Kartoffeln
Die Transformation der Plasmide in die Kartoffelpflanzen (Solanum tuberosum L.cv. Desiree, Vereinigte Saatzuchten eG, Ebstorf) wurde mit Hilfe des Agrobacterium tumefaciens-Stam es C58C1 durchgeführt (Dietze et al. (1 995) in Gene Transfer to Plants. S. 24-29, eds.: Potrykus, I. and Spangenberg, G., Springer Verlag, Deblaere et al., 1 985, Nucl. Acids Res. 1 3:4777-4788).
Zehn kleine mit dem Skalpell verwundete Blätter einer Kartoffel-Sterilkultur wurden in 1 0 ml MS-Medium (Murashige&Skoog (1 962) Physiol. Plant. 1 5: 473) mit 2% Saccharose gelegt, welches 50 ml einer unter Selektion gewachsenen Agrobacterium fü/r7e ac/eΛS-Übernachtkultur enthielt. Nach 3-5 minütigem, leichtem Schütteln erfolgte eine weitere Inkubation für 2 Tage im Dunkeln. Daraufhin wurden die Blätter zur Kallusinduktion auf MS-Medium mit 1 ,6% Glukose, 5 mg/l Naphthylessigsäure, 0,2 mg/l Benzylaminopurin, 250 mg/l Claforan, 50 mg/l Kanamycin, und 0,80.% Bacto Agar gelegt. Nach einwöchiger Inkubation bei 25 °C und 3000 Lux wurden die Blätter zur Sproßinduktion auf MS-Medium mit 1 ,6% Glukose, 1 ,4 mg/l Zeatinribose, 20 mg/l Naphthylessigsäure, 20 mg/l Gibereilinsäure, 250 mg/l Claforan, 50 mg/l Kanamycin, und 0,80.% Bacto Agar gelegt.
5. Pflanzenhaltung
Kartoffelpflanzen wurden im Gewächshaus unter folgenden Bedingungen gehalten:
Lichtperiode 1 6 h bei 25000 Lux und 22°C
Dunkelperiode 8 h bei 1 5°C
Luftfeuchte 60 %
6. Radioaktive Markierung von DNA-Fragmenten
Die radiokative Markierung von DNA-Fragmenten wurde mit Hilfe eines DNA- Random Primer Labelling Kits der Firma Boehringer Mannheim (Deutschland) nach den Angaben des Herstellers durchgeführt.
7. Bestimmung der Stärkesynthase-Aktivität
Die Bestimmung der Stärkesynthaseaktivität erfolgte durch Bestimmung des Einbaus von 14 C-Glukose aus ADP[14 C-Glukose] in ein in Methanol/KCI unlösliches Produkt wie beschrieben in Denyer & Smith, 1 992, Planta 1 86:609- 61 7.
8. Nachweis von löslichen Stärkesynthasen im nativen Gel
Zum Nachweis der Aktivität löslicher Stärkesynthasen durch nicht- denaturierende Gelelektrophorese wurden Gewebeproben von Kartoffelknollen in 50 mM Tris-HCI pH 7,6, 2 mM DTT, 2,5 mM EDTA, 1 0 % Glycerin und 0,4 mM PMSF aufgeschlossen. Die Elektrophorese wurde in einer MiniProtean II Kammer (BioRAD) durchgeführt. Die Monomerkonzentration der 1 ,5 mm dicken Gele war 7,5 % (w/v), als Gel- und Laufpuffer diente 25 mM Tris-Glycin pH 8,4. Gleiche Mengen an Proteinextrakt wurden aufgetragen und für 2 h bei 1 0 mA je Gel aufgetrennt.
Anschließend erfolgte die Inkubation der Aktivitäts-Gele in 50 mM Tricine-NaOH pH 8,5, 25 mM Kaliumacetat, 2 mM EDTA, 2 mM DTT, 1 mM ADP-Glukose, 0, 1 % (w/v) Amylopektin und 0,5 M Natriumeitrat. Gebildete Glukane wurden mit Lugolscher Lösung angefärbt.
9. Stärkeanalytik
Die von den transgenen Kartoffelpflanzen gebildete Stärke wurde durch folgende
Methoden charakterisiert:
a) Bestimmung des Amylose/Amylopektinverhältnisses in Stärke aus Kartoffelpflanzen
Stärke wurde nach Standardmethoden aus Kartoffelpflanzen isoliert und das Verhältnis Amylose zu Amylopektin nach der von Hovenkamp-Hermelink et al. beschriebenen Methode (Potato Research 31 (1 988) 241 -246) bestimmt.
b) Bestimmung des Phosphatgehaltes
In der Kartoffelstärke können einige Glucoseeinheiten an den Kohlenstoffatomen der Position C2, C3 und C6 phosphoryliert sein. Zur Bestimmung des Phosphorylierungsgrades an der C6-Position der Glucose wurden 1 00 mg Stärke in 1 ml 0.7 M HCI für 4 Stunden bei 95 °C hydrolysiert (Nielsen et. al. (1 994) Plant Physiol. 1 05: 1 1 1 -1 1 7). Nach Neutralisation mit 0.7 M KOH wurden zur Glucose-6-phosphat-Bestimmung 50 ml des Hydrolysats einem optisch- enzymatischen Test unterzogen. Die Änderung der Absorption des Testansatzes r
54
(100 mM Imidazol/HCI; 1 0 mM MgCI2; 0.4 mM NAD; 2 units Glucose-6- phosphat-Dehydrogenase aus Leuconostoc mesenteroides; 30°C) wurde bei 334 nm verfolgt.
Die Bestimmung des Gesamtphosphats erfolgte wie in Ames, 1 996, Methods in Enzymology VIII, 1 1 5-1 1 8 beschrieben.
c) Analyse der Seitenketten des Amylopektins
