WO1999060107A2 - Nicotianamin-synthase-gene, ihre isolierung und ihre verwendung - Google Patents

Nicotianamin-synthase-gene, ihre isolierung und ihre verwendung Download PDF

Info

Publication number
WO1999060107A2
WO1999060107A2 PCT/DE1999/001585 DE9901585W WO9960107A2 WO 1999060107 A2 WO1999060107 A2 WO 1999060107A2 DE 9901585 W DE9901585 W DE 9901585W WO 9960107 A2 WO9960107 A2 WO 9960107A2
Authority
WO
WIPO (PCT)
Prior art keywords
nicotianamine
sequence
dna sequences
nicotianamine synthase
plants
Prior art date
Application number
PCT/DE1999/001585
Other languages
English (en)
French (fr)
Other versions
WO1999060107A3 (de
Inventor
Helmut BÄUMLEIN
Martin Ganal
Alexandra Herbik
Hong-Qing Ling
Hans-Peter Mock
Udo Stephan
Original Assignee
Institut für Pflanzengenetik und Kulturpflanzen Forschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut für Pflanzengenetik und Kulturpflanzen Forschung filed Critical Institut für Pflanzengenetik und Kulturpflanzen Forschung
Priority to AU51507/99A priority Critical patent/AU5150799A/en
Publication of WO1999060107A2 publication Critical patent/WO1999060107A2/de
Publication of WO1999060107A3 publication Critical patent/WO1999060107A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • Nicotianamine synthase genes their isolation and their use
  • the invention relates to the nicotianamine synthase genes, their isolation and their use. Fields of application of the invention are agriculture and environmental protection.
  • the non-proteinogenic amino acid nicotianamine was first isolated from leaves of tobacco (Nicotiana tabacum; Tetrahedron Lett. 22, 2017-2020 [1971]) and alfalfa (Medicago ⁇ ativa; Phytochemistry 19, 2295-2297 [1980]). It occurs in all examined multicellular plants (Biochem. Physiol. Plants 180, 557-563 [1985]). Nicotianamine is a crucial component in the regulation of plant iron and heavy metal assimilation (J. Plant Nutr. 15, 1647-1665 [1992]; Physiol. Plant. 88, 522-529 [1993]). Nicotianamine is able to phenotypically normalize the auxotrophic tomato mutant chloronerva (Plant Sei. Lett. 32, 327-332 (1983)).
  • Nicotianamine is synthesized in plants from S-adenosyl-methionine (SAM), the reaction is catalyzed by the enzyme nicotianamine synthase.
  • SAM S-adenosyl-methionine
  • the aim of the invention is to influence the nicotianamine concentration in plants and thus to have positive effects on the mineral metabolism. It is based on the task of determining the structure of the nicotianamine synthase and the genes coding for it, constructs for the Build up the transfer of genes and finally produce transgenic plants with altered nicotianamine production.
  • Another goal is to obtain nicotianamine, which is difficult to access chemosynthetically, by biotechnological means.
  • the starting point of the invention is the isolation and
  • the amino acid sequence of barley nicotianamine synthase comprises amino acids of the following sequence:
  • the amino acid sequence of tomato nicotianamine synthase comprises amino acids of the following sequence:
  • the DNA sequences according to the invention open up a fundamentally new possibility of influencing the vegetable mineral metabolism. They can be transferred into the genome of plants using suitable vectors. This leads to transgenic plants with overproduction of nicotianamine and increased trace element efficiency (especially iron, copper, zinc).
  • the new DNA sequences are suitable for transfer to all plants.
  • DNA obtained from monocotyledonous plants is therefore preferred for the same or further monocotyledonous plants, for example the DNA from barley for barley and for other cereals.
  • Another possibility is to lower the nicotianamine concentration in the plants, which is preferably done by building up nicotianamine synthase antisense constructions for phytoremediation (suppression of the nicotianamine synthase activity).
  • the wild-type nicotianamine concentrations can be gradually reduced in order to activate the root uptake reactions for those heavy metals with which nicotianamine is able to form complexes, that is to say Cu, Ni, Co, Zn, Fe, Mn and others.
  • the resulting absorption from the soil can be used to renovate floors contaminated with heavy metals.
  • the nicotianamine concentration in plants can also be reduced by homologous recombination of the nicotianamine synthase.
  • amino acid sequences according to claims 4-6 provided by the invention are also suitable as a starting point for herbicide targeting. Potential herbicides are tested to see if they inhibit the enzyme activity of nicotianamine synthase. The failure of the enzyme activity leads to disorganization of the mineral metabolism to semiletal plants, which under field conditions have no chance of development compared to the crop plants equipped with a corresponding herbicide resistance.
  • a further possible application of the invention is that the nicotianamine, which was previously chemosynthetically accessible at most in the mg range, can now be obtained biotechnologically.
  • This new possibility also allows for the first time the targeted production of special stereoisomers of nicotianamine, which are necessary for full biological activity.
  • the invention also relates to transgenic plants which contain DNA sequences which encode the nicotianamine synthase, as well as plants which contain antisense sequences against the nicotianamine synthase genes present in the plants.
