JP2509635B2 - Method for producing metal chalcogenide particle dispersed film - Google Patents
Method for producing metal chalcogenide particle dispersed filmInfo
- Publication number
- JP2509635B2 JP2509635B2 JP62234912A JP23491287A JP2509635B2 JP 2509635 B2 JP2509635 B2 JP 2509635B2 JP 62234912 A JP62234912 A JP 62234912A JP 23491287 A JP23491287 A JP 23491287A JP 2509635 B2 JP2509635 B2 JP 2509635B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- metal chalcogenide
- membrane
- cadmium sulfide
- dispersed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明の製造方法により得られる金属カルコゲナイド
粒子分散膜は、特に膜状半導体として利用できるので、
とりわけ大面積でフレキシブルな形状を必要とする電子
写真用感光体、太陽電池、光センサーなどのオプトエレ
クトロニクス素子に有用である。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The metal chalcogenide particle-dispersed film obtained by the production method of the present invention can be particularly used as a film-shaped semiconductor.
In particular, it is useful for optoelectronic elements such as electrophotographic photoreceptors, solar cells, and optical sensors that require a large area and a flexible shape.
[従来技術] CdS、CdSe、PbSなどの金属カルコゲナイド化合物は、
いわゆるII−V族化合物半導体と称して、例えば、オプ
トエレクトロニクス素子などに必要な材料である。一般
に、半導体材料は単結晶として用いる方が物性的には有
利であるが、単結晶の製造には設備投資と時間がかかる
ためコスト高となる難点がある。従って、特に大面積状
素子には半導体粒子分散膜が実用的である。半導体粒子
分散膜の従来の製造方法として次のようなものがあっ
た。即ち、半導体は別途調製し、これを適度な粒径に粉
砕した後、分散媒体として用いる高分子を溶かした溶液
に分散したものをスクリーン印刷法で製膜するのであ
る。[Prior Art] Metal chalcogenide compounds such as CdS, CdSe, and PbS are
A so-called II-V group compound semiconductor is a material necessary for, for example, an optoelectronic element. In general, it is more advantageous in terms of physical properties to use a semiconductor material as a single crystal, but there is a problem in that the production of the single crystal requires a capital investment and time, which results in a high cost. Therefore, the semiconductor particle-dispersed film is practical, especially for large-area devices. There are the following conventional methods for producing a semiconductor particle dispersed film. That is, a semiconductor is separately prepared, pulverized to an appropriate particle size, and then dispersed in a solution in which a polymer used as a dispersion medium is dissolved to form a film by a screen printing method.
この際、物性の優れた半導体膜を作るには、半導体粒
子の粒径及び高分子との分散適合性などが重要である。
この点を工夫して、これまで多くの特許出願がなされて
きた。最近、山本らにより、有機溶媒中において高分子
の存在下で金属カルコゲナイドを調製すると超微粒子状
態のオルガノゾルが得られ、これをキャスト法で製膜す
ることにより導電性の優れた半導体粒子分散膜が得られ
ることが報告されている(Inorg.Chim.Acta.,104,L1,19
85)。At this time, in order to form a semiconductor film having excellent physical properties, the particle size of the semiconductor particles and the dispersion compatibility with the polymer are important.
Many patent applications have been filed by devising this point. Recently, Yamamoto et al. Prepared an organosol in the form of ultrafine particles when a metal chalcogenide was prepared in the presence of a polymer in an organic solvent, and a semiconductor particle-dispersed film with excellent conductivity was formed by casting this into a film. It has been reported to be obtained (Inorg.Chim.Acta., 104, L1,19
85).
一方、Bardらにより、高分子支持膜内でCd2+イオンを
H2Sで還元することにより、硫化カドミウム粒子をin s
ituで効率よく支持膜内に分散できることが報告されて
いる(J.Am.Chem.Soc.,106,6537,1984)。この方法は、
従来のキャスト法にくらべ、溶媒を蒸発留去する操作を
必要としないため設備面及び操作能率の点に大きな改善
がみられる。On the other hand, by Bard et al., The Cd 2+ ion in the polymeric support film
By reducing with H 2 S, the cadmium sulfide particles can be
It has been reported that it can be efficiently dispersed in the support membrane in situ (J. Am. Chem. Soc., 106, 6537, 1984). This method
Compared with the conventional casting method, there is no need to perform an operation to evaporate and distill off the solvent, so that there are significant improvements in terms of equipment and operating efficiency.
[発明が解決しようとする問題点] Bardらの方法では、高分子支持膜として陽イオン交換
膜であるナフィオン(商標)が用いられ、これをまずCd
(NO3)2を溶かした水溶液に浸漬し、その後H2S飽和水
溶液に逐次浸漬してナフィオン膜中に硫化カドミウム粒
子を析出させたが、我々がこの方法に準じて硫化カドミ
ウム分散ナフィオン膜を作製し、その膜構造と物性を調
べたところ、CdS粒子が支持膜内の表面近傍にしか析出
しておらず、支持膜内の中心部には硫化カドミウム粒子
の存在しない“空洞化構造”が与えられた。しかもこの
ような構造の分散膜では、第1表(参考例1)に示すよ
うに、光照射時に流れる電流(i ph)と暗時に流れる電
流(id)のの比(i ph/id)が2程度であり、言い換え
れば、硫化カドミウムの光励起により発生する電流が殆
ど観測できない状態であった。そこで、支持膜内に金属
カルコゲナイド粒子を均一に分散して、半導体物性を改
善した膜を能率よく製造するための新たな方法を開発す
ることが必要になってきた。[Problems to be Solved by the Invention] In the method of Bard et al., Nafion (trademark), which is a cation exchange membrane, is used as a polymer supporting membrane.
It was dipped in an aqueous solution containing (NO 3 ) 2 and then successively dipped in a saturated H 2 S aqueous solution to deposit cadmium sulfide particles in the Nafion membrane. We used this method to deposit a cadmium sulfide-dispersed Nafion membrane. When they were produced and examined for their film structure and physical properties, CdS particles were precipitated only in the vicinity of the surface within the support film, and a “cavity structure” in the center of the support film where cadmium sulfide particles did not exist was found. Given the. Moreover, in the dispersion film having such a structure, as shown in Table 1 (Reference Example 1), the ratio (i ph / id) of the current (i ph) flowing during light irradiation and the current (id) flowing during darkness is It was about 2, in other words, the current generated by photoexcitation of cadmium sulfide was in a state in which almost no observation was possible. Therefore, it has become necessary to develop a new method for efficiently producing a film having improved semiconductor physical properties by uniformly dispersing metal chalcogenide particles in the support film.
[問題点を解決するための手段] Bardらの方法では先に述べたような2段プロセス(逐
次浸漬法)がとられたが、このようにすると、“空洞化
構造”を生じる。この理由として、次のようなメカニズ
ムが考えられる。即ち、ナフィオン膜内でのCd2+イオン
の拡散速度は、ナフィオン膜の外から中に侵入してくる
H2Sの拡散速度より速いことが実験的に確認されてい
る。従って、H2Sの飽和濃度においてもH2Sがナフィオン
膜内の中心部に到達する前に、膜内にあらかじめ存在す
るCd2+イオンは膜の表面に向かって拡散する。この結
果、H2SとCd2+は支持膜内の比較的表層部において出会
い、そこに硫化カドミウム粒子が析出するものと考えら
れる。本発明者らは、このような推論に基づき、支持膜
を介してH2S飽和水とCd2+イオンを含む水溶液を対向拡
散せしめることにより、硫化カドミウム粒子が支持膜内
のH2S溶液側から順次堆積して支持膜内全体にわたって
均一に分散することを確認した。[Means for Solving Problems] In the method of Bard et al., The two-step process (sequential dipping method) as described above was adopted. However, in this case, a "cavitation structure" is produced. The reason for this is as follows. That is, the diffusion rate of Cd 2+ ions in the Nafion membrane penetrates into the Nafion membrane from the outside.
It has been experimentally confirmed that it is faster than the diffusion rate of H 2 S. Therefore, before the H 2 S in the saturation concentration of H 2 S reaches the center of the Nafion membrane, Cd 2+ ions previously existing in the film diffuses toward the surface of the membrane. As a result, it is considered that H 2 S and Cd 2+ meet at a relatively surface layer in the support film, and cadmium sulfide particles are deposited there. Based on such inference, the present inventors counter-diffuse an aqueous solution containing H 2 S saturated water and Cd 2+ ions through the supporting film, so that the cadmium sulfide particles can form H 2 S solution in the supporting film. It was confirmed that they were sequentially deposited from the side and were uniformly dispersed throughout the entire support film.
この考えを拡張して、支持膜内での遷移金属イオンの
拡散速度と還元剤の拡散速度を仕込濃度により所望の範
囲に調節することによって、ナフィオン以外の荷電型及
び無荷電型の高分子材料全般についても、上記と同様に
して金属カルコゲナイド粒子を均一に分散した膜を得る
ことができることが確認された。By extending this idea and adjusting the diffusion rate of transition metal ions and the diffusion rate of a reducing agent in the supporting film to a desired range by the concentration of charge, charged and uncharged polymeric materials other than Nafion It was confirmed that a film in which the metal chalcogenide particles were uniformly dispersed could be obtained in the same manner as above.
本発明で用いる高分子支持膜としては、パーフルオロ
スルホン酸樹脂(ナフィオン)の陽イオン交換膜、多孔
質ポリエチレンなどの高分子膜を例示することができ
る。ただし、金属イオンあるいは還元剤を溶かした溶媒
が支持膜内に浸透しやすくかつ支持膜を溶解しないこと
が好ましい。これを満足する限り、支持膜の材質及び形
状に対する特定の要件はない。遷移金属イオンとして
は、周期律表の第VIII族、第IB族及び第IIB族から選ば
れる元素が好適で、このカチオンは硝酸根、酢酸根、シ
ュウ酸根あるいはCl-、Br-、I-などのアニオンから成る
塩として使用される。Examples of the polymer supporting membrane used in the present invention include a cation exchange membrane of perfluorosulfonic acid resin (Nafion) and a polymer membrane of porous polyethylene. However, it is preferable that the solvent in which the metal ion or the reducing agent is dissolved easily penetrates into the supporting film and does not dissolve the supporting film. As long as this is satisfied, there are no specific requirements for the material and shape of the support membrane. As the transition metal ion, an element selected from Group VIII, Group IB and Group IIB of the periodic table is preferable, and the cation is a nitrate group, an acetate group, an oxalate group or Cl − , Br − , I −, etc. It is used as a salt consisting of the anion of.
カルコゲン元素(S、Se、あるいはTe)をもつ還元剤
としては、H2S、Na2S、Na2S2O3、Na2Se、Na2Se2O3、Na2
Teなどを例示することができる。As the reducing agent having a chalcogen element (S, Se, or Te), H 2 S, Na 2 S, Na 2 S 2 O 3 , Na 2 Se, Na 2 Se 2 O 3 , Na 2
Te and the like can be exemplified.
溶媒としては、上記の金属塩及び還元剤を溶かし、支
持膜を溶かさないものの中から選ばれるが、金属塩を溶
かす溶媒と還元剤を溶かす溶媒は必ずしも同一のもので
ある必要はない。代表的なものとしては、水、アルコー
ル、ジメチルホルムアミド、アセトニトリル、アセトン
など極性溶媒が好ましい。The solvent is selected from those which dissolve the above metal salt and reducing agent but not the supporting film, but the solvent dissolving the metal salt and the solvent dissolving the reducing agent do not necessarily have to be the same. Typically, polar solvents such as water, alcohol, dimethylformamide, acetonitrile and acetone are preferable.
金属塩及び還元剤の濃度は、上記の通り、支持膜内で
の両者の拡散速度のバランスから決定されるものである
から、各構成成分の種類によって至適濃度が定まる。一
般的に言うならば、反応時間を短くするため濃度は高い
程よいので、とくに金属塩及び還元剤は用いる溶媒に溶
けやすいものを選ぶことが望ましい。As described above, the concentrations of the metal salt and the reducing agent are determined from the balance of the diffusion rates of both of them in the support film, and therefore the optimum concentrations are determined by the type of each constituent component. Generally speaking, the higher the concentration, the better in order to shorten the reaction time. Therefore, it is desirable to select a metal salt and a reducing agent that are easily soluble in the solvent used.
[発明の効果] 本発明で開示されたる方法を用いることによって、大
面積状でフレキシブルな半導体粒子分散膜を効率よく製
造することが可能になった。更に、半導体粒子が支持膜
内に超微粒子状態で均一に充填され膜内での光誘起電子
移動が効率よく起こるため優れた半導体物性が発現し
た。EFFECTS OF THE INVENTION By using the method disclosed in the present invention, it becomes possible to efficiently manufacture a flexible semiconductor particle dispersion film having a large area. Furthermore, the semiconductor particles were uniformly filled in the support film in the form of ultrafine particles, and photo-induced electron transfer occurred efficiently in the film, so that excellent semiconductor physical properties were exhibited.
実施例 1 濃硝酸中で3時間、続いてイオン交換蒸留水中で5時
間煮ることにより精製したナフィオン117膜(デュポン
社製、膜厚約200μm)を2室型セパレートセルに挟
み、片側のセルには100mM Cd(CH3COO)2水溶液を、
他方にイオン交換水をそれぞれ満たした。イオン交換水
側にH2Sを所定時間バブリングさせた。反応後、膜を大
量の蒸留水に浸漬、撹拌して充分に洗浄して未反応のカ
ドミウムイオン及びH2Sを除去した。反応時間と共に膜
は黄色から橙色に着色した。膜中に析出した硫化カドミ
ウム含有量の経時変化を第1図に示した。また、得られ
た膜の断面を実体顕微鏡(80倍)下で観察した結果に基
づいて、膜中の硫化カドミウム分散状態の模式図を第1
図に併記した。なお、第2図に示すように、このように
して得られた膜の可視吸収スペクトル(吸収端515nm)
は、文献記載の硫化カドミウムと一致した。Example 1 A Nafion 117 membrane (manufactured by DuPont, film thickness: about 200 μm) purified by boiling in concentrated nitric acid for 3 hours and then in ion-exchange distilled water for 5 hours was sandwiched between two-chamber separate cells, and was placed on one side of the cell. Is a 100 mM Cd (CH 3 COO) 2 aqueous solution,
The other side was filled with deionized water. H 2 S was bubbled on the ion-exchanged water side for a predetermined time. After the reaction, the membrane was immersed in a large amount of distilled water, stirred, and thoroughly washed to remove unreacted cadmium ion and H 2 S. The membrane colored from yellow to orange with the reaction time. The change with time of the content of cadmium sulfide deposited in the film is shown in FIG. In addition, based on the result of observing the cross section of the obtained film under a stereoscopic microscope (80 times), a schematic diagram of the dispersed state of cadmium sulfide in the film
It is also shown in the figure. As shown in FIG. 2, the visible absorption spectrum of the film thus obtained (absorption edge 515 nm)
Was in agreement with the cadmium sulfide described in the literature.
実施例 2 実施例1と同様に支持膜としてナフィオンを用いた。
還元剤としては、H2Sの代わりに、500mM Na2S水溶液を
用い、100mM Cd(CH3COO)2水溶液と13時間反応させ
ることにより、橙色の硫化カドミウム分散ナフィオン膜
を得た。Example 2 As in Example 1, Nafion was used as a supporting film.
As the reducing agent, a 500 mM Na 2 S aqueous solution was used instead of H 2 S, and the reaction was performed with a 100 mM Cd (CH 3 COO) 2 aqueous solution for 13 hours to obtain an orange cadmium sulfide-dispersed Nafion film.
実施例 3 支持膜として多孔質ポリエチレン(商標ハイポア30
0、旭化成(株)製、孔径0.5μm、膜厚50μm)を用
い、これを2室型セパレートセルに挟み片側のセルには
100mM Cd(CH3COO)2水溶液、もう一方のセルには500
mM Na2S水溶液をいれて10時間反応させることにより、
橙色の硫化カドミウム分散ポリエチレン膜を得た。Example 3 Porous polyethylene (trademark Hypore 30
0, Asahi Kasei Co., Ltd., pore size 0.5 μm, film thickness 50 μm) was used, and this was sandwiched between two-chamber separate cells for one side cell.
100 mM Cd (CH 3 COO) 2 aqueous solution, 500 in the other cell
By adding mM Na 2 S aqueous solution and reacting for 10 hours,
An orange cadmium sulfide dispersed polyethylene film was obtained.
実施例 4 支持膜として実施例1で用いたものと同一の精製ナフ
ィオンを用い、実施例1と同様の方法で100mM CuSO4水
溶液とH2S飽和水溶液を10時間反応させることにより、
黒色の硫化銅分散ナフィオン膜を得た。Example 4 By using the same purified Nafion as that used in Example 1 as the supporting membrane, by reacting a 100 mM CuSO 4 aqueous solution and a H 2 S saturated aqueous solution for 10 hours in the same manner as in Example 1,
A black copper sulfide-dispersed Nafion film was obtained.
参考例 1 実施例1に示したように市販ナフィオン117膜を精製し
たのち、これをまず500mM Cd(NO3)2水溶液に1時間
浸漬後、更にH2S飽和水溶液に10分間浸漬した。反応
後、得られた黄色膜を大量の蒸留水で洗浄した後、2枚
のインジウム−スズ酸化物(ITO)被覆ガラス電極に挟
み、両極間に0.5V印加し、650Wタングステンハロゲンラ
ンプにて照射(光源−サンプル間距離40cm、熱線除去用
水フィルター5cm、サンプル表面の光強度200mW・cm-2)
下での光誘起電流(i ph)を測定した。第1表には、
は、電圧印加後のi phの定常状態に達した値を示し、暗
時の電流値(id)との比(i ph/id)を併記した。Reference Example 1 After purifying a commercially available Nafion 117 membrane as shown in Example 1, this was first immersed in a 500 mM Cd (NO 3 ) 2 aqueous solution for 1 hour, and then further immersed in a H 2 S saturated aqueous solution for 10 minutes. After the reaction, the obtained yellow film was washed with a large amount of distilled water, sandwiched between two indium-tin oxide (ITO) coated glass electrodes, 0.5 V was applied between both electrodes, and irradiation was performed with a 650 W tungsten halogen lamp. (Light source-sample distance 40 cm, heat ray removal water filter 5 cm, sample surface light intensity 200 mW · cm -2 )
The photo-induced current (i ph) under was measured. Table 1 shows
Shows the value of i ph that reached a steady state after voltage application, and the ratio (i ph / id) to the current value (id) in the dark was also shown.
参考例 2〜4 実施例1で得られた硫化カドミウム分散膜A、B、C
(第1図に記載のもの)を夫々2枚のITO被覆ガラス電
極に挟み、参考例1に記載の方法に従って、i ph及びi
ph/id求めた。第1表に示すように、支持膜中に硫化カ
ドミウム粒子が存在しない部分を持つ“空洞化構造”の
膜においてはi ph/idはほとんど1であり、光照射の効
果はみられなかった。これに対して、参考例4のように
硫化カドミウムが均一に分散した膜ではi ph/id値が430
にも達した。Reference Examples 2 to 4 Cadmium sulfide dispersion films A, B and C obtained in Example 1
(As shown in FIG. 1) was sandwiched between two ITO-coated glass electrodes, and the pH and i were measured according to the method described in Reference Example 1.
ph / id asked. As shown in Table 1, the iph / id was almost 1 in the film having the "cavity structure" having a portion where the cadmium sulfide particles were not present in the supporting film, and the effect of light irradiation was not observed. On the other hand, in the film in which cadmium sulfide was uniformly dispersed as in Reference Example 4, the i ph / id value was 430.
Also reached.
第1図は、ナフィオン膜中でのCd2+とH2Sの反応時間と
硫化カドミウム含有量並びに分散状態の関係を示す。図
中の長方形の膜構造模式図において、黒い部分は硫化カ
ドミウム粒子が存在する領域で、白い部分は空洞化領域
を表す。 第2図は、硫化カドミウム分散ナフィオン膜の可視吸収
スペクトルを示す。FIG. 1 shows the relationship between the reaction time of Cd 2+ and H 2 S in the Nafion film, the cadmium sulfide content, and the dispersion state. In the schematic diagram of the rectangular film structure in the figure, the black portion represents the region where the cadmium sulfide particles are present, and the white portion represents the hollow region. FIG. 2 shows a visible absorption spectrum of a cadmium sulfide-dispersed Nafion film.
Claims (1)
ルホン酸樹脂膜または多孔質ポリエチレン膜から選ばれ
る支持膜内に分散せしめるにあたり、遷移金属イオンを
含む溶液とカルコゲン元素を含む還元剤を溶かした溶液
を支持膜を介してそれぞれ相対する表面から膜内に拡散
させ浸透せしめることを特徴とする、金属カルコゲナイ
ド粒子分散膜の製造方法。1. A method of supporting a solution containing a transition metal ion and a solution containing a reducing agent containing a chalcogen element in dispersing the metal chalcogenide particles in a supporting film selected from a perfluorosulfonic acid resin film or a porous polyethylene film. A method for producing a metal chalcogenide particle-dispersed film, which comprises diffusing and permeating into the film from opposite surfaces through the film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62234912A JP2509635B2 (en) | 1987-09-21 | 1987-09-21 | Method for producing metal chalcogenide particle dispersed film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62234912A JP2509635B2 (en) | 1987-09-21 | 1987-09-21 | Method for producing metal chalcogenide particle dispersed film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6479007A JPS6479007A (en) | 1989-03-24 |
JP2509635B2 true JP2509635B2 (en) | 1996-06-26 |
Family
ID=16978233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62234912A Expired - Lifetime JP2509635B2 (en) | 1987-09-21 | 1987-09-21 | Method for producing metal chalcogenide particle dispersed film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2509635B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9122169D0 (en) * | 1991-10-18 | 1991-11-27 | Bp Solar Ltd | Electrochemical process |
JP3697505B2 (en) | 2000-03-17 | 2005-09-21 | 国立大学法人東京工業大学 | Thin film formation method |
JP5813593B2 (en) * | 2012-07-27 | 2015-11-17 | 株式会社神戸製鋼所 | Copper sulfide film and method for producing the same |
CN117867761B (en) * | 2024-01-04 | 2024-10-15 | 中南大学 | Preparation method and application of semiconductor sulfide composite nanofiber membrane |
-
1987
- 1987-09-21 JP JP62234912A patent/JP2509635B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6479007A (en) | 1989-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2955646B2 (en) | Organic dye-sensitized oxide semiconductor electrode and solar cell including the same | |
Willman et al. | Viologen homopolymer, polymer mixture and polymer bilayer films on electrodes: Electropolymerization, electrolysis, spectroelectrochemistry, trace analysis and photoreduction | |
Kautek et al. | The Role of Surface Orientation in the Photoelectrochemical Behavior of Layer Type d‐Band Semiconductors | |
CN1906332B (en) | Nano-array electrode manufacturing method and photoelectric converter using same | |
JP3309131B2 (en) | Organic dye-sensitized niobium oxide semiconductor electrode and solar cell including the same | |
DE69823706T2 (en) | Photoelectric conversion assembly and photoelectrochemical cell | |
US6639073B2 (en) | Ruthenium complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same | |
CN103021668A (en) | Semiconductor nanocrystalline sensitized solar cell and preparation method thereof | |
Henning et al. | Polymer films on electrodes. 10. Electrochemical behavior of solution species at Nafion-tetrathiafulvalenium bromide polymers | |
JP2000100482A (en) | Coloring matter sensitizing solar battery | |
KR900005138B1 (en) | Electrocatalytic deposition of metals in solid polymeric matrices | |
JP2509635B2 (en) | Method for producing metal chalcogenide particle dispersed film | |
Mortimer | Electrochemical responses of bilayer electrodes with Prussian blue as the ‘inner’layer and electroactive cation-incorporated Nafion® as the ‘outer’layer | |
Jawad et al. | An alternative method to grow Ge thin films on Si by electrochemical deposition for photonic applications | |
Arent et al. | The roles of cesium ions in regulating photoinduced interfacial charge transfer at the n-type cadmium chalcogenide/ferrocyanide interface | |
Dennison et al. | An investigation into the effect of ionic species on the deposition of tellurium and the formation of cadmium telluride | |
JP2556482B2 (en) | Semiconductor-containing device | |
WO2011142357A1 (en) | Photoelectric conversion element, process for producing photoelectric conversion element, and polymer electrolyte membrane solar cell | |
JPS6319775A (en) | Photo storage battery comprising semiconductor electrode and polynuclear complex | |
Norton et al. | Electrochemical redox of pedot-coated core-shell silica spheres stabilized in a peg-based hydrogel maxtrix: Modulation of the optical properties by doping with various oxidative mediators | |
JPS60188931A (en) | Manufacture of electrochromic display element | |
Langford et al. | Effect of axially coordinated pi-acid ligands on photovoltaic properties of Zn-tetraphenylporphyrin | |
Decker et al. | The Suppression of GaAs Photocorrosion in Aqueous Solutions by Sulfonated Anthraquinones | |
Karg et al. | 461—Photoelectrochemical cells based on polycrystalline chlorophyll α and analogues | |
JPS61199096A (en) | Formation of thin cadmium sulfide film |