Zur Analyse der Verteilung und Länge der Seitenketten in den Stärkeproben wurde 1 ml einer 0, 1 %igen Stärkelösung mit 0,4 U Isoamylase (Megazyme International Ireland Ltd., Bray, Ireland) über Nacht bei 37°C in 100 mM Na- citrat-Puffer, pH 3,5 verdaut.
Die weitere Analyse erfolgte, sofern nicht anders erwähnt, entsprechend den Angaben von Tomlinson et al., (1 997), Plant J. 1 1 :31 -47.
d) Korngrößenbestimmung
Die Korngrößenbestimmung wurde mit einem Fotosedimentometer des Typs "Lumosed" der Firma Retsch GmbH, Deutschland, durchgeführt. Hierfür wurden 0.2 g Stärke in ca. 1 50 ml Wasser suspendiert und sofort vermessen. Das vom Hersteller mitgeiieferte Programm berechnete den mittleren Durchmesser der Stärkekörner auf der Annahme einer durchschnittlichen Dichte der Stärke von 1 ,5 g/l.
e) Verkleisterungseigenschaften
Die Verkleisterungs- bzw. Viskositätseigenschaften der Stärke wurden mit einem Viskograph E der Firma Brabender oHG, Deutschland, oder mit einem Rapid Visco Analyser, Newport Scientific Pty Ltd, Investment Support Group, Warriewood NSW 2102, Australien, aufgezeichnet. Bei Verwendung des Viskographen E wurde eine Suspension von 30 g Stärke in 450 ml Wasser folgendem Heizprogramm unterzogen: aufheizen von 50°C auf 96°C mit 37min., 30 Minuten konstant halten, abkühlen auf 30°C mit 37min. und abermals 30 Minuten konstant halten . Das Temperaturprofil lieferte charakteristische Verkleisterungseigenschaften.
Bei der Messung mittels des Rapid Visco Analysers (RVA) wurde eine Suspension von 2 g Stärke in 25 ml Wasser folgendem Heizprogramm unterzogen: 60 s bei 50°C suspendieren, aufheizen von 50°C auf 95°C mit 1 27min., 2,5 Minuten konstant halten, abkühlen auf 50°C mit 1 2°C/min. und abermals 2 Minuten konstant halten. Das RVA-Temperaturprofil lieferte die viskosimetrischen Parameter der untersuchten Stärken für die maximale (Max) und Endviskosität (Fin), die Verkleisterungstemperatur (T), die nach der maximalen Viskosität auftretende minimale Viskosität (Min) sowie die Differenz aus minimaler und Endviskosität (Setback, Set) (vgl. Tabelle 1 und Fig. 1 ) .
f) Bestimmung der Gelfestigkeit
Zur Bestimmung der Gelfestigkeit mittels eines Texture Analyser wurden 2 g Stärke in 25 ml Wasser verkleistert (vgl. Messung mittels RVA) und anschließend 24 h lang bei 25°C luftdicht verschlossen gelagert. Die Proben wurden unter der Sonde (runder Stempel) eines Texture Analysers TA-XT2 (Stable Micro Systems) fixiert und die Gelfestigkeit mit folgenden Parameter- Einstellungen bestimmt:
Test-Geschwindigkeit 0,5 mm
Eindringtiefe 7 mm
Kontaktfläche (des Stempels) 1 1 3 mm2
Druck/Kontaktfläche 2 g
1 0. Bestimmung von Glucose, Fructose und Saccharose
Zur Bestimmung des Glucose-, Fructose- bzw. Saccharosegehalts wurden kleine Knollenstücke (Durchmesser ca. 10 mm) von Kartoffelknollen in flüssigem Stickstoff eingefroren und anschließend für 30 min bei 80°C in 0,5 ml 1 0 mM HEPES, pH 7,5; 80 % (Vol.JVol.) Ethanol extrahiert. Der Überstand, der die löslichen Bestandteile enthält, wurde abgenommen und das Volumen bestimmt. Der Überstand wurde zur Bestimmung der Menge an löslichen Zuckern verwendet. Die quantitative Bestimmung von löslicher Glucose, Fructose und Saccharose wurde in einem Ansatz mit folgender Zusammensetzung durchgeführt.
100,0 mM Imidazol/HCi, pH 6,9
1 ,5 mM MgCI2
0,5 mM NADP+
1 ,3 mM ATP
10-50 μl Probe
1 ,0 U Glucose-6-Phosphatdehydrogenase aus Hefe
Der Ansatz wurde 5 min lang bei Raumtemperatur inkubiert. Die Bestimmung der
Zucker erfolgt anschließend photometrisch durch Messung der Absorption bei
340 nm nach aufeinanderfolgender Zugabe von
1 ,0 Einheiten Hexokinase aus Hefe (zur Bestimmung von Glucose),
1 ,0 Einheiten Phosphoglucoisomerase aus Hefe (zur Bestimmung von Fructose) und
1 ,0 Einheiten Invertase aus Hefe (zur Bestimmung von Saccharose).
Ausführungsbeispiele:
Beispiel 1 : Isolierung eines cDNA-Fragments kodierend für α-Glukosidase aus Kartoffel
Gesamt-RNA von Kartoffelknollengewebe, direkt unterhalb (ca. 1 cm) auskeimender Triebe wurde nach Standardverfahren (Sambrook et al., 1 989) pr™pariert.
Die gereinigte Gesamt-RNA diente als Ausgangsmaterial zur Herstellung von poly A + RNA (Oligotex, mRNA Purification Kit, nach Herstellerangaben). 5 μg dieser poly A + RNA wurde zur Herstellung einer cDNA-Bibliothek (λ ZAPII, Stratagene) verwendet.
Etwa 3 x 105 Plaque forming units (pfus) dieser unamplifizierten cDNA-Bibbliothek (Prim™rbank) wurden nach Herstellerangaben (Stratagene) zum "Plaque Lifting" plattiert. Als radioaktiv markierte Sonde (Random Primed DNA Labeling Kit, nach Herstellerangaben) zur Plaque-Hybridisierung diente die Sequenz der Genbank Accession No. T76451 . Die Filter wurden f] r 4 Stunden bei 42 °C pr™hybridisiert (Puffer: 5 x SSC, 0,5 % BSA, 5 x Denhardt, 1 % SDS, 40 mM Phosphatpuffer, pH 7.2, 1 00 mg/l Heringssperma-DNA, 25 % Formamid) und anschließend bei der gleichen Temperatur f] r 14 Stunden hybridisiert. Nach der Hybridisierung wurden die Filter 3 x f] r 20 Minuten mit 3x SSC, 0, 5 % SDS bei 42°C gewaschen und autoradiographiert. Hybridisierende Plaques wurden vereinzelt und die isolierten Phagen zur " in vivo excision" nach Herstellerangaben verwendet. Plasmid-DNA aus den erhaltenen Bakterienkolonien wurde isoliert, zur Sequenzanalyse eingesetzt und als Seq. ID Nr. 1 identifiziert.
Eine auf diese Weise isolierte Plasmid-DNA wurde am 24.07.98 unter der Nummer DSM 1 2347 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen (DSMZ) in Braunschweig, BRD, hinterlegt.
Beispiel 2: Herstellung des Plasmids p35SαSSI-Hyg
Ein 1 831 bp langes Asp71 8/Xbal-Fragment, enthaltend eine partielle cDNA kodierend für die SSS I aus Kartoffel (Abel, G., (1 995) Dissertation, Freie Universität Berlin), wurde in "antisense"-Orientierung bezüglich des 35S- Promotors zwischen die Asp71 8- und Xbal-Schnittstelle des Vektors pBinAR- Hyg eingeführt.
Beispiel 3: Herstellung des Plasmids p35S-SSI-Kan
Ein 2384 bp langes EcoRI-Fragment, enthaltend eine cDNA kodierend für SS I aus Kartoffel, (Abel 1 995, loc.cit.) wurde geglättet und in dem mit Smal vorgeschnittenen Vektor pBinAR in "sense"-Orientierung bezüglich des 35S- Promotors eingeführt.
Beispiel 4: Herstellung des Plasmids p35SαSSII-Kan
Ein 1 959 bp langes Smal/Asp71 8-Fragment, enthaltend eine partielle cDNA kodierend für die SS II aus Kartoffel (Abel, 1 995, dort als GBSS II bezeichnet), wurde geglättet und in "antisense"-Orientierung bezüglich des 35S-Promotors in die Smal-Schnittstelle des Vektors pBinAR eingeführt.
Beispiel 5: Herstellung des Plasmids pB33-SSII-Hyg
Ein 261 9 bp langes Smal/Sall Fragment, enthaltend eine cDNA kodierend für die SS II aus Kartoffel (Abel, 1 995, loc.cit.), wurde in den mit Smal und Sall vorgeschnittenen Vektor pBinB33-Hyg in "sense"-Orientierung bezüglich des B33-Promotors eingeführt.
Beispiel 6: Herstellung des Plasmids p35SαSSMI-Hyg
Ein 421 2 bp langes Asp71 8/Xbal-Fragment, enthaltend eine cDNA kodierend für die SS IM aus Kartofffel (Abel et al., 1 996, Plant J. 10(6):981 -991 ), wurde in "antisense"-Orientierung bezüglich des 35S-Promotors zwischen die Asp71 8- und die Xbal-Schnittstelle des Vektors pBinAR-Hyg eingeführt. Beispiel 7: Herstellung des Plasmids p35S-SSIM-Kan
Ein 41 91 bp langes EcoRI-Fragment, enthaltend eine cDNA kodierend für SS III aus Kartoffel (Abel et al., 1 996, loc.cit.), wurde geglättet und in "sense"- Orientierung bezüglich des 35S-Promotors in die Smal-Schnittstelle des Vektors pBinAR eingeführt.
Beispiel 8: Herstellung des Plasmids pB33αBEαSSIM-Kan
Ein 1 650 bp langes Hindll-Fragment, welches eine partielle cDNA kodierend für das BE-Enzym aus Kartoffel enthält (Kossmann et al., 1 991 , Mol. & Gen. Genetics 230(1 -2):39-44), wurde geglättet und in "antisense"-Orientierung bezüglich des B33 Promotors in den mit Smal vorgeschnittenen Vektor pBinB33 eingeführt. Das erhaltene Plasmid wurde mit BamHI aufgeschnitten. In die Schnittstelle wurde ein 1 362 Bp langes BamHI-Fragment, enthaltend eine partielle cDNA kodierend für das SS Ill-Enzym aus Kartoffel (Abel et al., 1 996, loc.cit.), ebenfalls in "antisense"-Orientierung bezüglich des B33-Promotors eingeführt.
Beispiel 9: Herstellung des Plasmids p35SαSSM-αSSMI-Kan
Ein 1 546 bp langes EcoRV/Hincll-Fragment, enthaltend eine partielle cDNA kodierend für die SS II aus Kartoffel (Abel, 1 995, loc.cit.), wurde in den EcoRV/Hincll-geschnittenen Vektor pBluescript II KS kloniert und anschließend über einen Asp71 8/BamHI-Verdau wieder herausgeschnitten und in den ebenso verdauten Vektor pBinAR in "antisense"-Orientierung bezüglich des 35S- Promotors eingefügt. Danach wurde ein 1 356 Bp langes BamHI-Fragment, enthaltend eine partielle cDNA kodierend für die SS IM aus Kartoffel (Abel et al., 1 996, loc.cit.), ebenfalls in "antisense"-Orientierung bezüglich des 35S- Promotors in die BamHI-Schnittstelle des Vektors pBinAR-αSSM eingeführt.
Beispiel 10: Herstellung des Plasmids pB33αSSIαSSIM-Kan
Ein 2384 bp langes EcoRI-Fragment enthaltend eine cDNA kodierend für SS I aus Kartoffel (Abel, 1 995, loc.cit.) wurde geglättet und in die Smal-Schnittstelle des pBinB33-Vektors in "antisense"-Orientierung bezüglich des B33-Promotors kloniert. Ein 1 362 Bp langes BamHI-Fragment enthaltend eine partielle cDNA kodierend für die SS IM aus Kartoffel (Abel et al., 1 996, loc.cit.) wurde in die BamHI-Schnittstelle des resultierenden Vektors ebenfalls in "antisense"- Orientierung bezüglich des B33-Promotors eingeführt.
Beispiel 1 1 : Herstellung des Plasmids p35SαSSII-Hyg
Ein 1 959 bp langes Smal/Asp71 8-Fragment, enthaltend eine partielle cDNA kodierend für die SS II (Abel, 1 995, loc.cit.), wurde geglättet und in "antisense"- Orientierung bezüglich des 35S-Promotors in die Smal-Schnittstelle des pBinAR- Hyg-Vektors eingeführt.
Beispiel 1 2: Einführung der Plasmide in das Genom von Kartoffelzellen
Die in Beispiel 1 bis 1 1 aufgeführten Plasmide wurden einzeln und/oder aufeinanderfolgend in Agrobakterien transferiert, mit deren Hilfe die Transformation von Kartoffelzellen wie oben beschrieben vorgenommen wurde. Aus den transformierten Pflanzenzellen wurden anschließend ganze Pflanzen regeneriert. Beispiel 1 3: Charakterisierung der physiko-chemischen Eigenschaften der modifizierten Stärken
Als Ergebnis der Transformation zeigten die transgenen Kartoffelpflanzen eine Veränderung der physiko-chemischen Eigenschaften der von ihnen synthetisierten Stärken. Die von diesen Pflanzen gebildete Stärke unterscheidet sich z.B. von in Wildtyppflanzen synthetisierter Stärke in ihrem Phosphat- oder Amylosegehalt, den mittels RVA bestimmten Viskositäts- oder Verkleisterungseigenschaften sowie ihrem chromatographischen Verhalten.
61/2
INTERNATIONALES FORMBLATT
Hoechst Schering AgrEvo GmbH
65926 Frankfurt am Main
EMPFANGSBESTÄTIGUNG BEI ERSTHINTERLEGUNG, ausgestellt gemäß Regel 7 1 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE
I KENNZEICHNUNG DES MIKROORGANISMUS
Vom HINTERLEGER zugeteiltes Bezugszeichen Von der INTERNATIONALEN HINTERLEGUNGSSTELLE zugeteilte EINGANGSNUMMER
St -Glul 8
DSM 12347
II WISSENSCHAFTLICHE BESCHREIBUNG UND/ODER VORGESCHLAGENE TAXONOMISCHE BEZEICHNUNG
Mit dem unter I bezeichneten Mikroorganismus wurde
( ) eine wissenschaftliche Beschreibung
(X ) eine vorgeschlagene taxonomische Bezeichnung eingereicht (Zutreffendes ankreuzen)
III EINGANG UND ANNAHME
Diese internationale Hinterlegungsstelle nimmt den unter I bezeichneten Mikroorganismus an, der bei ihr am 199 8 - 0 7 - 24 (Datum der Ersthinterlegung)' eingegangen ist
IV EINGANG DES ANTRAGS AUF UMWANDLUNG
Der unter I bezeichnete Mikroorganismus ist bei dieser Internationalen Hinterlegungsstelle am eingegangen (Datum der Ersthinterlegung) und ein Antrag auf Umwandlung dieser Ersthinterlegung in eine Hinterlegung gemäß Budapester Vertrag ist am eingegangen (Datum des Eingangs des Antrags auf Umwandlung)
V INTERNATIONALE HINTERLEGUNGSSTELLE
Name DSMZ-DEUTSCHE SAMMLUNG VON Unterschπft(en) der zur Vertretung der internationalen Hinterlegungsstelle
MIKROORGANISMEN UND ZELLKULTUREN GmbH befugten Person(en) oder des (der) von ihr ermächtigten Bediensteten
Anschrift Mascheroder Weg lb D-38124 Braunschweig C . ^r <Si
Datum 1998 - 07 - 30

Claims

62 Patentansprüche:
1 . Nukleinsäuremolekül, codierend ein Protein mit der Funktion einer α-Glukosidase aus Kartoffel, ausgewählt aus der Gruppe bestehend aus a) Nukleinsäuremolekülen, die ein Protein codieren, das die unter Seq ID NO. 2 angegebene Aminosäuresequenz umfaßt, deren Derivate oder Teile b) Nukleinsäuremolekülen, die die unter Seq ID No. 1 dargestellte Nucleotidsequenz oder deren Derivate oder Teile umfassen oder eine korrespondierende Ribonucleotidsequenz; c) Nukleinsäuremoleküle, die mit den unter (a) oder (b) genannten Nukleinsäuremolekülen hybridisieren, vorzugsweise spezifisch hybridisieren oder komplementär sind, und d) Nukleinsäuremolekülen, deren Nucleotidsequenz aufgrund der Degeneration des genetischen Codes von der Sequenz der unter (a), (b) oder (c) genannten Nukleinsäuremoleküle abweicht.
2. Rekombinantes Nukleinsäuremolekül, enthaltend a) ein Nukleinsäuremolekül codierend für ein Protein mit der Funktion einer α-Glukosidase aus Kartoffel gemäß Anspruch 1 und b) ein oder mehrere Nukleotidsequenzen, die für ein Protein kodieren, ausgewählt aus der Gruppe A, bestehend aus Proteinen mit der Funktion von Verzweigungsenzymen, ADP-Glukose-Pyrophosphorylasen, Stärkekorn- gebundenen Stärkesynthasen, löslichen Stärkesynthasen, Entzweigungsenzymen, Disproportionierungsenzymen, plastidären Stärkephosphorylasen, R1 - Enzymen, Amylasen, Glukosidasen, Teilen besagter Nukleotidsequenzen oder mit besagten Nukleotidsequenzen hybridisierende Nukleinsäuremoleküle.
3. Nukleinsäuremolekül nach Anspruch 1 oder 2, das ein Desoxyribonukleinsäure-Molekül ist. 63
4. Nukleinsäuremolekül nach Anspruch 2, das ein cDNA-Molekül ist.
5. Nukleinsäuremolekül nach Anspruch 1 , das ein Ribonukleinsäure-Molekül ist.
6. Nukleinsäuremolekül, das mit einem Nukleinsäuremolekül einem oder mehreren der Ansprüche 1 bis 5 hybridisiert, vorzugsweise spezifisch hybridisiert.
7. Vektor, enthaltend ein Nukleinsäuremolekül nach einem oder mehreren der Ansprüche 1 bis 6.
8. Vektor, enthaltend ein Nukleinsäuremolekül nach einem oder mehreren der Ansprüche 1 -6, dadurch gekennzeichnet, daß die Nukleotidsequenz codierend für ein Protein mit der Funktion einer löslichen Stärkesynthase IM oder Teile davon in sense- oder anti-sense-Richtung vorliegt.
9. Vektor, enthaltend ein Nukleinsäuremolekül nach einem oder mehreren der Ansprüche 1 -6, dadurch gekennzeichnet, daß die Nukleotidsequenz codierend für ein oder mehrere Proteine ausgewählt aus der Gruppe A oder Teile davon in sense- oder anti-sense-Richtung vorliegt.
1 0. Vektor, enthaltend ein Nukleinsäuremolekül nach einem oder mehreren der Ansprüche 1 -6, dadurch gekennzeichnet, daß die Nukleotidsequenz codierend für ein oder mehrere Proteine ausgewählt aus der Gruppe A teilweise in sense-Richtung und teilweise in anti-sense-Richtung vorliegt.
1 1 . Vektor, enthaltend ein Nukleinsäuremolekül nach einem oder mehreren der Ansprüche 1 -6, dadurch gekennzeichnet, daß es mit regulatorischen 64
Elementen verknüpft ist, die die Transkription und Synthese einer RNA, die ggf. translatierbar ist, in einer pro- oder eukaryontischen Zelle gewährleisten.
1 2. Wirtszelle, die mit einem Nukleinsäuremolekül nach einem oder mehreren der Ansprüche 1 -6 oder einem Vektor nach einem oder mehreren der Ansprüche 7-1 1 transformiert ist oder von einer solchen Zelle abstammt.
1 3. Verfahren zur Herstellung einer transgenen Pflanzenzelle, die eine modifizierte Stärke synthetisiert, dadurch gekennzeichnet, daß ein Nukleinsäuremolekül nach einem oder mehreren der Ansprüche 1 -6, oder ein Vektors nach Anspruch 7-1 1 in das Genom einer Pflanzenzelle integriert wird.
14. Pflanzenzelle, erhältlich nach einem Verfahren gemäß Anspruch 1 3.
1 5. Verfahren zur Herstellung einer transgenen Pflanze, die eine modifizierte Stärke synthetisiert, dadurch gekennzeichnet, daß aus einer Zelle nach Anspruch 1 4 eine vollständige Pflanze regeneriert wird.
1 6. Pflanze, enthaltend eine Pflanzenzelle nach Anspruch 14.
1 7. Pflanze nach Anspruch 1 6, die eine Nutzpflanze ist.
1 8. Pflanze nach einem oder mehreren der Ansprüche 1 6 bis 1 7, die eine stärkespeichernde Pflanze ist.
1 9. Pflanze nach einem oder mehreren der Ansprüche 1 6 bis 1 8, die eine Weizen-, Mais-, Kartoffel- oder Reispflanze ist.
20. Vermehrungsmaterial einer Pflanze nach einem oder mehreren der Ansprüche 1 6 bis 1 9. ι
65
21 . Verfahren zur Herstellung von Stärke nach einem an sich bekannten Verfahren, dadurch gekennzeichnet, daß Pflanzenzellen gemäß Anspruch 14, Pflanzen nach einem oder mehreren der Ansprüche 1 6 bis 1 9 oder Vermehrungsmaterial nach Anspruch 20 in das Verfahren integriert werden.
22. Stärke, erhältlich aus einer Zelle gemäß Anspruch 1 2 oder 14, einer Pflanze nach einem oder mehreren der Ansprüche 1 6 bis 1 9, aus Vermehrungsmaterial nach Anspruch 20 oder einem Verfahren nach Anspruch 21 .
23. Verwendung der Stärke nach Anspruch 22 im industriellen Bereich, vorzugsweise zur Herstellung von Lebensmitteln, Verpackungsmaterialien oder Einwegartikeln.
24. Verwendung von Nukleinsäuremolekülen nach einem oder mehreren der Ansprüche 1 -6 oder Vektoren nach einem oder mehreren der Ansprüche 7-1 1 zur Herstellung von transgenen Zellen, vorzugsweise bakteriellen oder pflanzlichen Zellen.
25. Verwendung von Pflanzenzellen gemäß Anspruch 1 4, Pflanzen nach einem oder mehreren der Ansprüche 1 6 bis 1 9 oder Vermehrungsmaterial nach Anspruch 20 zur Herstellung von Stärke.
PCT/EP1999/005536 1998-07-31 1999-07-30 NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE α-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE WO2000008175A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU57297/99A AU770735B2 (en) 1998-07-31 1999-07-30 Nucleic acid module coding for alpha glucosidase, plants that synthesize modified starch, methods for the production and use of said plants, and modified starch
EP99944315A EP1100931A2 (de) 1998-07-31 1999-07-30 NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE $g(a)-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE
US09/744,926 US6794558B1 (en) 1998-07-31 1999-07-30 Nucleic acid module coding for αglucosidase, plants that synthesize modified starch, methods for the production and use of said plants, and modified starch
CA002338003A CA2338003A1 (en) 1998-07-31 1999-07-30 Nucleic acid module coding for alpha-glucosidase, plants that synthesize modified starch, methods for the production and use of said plants, and modified starch
JP2000563799A JP2002524045A (ja) 1998-07-31 1999-07-30 α−グルコシダーゼをコードする核酸分子、改質デンプンを合成する植物、その産生方法、その用途および改質デンプン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19836097.5 1998-07-31
DE19836097A DE19836097A1 (de) 1998-07-31 1998-07-31 Nukleinsäuremoleküle kodierend für eine alpha-Glukosidase, Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke

Publications (2)

Publication Number Publication Date
WO2000008175A2 true WO2000008175A2 (de) 2000-02-17
WO2000008175A3 WO2000008175A3 (de) 2000-06-08

Family

ID=7877020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/005536 WO2000008175A2 (de) 1998-07-31 1999-07-30 NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE α-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE

Country Status (8)

Country Link
US (1) US6794558B1 (de)
EP (1) EP1100931A2 (de)
JP (1) JP2002524045A (de)
CN (1) CN1316003A (de)
AU (1) AU770735B2 (de)
CA (1) CA2338003A1 (de)
DE (1) DE19836097A1 (de)
WO (1) WO2000008175A2 (de)

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039772A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039770A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039771A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001469A1 (de) 2009-03-11 2009-09-24 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2204094A1 (de) 2008-12-29 2010-07-07 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
WO2010086311A1 (en) 2009-01-28 2010-08-05 Bayer Cropscience Ag Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
EP2218717A1 (de) 2009-02-17 2010-08-18 Bayer CropScience AG Fungizide N-((HET)Arylethyl)Thiocarboxamid-Derivative
WO2010094666A2 (en) 2009-02-17 2010-08-26 Bayer Cropscience Ag Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
DE102009001681A1 (de) 2009-03-20 2010-09-23 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2232995A1 (de) 2009-03-25 2010-09-29 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001730A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001728A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001732A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2239331A1 (de) 2009-04-07 2010-10-13 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
EP2251331A1 (de) 2009-05-15 2010-11-17 Bayer CropScience AG Fungizide Pyrazolcarboxamid-Derivate
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (de) 2009-09-02 2011-03-09 Bayer CropScience AG Wirkstoffkombinationen
WO2011080255A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011080254A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011080256A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2343280A1 (de) 2009-12-10 2011-07-13 Bayer CropScience AG Fungizid-Chinolinderivate
WO2011089071A2 (de) 2010-01-22 2011-07-28 Bayer Cropscience Ag Akarizide und/oder insektizide wirkstoffkombinationen
WO2011134912A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011151370A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues
WO2011151369A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2011151368A2 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2011154158A1 (en) 2010-06-09 2011-12-15 Bayer Bioscience N.V. Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
WO2011154159A1 (en) 2010-06-09 2011-12-15 Bayer Bioscience N.V. Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
WO2012010579A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
WO2012038476A1 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of active ingredients for controlling nematodes in nematode-resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052489A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag 1-(heterocyclic carbonyl) piperidines
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065945A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazole(thio)carboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
EP2460407A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe
EP2460406A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Verwendung von Fluopyram zum Steuern von Nematoden in nematodresistentem Pflanzen
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
WO2012089757A1 (en) 2010-12-29 2012-07-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2474542A1 (de) 2010-12-29 2012-07-11 Bayer CropScience AG Fungizide Hydroximoyl-Tetrazol-Derivate
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
US8269064B2 (en) 2005-01-10 2012-09-18 Bayer Cropscience Ag Transformed plant expressing a mutansucrase and synthesizing a modified starch
WO2012123434A1 (en) 2011-03-14 2012-09-20 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012168124A1 (en) 2011-06-06 2012-12-13 Bayer Cropscience Nv Methods and means to modify a plant genome at a preselected site
WO2013020985A1 (en) 2011-08-10 2013-02-14 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
WO2013026836A1 (en) 2011-08-22 2013-02-28 Bayer Intellectual Property Gmbh Fungicide hydroximoyl-tetrazole derivatives
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
WO2013034621A1 (en) 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Acyl-homoserine lactone derivatives for improving plant yield
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2013160230A1 (en) 2012-04-23 2013-10-31 Bayer Cropscience Nv Targeted genome engineering in plants
EP2662364A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Tetrahydronaphthyl-Carboxamide
EP2662360A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Indanyl-Carboxamide
EP2662363A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Biphenyl-Carboxamide
EP2662362A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
EP2662370A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Benzofuranyl-Carboxamide
EP2662361A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
EP2735231A1 (de) 2012-11-23 2014-05-28 Bayer CropScience AG Wirkstoffkombinationen
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014135608A1 (en) 2013-03-07 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
CN104195123A (zh) * 2004-06-29 2014-12-10 诺维信股份有限公司 具有α-葡糖苷酶活性的多肽及编码其的多核苷酸
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
EP2997825A1 (de) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Wirkstoffkombinationen mit einem (thio)carboxamidderivat und einer fungiziden verbindung
EP3000809A1 (de) 2009-05-15 2016-03-30 Bayer Intellectual Property GmbH Fungizide pyrazolcarboxamidderivate
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
WO2018054832A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018054911A1 (en) 2016-09-23 2018-03-29 Bayer Cropscience Nv Targeted genome optimization in plants
WO2019060746A1 (en) 2017-09-21 2019-03-28 The Broad Institute, Inc. SYSTEMS, METHODS, AND COMPOSITIONS FOR THE TARGETED EDITING OF NUCLEIC ACIDS
WO2019233863A1 (de) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbizid wirksame bizyklische benzoylpyrazole
WO2020131862A1 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof
US10968257B2 (en) 2018-04-03 2021-04-06 The Broad Institute, Inc. Target recognition motifs and uses thereof
US11180751B2 (en) 2015-06-18 2021-11-23 The Broad Institute, Inc. CRISPR enzymes and systems
US11591601B2 (en) 2017-05-05 2023-02-28 The Broad Institute, Inc. Methods for identification and modification of lncRNA associated with target genotypes and phenotypes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60328816D1 (de) * 2002-11-08 2009-09-24 Bayer Cropscience Ag Prozess zur verminderung des acrylamidgehaltes von hitzebehandelten lebensmitteln
EP1966386A4 (de) * 2005-12-22 2009-06-17 Novozymes North America Inc Verfahren zur herstellung eines fermentationsprodukts
CL2007003743A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende fenamidona y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
CL2007003744A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende un derivado 2-piridilmetilbenzamida y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014827A1 (en) * 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
WO1994009144A1 (en) * 1992-10-14 1994-04-28 Zeneca Limited Novel plants and processes for obtaining them
WO1995007355A1 (en) * 1993-09-09 1995-03-16 Institut Für Genbiologische Forschung Berlin Gmbh Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom
WO1996015248A1 (de) * 1994-11-10 1996-05-23 Hoechst Schering Agrevo Gmbh Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
WO1997011188A1 (de) * 1995-09-19 1997-03-27 Planttec Biotechnologie Gmbh Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
WO1997016554A1 (en) * 1995-11-03 1997-05-09 John Innes Centre Innovations Limited Modified plants and plant products
EP0779363A2 (de) * 1995-12-12 1997-06-18 National Starch and Chemical Investment Holding Corporation Verbesserungen in oder in Bezug auf lösliche Stärke-Synthase
WO1997024448A1 (en) * 1995-12-28 1997-07-10 Nickerson Biocem Limited Potato alpha-glucosidase gene
US5763252A (en) * 1995-04-28 1998-06-09 Wisconsin Alumni Research Foundation Cloned α-glucosidase from barley

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE913215A1 (en) * 1990-09-13 1992-02-25 Gist Brocades Nv Transgenic plants having a modified carbohydrate content

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014827A1 (en) * 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
WO1994009144A1 (en) * 1992-10-14 1994-04-28 Zeneca Limited Novel plants and processes for obtaining them
WO1995007355A1 (en) * 1993-09-09 1995-03-16 Institut Für Genbiologische Forschung Berlin Gmbh Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom
WO1996015248A1 (de) * 1994-11-10 1996-05-23 Hoechst Schering Agrevo Gmbh Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
US5763252A (en) * 1995-04-28 1998-06-09 Wisconsin Alumni Research Foundation Cloned α-glucosidase from barley
WO1997011188A1 (de) * 1995-09-19 1997-03-27 Planttec Biotechnologie Gmbh Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
WO1997016554A1 (en) * 1995-11-03 1997-05-09 John Innes Centre Innovations Limited Modified plants and plant products
EP0779363A2 (de) * 1995-12-12 1997-06-18 National Starch and Chemical Investment Holding Corporation Verbesserungen in oder in Bezug auf lösliche Stärke-Synthase
WO1997024448A1 (en) * 1995-12-28 1997-07-10 Nickerson Biocem Limited Potato alpha-glucosidase gene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUGIMOTO M. ET AL.: "Molecular cloning and characterization of a cDNA encoding alpha-glucosidase from spinach" PLANT MOLECULAR BIOLOGY, Bd. 33, 1997, Seiten 765-768, XP002130610 in der Anmeldung erw{hnt *

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195123A (zh) * 2004-06-29 2014-12-10 诺维信股份有限公司 具有α-葡糖苷酶活性的多肽及编码其的多核苷酸
US8269064B2 (en) 2005-01-10 2012-09-18 Bayer Cropscience Ag Transformed plant expressing a mutansucrase and synthesizing a modified starch
EP2204094A1 (de) 2008-12-29 2010-07-07 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
WO2010075994A1 (en) 2008-12-29 2010-07-08 Bayer Cropscience Aktiengesellschaft Treatment of transgenic crops with mixtures of fiproles and chloronicotinyls
EP2039772A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039770A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039771A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
WO2010086311A1 (en) 2009-01-28 2010-08-05 Bayer Cropscience Ag Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
EP2218717A1 (de) 2009-02-17 2010-08-18 Bayer CropScience AG Fungizide N-((HET)Arylethyl)Thiocarboxamid-Derivative
WO2010094666A2 (en) 2009-02-17 2010-08-26 Bayer Cropscience Ag Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
DE102009001469A1 (de) 2009-03-11 2009-09-24 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001681A1 (de) 2009-03-20 2010-09-23 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001728A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001732A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001730A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2232995A1 (de) 2009-03-25 2010-09-29 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2239331A1 (de) 2009-04-07 2010-10-13 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
EP2251331A1 (de) 2009-05-15 2010-11-17 Bayer CropScience AG Fungizide Pyrazolcarboxamid-Derivate
EP3000809A1 (de) 2009-05-15 2016-03-30 Bayer Intellectual Property GmbH Fungizide pyrazolcarboxamidderivate
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
WO2011035834A1 (en) 2009-09-02 2011-03-31 Bayer Cropscience Ag Active compound combinations
EP2292094A1 (de) 2009-09-02 2011-03-09 Bayer CropScience AG Wirkstoffkombinationen
EP2343280A1 (de) 2009-12-10 2011-07-13 Bayer CropScience AG Fungizid-Chinolinderivate
WO2011080255A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011080256A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011080254A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011089071A2 (de) 2010-01-22 2011-07-28 Bayer Cropscience Ag Akarizide und/oder insektizide wirkstoffkombinationen
WO2011134912A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011151368A2 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2011151369A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2011151370A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues
WO2011154159A1 (en) 2010-06-09 2011-12-15 Bayer Bioscience N.V. Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
WO2011154158A1 (en) 2010-06-09 2011-12-15 Bayer Bioscience N.V. Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
WO2012010579A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
WO2012038476A1 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of active ingredients for controlling nematodes in nematode-resistant crops
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052489A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag 1-(heterocyclic carbonyl) piperidines
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065945A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazole(thio)carboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
US9206137B2 (en) 2010-11-15 2015-12-08 Bayer Intellectual Property Gmbh N-Aryl pyrazole(thio)carboxamides
EP2460406A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Verwendung von Fluopyram zum Steuern von Nematoden in nematodresistentem Pflanzen
WO2012072696A1 (de) 2010-12-01 2012-06-07 Bayer Cropscience Ag Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
EP3103339A1 (de) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
EP2460407A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe
EP3103340A1 (de) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
EP3103338A1 (de) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
EP3103334A1 (de) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
EP3092900A1 (de) 2010-12-01 2016-11-16 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
WO2012089757A1 (en) 2010-12-29 2012-07-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2474542A1 (de) 2010-12-29 2012-07-11 Bayer CropScience AG Fungizide Hydroximoyl-Tetrazol-Derivate
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
WO2012123434A1 (en) 2011-03-14 2012-09-20 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2997825A1 (de) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Wirkstoffkombinationen mit einem (thio)carboxamidderivat und einer fungiziden verbindung
WO2012168124A1 (en) 2011-06-06 2012-12-13 Bayer Cropscience Nv Methods and means to modify a plant genome at a preselected site
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
WO2013020985A1 (en) 2011-08-10 2013-02-14 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
US9670496B2 (en) 2011-08-22 2017-06-06 Bayer Cropscience N.V. Methods and means to modify a plant genome
US10538774B2 (en) 2011-08-22 2020-01-21 Basf Agricultural Solutions Seed, Us Llc Methods and means to modify a plant genome
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
WO2013026836A1 (en) 2011-08-22 2013-02-28 Bayer Intellectual Property Gmbh Fungicide hydroximoyl-tetrazole derivatives
WO2013034621A1 (en) 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Acyl-homoserine lactone derivatives for improving plant yield
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
US11518997B2 (en) 2012-04-23 2022-12-06 BASF Agricultural Solutions Seed US LLC Targeted genome engineering in plants
WO2013160230A1 (en) 2012-04-23 2013-10-31 Bayer Cropscience Nv Targeted genome engineering in plants
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
EP2662362A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
EP2662363A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Biphenyl-Carboxamide
EP2662370A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Benzofuranyl-Carboxamide
EP2662360A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Indanyl-Carboxamide
EP2662364A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Tetrahydronaphthyl-Carboxamide
EP2662361A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
WO2014079789A1 (en) 2012-11-23 2014-05-30 Bayer Cropscience Ag Active compound combinations
EP2735231A1 (de) 2012-11-23 2014-05-28 Bayer CropScience AG Wirkstoffkombinationen
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014135608A1 (en) 2013-03-07 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
US11180751B2 (en) 2015-06-18 2021-11-23 The Broad Institute, Inc. CRISPR enzymes and systems
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
WO2018054832A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018054911A1 (en) 2016-09-23 2018-03-29 Bayer Cropscience Nv Targeted genome optimization in plants
US11591601B2 (en) 2017-05-05 2023-02-28 The Broad Institute, Inc. Methods for identification and modification of lncRNA associated with target genotypes and phenotypes
WO2019060746A1 (en) 2017-09-21 2019-03-28 The Broad Institute, Inc. SYSTEMS, METHODS, AND COMPOSITIONS FOR THE TARGETED EDITING OF NUCLEIC ACIDS
US10968257B2 (en) 2018-04-03 2021-04-06 The Broad Institute, Inc. Target recognition motifs and uses thereof
WO2019233863A1 (de) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbizid wirksame bizyklische benzoylpyrazole
WO2020131862A1 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof

Also Published As

Publication number Publication date
AU770735B2 (en) 2004-03-04
DE19836097A1 (de) 2000-02-03
CA2338003A1 (en) 2000-02-17
WO2000008175A3 (de) 2000-06-08
JP2002524045A (ja) 2002-08-06
US6794558B1 (en) 2004-09-21
CN1316003A (zh) 2001-10-03
AU5729799A (en) 2000-02-28
EP1100931A2 (de) 2001-05-23

Similar Documents

Publication Publication Date Title
EP0791066B1 (de) Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
EP1100931A2 (de) NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE $g(a)-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE
EP1200615B8 (de) Nukleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
EP1100939A1 (de) Nukleinsäuremoleküle kodierend für beta-amylase, pflanzen, die eine modifizierte stärke synthetisieren, herstellungsverfahren und verwendungen
EP1088082B1 (de) Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
DE69737507T2 (de) Neue nukleinsäuremoleküle aus mais und deren verwendung zur herstellung modifizierter stärke
EP1203087B1 (de) Transgene pflanzenzellen und pflanzen mit veränderter aktivität des gbssi- und des be-proteins
WO2000008184A1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zur herstellung der pflanzen, ihre verwendung sowie die modifizierte stärke
EP0874908B1 (de) Nucleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
EP1435205B1 (de) Verfahren zur Herstellung einer modifizierten Stärke
DE69737448T2 (de) Nukleinsäuremoleküle, die für enzyme aus weizen kodieren, welche an der stärkesynthese beteiligt sind
EP1095152A2 (de) Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
EP0813605A1 (de) Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung
EP0885303A1 (de) Nucleinsäuremoleküle, codierend debranching-enzyme aus mais
EP0900277A1 (de) Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren
EP0904389A1 (de) Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais
DE19547733A1 (de) Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99810309.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GD GE HR HU ID IL IN IS JP KG KP KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TJ TM TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GD GE HR HU ID IL IN IS JP KG KP KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TJ TM TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1999944315

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2338003

Country of ref document: CA

Ref document number: 2000 563799

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2338003

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 57297/99

Country of ref document: AU

Ref document number: 09744926

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999944315

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1999944315

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 57297/99

Country of ref document: AU