  • Root tissues of barley plants that have been cultivated with a lack of eggs are homogenized under liquid nitrogen.
  • the extraction of the proteins with a special extraction buffer, to which various protease inhibitors have been added, and all subsequent isolation steps are carried out at 0 ° C.
  • An enzyme extract with about 140-fold purification is obtained by means of hydrophobic interaction chromatography, anion exchange chromatography (DEAE-Sephacel), hydrophobic interaction re-chromatography, anion exchange chromatography (Res TM Q), hydroxylapatite chromatography and gel filtration.
  • the protein fraction with nicotianamine synthase activity contains the SAM-binding * polypeptide B '. Its pure representation and the determination of partial amino acid sequences leads to the derivation of sequence-specific oligonucleotides.
  • RACE rapid amplification of cDNA ends
  • part of the Nicotiana in-synthase gene sequence was isolated from barley.
  • a database search does not find a similar gene already described, with the exception of two anonymous Arajbidopsis sequences resulting from the genome project. The found nicotianamine synthase sequence therefore represents a new plant gene.
  • Example 2 Activity determination of nicotianamine synthase
  • the following assay was developed to determine the activity of nicotianamine synthase, especially to control the purification steps when isolating the enzyme:
  • the pulverized material was dissolved in 5 ml of extraction buffer (100 mM HEPES, 5 mM MgCl 2 , 5 mM KC1, 1 mM EDTA, 30 mM dithiothreitol, 1.4 ⁇ l leupeptin, 1% (w / v) Polyvinylpyrolidone 360, 0.2% (w / v) bovine serum albumin, 0.2% (w / v) casein, 200 ⁇ M S-adenosyl methionine and 10 ⁇ M E64 pH 8.2) added.
  • extraction buffer 100 mM HEPES, 5 mM MgCl 2 , 5 mM KC1, 1 mM EDTA, 30 mM dithiothreitol, 1.4 ⁇ l leupeptin, 1% (w / v) Polyvinylpyrolidone 360, 0.2% (w / v) bovine serum albumin, 0.2% (w / v) case
  • the nicotianamine synthase activity was determined in tomato as well as in barley, only the protease inhibitor E64 was exchanged for 0.1 M 4-amidinophenylmethanesulfonyl fluoride and 20 ⁇ g / ml antipain.
  • the enzyme activity of the nicotianamine synthase was quantified in each case by the product amount of the "c-nicotianamine synthesized from 3 molecules of S-adenosyl-L- [carboxyl- 14 C] methionine.
  • the reaction was stopped by adding 99% methanol in a ratio of 1: 1 (v / v) and the samples were quantified at -80 ° C.
  • the samples were thawed and centrifuged for 10 min at 15,000 g and 4 * C.
  • Example 3 Isolation of nicotianamine synthase from the tomato
  • the mutant chloronerva contains no nicotianamine and is a semi-lethal mutant.
  • a marker-based approach was chosen to isolate the gene for nicotianamine synthase.
  • the chloronerva gene was located on the genetic map of the tomato on chromosome 1.
  • the chloronerva gene is located on a high-resolution genetic map between the two RFLP probes CT224 and CT67. Based on this information, the associated artificial yeast chromosomes (YACs) for these RFLP probes were isolated from a tomato library. Analysis of the ends of the YAC clones isolated with the CT67 probe shows that the ends of two YACs (YAC156 and YAC403) are recombination to the left and right of the gene, respectively.
  • YACs artificial yeast chromosomes
  • the chloronerva gene is therefore between these two probes.
  • a cosmid contour was created in a transformation vector for the region between the probes 403 AL and 156AR in a second step.
  • the cosmids were then transformed into the chloronerva-Mu.ta.nte and the mutant could be complemented.
  • the complementation is characterized in that the semi-lethal phenotype of the mutant is complemented by the normal wild type.
  • a detailed search for the gene in the complementing DNA resulted in the identification of a cDNs and the associated gene, which came into question as a candidate for the chloronerv ⁇ gene.
  • This cDNA showed no significant homology with previously known genes and a point mutation in the chloron erv ⁇ mutant (amino acid 238) was identified.
  • the corresponding genomic sequence contains no introns and thus corresponds to the cDNA sequence.
  • Evidence that this gene codes for the nicotianamine synhase is provided by an enzymatic test.
  • the coding sequence of the nicotianamine synthase was amplified from the wild type and the mutant using the polymerase chain reaction and cloned into an expression vector (pET12a). After transformation into Escherichia coli (strain 173, DE3), the expression of the gene was induced and the expressed protein was tested for nicotianamine synthase activity. The activity was determined as shown in Example 2.
  • the wild-type gene shows clear nicotianamine synthase activity, whereas the mutated chloronerv ⁇ gene shows no nicotianamine synthase activity. These results confirm that the chloronerv ⁇ gene actually codes for nicotianamine synthase.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Die Erfindung betrifft die Nicotianamin-Synthase-Gene, ihre Isolierung und ihre Verwendung. Anwendungsgebiete der Erfindung sind die Landwirtschaft und der Umweltschutz. Erfindungsgemäß werden Nicotianamin-Synthasen und die für sie kodierenden Gene isoliert und sequenziert. Spezielle Ausführungsbeispiele gehen von der Isolierung aus Gerste bzw. aus Tomate aus.

Description

Nicotianamin-Synthase-Gene, ihre Isolierung und ihre Verwendung
Die Erfindung betrifft die Nicotianamin-Synthase-Gene, ihre Isolierung und ihre Verwendung. Anwendungsgebiete der Erfindung sind die Landwirtschaft und der Umweltschutz.
Die nichtproteinogene Aminosäure Nicotianamin wurde zuerst aus Blättern von Tabak (Nicotiana tabacum; Tetrahedron Lett. 22, 2017-2020 [1971]) und Luzerne (Medicago εativa ; Phytochemistry 19, 2295-2297 [1980]) isoliert. Sie kommt in allen untersuchten mehrzelligen Pflanzen vor (Biochem. Physiol. Pflanzen 180, 557-563 [1985]). Nicotianamin ist eine entscheidende Komponente bei der Regulierung der pflanzlichen Eisen- und Schwermetallassimilation (J. Plant Nutr. 15, 1647- 1665 [1992]; Physiol. Plant. 88, 522-529 [1993]). Nicotianamin ist in der Lage, die auxotrophe Tomatenmutante c loronerva phänotypisch zu normalisieren (Plant Sei. Lett. 32, 327-332 (1983]).
Die gezielte Kontrolle der Nicotianamin-Konzentration bietet vielfältige und aussichtsreiche Möglichkeiten für die Beeinflussung des pflanzlichen Mineralstoffwechsels. Nicotianamin wird in Pflanzen aus S-Adenosyl-Methionin (SAM) synthetisiert, die Reaktion wird durch das Enzym Nicotianamin-Synthase katalysiert.
Die Erfindung hat das Ziel, die Nicotianamin-Konzentration in Pflanzen zu beeinflussen und damit positive Effekte auf auf den Mineralstoffwechsel hervorzurufen. Ihr liegt die Aufgabe zugrunde, die Struktur der Nicotianamin-Synthase sowie der für sie kodierenden Gene zu ermitteln, Konstrukte für den Transfer der Gene aufzubauen und schließlich transgene Pflanzen mit veränderter Nicotianamin-Produktion herzustellen.
Ein weiteres Ziel besteht darin, das chemosynthetisch schwer zugängliche Nicotianamin auf biotechnologischem Wege zu gewinnen.
Die Aufgabe der Erfindung wird gemäß den Ansprüchen 1-14 gelöst.
Ausgangspunkt der Erfindung ist die Isolierung und
Sequenzierung der Nicotianamin-Synthasen sowie der für sie kodierenden Gene. Diese Sequenzen werden in Rahmen der vorliegenden Erfindung beansprucht.
Die Aminosäuresequenz der Nicotianamin-Synthase aus Gerste umfaßt Aminosäuren folgender Sequenz :
MDAQNKEVDALVQKITGLHAAIAKLPSLSPSPDVDALFTDLVTACVPPSPVDVTKLGSEA QEMREGLIRLCSEAEGKLEAHYSDMLAAFDNPLDHLGMFPYYSNYINLSKLEYELLARYV PGRHRPARVAFIGSGPLPFSSYVLAARHLPDAMFDNYDLCSAANDRASKLFRADKDVGAR MSFHTADVADLTGELAAYDWFLAALVGMAAEDKTKVIAHLGAHMADGAALWRSAHGHV GFLYPIVDPQDIGRGGFEVLAVCHPDDDWNSVIIAHKSKDVHANERPNGWDSTRGAVP WSPPCRFGEMVADVTHKREEFTNAEVAF
Die Aminosäuresequenz der Nicotianamin-Synthase aus Tomate umfaßt Aminosäuren folgender Sequenz:
MVCPNSNPWEKVCELYEQISRLENLSPSKDVNVLFTDLVHTCMPPNPIDVSKLCQKIQEIRSHLIKLC GQAEGLLESHFSK1LSSYENPLQHLHIFPYFDNYIKLSLLEYNILTKNTTNIPKKIAFIGSGPLPLTSLV TKHUITCFHNYDIDVDANFMASALVMDPDMSSRMTFHTADVMDVTCALKDYDWFLAALVGIvIDK EDrWKWDH^rCr'MSPGATLMLRSAHGARAFLYPVLDPRDLRGFEVLSvΥHPTDEVINSVIlARKLPV PSVPLLDGLGAYVLPSKCACAEIHAFNPLNKMNLVEEFALEE* Die sie kodierenden DNA-Sequenzen haben folgende Basenfolgen:
a) in Gerste
CATCCACCACTCCACTTCGCTCCTGTGCCTCAGGTAGCCACAACATACAGTATTAAAATG GATGCCCAGAACAAGGAGGTTGATGCCCTGGTCCAGAAGATCACCGGCCTCCACGCCGCC ATCGCCAAGCTGCCGTCCCTCAGCCCATCACCCGACGTCGACGCGCTCTTCACCGACCTG GTCACCGCGTGCGTCCCCCCGAGCCCCGTAGACGTGACCAAGCTCGGGTCGGAGGCGCAG GAGATGCGGGAGGGCCTCATCCGCCTCTGCTCCGAGGCCGAGGGGAAGCTGGAGGCGCAC TACTCCGACΛTGCTGGCCGCCTTCGACAACCCGCTCGACCACCTCGGCATGTTCCCCTAC TACAGCAACTACATCAACC CAGCAAGCTGGAGTACGAGCTCCTGGCGCGCTACGTGCCG GGGCGGCATCGCCCGGCCCGCGTCGCGTTCATCGGGTCCGGCCCGCTGCCGTTCAGCTCC TACGTCCTCGCCGCTCGCCACCTGCCCGACGCCATGTTCGACAACTACGACCTGTGTAGC GCGGCCAACGACCGTGCGAGCAAGCTGTTCCGCGCGGACAAGGACGTGGGCGCCCGCATG TCTTTCCACACCGCCGACGTAGCGGACCTCACCGGCGAGCTCGCCGCGTACGACGTCGTC TTCCTGGCCGCGCTCGTGGGCATGGCTGCCGAGGACAAGACCAAGGTGATCGCGCACCTC GGCGCGCACATGGCGGACGGGGCGGCCCTCGTCGTGCGCAGTGCGCACGGGCACGTGGGG TTCCTCTACCCGATCGTCGATCCCCAGGACATCGGTCGAGGCGGGTTTGAGGTGCTGGCC GTGTGTCACCCCGACGATGACGTGGTGAACTCCGTCATCATCGCACACAAGTCCAAGGAC GTGCATGCCAATGAACGTCCCAACGGCGTGGTGGACAGTACGCGGGGCGCGGTGCCGGTG GTCAGCCCGCCGTGCAGGTTCGGTGAGATGGTGGCGGACGTGACCCACAAGAGAGAGGAG TTCACCAACGCGGAAGTGGCCTTCTGATCGTTGCGAGGGAATGAAAATGAAGGTGGACGT GTGTGGTCAGCATCCATACGTGGCTGCCTGCTTCATCGCTTGCAATCGTACTACTACCTA CCTATGCAGTTCAAGTCATGTGTTGTCAATGTAAGTGTGATGTTTACACTAGTCTATGAA AGGCAGGGCAGACGAGGGTAGTGTGCCAAGTAAAAGTGTGTCATTATAGGTGTAAGTGTT GAGAATAAGACCATTTTTGTTCACAAAAAAAAAAAAAAA
b) in Tomate Start
AI I I I I lACAATTCCAAGAAAAGAAAACAATTTGGTCATAGTGTCGACJÄ GGTGTGCCCAAATAG
CAATCCAGTAGTAGAAAAAGTATGTGAATTATATGAACAAATTTCAAGATTGGAGAACCTτAGCC
CTTCCAAAGATGTCAACGTATTGTTCACAGATCTTGTCCACACGTGCATGCCTCCTAATCCCATT
GATGTCTCTAAGCTCTGTCAAAAAATTCAAGAAATTAGGTCTCATCTCATCAAACTTTGTGGTCA
AGCTGAGGGACTTTTAGAGTCACACTTTTCTAA TTCTTTCCTCCTATGAAAACCCCCTTCAAC
ATCTTCACATTTTCCCATATTTTGACAATTACATCAAACTCAGCTTACTτGAGTACAACATCCTTA
CTAAA CACAACAAATATCCCTAAAAAAATTGCATTTATTGGATCAGGCCCACTACCACTTACCT
CACTTGTTTTAGCTACCAMCATCTTAAAACCACTTGTTTTCACAACTATGACATTGATGTGGATG
CTAATTTCATGGCGTCCGCCCTTGTGGCGGCCGATCCAGACATGTCCAGCCGTATGACTTTTCA
TACGGCTGACGTCATGGATGTAACGTGTGCCTTGAAAGACTACGATGTAGTCTTTCTGGCCGCG
TTAGTTGGTATGGACAAAGAGGATAAAGTTAAGGTGGTTGATCATCTAGCTAAATACATGTCTCC
AGGGGCTACCCTGATGCTTAGAAGTGCACATGGτGCACGTGCTTTTCTATACCCTGTCCTAGAT
CCTCGGGATCTACGAGGATTTGAGGTACTATCGGTGTACCATCCTACAGATGAAGTGATCAATT
CTGTAATAATTGCAAGAAAATTGCCAGTTCCTAGTGTTCCACTACTTGATGGATTGGGTGCCTAT
GTGTTACCTAGCAAATGTGCTTGTGCTGAGATTCATGCTTTCAATCCACTCAATAAGATGAATCT
Stop
GGTTGAAGAATTTGCTCTGGAGGAqrG^fGTGAGATTTATGTCTTGTGTTATGTTTCAATAATAAT ATTACTGGAGCACTTCCAi I I I IATTGTAATTTTGTATCCCTAACTGTTTTATCAGTGTGTCCTATT TGTGTGTCTCAAACTACAAGAAAAAAGAAAAAGGCATGAGGCCTTTTGTT TCTTACAAATTTTA TCTAATATCTCGTGCCCA Neben den angegebenen Aminosäure- und DNA-Sequenzen gehören auch deren Fragmente, Varianten und Mutanten zum Umfang der vorliegenden Erfindung.
Die erfindungsgemäßen DNA-Sequenzen eröffnen eine grundlegend neue Möglichkeit, den pflanzlichen MineralεtoffWechsel zu beeinflussen. Sie können mittels geeigneter Vektoren in das Genom von Pflanzen übertragen werden. Das führt zu transgenen Pflanzen mit Überproduktion von Nicotianamin und gesteigerter Spurenelement-Effizienz (vor allem Eisen, Kupfer, Zink).
Grundsätzlich sind die neuen DNA-Sequenzen für einen Transfer in sämtliche Pflanzen geeignet. Bevorzugt ist jedoch der Einsatz der Nicotiana in-Synthase-DNA aus dikotylen Pflanzen für die gleichen oder für weitere dikotyle Pflanzen, beispielsweise der DNA aus der Tomate für Tomaten, Kartoffeln, Zuckerrüben, Soja usw.
Der Einsatz von aus monokotylen Pflanzen erhaltener DNA ist demzufolge für die gleichen oder weitere monokotyle Pflanzen bevorzugt, beispielsweise der DNA aus Gerste für Gerste und für weitere Getreidearten.
Die Übertragung zusätzlicher Nicotianamin-Synthase-Genkopien in das Genom von Pflanzen und ihre Organ- und Ontogenesespezifische Expression führt durch Erhöhung der Nicotianamin- Konzentration zu einer Optimierung der Verteilung der o. g. Spurenelemente und damit zu verstärkter Vitalität, höherer Biomasseproduktion und somit letztlich zu besseren Erträgen. Kultursorten von z. B. Getreiden können so mit höherer Effizienz in Gebieten mit Mangelböden angebaut werden.
Eine weitere Möglichkeit besteht im Absenken der Nicotianamin-Konzentration in den Pflanzen, was vorzugsweise durch den Aufbau von Nicotianamin-Synthase-antisense- Konstruktionen zur Phytoremediation erfolgt (Suppression der Nicotianamin-Synthase-Aktivität) . Mit Hilfe solcher Konstrukte und deren Transfer in die Pflanzen können die Wildtyp-gemäßen Nicotianamin- Konzentrationen stufenweise abgesenkt werden, um die Aufnahmereaktionen der Wurzel für solche Schwermetalle zu aktivieren, mit denen Nicotianamin Komplexe zu bilden vermag, also Cu, Ni, Co, Zn, Fe, Mn und andere. Die daraus folgendende Überaufnahme aus dem Boden kann zur Sanierung von Schwer etall-belasteten Böden genutzt werden.
Das Absenken der Nicotianamin-Konzentration in Pflanzen kann auch durch homologe Rekombination der Nicotianamin-Synthase erfolgen.
Die mit der Erfindung zur Verfügung gestellten Aminosäuresequenzen gemäß Anspruch 4-6 sind ferner als Ausgangspunkt für ein Herbizidtargeting geeignet. Potentielle Herbizide werden getestet, ob sie die Enzym-Aktivität der Nicotianamin-Synthase hemmen. Der Ausfall der Enzymaktivität führt durch Disorganisation des Mineralstoffwechsels zu semiletalen Pflanzen, die unter Feldbedingungen keine Entwicklungschancen gegenüber den mit einer entsprechenden Herbizidresistenz ausgestatteten Kulturpflanzen haben.
Eine weitere Anwendungsmöglichkeit der Erfindung besteht darin, daß das chemosynthetisch bisher höchstens im mg- Bereich zugängliche Nicotianamin jetzt auf biotechnologischem Wege gewonnen werden kann. Notwendig ist dazu der Transfer des Nicotianamin-Synthase-Gens in einen für die Produktion geeigneten Mikroorganismus, z. B. E. coli oder Bac. subtilis. Das damit in ausreichenden Mengen herstellbare Nicotianamin wird in der Medizin (u.a. als Angiotensin I-Konversionsenzym- Inhibitor, d.h. als Blutdrucksenker) und als Leitstruktur für weitere Synthesen eingesetzt. Diese neue Möglichkeit erlaubt auch erstmals die gezielte Produktion von speziellen Stereoisomeren des Nicotianamins, wie sie für die volle biologische Aktivität notwendig sind. Gegenstand der Erfindung sind auch transgene Pflanzen, die DNA-Sequenzen enthalten, welche die Nicotianamin-Synthase kodieren, ebenso wie Pflanzen, die Antisense-Sequenzen gegen die in den Pflanzen vorhandenen Nicotianamin-Synthase-Gene beinhalten.
Die Erfindung soll nachfolgend durch Ausführungsbeispiele näher erläutert werden.
Beispiel 1: Nicotianamin-Synthase aus Gerste
Wurzelgewebe von Gerstenpflanzen, die unter Eiεenmangel kultiviert wurden, wird unter flüssigem Stickstoff homogenisiert. Die Extraktion der Proteine mit einem speziellen Extraktionspuffer, dem verschiedene Protease- Inhibitoren zugesetzt sind, und alle anschließenden Isolierungsschritte geschehen bei 0°C. Mittels Hydrophober Interaktions-Chromatographie, Anionenaustausch-Chromato- graphie (DEAE-Sephacel ) , Hydrophober Interaktions-Re- Chro atographie, Anionenaustausch-Chromatographie (Res™Q) , Hydroxylapatit-Chromatographie und Gelfiltration wird ein Enzymextrakt mit etwa 140-facher Aufreinigung erhalten.
Die Proteinfraktion mit Nicotianamin-Synthase-Aktivität enthält das SAM-bindende *Polypeptid B'. Dessen Reindarstellung und die Bestimmung partieller Aminosäuresequenzen führt zur Ableitung sequenzspezifischer Oligonukleotide. Mit Hilfe der RACE (rapid amplification of cDNA ends)-Technik wurde ein Teil der Nicotiana in-Synthase- Gensequenz aus Gerste isoliert. Eine Datenbanksuche findet kein bereits beschriebenes ähnlichens Gen, mit Ausnahme zweier anonymer, aus dem Genomprojekt resultierender Arajbidopsis-Sequenzen. Die gefundene Nicotianamin-Synthase- Sequenz repräsentiert demnach ein neues Pflanzengen. Beispiel 2: Aktivitätsbestimmung der Nicotianamin-Synthase
Zur Aktivitätsbestimmung der Nicotianamin-Synthase, besonders zur Kontrolle der Reinigungsschritte bei Isolierung des Enzyms, wurde folgender Assay entwickelt:
Nach Homogenisieren von 3 g Pflanzenmaterial (Frischgewicht) unter flüssigem Stickstoff wurde das pulverisierte Material in 5 ml Extraktionεpuffer (100 mM HEPES, 5 mM MgCl2, 5 mM KC1, 1 mM EDTA, 30 mM Dithiothreitol , 1.4 μl Leupeptin, 1% (w/v) Polyvinylpyrolidon 360, 0.2% (w/v) Rinderserumalbumin, 0.2% (w/v) Casein, 200 μM S-Adenosyl-Methionin und 10 μM E64 pH 8.2) aufgenommen. 2.5 ml des Überstandes wurden nach der Zentrifugation (13.000 g, 3 min, 4"c) auf eine PDIO-Säule (Pharmacia) geladen, die vorher mit 12 ml Inkubationspuffer (50 M Tris, ImM EDTA, 3 mM Dithiothreitol, 50 μM Methionin, 200 μM S-Adenosyl-Methionin, 500 μM ATP und lOμM E64, pH 8.7) äquilibriert wurde. Nach der Elution mit 3.5 ml Inkubationspuffer wurde der Proteinextrakt mittels Ultrafiltratiόn konzentriert und für den Enzymtest eingesetzt. Die Bestimmung der Nicotianamin-Synthase- Aktivität erfolgte bei Tomate genauso wie bei Gerste. Ausgetauscht wurde lediglich der Proteasehemmstoff E64 gegen 0.1 M 4-Amidinophenylmethansulfonylfluorid und 20 μg/ml Antipain.
Die Enzymaktivität der Nicotianamin-Synthase wurde jeweils über die Produktmenge des aus 3 Molekülen S-Adenosyl-L- [carboxyl-14C]methionin synthetisierten "c-Nicotianamins quantifiziert. Unter Standardbedingungen erfolgte eine Inkubation von 50 μl Extrakt mit 20 μM "c-S-Adenosyl- Methionin bei 30 "C, pH 8.7, für 5 oder 10 min. Die Reaktion wurde durch Zugabe von 99%-igem Methanol in einem Verhältnis von l:l (v/v) abgestoppt und die Proben bis zur Quantifizierung bei -80°C gelagert. Unmittelbar vor der Dünnschichtchromatographie wurden die Proben aufgetaut und für 10 min bei 15.000 g und 4*C zentrifugiert.
Die Trennung von S-Adenosyl-L-[carboxyl-a"',lC]methionin und x*C-Nicotianamin erfolgte dünnschichtchromatographisch. Zur Identifizierung des 1AC-Nicotianamins wurde unmarkiertes Nicotianamin als Referenzsubstanz aufgetragen, das sich mit Ninhydrin anfärben läßt. Die Entwicklung der Chromatogramme auf Kieselgelplatten erfolgte entweder mit 1-Propanol/Wasser (7/8, v/v) oder mit Phenol/Butanol/Ameisensäure/Wasεer (12/3/2/3 v/v). Die Quantifizierung deε Reaktionsprodukteε wurde mit einem Bio-Imaging Analyser Fuji BAS 2000 vorgenommen.
Beispiel 3: Isolation der Nicotianaminsynthase aus der Tomate
Die Mutante chloronerva enthält kein Nicotianamin und ist eine semi-lethale Mutante. Zur Isolation des Genes für die Nicotianaminsynthase wurde ein marker-gestützter Ansatz gewählt. Hierzu wurde das chloronerva-Gen auf der genetischen Karte der Tomate auf Chromosom 1 lokalisiert. Das chloronerva-Gen liegt auf einer hochauflösenden genetischen Karte zwischen den zwei RFLP- Sonden CT224 und CT67. Ausgehend von dieser Information wurden für diese RFLP-Sonden die dazu gehörenden künstlichen Hefechromosomen (YACs) aus einer Bibliothek der Tomate isoliert. Die Analyse der Enden der YAC-Klone, welche mit der Sonde CT67 isoliert wurden, zeigen, daß die Enden zweier YACs (YAC156 und YAC403) eine Rekombination links bzw. rechts des Genes liegen. Das chloronerva-Gen liegt also zwischen diesen zwei Sonden. Ausgehend von diesen Enden (403 AL und 156AR) wurde in einem zweiten Schritt ein Kosmidkontig in einem Transformations vektor für die Region zwischen den Sonden 403 AL und 156AR erstellt. Die Kosmide wurden dann in die chloronerva-Mu.ta.nte transformiert und es konnte eine Komplementation der Mutante erreicht werden. Die Komplementation zeichnet sich dadurch aus, daß der semi- lethale Phänotyp der Mutante zum normalen Wildtyp komplementiert wird. Eine detailierte Suche nach dem Gen in der komplementierenden DNS resultierte in der Identifikation einer cDNs und des dazugehörigen Genes, welches als Kandidat für das chloronervα-Gen in Frage kam. Diese cDNS zeigte keine signifikante Homologie mit bis dahin bekannten Genen und es konnte eine Punktmutation in der chloron ervα-Mutante (Aminosäure 238) identifiziert werden. Die korrespondierende genomische Sequenz enthält keine Introns und entspricht damit der cDNS-Sequenz. Der Nachweis, daß dieses Gen für die Nicotianaminsynhase kodiert erfolgt durch einen enzymatischen Test. Die kodierende Sequenz der Nicotianaminsynthase wurde aus dem Wildtyp und der Mutante mit Hilfe der Polymerasekettenreaktion amplifiziert und in einen Expressions vektor (pET12a) kloniert. Nach Transformation in Escherichia coli (Stamm 173, DE3) wurde die Expression des Genes induziert und das exprimierte Protein auf Nicotianaminsynthase- aktivität getestet. Die Aktivitätsbestimmung erfolgte wie in Beispiel 2 dargestellt. Das Wildtypgen zeigt klare Nicotianamin- synthaseaktivität, wogegen das mutierte chloronervα-Gen keine Nicotianaminsynthaseaktivität zeigt. Diese Ergebnisse bestätigen, daß das chloronervα-Gen tatsächlich für die Nicotianaminsynthase kodiert.

Claims

Patentansprüche
1. DNA-Sequenzen, kodierend Nicotianamin-Synthasen.
2. DNA-Sequenz nach Anspruch 1, kodierend Nicotianamin- Synthase aus Gerste, gekennzeichnet durch folgende Sequenz:
CATCCACCACTCCACTTCGCTCCTGTGCCTCAGGTAGCCACAACATACAGTATTAAAATG GATGCCCAGAACAAGGAGGTTGATGCCCTGGTCCAGAAGATCACCGGCCTCCACGCCGCC ATCGCCAAGCTGCCGTCCCTCAGCCCATCACCCGACGTCGACGCGCTCTTCACCGACCTG GTCACCGCGTGCGTCCCCCCGAGCCCCGTAGACGTGACCAAGCTCGGGTCGGAGGCGCAG GAGATGCGGGAGGGCCTCATCCGCCTCTGCTCCGAGGCCGAGGGGAAGCTGGAGGCGCAC TACTCCGACATGCTGGCCGCCTTCGACAACCCGCTCGACCACCTCGGCATGTTCCCCTAC TACAGCAACTACATCAACCTCAGCAAGCTGGAGTACGAGCTCCTGGCGCGCTACGTGCCG GGGCGGCATCGCCCGGCCCGCGTCGCGTTCATCGGGTCCGGCCCGCTGCCGTTCAGCTCC TACGTCCTCGCCGCTCGCCACCTGCCCGACGCCATGTTCGACAACTACGACCTGTGTAGC GCGGCCAACGACCGTGCGAGCAAGCTGTTCCGCGCGGACAAGGACGTGGGCGCCCGCATG TCTTTCCACACCGCCGACGTAGCGGACCTCACCGGCGAGCTCGCCGCGTACGACGTCGTC TTCCTGGCCGCGCTCGTGGGCATGGCTGCCGAGGACAAGACCAAGGTGATCGCGCACCTC GGCGCGCACATGGCGGACGGGGCGGCCCTCGTCGTGCGCAGTGCGCACGGGCACGTGGGG TTCCTCTACCCGATCGTCGATCCCCAGGACATCGGTCGAGGCGGGTTTGAGGTGCTGGCC GTGTGTCACCCCGACGATGACGTGGTGAACTCCGTCATCATCGCACACAAGTCCAAGGAC GTGCATGCCAATGAACGTCCCAACGGCGTGGTGGACAGTACGCGGGGCGCGGTGCCGGTG GTCAGCCCGCCGTGCAGGTTCGGTGAGATGGTGGCGGACGTGACCCACAAGAGAGAGGAG TTCACCAACGCGGAAGTGGCCTTCTGATCGTTGCGAGGGAATGAAAATGAAGGTGGACGT GTGTGGTCAGCATCCATACGTGGCTGCCTGCTTCATCGCTTGCAATCGTACTACTACCTA CCTATGCAGTTCAAGTCATGTGTTGTCAATGTAAGTGTGATGTTTACACTAGTCTATGAA AGGCAGGGCAGACGAGGGTAGTGTGCCAAGTAAAAGTGTGTCATTATAGGTGTAAGTGTT GAGAATAAGACCATTTTTGTTCACAAAAAAAAAAAAAAA
sowie Fragmente, Mutanten und Varianten dieser Sequenz
3. DNA-Sequenz nach Anspruch 1, kodierend Nicotianamin- Synthase aus Tomate, gekennzeichnet durch folgende Sequenz:
Start
AI I I I I lACAATTCC GAAAAGAAAACAATTTGGTCATAGTGTCGA^ÄtGGTGTGCCCAAATAG
CAATCCAGTAGTAGAAAAAGTATGTGAATTATATGAACAAATTTCAAGATTGGAGAACCTTAGCC
CTTCCAAAGATGTCAACGTATTGTTCACAGATCTTGTCCACACGτGCATGCCTCCTAATCCCATT
GATGTCτcτMGCTCTGTCAAAAAATTCAAGAAATTAGGTCTCATCτCATCAAACTTTGTGGTCA
AGCTGAGGGACTTTTAGAGτCACACTTTTCTAA TTCTTTCCTCCTATGAAAACCCCCTTCAAC
ATCTTCACATTTTCCCATATTTTGACAATTACATCAAACTCAGCTTACTTGAGTACAACATCCTTA
CTAAA CACAACAAATATCCCTAAAAAAATTGCATTTATTGGATCAGGCCCACTACCACTTACCT
CACTTGTTTTAGCTACCA CATCTTAAAACCACTTGTTTTCACAACTATGACATTGATGTGGATG
CT TTτCATGGCGTCCGCCCTTGτGGCGGCCGATCCAGACATGTCCAGCCGTATGACTTTTCA
TACGGCτGACGTCATGGATGTAACGTGTGCCTTGAAAGACTACGATGTAGTCTTTCTGGCCGCG
TTAGTTGGTAτGGACAAAGAGGATAAAGTTAAGGTGGTTGATCATCTAGCTAAATACATGTCTCC
AGGGGCTACCCTGATGCTTAGAAGTGCACATGGTGCACGTGCTTTTCTATACCCTGTCCTAGAT
CCTCGGGATCTACGAGGATTTGAGGTACTATCGGTGTACCATCCTACAGATGAAGTGATCAATT
CTGTAATAATTGCAAGAAAATTGCCAGTTCCTAGTGTTCCACTACTτGATGGATTGGGTGCCTAT
GTGTTACCTAGCAAAτGτGCTτGTGCTGAGATTCATGCTTTCAATCCACTCAATAAGATGAATCT
Stop
GGττGAAGAATTTGCτcτGGAGGAGjTα^TGAGATTτATGTCTτGTGTTATGTTTCAATAATAAT
ATTACTGGAGCACTTCCAl I I I I ATTGTAATTTTGTATCCCTAACTGTTTTATCAGTGTGTCCTATT
TGTGTGTCTCAAACTACAAGAAAAAAGAAAAAGGCATGAGGCCTTTTGTTAATCTTACAMTTTTA
TCTAATATCTCGTGCCCA
sowie Fragmente , Mutanten und Varianten dieser Sequenz .
4 . Nicotianamin-Synthasen .
5. Nicotianamin-Synthase nach Anspruch 4 aus Gerste , gekennzeichnet durch folgende Aminosäuresequenz :
MDAQNKEVDALVQKITGIJIAAIAKLPSLSPSPDVDALFTDLVTACVPPSPVDVTKLGSEA QEMREGLIRLCSEAEGKLEAHYSDMIAAFDNPlύDHLGMFPYYSNYINLSKLEYELLARYV PGRHRPARVAFIGSGPLPFSSYVT ^ARHLPDAMFDNYDLCSAANDRASKLFRADKDVGAR MSFHTADVADLTGETJ^YDVVFIJ ^VGMAAEDKTKVIAHLGAHMADGAALVVRSAHGHV GFLYPIVDPQDIGRGGFEVLAVCHPDDDWNSVIIAUKSKDVHANERPNGWDSTRGAVP WSPPCRFGEMVADVTHKREEFTNAEVAF
sowie Fragmente , Varianten und Mutanten dieser Sequenz .
6. Nicotianamin-Synthase nach Anspruch 4 aus Tomate, gekennzeichnet durch folgende Aminosäuresequenz:
MVCPNSNPWEKVCELYEQISRLENLSPSKDVNVLFTDLVHTCMPPNPIDVSKLCQKIQEIRSHLiKLC GQAEGLLESHFSKILSSYENPLQHLH1FPYFDNYIKLSLLEYNILTKNTTNIPKKIAFIGSGPLPLTSLV TKHLKTTCFHNYDIDVDANF ASALV DPDMSSRMTFHTADV DVTCALKDYDVVFLAALVG DK EDKVKWDH KYMSPGATL LRSAHGARAFLYPVLDPRDLRGFEVLSVYHPTDEVINSVIIARKLPV PSVPLLDGLGAYVLPSKCACAEIHAFNPLNKMNLVEEFALEE*
sowie Fragmente, Varianten und Mutanten dieser Sequenz,
7. Verwendung der DNA-Sequenzen gemäß Anspruch 1-3 oder gegen diese gerichteter Antisense-Oligonukleotide zur Beeinflussung des Nicotianamin-Synthase-Gehalts in Pflanzen.
8. Verwendung der DNA-Sequenzen gemäß Anspruch 1 und 2 oder gegen diese gerichteter Antisense-Oligonukleotide zur Beeinflussung des Nicotianamin-Synthase-Gehalts in monokotylen Pflanzen.
9. Verwendung der DNA-Sequenzen gemäß Anspruch 1 und 3 oder gegen diese gerichteter Antisense-Oligonukleotide zur Beeinflussung des Nicotianamin-Synthase-Gehalts in dikotylen Pflanzen.
10. Verwendung der DNA-Sequenzen gemäß Anspruch 1-3 zum Aufbau von Vektoren zur Transfektion von Pflanzen.
11. Verwendung der Aminosäure-Sequenzen nach Anspruch 4-6 zum Herbizidtargeting.
12. Transgene Pflanzen, enthaltend DNA-Sequenzen, die Nicotianamin-Synthase kodieren.
13. Transgene Pflanzen, enthaltend DNA-Sequenzen, die Antisense-Sequenzen gegen die Sequenzen nach Anspruch 1-3 enthalten.
14. Verwendung der DNA-Sequenzen gemäß Anspruch 1-3 zur mikrobiellen Nicotianamin-Produktion, dadurch gekennzeichnet, daß Vektoren aufgebaut werden, die diese Sequenzen enthalten, ein Transfer in Mikroorganismen wie E. coli erfolgt und diese Mikroorganismen nachfolgend kultiviert werden.
PCT/DE1999/001585 1998-05-20 1999-05-18 Nicotianamin-synthase-gene, ihre isolierung und ihre verwendung WO1999060107A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU51507/99A AU5150799A (en) 1998-05-20 1999-05-18 Nicotianamine synthase genes, isolation and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19824307.3 1998-05-20
DE19824307A DE19824307A1 (de) 1998-05-20 1998-05-20 Nicotianamin-Synthase-Gene, ihre Isolierung und ihre Verwendung

Publications (2)

Publication Number Publication Date
WO1999060107A2 true WO1999060107A2 (de) 1999-11-25
WO1999060107A3 WO1999060107A3 (de) 2000-03-23

Family

ID=7869455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/001585 WO1999060107A2 (de) 1998-05-20 1999-05-18 Nicotianamin-synthase-gene, ihre isolierung und ihre verwendung

Country Status (3)

Country Link
AU (1) AU5150799A (de)
DE (1) DE19824307A1 (de)
WO (1) WO1999060107A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077255A1 (de) * 1998-04-30 2001-02-21 Japan Science and Technology Corporation Nicotianamin synthase und für diese kodierendes gen
US7157260B2 (en) 2001-07-26 2007-01-02 Japan Science & Technology Agency Nicotianamine synthase and gene encoding the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057249A1 (fr) * 1998-04-30 1999-11-11 Japan Science And Technology Corporation Nicotianamine synthase et gene codant cette derniere

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740950B2 (ja) * 1986-10-02 1995-05-10 三菱化学株式会社 微生物によるニコチアナミンの製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057249A1 (fr) * 1998-04-30 1999-11-11 Japan Science And Technology Corporation Nicotianamine synthase et gene codant cette derniere

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 198821 Derwent Publications Ltd., London, GB; Class B03, AN 1988-145047 XP002127300 & JP 63 087990 A (MEIJI SEIKA KAISHA), 19. April 1988 (1988-04-19) *
GANAL, M.W., ET AL.: "Lycopersicon esculentum chln gene" EMBL ACCESSION NO:AJ242045, 4. Mai 1999 (1999-05-04), XP002127295 -& LING, H.-Q., ET AL.: "Map-based clonng of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., Bd. 96, Juni 1999 (1999-06), Seiten 7098-7103, XP002127296 NATIONAL ACADEMY OF SCIENCE. WASHINGTON., US ISSN: 0027-8424 *
HIGUCHI, K., ET AL.: "Absence of nicotianamine synthase activity in the tomato mutant chloronerva" JOURNAL OF PLANT NUTRITION , Bd. 19, Nr. 8-9, 1996, Seiten 1235-1239, XP000866559 *
HIGUCHI, K., ET AL.: "Purification and characterization of nicotianamine synthase from Fe-deficient barley roots" PLANT SOIL, Bd. 165, 1994, Seiten 173-179, XP000866258 *
HIGUCHI, K., ET AL.: "The role of nicotianamine synthase in response to Fe nutrition status in Graminae" PLANT SOIL, Bd. 178, 1996, Seiten 171-177, XP000866267 *
LING, H.-Q., ET AL.: "Genetic analysis of two tomato mutants affected in the regulation of iron metabolism" MOLECULAR AND GENERAL GENETICS, Bd. 252, 1996, Seiten 87-92, XP002127297 *
MORI, S.: "Hordeum vulgare hvnas6 mRNA for nicotianamine synthase 6, complete cds" EMBL ACCESSION NO:AB011269, 5. Februar 1999 (1999-02-05), XP002127293 -& HIGUCHI, K., ET AL.: "Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores" PLANT PHYSIOLOGY, Bd. 119, Februar 1999 (1999-02), Seiten 471-479, XP002127294 *
S MORI: "Reevaluation of the genes induced by iron deficiency in barley roots" SOIL SCIENCE AND PLANT NUTRITION,JP,TOKYO, Nr. 43, 1997, Seite 975-980 XP002076369 ISSN: 0038-0768 *
SASAKI, T.: "Rice cDNA, partial sequence (E10137_2A)" EMBL ACCESSION NO:C19229, 25. Oktober 1996 (1996-10-25), XP002127290 *
SASAKI, T.: "Rice cDNA, partial sequence (R0168_1A)" EMBL ACCESSION NO:D23792, 29. November 1993 (1993-11-29), XP002127291 *
SCHOLZ, G., ET AL.: "Nicotianamine - a common constituent of strategies I and II of iron acquisition by plants: a revieww" JOURNAL OF PLANT NUTRITION, Bd. 15, Nr. 10, 1992, Seiten 1647-1665, XP000866570 *
VYSOTSKAIA, V.S., ET AL.: "Arabidopsis thaliana chromosome 1 BAC T12M4 sequence, complete sequence" EMBL ACCESSION NO:AC003114, 25. November 1997 (1997-11-25), XP002127292 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077255A1 (de) * 1998-04-30 2001-02-21 Japan Science and Technology Corporation Nicotianamin synthase und für diese kodierendes gen
EP1077255A4 (de) * 1998-04-30 2001-08-16 Japan Science & Tech Corp Nicotianamin Synthase und für diese kodierendes Gen
US7192755B1 (en) 1998-04-30 2007-03-20 Japan Science And Technology Corporation Nicotianamine synthase and gene encoding the same
US7157260B2 (en) 2001-07-26 2007-01-02 Japan Science & Technology Agency Nicotianamine synthase and gene encoding the same

Also Published As

Publication number Publication date
WO1999060107A3 (de) 2000-03-23
AU5150799A (en) 1999-12-06
DE19824307A1 (de) 1999-11-25

Similar Documents

Publication Publication Date Title
Mei et al. sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity.
DE4420782C1 (de) DNA-Sequenz, kodierend einen 2-Oxoglutarat/Malat-Translokator, Plasmide, Bakterien, Hefen und Pflanzen enthaltend diesen Transporter
DE69433941T2 (de) Gen für die fettsäure-desaturase, besagtes gen enthaltender vektor, eine pflanze, in die besagtes gen eingebracht ist, und ein verfahren zur schaffung besagter pflanze
DE19652284A1 (de) Neue Gene codierend für Aminosäure-Deacetylasen mit Spezifität für N-Acetyl-L-Phosphinothricin, ihre Isolierung und Verwendung
DE69923628T2 (de) 3,4-Dihydroxy-2-butanone 4-Phosphate Synthase
DE69434912T2 (de) Monooxygenase cytochrome p-450
DE19502053A1 (de) Verfahren und DNA-Moleküle zur Steigerung der Photosyntheserate in Pflanzen, sowie Pflanzenzellen und Pflanzen mit gesteigerter Photosyntheserate
DE19752647C1 (de) Reduktiion des Chlorophyllgehaltes in Ölpflanzensamen
WO1994017188A2 (de) ACETYL-CoA-CARBOXYLASE-GEN
WO1999060107A2 (de) Nicotianamin-synthase-gene, ihre isolierung und ihre verwendung
WO2000000593A2 (de) Sphingolipid-desaturase
DE19853778C1 (de) DNA-Sequenzen kodierend einen Glutamat/Malat-Translokator, Plasmide Bakterien, Hefen und Pflanzen enthaltend diesen Transporter
DE19717656A1 (de) DNA-Sequenzen kodierend für die Untereinheit CHLD pflanzlicher Magnesium-Chelatasen, sowie Verfahren zur Aktivitätsbestimmung pflanzlicher Magnesium-Chelatasen
EP1504103B1 (de) Promotoren mit veränderter transkriptionseffizienz aus der methylotrophen hefe hansenula polymorpha
DE60037330T2 (de) Verfahren zur spezifizitätsmodulierung von nitrilasen, nitrilasen aus diesem verfahren gewonnen und deren verwendung
EP1487255B1 (de) Population transgener pflanzen, davon abgeleitetes biologisches material, entsprechende plasmidkollektion und population transformierter wirtsorganismen, sowie deren verwendung und verfahren zu deren erzeugung
EP1209236B1 (de) Phosphomevalonat Kinasen aus Pflanzen
EP1070120A1 (de) Amp-deaminase
DE19600357C1 (de) DNA-Sequenz kodierend einen Phosphoenolpyruvat-Phosphat-Translokator, Plasmide, Bakterien, Hefen und Pflanzen enthaltend diesen Transporter
DE10061872A1 (de) Hefestamm zur Prüfung der Geno- und Zytotoxizität komplexer Umweltkontaminationen
WO1999022011A1 (de) Reduktion des chlorophyllgehaltes in ölpflanzensamen
WO1997007221A1 (de) Transgene pflanzenzellen und pflanzen mit gesteigerter glykolyserate
DE10313795A1 (de) Veränderte PPase-Expression in Zuckerrübe
DE60126767T2 (de) Neuartige (r)-2-hydroxy-3-phenylpropionat (d-phenyllaktat) dehydrogenase und für diese kodierendes gen
EP1156117A2 (de) Verfahren zum Auffinden von Modulatoren von Enzymen des Carotenoid-Biosyntheseweges

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA