WO1999067181A1 - Method for making an electrode comprising a tungsten oxide film - Google Patents

Method for making an electrode comprising a tungsten oxide film Download PDF

Info

Publication number
WO1999067181A1
WO1999067181A1 PCT/CH1999/000270 CH9900270W WO9967181A1 WO 1999067181 A1 WO1999067181 A1 WO 1999067181A1 CH 9900270 W CH9900270 W CH 9900270W WO 9967181 A1 WO9967181 A1 WO 9967181A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic material
solution
colloidal solution
mixture
chosen
Prior art date
Application number
PCT/CH1999/000270
Other languages
French (fr)
Inventor
Jan Augustynski
Martine Ulmann
Clara Santato
Original Assignee
Universite De Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Geneve filed Critical Universite De Geneve
Publication of WO1999067181A1 publication Critical patent/WO1999067181A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/219CrOx, MoOx, WOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Definitions

  • the present invention relates to a method of manufacturing an electrode comprising an active film of tungsten trioxide (WO 3 ).
  • Such electrodes find applications in the production of cells used in various fields, in particular as a photoanode capable of converting solar energy during the photoelectrolysis of water, during the photoelectrochemical degradation of organic waste, or even the production of cells. electrochromic display.
  • the electrode must be transparent. This is why a glass plate coated with a transparent conductive layer formed from doped tin oxide is used as substrate.
  • the method of manufacturing electrodes of this type generally comprises the following steps:
  • a mesoporous structure is thus obtained, formed of crystallized WO 3 nanoparticles having a diameter of 20 to 50 nm and aggregated together, each layer having a thickness of approximately 500 nm.
  • Such a structure makes it possible to produce electrodes which have good electrochromic and photoelectrochemical characteristics.
  • the main object of the present invention is to allow the production of WO 3 films having excellent adhesion, from a mixture which is stable over time.
  • the invention relates to a method of manufacturing an electrode comprising a film of WO 3 , of the type comprising the successive operations of:
  • the operation of forming a colloidal solution comprises the successive operations of:
  • the operation of forming a colloidal solution comprises the successive operations of:
  • the heat treatment operation is preferably carried out at a temperature between 400 and 600 ° C.
  • the electrode must also be homogeneous. It is essential in display cells and most often desirable for photoelectrolysis.
  • the organic material of the colloidal solution is advantageously chosen from ethylene glycol, polyethylene glycol, maltose, glucose, mannitol and glycerol.
  • the organic material of the colloidal solution is advantageously chosen from ethylene glycol, polyethylene glycol, mannitol and glycerol.
  • the efficiency depends on the intensity of the photocurrent of the electrode.
  • the organic material of the colloidal solution is advantageously chosen from polyethylene glycol, maltose, glucose, mannitol and myo inositol.
  • the quality of the colloidal solution is highly dependent on the quality of the tungstic acid. This is preferably obtained by passing an aqueous solution of sodium tungstate through a cation exchange resin. It has been found that, to produce the colloidal solution, it was advantageous to carry out an evaporation under reduced pressure.
  • the quality of the cell depends in particular on the contact surface between the electrolyte and the active film.
  • the active film is porous, it is possible to increase this surface by acting on the thickness.
  • the operations of depositing a thin layer of the colloidal solution on a conductive glass plate and of heat treatment are repeated up to 12 times.
  • FIG. 2 illustrates the different stages of the process
  • FIG. 3 shows the variation of the density of the photocurrent as a function of the potential.
  • a conductive glass plate 10 comprising a transparent conductive layer 12 and coated with a film of WO 3 14.
  • Such plates are, for example, sold by the house of LOF under the name of conductive glass. Good results have been obtained with a quality having a resistance of 10 ⁇ per square.
  • the film 14 is formed from an aggregate of WO 3 particles having a diameter of 20 to 60 nm, which are rigidly fixed to each other and define a mesoporous structure obtained by alternating deposition of thin layers and heat treatments. .
  • the stack advantageously comprises 6 to 9 layers. Depending on the application, this number can be reduced to a single layer or, on the contrary, be increased to 12 layers, for example.
  • the glass plate has a thickness which is calculated in millimeters while the other dimensions are of the order of a few micrometers, or even a few tens of nanometers, as has been explained above.
  • the mesoporous structure thus obtained makes it possible to considerably increase the contact surface between the electrode and the electrolyte.
  • the process according to the invention comprises several stages, identified by an uppercase letter, which are as follows: A. Production of tungstic acid
  • the solution 20 is dosed so as to have 20 ml of 0.5 M sodium tungstate.
  • the product sold by DOWEX under the reference W 50 HCR-2 100-200 mesh can be used as cation exchange resin.
  • the solution 20 is poured into the column 25 and flows through the cation exchange resin 24, repelling before it the water initially contained in the column, which is eliminated. It is itself entrained towards the outlet of the column by distilled water 22, which acts as an eluent.
  • the sodium tungstate 20 is acidified by cation exchange with the resin 24, which retains the sodium cations and releases protons, thus forming tungstic acid 26.
  • the tungstic acid 26 thus produced is collected at the outlet of the column 25 in a container 27 initially containing 5 to 20 ml of a first organic material 28.
  • An agitator 29 rotates inside the container to ensure mixing tungstic acid 26 and organic material 28, which together form a solution.
  • the acid 26 is allowed to flow until the container 27 contains approximately 50 ml of the solution. This volume is greater than the sum of the volumes of sodium tungstate and organic material. This is due to the fact that water mixes with sodium tungstate during the flow in column 25.
  • the mixture thus obtained is placed in a rotary evaporator 30 to concentrate it by evaporation under reduced pressure. This operation is carried out at a temperature of 40 ° to 70 ° C, typically 55 ° C, until a colloidal solution is obtained.
  • a second organic material 32 is added to the colloidal solution 31 contained in a container 33, stirred by means of the stirrer 29 to form a mixture 34. This mixture then has a WO 3 concentration of between 0.1 and 0.9 M
  • the mixture 34 of the colloidal solution 31 and of the organic material 32 is deposited in the form of a drop 35 by means of a pipette 36 on the conductive layer 12 of a conductive glass plate 10.
  • the drop 35 is extended on the plate 10 to form a ribbon, then drawn over its entire surface by means of a glass plate 37.
  • An oven 38 makes it possible to treat a set of plates thus obtained in an oxidizing atmosphere at a temperature between 350 ° and 650 ° C, preferably between 400 ° and 600 ° C, for 15 to 60 minutes, preferably between 30 to 60 minutes. During this operation, the organic materials burn and volatilize while the WO 3 crystallizes on the substrate into a porous structure.
  • the deposition operations (E), formation of a thin layer (F) and passage through the oven (G) can be repeated up to a dozen times, to obtain a thickness which can reach more than 5 ⁇ m.
  • the following organic materials have been used successfully: a) ethanol, methanol and other volatile alcohols, b) dimethyl sulfoxide, c) ethylene glycol, d) polyethylene glycol 200, 300, 600 and 1000, e) maltose and glucose, f) glycerol, g) mannitol h) myo inositol.
  • a first organic material 28 was used to collect the tungstic acid and a second organic material 32 was mixed with the colloidal solution. The first organic material 28 is then chosen from products a) and b). In this case, the second organic material 32 is chosen from products c) to h).
  • the first organic material 28 is chosen from products c) to h). It is then no longer necessary to then introduce the second organic material 32.
  • This table has seven columns. The first three define the composition of the colloidal solution while the other four indicate the characteristics of the films obtained.
  • the first column defines the organic material used, the second the concentration of the colloidal solution in WO 3 and the third, the weight ratio between WO 3 and organic material.
  • the fourth column gives an indication of the quality of the adhesion of the deposit, the fifth of its homogeneity, the sixth of its transparency and the seventh of the intensity of the photocurrent measured when the polarized electrode is exposed to simulated sunlight.
  • the concentration of the colloidal solution of WO 3 is between 0.1 M and 0.8 M. This parameter does not seem to play a preponderant role in the quality of the electrodes obtained. For its part, the weight ratio between WO 3 and organic material plays a more or less important role.
  • the electrodes obtained from a solution containing polyvinyl alcohol are, on the contrary, of little interest.
  • ethylene glycol polyethylene glycol, maltose, glucose, mannitol and glycerol.
  • a transparent electrode can be obtained by choosing the organic material from ethylene glycol, polyethylene glycol, mannitol and glycerol.
  • the variation of the photocurrent density as a function of the voltage applied to the electrode measured with a photoanode comprising a film of WO 3 of 5 ⁇ m thickness, made from a colloidal solution with PEG 300 ,.
  • the potentials are given relative to a reversible hydrogen electrode (ERH) in the same solution.
  • the electrolyte is formed from 1 M perchloric acid.
  • the measurement was carried out with simulated sunlight illumination according to the "1 sun AM 1.5" standard and a variation of the applied potential of 5 mV / s.
  • the curve identified by solid circles corresponds to a photoelectrochemical degradation process of 0.1 M methanol in the electrolyte.
  • the curve identified by hollowed out circles shows the variation of the photocurrent density during the photoelectrolysis of water, with release of oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

The invention concerns a method for making an electrode comprising a WO3 film comprising the following successive steps: forming a colloidal solution comprising a mixture produced from tungstic acid and an organic material; depositing on a conductive glass plate a thin film of said solution; performing a heat treatment on said plate at a temperature not less than 350 °C. The invention is characterised in that the organic material is selected among ethylene glycol, polyethylene glycol, maltose, glycerol, glucose, mannitol and myo inositol. The invention is applicable in photoelectrochemistry and electrochromism.

Description

PROCEDE DE FABRICATION D'UNE ELECTRODE COMPORTANT UN FILM D'OXYDE DE TUNGSTENE METHOD FOR MANUFACTURING AN ELECTRODE COMPRISING A TUNGSTEN OXIDE FILM
La présente invention concerne un procédé de fabrication d'une électrode comportant un film actif de trioxyde de tungstène (WO3). De telles électrodes trouvent des applications dans la réalisation de cellules utilisées dans divers domaines, notamment comme photoanode capable de convertir l'énergie solaire lors de la photoelectrolyse de l'eau, lors de la dégradation photoélectrochimique de déchets organiques, ou encore la réalisation de cellules d'affichage électrochromique.The present invention relates to a method of manufacturing an electrode comprising an active film of tungsten trioxide (WO 3 ). Such electrodes find applications in the production of cells used in various fields, in particular as a photoanode capable of converting solar energy during the photoelectrolysis of water, during the photoelectrochemical degradation of organic waste, or even the production of cells. electrochromic display.
Pour de nombreuses applications, il est nécessaire que l'électrode soit transparente. C'est pourquoi on utilise, comme substrat, une plaque de verre revêtue d'une couche conductrice transparente formée d'oxyde d'étain dopé.For many applications, the electrode must be transparent. This is why a glass plate coated with a transparent conductive layer formed from doped tin oxide is used as substrate.
Le procédé de fabrication d'électrodes de ce type comporte généralement les étapes suivantes:The method of manufacturing electrodes of this type generally comprises the following steps:
- réalisation d'un mélange d'acide tungstique en solution avec un matériau organique, - formation d'une solution colloïdale de ce mélange,- making a mixture of tungstic acid in solution with an organic material, - forming a colloidal solution of this mixture,
- dépôt de la solution colloïdale sous forme d'une couche mince sur une plaque de verre conducteur, etdepositing the colloidal solution in the form of a thin layer on a plate of conductive glass, and
- traitement thermique de la plaque à une température d'au moins 350°C. A l'occasion du congrès de l'IUPAC (Genève 1997), il a été publié le résumé d'un poster intitulé "Préparation and properties of highly transparent anisotropic WO3 films", définissant les étapes d'un tel procédé, qui consiste à:- heat treatment of the plate at a temperature of at least 350 ° C. On the occasion of the IUPAC congress (Geneva 1997), the abstract of a poster was published entitled "Preparation and properties of highly transparent anisotropic WO 3 films", defining the stages of such a process, which consists at:
- faire passer au travers d'une résine échangeuse de cations une solution aqueuse de tungstate de sodium qui se transforme en acide tungstique,- pass through an cation exchange resin an aqueous solution of sodium tungstate which is transformed into tungstic acid,
- mélanger l'acide recueilli avec un matériau organique, - former une solution colloïdale de ce mélange,- mix the acid collected with an organic material, - form a colloidal solution of this mixture,
- déposer la solution colloïdale par couches successives sur une plaque de verre conducteur, et- deposit the colloidal solution in successive layers on a plate of conductive glass, and
- traiter thermiquement après chaque dépôt (500° à 600°C dans une atmosphère riche en oxygène).- heat treatment after each deposit (500 ° to 600 ° C in an oxygen-rich atmosphere).
On obtient ainsi une structure mésoporeuse, formée de nanoparticules de WO3 cristallisé ayant un diamètre de 20 à 50 nm et agrégées les unes aux autres, chaque couche ayant une épaisseur de 500 nm environ. Une telle structure permet de réaliser des électrodes qui présentent de bonnes caractéristiques électrochromiques et photoélectrochimiques.A mesoporous structure is thus obtained, formed of crystallized WO 3 nanoparticles having a diameter of 20 to 50 nm and aggregated together, each layer having a thickness of approximately 500 nm. Such a structure makes it possible to produce electrodes which have good electrochromic and photoelectrochemical characteristics.
Ces qualités sont certes très appréciables, mais une application industrielle exige une bonne adhérence du WO3 à son substrat, faute de quoi la structure se désagrège rapidement et rend l'électrode inutilisable. Il est, en outre, nécessaire que la solution colloïdale soit suffisamment stable pour pouvoir être utilisable durant plusieurs heures, voire plusieurs jours.These qualities are certainly very appreciable, but an industrial application requires a good adhesion of WO 3 to its substrate, failing which the structure quickly disintegrates and makes the electrode unusable. It is furthermore necessary that the colloidal solution is sufficiently stable to be usable for several hours, even several days.
Le but principal de la présente invention est de permettre l'obtention de films de WO3 présentant une excellente adhérence, à partir d'un mélange stable dans le temps.The main object of the present invention is to allow the production of WO 3 films having excellent adhesion, from a mixture which is stable over time.
De façon plus précise, l'invention concerne un procédé de fabrication d'une électrode comportant un film de WO3, de type comprenant les opérations successives de:More specifically, the invention relates to a method of manufacturing an electrode comprising a film of WO 3 , of the type comprising the successive operations of:
- formation d'une solution colloïdale comprenant un mélange réalisé à partir d'acide tungstique et d'un matériau organique,- formation of a colloidal solution comprising a mixture produced from tungstic acid and an organic material,
- dépôt sur une plaque de verre conducteur d'une couche mince de la solution, et- depositing a thin layer of the solution on a conductive glass plate, and
- traitement thermique de ladite plaque à une température d'au moins 350°C.- heat treatment of said plate at a temperature of at least 350 ° C.
Le procédé est principalement caractérisé en ce que le matériau organique utilisé est choisi parmi l'éthylène glycol, le polyéthylène glycol, le maltose, le glycérol, le glucose, le mannitol et le myo inositol. Selon un mode de mise en œuvre avantageux de l'invention, l'opération de formation d'une solution colloïdale comporte les opérations successives de :The process is mainly characterized in that the organic material used is chosen from ethylene glycol, polyethylene glycol, maltose, glycerol, glucose, mannitol and myo inositol. According to an advantageous embodiment of the invention, the operation of forming a colloidal solution comprises the successive operations of:
- réalisation d'un mélange d'acide tungstique en solution avec le matériau organique, et - formation d'une solution colloïdale du mélange.- making a mixture of tungstic acid in solution with the organic material, and - forming a colloidal solution of the mixture.
Selon un autre mode avantageux de mise en oeuvre de l'invention, l'opération de formation d'une solution colloïdale comporte les opérations successives de :According to another advantageous embodiment of the invention, the operation of forming a colloidal solution comprises the successive operations of:
- réalisation d'un mélange d'acide tungstique en solution avec un matériau organique choisi parmi l'éthanol, le méthanol, tout autre alcool volatile et le diméthyl sulfoxyde,production of a mixture of tungstic acid in solution with an organic material chosen from ethanol, methanol, any other volatile alcohol and dimethyl sulfoxide,
- formation d'une solution colloïdale du mélange, et- formation of a colloidal solution of the mixture, and
- réalisation d'un mélange de la solution colloïdale avec le matériau organique. L'opération de traitement thermique s'effectue, de préférence, à une température comprise entre 400 et 600 °C.- making a mixture of the colloidal solution with the organic material. The heat treatment operation is preferably carried out at a temperature between 400 and 600 ° C.
Pour certaines applications, l'électrode doit, en outre, être homogène. C'est indispensable dans les cellules d'affichage et le plus souvent souhaitable pour la photoelectrolyse. A cet effet, le matériau organique de la solution colloïdale est avantageusement choisi parmi l'éthylène glycol, le polyéthylène glycol, le maltose, le glucose, le mannitol et le glycérol.For some applications, the electrode must also be homogeneous. It is essential in display cells and most often desirable for photoelectrolysis. To this end, the organic material of the colloidal solution is advantageously chosen from ethylene glycol, polyethylene glycol, maltose, glucose, mannitol and glycerol.
Pour que la lumière puisse atteindre l'interface électrode-électrolyte, il faut qu'elle traverse l'électrolyte ou le substrat et le film actif, l'un ou les autres devant, en conséquence, être transparents. Or, l'électrolyte est parfois opaque, ou tout au moins absorbant. Dans ce cas, le substrat et le film actif doivent être transparents, la source de lumière pouvant alors opérer au travers du substrat. Ce but est atteint grâce au fait que le matériau organique de la solution colloïdale est avantageusement choisi parmi l'éthylène glycol, le polyéthylène glycol, le mannitol et le glycérol. Dans les applications relatives à la photoélectrochimie, le rendement dépend de l'intensité du photocourant de l'électrode. Pour obtenir l'intensité la plus élevée possible, le matériau organique de la solution colloïdale est avantageusement choisi parmi le polyéthylène glycol, le maltose, le glucose, le mannitol et le myo inositol.In order for the light to reach the electrode-electrolyte interface, it must pass through the electrolyte or the substrate and the active film, one or the other must therefore be transparent. However, the electrolyte is sometimes opaque, or at least absorbent. In this case, the substrate and the active film must be transparent, the light source then being able to operate through the substrate. This object is achieved thanks to the fact that the organic material of the colloidal solution is advantageously chosen from ethylene glycol, polyethylene glycol, mannitol and glycerol. In applications relating to photoelectrochemistry, the efficiency depends on the intensity of the photocurrent of the electrode. To obtain the highest possible intensity, the organic material of the colloidal solution is advantageously chosen from polyethylene glycol, maltose, glucose, mannitol and myo inositol.
L'expérience a montré que la qualité de la solution colloïdale dépendait fortement de la qualité de l'acide tungstique. Celui-ci est, de préférence, obtenu par le passage d'une solution aqueuse de tungstate de sodium au travers d'une résine échangeuse de cations. II a été constaté que, pour réaliser la solution colloïdale, il était avantageux d'effectuer une évaporation sous pression réduite.Experience has shown that the quality of the colloidal solution is highly dependent on the quality of the tungstic acid. This is preferably obtained by passing an aqueous solution of sodium tungstate through a cation exchange resin. It has been found that, to produce the colloidal solution, it was advantageous to carry out an evaporation under reduced pressure.
La qualité de la cellule dépend notamment de la surface de contact entre l'électrolyte et le film actif. Comme le film actif est poreux, il est possible d'augmenter cette surface en agissant sur l'épaisseur. A cet effet, les opérations de dépôt sur une plaque de verre conducteur d'une couche mince de la solution colloïdale et de traitement thermique sont répétées jusqu'à 12 fois.The quality of the cell depends in particular on the contact surface between the electrolyte and the active film. As the active film is porous, it is possible to increase this surface by acting on the thickness. To this end, the operations of depositing a thin layer of the colloidal solution on a conductive glass plate and of heat treatment are repeated up to 12 times.
D'autres avantages et caractéristiques de l'invention ressortiront de la description qui va suivre, faite en regard du dessin annexé, dans lequel: - la figure 1 montre une plaque de verre conducteur portant un film actif obtenu selon le procédé de l'invention,Other advantages and characteristics of the invention will emerge from the description which follows, given with reference to the appended drawing, in which: - Figure 1 shows a plate of conductive glass carrying an active film obtained according to the method of the invention ,
- la figure 2 illustre les différentes étapes du procédé, etFIG. 2 illustrates the different stages of the process, and
- la figure 3 représente la variation de la densité du photocourant en fonction du potentiel. En se référant à la figure 1 , on peut voir, de manière schématique, une plaque de verre conducteur 10 comprenant une couche conductrice transparente 12 et revêtue d'un film de WO3 14. De telles plaques sont, par exemple, commercialisées par la maison LOF sous le nom de verre conducteur. De bons résultats ont été obtenus avec une qualité présentant une résistance de 10 Ω par carré.- Figure 3 shows the variation of the density of the photocurrent as a function of the potential. Referring to FIG. 1, we can see, schematically, a conductive glass plate 10 comprising a transparent conductive layer 12 and coated with a film of WO 3 14. Such plates are, for example, sold by the house of LOF under the name of conductive glass. Good results have been obtained with a quality having a resistance of 10 Ω per square.
Le film 14 est formé d'un agrégat de particules de WO3 ayant un diamètre de 20 à 60 nm, qui sont fixées rigidement les unes aux autres et définissent une structure mésoporeuse obtenue en réalisant une alternance de dépôts de couches minces et de traitements thermiques. L'empilement comporte avantageusement 6 à 9 couches. Selon les applications, ce nombre peut être réduit jusqu'à une seule couche ou, au contraire, être augmenté jusqu'à 12 couches, par exemple.The film 14 is formed from an aggregate of WO 3 particles having a diameter of 20 to 60 nm, which are rigidly fixed to each other and define a mesoporous structure obtained by alternating deposition of thin layers and heat treatments. . The stack advantageously comprises 6 to 9 layers. Depending on the application, this number can be reduced to a single layer or, on the contrary, be increased to 12 layers, for example.
On relèvera que, sur la figure 1 , pour d'évidentes raisons, les échelles ne sont pas respectées. En réalité, la plaque de verre a une épaisseur qui se chiffre en millimètres alors que les autres dimensions sont de l'ordre de quelques micromètres, voire de quelques dizaines de nanomètres, comme cela a été expliqué plus haut.It will be noted that, in FIG. 1, for obvious reasons, the scales are not respected. In reality, the glass plate has a thickness which is calculated in millimeters while the other dimensions are of the order of a few micrometers, or even a few tens of nanometers, as has been explained above.
La structure mésoporeuse ainsi obtenue permet d'augmenter considérablement la surface de contact entre l'électrode et l'électrolyte.The mesoporous structure thus obtained makes it possible to considerably increase the contact surface between the electrode and the electrolyte.
Comme le montre la figure 2, le procédé selon l'invention comporte plusieurs étapes, identifiées par une lettre majuscule, qui sont les suivantes: A. Production d'acide tungstiqueAs shown in FIG. 2, the process according to the invention comprises several stages, identified by an uppercase letter, which are as follows: A. Production of tungstic acid
B. Adjonction d'un premier matériau organiqueB. Addition of a first organic material
C. Concentration pour former une solution colloïdaleC. Concentration to form a colloidal solution
D. Introduction d'un deuxième matériau organiqueD. Introduction of a second organic material
E. Dépôt de la solution colloïdale sur un substrat F. Formation d'une couche mince de la solutionE. Deposition of the colloidal solution on a substrate F. Formation of a thin layer of the solution
G. Traitement thermique.G. Heat treatment.
Ces différentes étapes vont être maintenant décrites de manière plus détaillée. Dans l'exemple ci-dessous, les quantités utilisées correspondent aux expériences de laboratoire. Il est évident qu'en production industrielle, les volumes mis en oeuvre sont plus importants.These different steps will now be described in more detail. In the example below, the quantities used correspond to laboratory experiments. It is obvious that in industrial production, the volumes used are greater.
A. On dispose initialement d'une solution 20 de tungstate de sodium (Na2WO4) contenue dans un premier récipient 21 , d'eau distillée 22 placée dans un deuxième récipient 23, et de résine échangeuse de cations 24, logée dans une colonne 25 et imbibée d'eau distillée. La solution 20 est dosée de manière à disposer de 20 ml de tungstate de sodium 0.5 M. On peut utiliser comme résine échangeuse de cations le produit vendu par la maison DOWEX sous la référence W 50 HCR-2 100-200 mesh.A. Initially, a solution 20 of sodium tungstate (Na 2 WO 4 ) contained in a first container 21, of distilled water 22 placed in a second container 23, and of cation exchange resin 24, housed in a column 25 and soaked in distilled water. The solution 20 is dosed so as to have 20 ml of 0.5 M sodium tungstate. The product sold by DOWEX under the reference W 50 HCR-2 100-200 mesh can be used as cation exchange resin.
La solution 20 est versée dans la colonne 25 et s'écoule au travers de la résine échangeuse de cations 24, repoussant devant elle l'eau contenue initialement dans la colonne, qui est éliminée. Elle est elle-même entraînée vers la sortie de la colonne par l'eau distillée 22, qui agit comme éluant. Le tungstate de sodium 20 est acidifié par échange de cations avec la résine 24, qui retient les cations de sodium et libère des protons, formant ainsi de l'acide tungstique 26.The solution 20 is poured into the column 25 and flows through the cation exchange resin 24, repelling before it the water initially contained in the column, which is eliminated. It is itself entrained towards the outlet of the column by distilled water 22, which acts as an eluent. The sodium tungstate 20 is acidified by cation exchange with the resin 24, which retains the sodium cations and releases protons, thus forming tungstic acid 26.
B. L'acide tungstique 26 ainsi produit est recueilli à la sortie de la colonne 25 dans un récipient 27 contenant initialement 5 à 20 ml d'un premier matériau organique 28. Un agitateur 29 tourne à l'intérieur du récipient pour assurer le mélange de l'acide tungstique 26 et du matériau organique 28, qui forment ensemble une solution. On laisse s'écouler l'acide 26 jusqu'à ce que le récipient 27 contienne environ 50 ml de la solution. Ce volume est supérieur à la somme des volumes de tungstate de sodium et de matériau organique. Cela provient du fait que de l'eau se mélange au tungstate de sodium au cours de l'écoulement dans la colonne 25.B. The tungstic acid 26 thus produced is collected at the outlet of the column 25 in a container 27 initially containing 5 to 20 ml of a first organic material 28. An agitator 29 rotates inside the container to ensure mixing tungstic acid 26 and organic material 28, which together form a solution. The acid 26 is allowed to flow until the container 27 contains approximately 50 ml of the solution. This volume is greater than the sum of the volumes of sodium tungstate and organic material. This is due to the fact that water mixes with sodium tungstate during the flow in column 25.
C. Le mélange ainsi obtenu est placé dans un rotavapeur 30 pour le concentrer par évaporation sous pression réduite. Cette opération s'effectue à une température de 40° à 70°C, typiquement 55°C, jusqu'à obtenir une solution colloïdale. D. On ajoute à la solution colloïdale 31 un deuxième matériau organique 32 contenu dans un récipient 33, brassé au moyen de l'agitateur 29 pour former un mélange 34. Ce mélange a alors une concentration en WO3 comprise entre 0.1 et 0.9 M E. Le mélange 34 de la solution colloïdale 31 et du matériau organique 32 est déposé sous la forme d'une goutte 35 au moyen d'une pipette 36 sur la couche conductrice 12 d'une plaque de verre conducteur 10.C. The mixture thus obtained is placed in a rotary evaporator 30 to concentrate it by evaporation under reduced pressure. This operation is carried out at a temperature of 40 ° to 70 ° C, typically 55 ° C, until a colloidal solution is obtained. D. A second organic material 32 is added to the colloidal solution 31 contained in a container 33, stirred by means of the stirrer 29 to form a mixture 34. This mixture then has a WO 3 concentration of between 0.1 and 0.9 M E The mixture 34 of the colloidal solution 31 and of the organic material 32 is deposited in the form of a drop 35 by means of a pipette 36 on the conductive layer 12 of a conductive glass plate 10.
F. La goutte 35 est étendue sur la plaque 10 pour former un ruban, puis tirée sur toute sa surface au moyen d'une plaque de verre 37. G. Un four 38 permet de traiter un ensemble de plaques ainsi obtenues dans une atmosphère oxydante à une température comprise entre 350° et 650°C, de préférence entre 400° et 600°C, durant 15 à 60 minutes, de préférence entre 30 à 60 minutes. Lors de cette opération, les matériaux organiques brûlent et se volatilisent tandis que le WO3 se cristallise sur le substrat en une structure poreuse.F. The drop 35 is extended on the plate 10 to form a ribbon, then drawn over its entire surface by means of a glass plate 37. G. An oven 38 makes it possible to treat a set of plates thus obtained in an oxidizing atmosphere at a temperature between 350 ° and 650 ° C, preferably between 400 ° and 600 ° C, for 15 to 60 minutes, preferably between 30 to 60 minutes. During this operation, the organic materials burn and volatilize while the WO 3 crystallizes on the substrate into a porous structure.
Comme déjà mentionné, les opérations de dépôt (E), formation d'une couche mince (F) et passage au four (G) peuvent se répéter jusqu'à une douzaine de fois, pour obtenir une épaisseur pouvant atteindre plus de 5 μm.As already mentioned, the deposition operations (E), formation of a thin layer (F) and passage through the oven (G) can be repeated up to a dozen times, to obtain a thickness which can reach more than 5 μm.
Les matériaux organiques suivants ont été utilisés avec succès: a) éthanol, méthanol et autres alcools volatiles, b) diméthyl sulfoxyde, c) éthylène glycol, d) polyéthylène glycol 200, 300, 600 et 1000, e) maltose et glucose, f) glycérol, g) mannitol h) myo inositol. Dans le mode de mise en œuvre de l'invention qui vient d'être décrit, un premier matériau organique 28 a été utilisé pour recueillir l'acide tungstique et un deuxième matériau organique 32 a été mélangé à la solution colloïdale. Le premier matériau organique 28 est alors choisi parmi les produits a) et b). Dans ce cas, le deuxième matériau organique 32 est choisi parmi les produits c) à h).The following organic materials have been used successfully: a) ethanol, methanol and other volatile alcohols, b) dimethyl sulfoxide, c) ethylene glycol, d) polyethylene glycol 200, 300, 600 and 1000, e) maltose and glucose, f) glycerol, g) mannitol h) myo inositol. In the embodiment of the invention which has just been described, a first organic material 28 was used to collect the tungstic acid and a second organic material 32 was mixed with the colloidal solution. The first organic material 28 is then chosen from products a) and b). In this case, the second organic material 32 is chosen from products c) to h).
Selon un variante du procédé, le premier matériau organique 28 est choisi parmi les produits c) à h). Il n'est plus nécessaire alors d'introduire ensuite le deuxième matériau organique 32.According to a variant of the method, the first organic material 28 is chosen from products c) to h). It is then no longer necessary to then introduce the second organic material 32.
Parmi les nombreux matériaux organiques testés, les produits a) à h) de la liste ci-dessus sont ceux qui ont donné les résultats recherchés. Les raisons exactes pour lesquelles le procédé selon l'invention permet d'obtenir une structure mésoporeuse adhérente ne sont toutefois pas parfaitement expliquées.Among the many organic materials tested, the products a) to h) from the above list are those which have given the desired results. The exact reasons why the method according to the invention makes it possible to obtain an adherent mesoporous structure are not however fully explained.
On relèvera que les essais effectués n'ont pas montré de grandes différences dans les caractéristiques des électrodes selon que les produits c) à h) étaient mélangés avant ou après l'opération de concentration pour obtenir la solution colloïdale. Toutefois, lorsque l'acide tungstique est recueilli dans du diméthyl sulfoxyde, la stabilité de la solution colloïdale est fortement augmentée.It will be noted that the tests carried out did not show large differences in the characteristics of the electrodes depending on whether the products c) to h) were mixed before or after the concentration operation to obtain the colloidal solution. However, when tungstic acid is collected in dimethyl sulfoxide, the stability of the colloidal solution is greatly increased.
Des tests ont également été réalisés au moyen de produits qui n'ont pas donné satisfaction. Afin d'avoir une bonne vue d'ensemble, les résultats les plus intéressants sont résumés dans le tableau ci-dessous.Tests have also been carried out using unsatisfactory products. In order to have a good overview, the most interesting results are summarized in the table below.
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000011_0001
Figure imgf000011_0001
A = adhérence 1 ) Homogène mais pas autant qu'avec PEG H = homogénéité 2) Transparent si on met au maximum 3-4 couches T = transparence 3) Maximum 4 couches I = photocourant 4) Maximum 2 couchesA = adhesion 1) Homogeneous but not as much as with PEG H = homogeneity 2) Transparent if we put at most 3-4 layers T = transparency 3) Maximum 4 layers I = photocurrent 4) Maximum 2 layers
Ce tableau comporte sept colonnes. Les trois premières définissent la composition de la solution colloïdale alors que les quatre autres indiquent les caractéristiques des films obtenus.This table has seven columns. The first three define the composition of the colloidal solution while the other four indicate the characteristics of the films obtained.
De manière plus précise, la première colonne définit le matériau organique utilisé, la deuxième la concentration de la solution colloïdale en WO3 et la troisième le rapport pondéral entre WO3 et matériau organique. La quatrième colonne donne une indication de la qualité de l'adhérence du dépôt, la cinquième de son homogénéité, la sixième de sa transparence et la septième de l'intensité du photocourant mesuré lorsque l'électrode polarisée est exposée à la lumière solaire simulée.More precisely, the first column defines the organic material used, the second the concentration of the colloidal solution in WO 3 and the third, the weight ratio between WO 3 and organic material. The fourth column gives an indication of the quality of the adhesion of the deposit, the fifth of its homogeneity, the sixth of its transparency and the seventh of the intensity of the photocurrent measured when the polarized electrode is exposed to simulated sunlight.
A l'examen de ce tableau, on constate que la concentration de la solution colloïdale en WO3 est comprise entre 0.1 M et 0.8 M. Ce paramètre ne semble pas jouer un rôle prépondérant dans la qualité des électrodes obtenues. De son côté, le rapport pondéral entre WO3 et matériau organique joue un rôle plus ou moins important.On examining this table, it can be seen that the concentration of the colloidal solution of WO 3 is between 0.1 M and 0.8 M. This parameter does not seem to play a preponderant role in the quality of the electrodes obtained. For its part, the weight ratio between WO 3 and organic material plays a more or less important role.
Par contre, les résultats obtenus diffèrent de manière considérable selon le matériau organique choisi. Certains, comme l'acide tartrique et le maltitol, ne permettent pas, aux concentrations testées, d'obtenir un film adhérent.On the other hand, the results obtained differ considerably depending on the organic material chosen. Some, such as tartaric acid and maltitol, do not make it possible, at the concentrations tested, to obtain an adherent film.
Au contraire, l'éthylène glycol, le polyéthylène glycol et le mannitol donnent de bons résultats à tous points de vue.On the contrary, ethylene glycol, polyethylene glycol and mannitol give good results from all points of view.
Les électrodes obtenues à partir d'une solution contenant de l'alcool polyviniiique (masse molaire de 15 000) sont, au contraire, peu intéressantes.The electrodes obtained from a solution containing polyvinyl alcohol (molar mass of 15,000) are, on the contrary, of little interest.
Le maltose, le glucose et le myo inositol permettent d'obtenir des films ayant une bonne adhérence et présentent un très bon photocourant. Par contre, la transparence est faible. Le glucose ne semble utilisable que pour un rapport WO3/matériau organique de 0.5 environ. L'utilisation du myo inositol conduit à des électrodes inhomogènes.Maltose, glucose and myo inositol make it possible to obtain films with good adhesion and have a very good photocurrent. On the other hand, transparency is weak. Glucose only seems usable for a WO 3 / organic material ratio of around 0.5. The use of myo inositol leads to inhomogeneous electrodes.
En d'autres termes, par un choix adéquat du matériau organique associé à la solution colloïdale, il est possible de conférer aux électrodes des caractéristiques physiques particulièrement intéressantes.In other words, by an adequate choice of the organic material associated with the colloidal solution, it is possible to give the electrodes particularly advantageous physical characteristics.
Lorsqu'on a impérativement besoin d'un film de WO3 homogène, on peut donc utiliser l'éthylène glycol, le polyéthylène glycol, le maltose, le glucose, le mannitol et le glycérol. Une électrode transparente peut être obtenue en choisissant le matériau organique parmi l'éthylène glycol, le polyéthylène glycol, le mannitol et le glycérol.When it is absolutely necessary to have a homogeneous film of WO 3 , it is therefore possible to use ethylene glycol, polyethylene glycol, maltose, glucose, mannitol and glycerol. A transparent electrode can be obtained by choosing the organic material from ethylene glycol, polyethylene glycol, mannitol and glycerol.
Dans des applications où l'intensité du photocourant joue un rôle important, par exemple lors de la photoelectrolyse de l'eau ou la décomposition photoélectrochimique de composés organiques, des résultats particulièrement bons sont obtenus en utilisant le polyéthylène glycol, le maltose, le glucose, le mannitol et le myo inositol.In applications where the intensity of the photocurrent plays an important role, for example during the photoelectrolysis of water or the photoelectrochemical decomposition of organic compounds, particularly good results are obtained using polyethylene glycol, maltose, glucose, mannitol and myo inositol.
A titre d'exemple on peut voir, sur la figure 3, la variation de la densité de photocourant en fonction de la tension appliquée à l'électrode, mesurée- avec une photoanode comportant un film de WO3 de 5 μm d'épaisseur, réalisé à partir d'une solution colloïdale avec du PEG 300,. Les potentiels sont donnés par rapport à une électrode réversible à hydrogène (ERH) dans la même solution. L'électrolyte est formé d'acide perchlorique 1 M. La mesure a été réalisée avec un éclairement en lumière solaire simulée selon la norme «1 soleil AM 1.5» et une variation du potentiel appliqué de 5 mV/s.As an example, we can see, in FIG. 3, the variation of the photocurrent density as a function of the voltage applied to the electrode, measured with a photoanode comprising a film of WO 3 of 5 μm thickness, made from a colloidal solution with PEG 300 ,. The potentials are given relative to a reversible hydrogen electrode (ERH) in the same solution. The electrolyte is formed from 1 M perchloric acid. The measurement was carried out with simulated sunlight illumination according to the "1 sun AM 1.5" standard and a variation of the applied potential of 5 mV / s.
De manière plus précise, la courbe identifiée par des cercles pleins correspond à un processus de dégradation photoélectrochimique de méthanol 0.1 M dans l'électrolyte.More precisely, the curve identified by solid circles corresponds to a photoelectrochemical degradation process of 0.1 M methanol in the electrolyte.
La courbe identifiée par des cercles évidés montre la variation de la densité de photocourant lors de la photoelectrolyse de l'eau, avec dégagement d'oxygène. The curve identified by hollowed out circles shows the variation of the photocurrent density during the photoelectrolysis of water, with release of oxygen.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une électrode comportant un film actif de WO3, comprenant les opérations successives de:1. Method for manufacturing an electrode comprising an active film of WO 3 , comprising the successive operations of:
- formation d'une solution colloïdale comprenant un mélange réalisé à partir d'acide tungstique et d'un matériau organique,- formation of a colloidal solution comprising a mixture produced from tungstic acid and an organic material,
- dépôt sur une plaque de verre conducteur d'une couche mince de ladite solution, etdepositing a thin layer of said solution on a conductive glass plate, and
- traitement thermique de ladite plaque à une température d'au moins 350°C, caractérisé en ce que ledit matériau organique est choisi parmi l'éthylène glycol, le polyéthylène glycol, le maltose, le glycérol, le glucose, le mannitol et le myo inositol.- heat treatment of said plate at a temperature of at least 350 ° C, characterized in that said organic material is chosen from ethylene glycol, polyethylene glycol, maltose, glycerol, glucose, mannitol and myo inositol.
2. Procédé selon la revendication 1 , caractérisé en ce que l'opération de formation d'une solution colloïdale comporte les opérations successives de :2. Method according to claim 1, characterized in that the operation of forming a colloidal solution comprises the successive operations of:
- réalisation d'un mélange d'acide tungstique en solution avec ledit matériau organique, etmaking a mixture of tungstic acid in solution with said organic material, and
- formation d'une solution colloïdale du mélange réalisé.- Formation of a colloidal solution of the mixture produced.
3. Procédé selon la revendication 1 , caractérisé en ce que l'opération de formation d'une solution colloïdale comporte les opérations successives de:3. Method according to claim 1, characterized in that the operation of forming a colloidal solution comprises the successive operations of:
- réalisation d'un mélange à partir d'acide tungstique en solution et d'un matériau organique choisi parmi Péthanol, le méthanol, tout autre alcool volatile et le diméthyl sulfoxyde,- production of a mixture from tungstic acid in solution and an organic material chosen from ethanol, methanol, any other volatile alcohol and dimethyl sulfoxide,
- formation d'une solution colloïdale du mélange réalisé, et - réalisation d'un mélange de ladite solution colloïdale avec ledit matériau organique.- formation of a colloidal solution of the mixture produced, and - Making a mixture of said colloidal solution with said organic material.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'opération de traitement thermique s'effectue à une température comprise entre 400 et 600 °C.4. Method according to one of claims 1 to 3, characterized in that the heat treatment operation is carried out at a temperature between 400 and 600 ° C.
5. Procédé selon l'une des revendications 1 à 4 pour l'obtention d'un film de WO3 homogène, caractérisé en ce que ledit matériau organique est choisi parmi l'éthylène glycol, le polyéthylène glycol, le maltose, le glucose, le mannitol et le glycérol.5. Method according to one of claims 1 to 4 for obtaining a homogeneous WO 3 film, characterized in that said organic material is chosen from ethylene glycol, polyethylene glycol, maltose, glucose, mannitol and glycerol.
6. Procédé selon l'une des revendications 1 à 4 pour l'obtention d'un film de WO3 transparent, caractérisé en ce que ledit matériau organique est choisi parmi l'éthylène glycol, le polyéthylène glycol, le mannitol et le glycérol.6. Method according to one of claims 1 to 4 for obtaining a transparent film of WO 3 , characterized in that said organic material is chosen from ethylene glycol, polyethylene glycol, mannitol and glycerol.
7. Procédé selon l'une des revendications 1 à 4 pour l'obtention d'un film de WO3 qui présente un photocourant élevé, caractérisé en ce que ledit matériau organique est choisi parmi le polyéthylène glycol, le maltose, le glucose, le mannitol et le myo inositol.7. Method according to one of claims 1 to 4 for obtaining a film of WO 3 which has a high photocurrent, characterized in that said organic material is chosen from polyethylene glycol, maltose, glucose, mannitol and myo inositol.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la solution d'acide tungstique est obtenue par le passage d'une solution aqueuse de tungstate de sodium au travers d'une résine échangeuse de cations. 8. Method according to one of claims 1 to 7, characterized in that the tungstic acid solution is obtained by the passage of an aqueous solution of sodium tungstate through a cation exchange resin.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la solution colloïdale est obtenue par évaporation sous pression réduite.9. Method according to one of claims 1 to 8, characterized in that the colloidal solution is obtained by evaporation under reduced pressure.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que les opérations de dépôt sur une plaque de verre conducteur d'une couche mince de ladite solution et de traitement thermique de ladite plaque sont répétées jusqu'à 12 fois. 10. Method according to one of claims 1 to 9, characterized in that the operations of depositing on a conductive glass plate a thin layer of said solution and heat treatment of said plate are repeated up to 12 times.
PCT/CH1999/000270 1998-06-22 1999-06-21 Method for making an electrode comprising a tungsten oxide film WO1999067181A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9807958A FR2780055A1 (en) 1998-06-22 1998-06-22 Tungsten oxide-coated electrode, especially for water photo-electrolysis or organic waste photo-electrochemical decomposition or for an electrochromic display cell
FR98/07958 1998-06-22

Publications (1)

Publication Number Publication Date
WO1999067181A1 true WO1999067181A1 (en) 1999-12-29

Family

ID=9527773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1999/000270 WO1999067181A1 (en) 1998-06-22 1999-06-21 Method for making an electrode comprising a tungsten oxide film

Country Status (2)

Country Link
FR (1) FR2780055A1 (en)
WO (1) WO1999067181A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398624A1 (en) * 2002-09-11 2004-03-17 Microchemical Systems S.A. Chemical gas sensor and method of making same
GB2413337A (en) * 2004-04-21 2005-10-26 Hydrogen Solar Ltd Electrodes with tungsten oxide films
WO2011012238A1 (en) 2009-07-31 2011-02-03 Eni S.P.A. Modified tungsten oxide and process for its preparation
CN102544431A (en) * 2010-12-20 2012-07-04 新奥科技发展有限公司 Composition slurry and method for preparing photoelectric catalytic tungsten trioxide thin film electrode
CN102618880A (en) * 2011-01-31 2012-08-01 南京大学 Chlor-alkail photoelectrolytic cell and method for producing Cl2 and NaOH by using the same
CN108424004A (en) * 2018-04-17 2018-08-21 上海艾谡新材料有限公司 A kind of preparation method of nanoscale molybdenum oxide electrochomeric films
CN111704365A (en) * 2017-04-24 2020-09-25 揭阳市宏光镀膜玻璃有限公司 Preparation method of high-efficiency color-changing silk-screen printing molybdenum-doped tungsten oxide nanostructure electrochromic film

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317244A (en) 2009-01-29 2012-01-11 普林斯顿大学 Carbonic acid gas is converted into organic product
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8524066B2 (en) 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
BR112014000052A2 (en) 2011-07-06 2017-02-07 Liquid Light Inc reduction of carbon dioxide in carboxylic acids, glycols and carboxylates
AU2012278948A1 (en) 2011-07-06 2014-01-16 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
CN114231995B (en) * 2022-02-28 2022-05-31 青岛理工大学 Cobalt molybdate based Z-type photo-anode material and high-temperature solid phase preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404244A (en) * 1992-04-10 1995-04-04 Sun Active Glass Electrochromics, Inc. Electrochromic structures and methods
US5525264A (en) * 1992-07-15 1996-06-11 Donnelly Corporation Precursor solutions for forming coatings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404244A (en) * 1992-04-10 1995-04-04 Sun Active Glass Electrochromics, Inc. Electrochromic structures and methods
US5525264A (en) * 1992-07-15 1996-06-11 Donnelly Corporation Precursor solutions for forming coatings

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
COATING ON GLASS. FIRST INTERNATIONAL CONFERENCE. ADVANCED TECHNOLOGIES AND FUTURE TRENDS FOR HIGH VOLUME AND/OR LARGE AREAS, SAABRUCKEN, GERMANY, 27-31 OCT. 1997, vol. 218, ISSN 0022-3093, Journal of Non-Crystalline Solids, Sept. 1997, Elsevier, Netherlands, pages 189 - 195 *
DATABASE INSPEC INSTITUTE OF ELECTRICAL ENGINEERS, STEVENAGE, GB; NISHIO K ET AL: "Preparation and properties of fully solid state electrochromic display thin film from a sol-gel process", XP002096496 *
DATABASE INSPEC INSTITUTE OF ELECTRICAL ENGINEERS, STEVENAGE, GB; VROON Z A E P ET AL: "Sol-gel coatings on large area glass sheets for electrochromic devices", XP002096495 *
NISHIDE T ET AL: "CONTROL OF REFRACTIVE INDEX OF SOL-GEL TUNGSTEN OXIDE FILMS", JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 6, no. 3, 1 January 1996 (1996-01-01), pages 263 - 267, XP000596505 *
SOL-GEL OPTICS IV, SAN DIEGO, CA, USA, 30 JULY-1 AUG. 1997, vol. 3136, ISSN 0277-786X, Proceedings of the SPIE - The International Society for Optical Engineering, 1997, SPIE-Int. Soc. Opt. Eng, USA, pages 419 - 425 *
TOSHIKAZU NISHIDE ET AL: "REFRACTIVE INDICES OF THE TUNGSTEN OXIDE FILMS PREPARED BY SOL-GEL AND SPUTTERING PROCESSES", OPTICAL ENGINEERING, vol. 34, no. 11, 1 November 1995 (1995-11-01), pages 3329 - 3333, XP000584995 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398624A1 (en) * 2002-09-11 2004-03-17 Microchemical Systems S.A. Chemical gas sensor and method of making same
GB2413337A (en) * 2004-04-21 2005-10-26 Hydrogen Solar Ltd Electrodes with tungsten oxide films
WO2005103329A2 (en) * 2004-04-21 2005-11-03 Hydrogen Solar Ltd Manufacturing method
WO2005103329A3 (en) * 2004-04-21 2006-08-10 Hydrogen Solar Ltd Manufacturing method
WO2011012238A1 (en) 2009-07-31 2011-02-03 Eni S.P.A. Modified tungsten oxide and process for its preparation
CN102544431A (en) * 2010-12-20 2012-07-04 新奥科技发展有限公司 Composition slurry and method for preparing photoelectric catalytic tungsten trioxide thin film electrode
CN102618880A (en) * 2011-01-31 2012-08-01 南京大学 Chlor-alkail photoelectrolytic cell and method for producing Cl2 and NaOH by using the same
CN111704365A (en) * 2017-04-24 2020-09-25 揭阳市宏光镀膜玻璃有限公司 Preparation method of high-efficiency color-changing silk-screen printing molybdenum-doped tungsten oxide nanostructure electrochromic film
CN111747657A (en) * 2017-04-24 2020-10-09 揭阳市宏光镀膜玻璃有限公司 Preparation method of molybdenum-doped tungsten oxide nanostructure electrochromic film
CN108424004A (en) * 2018-04-17 2018-08-21 上海艾谡新材料有限公司 A kind of preparation method of nanoscale molybdenum oxide electrochomeric films

Also Published As

Publication number Publication date
FR2780055A1 (en) 1999-12-24

Similar Documents

Publication Publication Date Title
WO1999067181A1 (en) Method for making an electrode comprising a tungsten oxide film
DE102005044522B4 (en) Method for applying a porous glass layer, and composite material and its use
FR2939786A1 (en) PROCESS FOR MANUFACTURING COMPOSITE SNO2 MATERIAL AND CARBON NANOTUBES AND / OR CARBON NANOFIBERS, MATERIAL OBTAINED BY THE PROCESS, ELECTRODE FOR LITHIUM BATTERY COMPRISING SAID MATERIAL.
EP3017008B1 (en) Ink compositions comprising nanoparticles
AU2005235787A1 (en) Manufacturing method
EP4082052A1 (en) Photovoltaic module
RU2456710C1 (en) Nanocomposite antireflection coating in form of thick film and method of making said coating
EP2097940B1 (en) Gas electrode, method for making the same and uses thereof
FR2900848A1 (en) METHOD FOR DEPOSITING NANOMETRIC THIN FILM TO A SUBSTRATE
Jawad et al. An alternative method to grow Ge thin films on Si by electrochemical deposition for photonic applications
FR3066644A1 (en) ELECTRICALLY CONDUCTIVE, TRANSPARENT OR SEMI-TRANSPARENT DEVICE BASED ON METALLIC NANOWIRES AND POROUS SILICA NANOPARTICLES
EP0461970A1 (en) New electrochrome materials and process of manufacturing the same
WO2003064324A2 (en) Titanium oxide-based sol-gel polymer
WO2006005887A1 (en) Method for localizing a chemical or biological species on a substrate, analyzing microsystem and biochip
CN114203916A (en) Perovskite solar cell containing optical microcavity structure
KR101220454B1 (en) Non-aqueous Paste Composition for Semiconductor Electrode of Dye-Sensitized Solar Cells, Method for Preparing the Composition and Dye-Sensitized Solar Cells Using the Same
CN206726965U (en) Dssc
WO2006067352A1 (en) Electrochemical cell with optical absorption and reflection controlled by copper electroplating
EP2028236B1 (en) Composition comprising J-aggregates
EP0245144B1 (en) Process for producing cationically conducting perfluorated ionomeric colloids, and the use of the colloids obtained
JP2509635B2 (en) Method for producing metal chalcogenide particle dispersed film
WO2004095481A1 (en) Photoelectrochemical solar cell made from nanocomposite organic-inorganic materials
Selwa L’effet de la vitesse de tirage sur les caractéristiques des couches minces TiO2 super-hydrophilique élaboré par voie sol gel (Dip-coating)
EP3607107A1 (en) Precursor solution for forming a metal oxide layer and process for coating a substrate with a metal oxide layer
EP3364461A1 (en) Method for doping graphene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase