WO1999055804A1 - Procede de gazeification - Google Patents

Procede de gazeification Download PDF

Info

Publication number
WO1999055804A1
WO1999055804A1 PCT/JP1999/002099 JP9902099W WO9955804A1 WO 1999055804 A1 WO1999055804 A1 WO 1999055804A1 JP 9902099 W JP9902099 W JP 9902099W WO 9955804 A1 WO9955804 A1 WO 9955804A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
wastewater
gasification
weight
cyanide
Prior art date
Application number
PCT/JP1999/002099
Other languages
English (en)
French (fr)
Inventor
Kenjiro Miyashita
Masakazu Sasaki
Shuji Taniguchi
Kunio Hirotani
Original Assignee
Toyo Engineering Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11641098A external-priority patent/JPH11302667A/ja
Priority claimed from JP10143822A external-priority patent/JP2000015249A/ja
Application filed by Toyo Engineering Corporation filed Critical Toyo Engineering Corporation
Priority to DE19983179T priority Critical patent/DE19983179T1/de
Publication of WO1999055804A1 publication Critical patent/WO1999055804A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/105Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids containing metal compounds other than alkali- or earth-alkali carbonates, -hydroxides, oxides, or salts of inorganic acids derived from sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • C10K1/26Regeneration of the purifying material contains also apparatus for the regeneration of the purifying material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon

Definitions

  • the present invention relates to a method for gasifying a raw material containing nickel and sulfur, and more particularly, to partially oxidizing heavy oil obtained from coal or petroleum refining, atmospheric residual oil, vacuum residual oil, or heavy oil containing asphalt.
  • the present invention relates to a gasification method capable of suppressing the formation of a nickel-cyan complex in wastewater generated in a cooling and carbon washing step when gasifying by a gas method.
  • the present invention also relates to a gasification method incorporating a wastewater treatment method, and more specifically, heavy oil obtained from coal or petroleum refining, atmospheric residual oil, vacuum residual oil, heavy oil containing asphalt, etc.
  • This method incorporates a method for treating wastewater containing nickel-cyanide complex (nickel cyanate ion) that is generated when gasification is performed by partial oxidation.
  • nickel-cyanide complex nickel cyanate ion
  • gasification process where gasification is performed at a high temperature together with oxygen supplied from the outside and steam supplied from the outside, depending on the composition of the raw material, hydrogen, carbon monoxide, carbon dioxide, methane, and by-products
  • hydrogen sulfide, carbonyl sulfide, hydrogen cyanide, and ammonia are produced.
  • Hydrogen sulfide generated in the gasification process is contained in a large amount relative to hydrogen cyanide During the cooling and carbon washing steps, most of the heavy metals are converted to nickel or iron sulfides during the subsequent cooling and carbon washing process, and carbon slurries are generated. It is discharged with.
  • Nickel or iron sulfide in the wastewater can be separated by precipitation, and in the wastewater from which nickel and the like have been removed by precipitation, cyanide and ammonia are present in the form of ions.
  • the cyanide ions are converted into hydrogen cyanide and the ammonia ions are converted into ammonia gas by a normal pretreatment method, for example, steam stripping.
  • a normal pretreatment method for example, steam stripping.
  • the discharge of cyanide-containing wastewater is prohibited by the Water Pollution Control Law due to the regulation of the total amount of cyanide.
  • Nickel can be chemically treated in the wastewater treatment process and removed as hydroxide.
  • the composition of the raw material for example, a raw material having a low sulfur content
  • hydrogen cyanide generated in the gasification process is contained in a relatively large amount relative to hydrogen sulfide, and thus a raw material having such a composition is used.
  • nickel in wastewater produces nickel-cyan complexes in preference to nickel sulfide.
  • Nickel-cyan complex is supplied to the final wastewater treatment process because it is very stable as nickel cyanate ion in wastewater whose pH is kept alkaline by containing ammonia Before, it is difficult to remove cyan by steam striping alone. Disclosure of the invention
  • the present invention provides a gasification method capable of simplifying the treatment in the post-process by suppressing the formation of the nickel-cyan complex in the wastewater after the cooling and carbon washing process. Further, according to the present invention, when a raw material containing hydrogen cyanide generated in the gasification step in a relatively large amount with respect to hydrogen sulfide is used, the nickel-cyan complex contained in the wastewater is removed to an environmentally safe level. It provides a gasification method that incorporates a possible wastewater treatment method.
  • the present inventors have paid attention to the fact that when the nickel-cyan complex is stably contained in the wastewater after the gasification step, it cannot be sufficiently removed even by applying a conventional steam stripping method.
  • the production of nickel-cyan complex was suppressed by giving priority to the formation of nickel sulfide or other sulfur compounds that can be separated and separated in the cooling and cleaning process, which is completely environmentally safe. It has established an efficient industrial method using the steam stripping method, which can reduce the cyan content to a certain extent.
  • the present inventors have reported that since the pH of the wastewater is kept alkaline, the Nilcyan complex is stably present and cannot be sufficiently removed even by applying a conventional steam stripping method. As a result of repeated research focusing on the points, it is possible to remove cyan to an environmentally safe level by maintaining the pH of the wastewater in the acidic region. It has established an industrial method.
  • a raw material to be gasified containing 10 to 100% by weight of nickel and 0.1 to 1.0% by weight of sulfur is gasified by a partial oxidation method, cooled, washed with carbon, and desulfurized.
  • the method of obtaining a crude gas product
  • Hydrogen sulfide is mixed with the material to be gasified in an amount of sulfur generated in the gasification process in a relatively large amount relative to hydrogen cyanide, and the wastewater is subjected to cyan steam stripping, or
  • an acid is supplied to the stripping tower to adjust the pH of the wastewater to 2.0 to 6.0.
  • the nickel-cyanide complex is decomposed into nickel ions and cyan ions, the nickel ions are treated as nickel hydroxide, and the cyan ions are treated as hydrogen cyanide.
  • the raw material to be gasified is coal or heavy oil obtained by petroleum refining, atmospheric residual oil, vacuum residual oil or asphalt.
  • the sulfur content is between 0.5 and 2.0% by weight.
  • the sulfur mixed with the raw material is an acid gas containing hydrogen sulfide concentrated or removed in the desulfurization step or a sulfur-containing substance supplied from the outside.
  • a stripping tower in which the inner shelf is composed of two blocks, an upper shelf and a lower shelf supplies drainage to the upper shelf, and the lower shelf To the acid.
  • the tray inside each stripping tower is composed of one block, and wastewater is supplied from above the tray of the first stripping tower and discharged from below the first stripping tower. After mixing the acid with the wastewater to be discharged, it is supplied above the plate of the second stripping tower.
  • the washed carbon is recovered to a gasification step.
  • a raw material having a nickel content of 10 to 100% by weight and a sulfur content of 0.1 to 1.0% by weight is supplied to a gasification step, a cooling / carbon washing step, During gasification by the partial oxidation method consisting of the desulfurization step, carbon recovery step, and cyan steam stripping step, hydrogen sulfide generated in the gasification step is converted to hydrogen cyanide in the raw material supplied to the gasification step.
  • This is a gasification method characterized by mixing an amount of sulfur that can be contained in a relatively large amount.
  • FIG. 1 is a conceptual diagram showing a process flow of an embodiment (1) of the present invention.
  • FIG. 2 is a conceptual diagram showing a process outlet of the embodiments (1) and (2) of the invention that also incorporates a method for treating wastewater.
  • FIG. 3 is a conceptual diagram showing a process flow of one mode of the embodiment (2) of the present invention.
  • FIG. 4 is a conceptual diagram showing a process flow of another embodiment of the embodiment (2) of the present invention.
  • the raw material to which the gasification method of the present invention is applied (hereinafter referred to as “gasification raw material”) has a nickel content of 10 to 100 ppm by weight and a sulfur content of 0.1 to 1.0% by weight. Things. If the fossil raw material is out of this range, for example, if the content of nickel is 100% by weight ppiii and the content of sulfur is 2.0% by weight, the amount of nickel-cyan complex formed is very small. Effect cannot be obtained.
  • Such gasification raw materials include heavy oil obtained from coal or petroleum refining, atmospheric residual oil, and vacuum residual oil. Or asphalt, which contains hydrogen cyanide generated in the gasification reaction in a relatively large amount relative to hydrogen sulfide.
  • the present invention relates to a gas supplied to a gasification step when a gasification step, a cooling step, a carbon cleaning step, a desulfurization step, a carbon recovery step and a cyan steam stripping step are applied to a gasification raw material. It is a requirement that a given amount of sulfur be mixed with the raw material, but modifications that are usually made by those skilled in the art for other configurations are included in the present invention as long as such requirements are satisfied.
  • FIG. 1 is a conceptual diagram showing a process flow of an embodiment (1) of the present invention.
  • gasification raw materials such as vacuum residue oil obtained by petroleum refining are supplied to the gasification reaction step 101 from the line 111, and about 50% by weight of carbon
  • gasification raw materials such as vacuum residue oil obtained by petroleum refining
  • carbon In order to make the liquid collected in the collecting step 104 have fluidity, it is supplied from the line 111 to the carbon collecting step 104 via the line 124. At this time, sulfur is mixed with the gasification raw material supplied to the gasification reaction step 101.
  • the amount of sulfur mixed is such that hydrogen sulfide generated in the gasification step can be contained in a relatively large amount with respect to hydrogen cyanide.
  • the amount of sulfur is preferably 0. The amount is from 5 to 2.0% by weight, particularly preferably from 1.0 to 2.0% by weight.
  • the sulfur content in the mixture is 0.5% by weight or more, the formation of nickel-cyan complex in the wastewater of the cooling / carbon washing step can be suppressed.
  • the sulfur content is 2.0% by weight or less, In addition to performing the above operation, the burden required for desulfurization in the desulfurization step can be reduced.
  • the sulfur source mixed with the gasification raw material is not particularly limited, but from the viewpoint of effective use of resources, an acidic gas containing hydrogen sulfide to be concentrated and removed in the desulfurization step 103 is extracted from the line 117. It is preferred to supply from line 118. Also desulfurization It is difficult to adjust the sulfur content of the mixture to an appropriate amount with only the acid gas concentrated and removed in step 103, and it is not possible to supply the acid gas from the desulfurization step 103 at the beginning of operation. In this case, solid or liquid or gaseous sulfur or sulfur compounds can be supplied from outside.
  • the gasification reaction step 1 0 temperature 1 3 0 0-1 4 0 0:, performing partial oxidation reaction under a pressure of 6 0 ⁇ 8 0 Kg / cm 2 one G.
  • the crude gas gasified by this partial oxidation reaction is exhausted and recovered to a temperature of about 200 to 25 Ot :, it is supplied from a line 114 to a cooling and power cleaning step 102.
  • the crude gas contains a relatively large amount of hydrogen sulfide relative to hydrogen cyanide.
  • hydrogen sulfide is preferably 10 to 40 times in volume ratio to hydrogen cyanide, more preferably 15 to 20 times, and more preferably gasified in the cooling / carbon washing step 102.
  • the crude gas was washed with water at about 130 to 140 once to remove carbon and cooled, and washed with water at about 40 to 50 to completely remove carbon in the crude gas. Separates into crude gas and carbon slurry. In this carbon slurry, nickel sulfide or other sulfur compounds are preferentially produced, and the production of nickel-cyan complex is greatly suppressed. In this way, the crude gas containing hydrogen sulfide etc. from which the gas in the crude gas has been completely removed in the cooling and cleaning process 102 is supplied to the desulfurization process 103 from the line 115. . In the desulfurization step 103, sulfur compounds are selectively absorbed and removed by the absorbing solution saturated with carbon dioxide.
  • the absorbed gas contains a large amount of carbon dioxide derived from the absorbing solution in addition to hydrogen sulfide. For this reason, hydrogen sulfide can be concentrated to about 20% by weight in a concentration step provided as necessary.
  • the concentrated acid gas is discharged from the line 117, but mostly circulates from the line 118 to the line 111 as a sulfur source to be supplied to the gasification reaction step 101.
  • the remaining acid gas may be supplied to a sulfur recovery process outside the system, or may be treated in a combustion furnace.
  • the crude gas desulfurized in the desulfurization step 103 is supplied from a line 116 to another processing step.
  • This carbon slurry contains dissolved gases such as hydrogen sulfide (H 2 S), ammonium (NH 3 ) and hydrogen cyanide (HCN) and heavy metals such as nickel sulfide and iron sulfide in addition to carbon.
  • gases such as hydrogen sulfide (H 2 S), ammonium (NH 3 ) and hydrogen cyanide (HCN) and heavy metals such as nickel sulfide and iron sulfide in addition to carbon.
  • Some heavy metals, such as nickel sulfide and iron sulfide, and the recovered carbon are mixed with the gasification raw material supplied from line 124 to impart fluidity, and gas is supplied from line 123 through line 111. Circulates to the chemical reaction step 101.
  • the wastewater discharged from the carbon recovery process 104 to the line 120 contains about 20% by weight of heavy metals in the gasification raw material and NH 3 , HCN, H 2 S, C ⁇ 2 , C ⁇ , H 2 Is dissolved.
  • This wastewater is used to steam dissolved gas before being treated in the wastewater treatment process.
  • the wastewater from which the above-mentioned gas has been removed in the cyan stream stripping process 105 contains mainly nickel, NH 3 and trace amounts of iron and HCN, and is supplied to a wastewater treatment facility from a line 121.
  • Nickel and iron are adjusted to pH 9.5 to 11 with caustic soda in the chemical wastewater treatment process, and are removed as nickel hydroxide and iron hydroxide, respectively.
  • waste water containing a small amount of HCN, and NH 3 is treated with biological wastewater treatment process, eventually discharged out of the system.
  • the following wastewater treatment method may be applied.
  • the wastewater treatment method of the present invention is a wastewater containing heavy metal ions (nickel ions, vanadium ions, iron ions, etc.), cyanide, ammonia, carbon dioxide, hydrogen sulfide, and nickel-cyanide complex (hereinafter referred to as “cyan-containing wastewater”).
  • cyan-containing wastewater is not limited to coal containing hydrogen, carbon, nitrogen, sulfur, and heavy metals such as nickel, vanadium, and iron, and heavy oil, atmospheric residual oil, vacuum residual oil, and oil such as asphalt.
  • the wastewater generated in the gasification process where gasification is performed at a high temperature together with oxygen supplied from an air separation unit and steam supplied from the outside using refined residual oil as a raw material is to be treated primarily. Therefore, the present invention is also applicable to wastewater containing components other than the above-mentioned heavy metal ions, cyanide, ammonia, carbon dioxide, hydrogen sulfide, and a nickel Lucian complex.
  • the method for treating wastewater of the present invention requires that steam stripping treatment is performed using one or more stripping towers, and the pH of the wastewater in that case is adjusted to 2.0 to 6.0.
  • modifications usually made by those skilled in the art for other configurations are included in the present invention.
  • an embodiment of a wastewater treatment method of the present invention will be described with reference to the drawings.
  • FIG. 2 is a conceptual diagram showing a process flow of the embodiments (1) and (2) of the invention in which a method of treating wastewater is also incorporated in the cyan steam stripping step 105.
  • FIG. 3 and FIG. 4 are conceptual diagrams showing the process flow of the embodiment (2) of the invention, and the same reference numerals as those in FIG. 2 denote the same components.
  • FIG. 3 is a conceptual diagram showing a process flow in the case of using one stripping tower for explaining one embodiment of a wastewater treatment method
  • FIG. 4 is a wastewater treatment method
  • FIG. 9 is a conceptual diagram showing a process flow in the case of using two stripping towers for explaining another embodiment.
  • the stripping tower 201 has two internal shelves, an upper shelf 202 and a lower shelf 203.
  • the number of shelves and the spacing between shelves are not particularly limited, and those having a general structure can be used.
  • the cyan-containing wastewater is supplied to the upper shelf 202 from a line 210 connected to the stripping tower 201.
  • the temperature generated from the use of a raw material containing hydrogen cyanide generated in the gasification process in a relatively large amount relative to hydrogen sulfide is about 40 to 60, pH But about 8.0-11.0.
  • the acid is supplied from a line 211 connected to the stripping tower 201 to an intermediate portion between the upper shelf 202 and the lower shelf 203.
  • a strong acid such as hydrochloric acid or sulfuric acid can be used. It is desirable to adjust the temperature of the acid so that it is not too low compared to the temperature of the wastewater containing cyanide.
  • the temperature of the wastewater containing cyanide is in the above range, use an acid at about 15 to 50.
  • the supply amount of the acid is such that the pH of the wastewater containing cyanide can be adjusted to 2.0 to 6.0, preferably to 2.5 to 4.5.
  • the nickel-cyan complex can be easily decomposed into nickel ions and cyan ions.
  • the steam is supplied below the lower shelf 203 from a line 211 connected to the stripping tower 201.
  • Steam for example, at a temperature of about 1 2 0-2 0 0, can the pressure supply of about 2 ⁇ 1 l KgZcm 2.
  • ammonia, hydrogen sulfide, carbon dioxide, and the like are mainly separated by steam stripping in the upper shelf 202. Separated from contained wastewater.
  • the nickel-cyanide complex contained in the cyan-containing wastewater is not decomposed in the upper shelf 202 and the pH is adjusted to 2.0 to 6.0, so that in the lower shelf 203, It is decomposed into free nickel ions (N i 2+ ) and cyan ions (CN—).
  • the pressure of the upper shelf 202 and the pressure of the lower shelf 203 are calculated as follows: when the pressure of the upper shelf 202 is 1, the pressure of the lower shelf 203 is 1.01 to It is preferably 1.1. Cyan ion generated in the lower plate 203 is separated from the wastewater as hydrogen cyanide by steam stripping in the same place, and rises in the upper plate 202 of the stripping tower 201. Ammonia, hydrogen sulfide, carbon dioxide, and steam are supplied to a condenser 204 via a line 213 connected to a stripping tower 201.
  • the condensed water flows from the line 214 to the upper shelf stage 202 of the stripping tower 201. Will be returned.
  • the hydrogen cyanide, ammonia, carbon dioxide, hydrogen sulfide and some of the steam separated from the condensed water in the separator 205 are discharged out of the system through a line 216.
  • it contains free nickel ions separated in the lower plate 203 of the stripping tower 201.
  • the high-temperature wastewater is discharged from the line 217 and is treated in the chemical wastewater treatment step. In this chemical wastewater treatment step, for example, free nickel ions are treated with caustic soda, adjusted to PH 9.5-11, and removed as nickel hydroxide.
  • FIG. 4 The processing conditions in the embodiment shown in FIG. 4 can be set according to the embodiment shown in FIG. That is, the wastewater treatment method shown in FIG. 4 can be incorporated in the cyan steam stripping step 105 in the same manner as in FIG. In Fig. 4, two stripping towers (first stripping tower 300 and second stripping tower 310) are installed, and the insides of the first stripping tower 300 and the second stripping tower 310 are respectively It consists of one block of shelves 301 and 311.
  • the cyan-containing wastewater is supplied from a line 320 connected to the first stripping tower 300 above the platen 301.
  • the acid is supplied to a desired portion of a line 325 connecting the lower part of the first stripping tower 300 and the upper part of the second stripping tower 310 such that the pH becomes 2.0 to 6.0.
  • 1 Mix with the cyan-containing wastewater discharged from below the stripping tower 300.
  • the cyanide-containing wastewater mixed with the acid is supplied above the plate 311 of the second stripping tower 310.
  • Steam is supplied below the tray 311 from a line 3226 connected to the second stripping tower 3110.
  • the steam supplied to the second stripping tower 310 is also supplied to the lower part of the tray 310 of the first stripping tower 300 via the line 328.
  • the nickel-cyan complex contained in the cyanide-containing wastewater has a pH of 2.0 to 6.0. As a result of the adjustment, it is decomposed into free nickel ions (N i 2 + ) and cyan ions (CN—) in the plate 311 of the second stripping tower 310. Then, the cyan ions generated in the tray 311 are separated from the wastewater as hydrogen cyanide by steam stripping at the same location. As described above, in the second stripping tower 310, decomposition of the nickel-cyan complex and separation of hydrogen cyanide are simultaneously performed.
  • Hydrogen cyanide rises in the upper platen 311 of the second stripping tower 310, passes through the line 328, and further passes through the line 3221 connected to the first stripping tower 300, and is in a high temperature state Supplied to the condenser 304 together with the ammonia, hydrogen sulfide, carbon dioxide and steam.
  • the condensed water flows upward from the line 3223 to the platen 310 of the first stripping tower 300. Will be returned. Hydrogen cyanide, ammonia, carbon dioxide, hydrogen sulfide and some steam separated from the condensed water in the separator 305 are discharged out of the system through a line 324.
  • the high-temperature wastewater containing free nickel ions separated in the tray 311 of the second stripping tower 310 is discharged from the line 327 and treated in the chemical wastewater treatment step.
  • the present invention it is possible to generate gas at the time of gasification using a raw material having a low sulfur content.
  • the nickel-cyan complex in the generated wastewater can be decomposed by the conventional steam stripping method, which facilitates wastewater treatment and does not adversely affect the environment.
  • Example 1
  • a flow rate of 50% by weight of the gasification raw material was supplied to the gasification reaction step 101 for gasification by the partial oxidation method, and a flow rate of 50% by weight was supplied to the carbon recovery step 104.
  • the gasification reaction step 101 is supplied with steam at about 400 from line 112, About 230 oxygen was supplied from line 113. Further, the acid gas containing H 2 S concentrated in the desulfurization step 103 was supplied to the gasification reaction step 101 so as to be equivalent to 0.83 kg with respect to 10 OKg of the gasification raw material. At the beginning of the operation, the same amount of sulfur was externally supplied to the gasification reaction step 101 as above.
  • a partial oxidation reaction was performed at a temperature of 1300 to 1400 and a pressure of 60 to 80 Kg / cm 2 -G.
  • the composition was adjusted so that the composition of the heavy metal was 3 times as much as the initial weight and the composition of sulfur was 1% by weight.
  • Each component is shown below.
  • the crude gas gasified in the gasification reaction step 101 was recovered by exhaust heat recovery to about 200 ° C., and then supplied from the line 114 to the cooling / carbon removal step 102.
  • the gas at the outlet of the gasification reaction step 101 contained about 1.0% by weight of unreacted carbon of the gasification raw material.
  • the crude gas was washed at about 140 ° C to remove water, cooled to 45 ° C, and further washed with water. Wash water is in the slurry The amount used was 1.0% by weight.
  • the washing water used was reclaimed water from the bonbon recovery process 1-04, so it contained about 1.1 times the weight of heavy metals in the gasification raw material. Therefore, the heavy metal in the carbon slurry contained about 4.1 weight times heavy metal, which is the sum of the gasification reaction step 101 and about 3 weight times heavy metal in the gasification raw material.
  • the carbon slurry discharged from the cooling and carbon washing step 102 was supplied to the carbon recovery step 104 from the line 119. Since the carbon slurry contained H 2 S sufficient for nickel to form nickel sulfide, nickel sulfide and the like could be generated preferentially.
  • the heavy metals equivalent to 4.1 times the weight of the heavy metals in the gasification raw material contained in the carbon slurry the heavy metals equivalent to 2.0 times the weight were included in the carbon oil circulating flow, and the line 1 2 3 From the gasification reaction step 101.
  • the carbon oil circulating stream was 50% by weight of the gasification feedstock, and the actual heavy metal concentration was 5 times as high. Therefore, 2.1 times the weight of heavy metal relative to the gasification feedstock is contained in the wash water reused after removing the carbon.
  • the steam supplied to the gasification reaction step 101 and the excess water generated by the reaction are converted into the cyanine steam stripping step 105 And the wastewater treatment process.
  • the weight ratio of the water circulated as the washing water and the water supplied to the cyan steam stripping step 105 was 110: 20.
  • the wastewater supplied to the cyan steam stripping process 105 contained 20% by weight of heavy metals in the gasification raw material, and was in the form of nickel sulfide and iron sulfide.
  • the remaining heavy metals are separated by sedimentation at 80% by weight in the sedimentation and separation equipment in the carbon recovery step 104, treated in the cyanium stripping step 105, and then treated as wastewater. In the process, the remaining 20% by weight of heavy metal was treated. Heavy metals are in the form of nickel sulfide and iron sulfide, and cyan is in the form of HCN.Since they were supplied to the cyan steam stripping step 105, they were easily decomposed under the conditions of 1.5 kg / cm 2 and about 11 Ot: It could be separated and separated as H 2 S and HCN. The gas composition released was 83% by volume of NH 3 , 12% by volume of CO 2 , 2.5 % by volume of H 2 S, 2.5 % by volume of HCN and trace amounts of CO and H 2. Treated by using or burning with a flare.
  • the wastewater supplied to the wastewater treatment process mainly contains 15 ppm by weight of nickel, 250 ppm by weight of NH 3 , and trace amounts of iron and HCN. Comparative Example 1
  • Example 2 The same gasification raw material as in Example 1 was used and processed according to Example 1 according to the process flow shown in FIG. However, since the acid gas containing H 2 S from the desulfurization step 103 is not circulated, the composition of the gasification raw material at the inlet of the gasification reaction step 101 is 7.2 times by weight for heavy metals and 0 for sulfur. . 17% by weight. Each component is shown below.
  • the exit gas of the gasification reaction step 101 contained about 1.0% by weight of unreacted carbon of the gasification raw material.
  • the washing water was used in such an amount that the carbon in the slurry became 1.0% by weight.
  • the washing water used was the reclaimed water in the carbon recovery process 104, it contained about 5.5 times the weight of heavy metals in the gasification raw material. Therefore, the heavy metal in the slurry contained about 12.7 weight times heavy metal, which is the sum of about 7.2 weight times heavy metal in the gasification raw material from the gasification reaction step 101. Cooling * The nickel discharged from the carbon washing step 102 did not contain enough H 2 S to form nickel sulfide, and nickel-cyan complex was formed preferentially.
  • the steam supplied to the gasification reaction process 101 and the excess water generated by the reaction are converted to the cyan steam stripping process 105 and the wastewater treatment process. Processed. Circulation as washing water
  • the ratio of the reused water to the water supplied to the cyan steam stripping step 105 was 550: 100.
  • the wastewater supplied to the cyan steam stripping step 105 contained 100% by weight of the heavy metal in the gasification raw material, and was in the form of a nickel-cyanide complex and iron sulfide. Heavy metals are in the form of nickel-cyanide complex and iron sulfide, and cyan is in the form of nickel-cyanide complex.Since they were supplied to the cyan steam stripping step 105, they were 1.5 kg / cm 2 in the alkaline region. Under the conditions of 110, no separation and removal were possible.
  • the remaining heavy metals were treated in a cyan steam stripping step 105, and then all were treated in a wastewater treatment step.
  • the treated water was supplied to the waste water treatment process, mainly (as nickel) Nickel one cyan complex 7 5 wt Rabbit m, NH 3 but were included and the iron 2 5 0 ppm by weight and traces, with the waste water treatment process It was difficult to treat both chemical and biological treatments.
  • the following wastewater treatment method can be applied.
  • Vacuum residue oil of the following composition obtained by petroleum refining is used as a raw material, which is gasified by the partial oxidation method, and the wastewater generated during the gasification (cyanate-containing wastewater) is processed according to the process flow shown in Fig. Was processed by the method described above.
  • the gas mixture containing hydrogen cyanide, ammonia, hydrogen sulfide, carbon dioxide and some steam (at a temperature of 107) is cooled down to 90 in a condenser 204 and then through a separator 205 , Was discharged out of the system from line 216.
  • the 110 ° C high-temperature wastewater containing free nickel ions separated in the lower plate 203 of the stripping tower 201 was discharged from the line 217.
  • the composition of the wastewater discharged in this way was measured. Table 1 shows the results.
  • Comparative Example 2 The wastewater containing cyanide having the same composition as in Example 2 was treated using the stripping tower 201 shown in FIG. However, the shelves were one block (the total number of shelves was the same as in Example 2), and no acid was supplied. The composition of the waste water after the treatment was measured. Table 1 shows the results.
  • the nickel-cyan complex was decomposed and was almost not present in the wastewater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

明細書 ガス化方法 技術分野
この発明は、 ニッケルおよび硫黄を含む原料のガス化方法に関するものであり、 更に詳しくは石炭あるいは石油精製により得られる重油、 常圧残渣油、 減圧残渣 油またはァスフアルトを含む重質油等を部分酸化法によりガス化する際に、 冷却 •カーボン洗浄工程で発生する排水中のニッケル一シアン錯体の生成を抑制でき るガス化方法に関するものである。
また、 この発明は、 排水の処理方法を組み入れたガス化方法に関するものであ り、 更に詳しくは石炭あるいは石油精製により得られる重油、 常圧残渣油、 減圧 残渣油またはアスファルトを含む重質油等を部分酸化法によりガス化する際に発 生するニッケル一シアン錯体 (ニッケルシァネートイオン) を含む排水の処理方 法をガス化方法に組み入れたものである。 背景技術
水素、 炭素、 窒素、 硫黄および重金属であるニッケル、 バナジウム、 鉄等を含 む石炭や、 重質油、 常圧残渣油、 減圧残渣油、 アスファルト等の石油精製残渣油 を原料とし、 空気分離装置より供給される酸素および外部から供給されるスチー ムとともに高温でガス化が行われるガス化工程において、 原料中の組成によって は、 水素、 一酸化炭素、 二酸化炭素、 メタンの他に、 副生成物と'して硫化水素、 硫化カルボニル、 シアン化水素、 アンモニアが生成される。
ガス化工程で生成される硫化水素がシアン化水素に対して相対的に多量含まれ るときには、 重金属の中で特にニッケルおよび鉄はカルボニルを生成するが、 つ ぎの冷却 ·カーボン洗浄工程において、 硫化水素の存在により、 その大部分は二 ッケルあるいは鉄の硫化物に転換し、 カーボンスラリーと共に排出される。
排水中のニッケルあるいは鉄の硫化物は沈殿分離可能であり、 ニッケル等が沈 殿除去された排水中において、 シアンとアンモニアはイオンの状態で存在する。 しかし、 最終的な排水処理工程へ供給される前に、 通常の前処理方法、 例えばス チ一ムストリッピングによって、 シアンイオンはシアン化水素として、 アンモニ アイオンはアンモニアガスとして、 排水中から環境上安全な程度 (シアン含有排 水は、 シアンの総量規制により放流することが水質汚濁防止法で禁じられてい る。 ) にまで放散分離除去が可能である。 また、 ニッケルについては排水処理ェ 程で化学処理し、 水酸化物として除去することが可能である。
しかし、 原料中の組成によっては (例えば、 硫黄含有量が少ない原料) 、 ガス 化工程で生成されるシアン化水素が硫化水素に対して相対的に多量含まれるので、 このような組成の原料を使用するときには、 排水中のニッケルは硫化ニッケルを 生成するよりも優先的にニッケル一シアン錯体を生成する。
ニッケル—シアン錯体は、 アンモニアを含むことにより p Hがアルカリ性に保 持されている排水中では、 ニッケルシァネートイオンとして非常に安定に存在し ているため、 最終的な排水処理工程へ供給される前において、 スチームストリツ ビングのみではシアンを除去することが困難である。 発明の開示
この発明は、 冷却 'カーボン洗浄工程後の排水中におけるニッケル一シアン錯 体の生成を抑制することにより、 後工程における処理をより簡便にすることがで きるガス化方法を提供するものである。 また、 この発明は、 ガス化工程で生成されるシアン化水素が硫化水素に対して 相対的に多量含まれる原料を使用した場合、 排水中に含まれるニッケルーシアン 錯体を環境上安全な程度にまで除去できる排水の処理方法を組み入れたガス化方 法を提供するものである。
この発明者らは、 ガス化工程後の排水中にニッケルーシアン錯体が安定に含有 されている場合、 常法であるスチームストリッピング法を適用しても充分に除去 できないという点に着目して研究を重ねた結果、 冷却 ·力一ボン洗浄工程おいて 沈殿分離可能な硫化ニッケルあるいは他の硫黄化合物を優先的に生成させること により、 ニッケル—シアン錯体の生成を抑制し、 環境上まったく安全な程度にま でシアン含有量を低減できる、 スチームストリッピング法を適用した効率的なェ 業的方法を確立したものである。
また、 この発明者らは、 排水の p Hがアルカリ性に保持されているためにニッ ルーシアン錯体が安定に存在しており、 常法であるスチームストリッビング法を 適用しても充分に除去できないという点に着目して研究を重ねた結果、 排水の P Hを酸性領域に保持することにより、 環境上まったく安全な程度にまでシアンを 除去することができる、 スチームストリツビング法を適用した効率的な工業的方 法を確立したものである。
本発明は、 ニッケルを 1 0〜1 0 0重量 ppmおよび硫黄を 0 . 1〜1 . 0重量% 含むガス化すべき原料を部分酸化法によりガス化処理し、 冷却およびカーボンを 洗浄し、 脱硫して、 粗ガス生成物を得る方法において、
洗浄工程の排水より力一ボンを回収し、
( 1 ) 硫化水素がシアン化水素に対して相対的に多量にガス化工程で生成する 量の硫黄をガス化すべき原料に混合し、 および排水をシアンスチームストリッピ ング処理する、 或いは ( 2 ) ニッケル—シァン錯体を含む洗浄工程の排水を 1基以上の放散塔でスチ —ムストリッビングにより処理するにあたり、 放散塔に酸を供給して排水の p H を 2 . 0〜6 . 0に調節することにより、 ニッケル一シアン錯体をニッケルィォ ンとシアンイオンに分解し、 ニッケルイオンは水酸化ニッケルとして処理し、 シ アンイオンはシアン化水素として処理することを特徴とするガス化方法である。 好ましくは、 ガス化すべき原料が石炭あるいは石油精製により得られる重油、 常圧残渣油、 減圧残渣油またはアスファルトである。
好ましくは、 硫黄含有量が、 0 . 5〜2 . 0重量%である。
好ましくは、 原料に混合される硫黄が、 脱硫工程で濃縮除去される硫化水素を 含む酸性ガスあるいは外部から供給される硫黄含有物である。
好ましくは、 1基の放散塔で処理する場合において、 内部の棚段が上部棚段と 下部棚段の 2ブロックから構成された放散塔を用い、 上部棚段に排水を供給し、 下部棚段に酸を供給する。
好ましくは、 2基以上の放散塔で処理する場合において、 各放散塔内部の棚段 が 1ブロックから構成され、 第 1放散塔の棚段上方から排水を供給し、 第 1放散 塔下方から排出される排水に酸を混合したのち、 第 2放散塔の棚段上方に供給す る。
好ましくは、 洗浄したカーボンをガス化工程へ回収する。
上記発明の形態 (1 ) は、 ニッケル含有量が 1 0〜1 0 0重量 ppmおよび硫黄含 有量が 0 . 1〜1 . 0重量%の原料を、 ガス化工程、 冷却 ·カーボン洗浄工程、 脱硫工程、 カーボン回収工程およびシアンスチームストリッピング工程から構成 される部分酸化法によりガス化するに際し、 ガス化工程へ供給される原料に、 ガ ス化工程で生成される硫化水素がシアン化水素に対して相対的に多量含まれるよ うにできる量の硫黄を混合することを特徴とするガス化方法である。 上記発明の形態 (2 ) は、 重金属イオン、 シアン、 アンモニア、 二酸化炭素、 - 硫化水素およびニッケル—シアン錯体を含む排水を 1基以上の放散塔でスチーム ストリッピングにより処理するにあたり、 放散塔に酸を供給して排水の p Hを 2 . 0〜6 . 0に調節することにより、 ニッケル一シアン錯体をニッケルイオンとシ アンイオンに分解し、 ニッケルイオンは水酸化ニッケルとして処理し、 シアンィ オンはシアン化水素として処理することを特徴とする排水の処理方法をガス化方 法に組み入れたものである。 以下はこの排水の処理方法について説明する。 図面の簡単な説明
第 1図は、 本発明の実施形態 (1 ) のプロセスフローを示す概念図である。
第 2図は、 排水の処理方法も組み入れた発明の実施形態 (1 ) 及び (2 ) のプ ロセスフ口一を示す概念図である。
第 3図は、 発明の実施形態 (2 ) の一形態のプロセスフローを示す概念図であ る。
第 4図は、 発明の実施形態 (2 ) の他の形態のプロセスフローを示す概念図で ある。 発明を実施するための好ましい形態
この発明のガス化方法を適用する原料 (以下、 「ガス化原料」 という) は、 二 ッケル含有量が 1 0〜 1 0 0重量 ppmおよび硫黄含有量が 0 . 1〜1 . 0重量%の ものである。 この範囲外の化石原料、 例えばニッケルの含有量 1 0 0重量 ppiiiおよ び硫黄の含有量が 2 . 0重量%の場合には、 ニッケル—シアン錯体の生成量は非 常に少ないので、 この発明の効果を得ることができない。 このようなガス化原料 としては、 石炭あるいは石油精製により得られる重油、 常圧残渣油、 減圧残渣油 またはアスファルトであり、 ガス化反応で生成されるシアン化水素が硫化水素に— 対して相対的に多量含まれるものを挙げることができる。
この発明は、 ガス化原料に対して、 ガス化工程、 冷却,カーボン洗浄工程、 脱 硫工程、 力一ボン回収工程およびシアンスチームストリッビング工程を適用する 際に、 ガス化工程へ供給されるガス化原料に所定量の硫黄を混合することを要件 とするものであるが、 かかる要件を充足する限りにおいては、 他の構成について 当業者により通常なされる改変はこの発明に含まれる。 以下、 この発明のガス化 方法の実施形態を図面に基づいて説明する。 第 1図は、 本発明の実施形態 (1 ) のプロセスフローを示す概念図である。
石油精製により得られた減圧残渣油等のガス化原料は、 ライン 1 1 1から約 5 0重量%の量をガス化反応工程 1 0 1へ供給し、 約 5 0重量%の量をカーボン回 収工程 1 0 4において回収される力一ボンに流動性を持たせるため、 ライン 1 1 1からライン 1 2 4を介してカーボン回収工程 1 0 4へ供給する。 このとき、 ガ ス化反応工程 1 0 1へ供給するガス化原料に硫黄を混合する。
硫黄の混合量は、 ガス化工程で生成される硫化水素がシアン化水素に対して相 対的に多量含まれるようにできる量であり、 例えば、 ガス化原料と硫黄の混合物 中において、 好ましくは 0 . 5〜2 . 0重量%となる量であり、 特に好ましくは 1 . 0〜2 . 0重量%となる量である。 混合物中の硫黄の含有量が 0 . 5重量% 以上のときは、 冷却 ·カーボン洗浄工程の排水中におけるニッケル—シアン錯体 の生成を抑制することができ、 2 . 0重量%以下のときは、 前記作用をなすと共 に、 脱硫工程において脱硫に要する負担を軽減できる。
ガス化原料に混合する硫黄源は特に限定されるものではないが、 資源を有効利 用する観点から、 脱硫工程 1 0 3で濃縮除去する硫化水素を含む酸性ガスをライ ン 1 1 7から抜き出し、 ライン 1 1 8から供給することが好ましい。 また、 脱硫 工程 1 0 3で濃縮除去される酸性ガスのみでは混合物中の硫黄含有量を適正量に— 調整することが困難である場合のほか、 運転当初において脱硫工程 1 0 3から酸 性ガスを供給できない場合は、 外部から、 固体、 液体または気体状の硫黄または 硫黄化合物を供給することができる。
このようにしてガス化原料及び硫黄が供給されたガス化反応工程 1 0 1には、 ライン 1 1 2から約 3 8 0〜4 0 0でのスチームを供給し、 ライン 1 1 3から外 部の空気分離装置から分離された約 1 6 0〜2 3 0 °Cに加熱された酸素を供給す る。 さらに、 力一ボン回収工程 1 0 4から抜出されたカーボンオイル (カーボン とガス化原料との混合物) をカーボン回収のため、 ライン 1 2 3からライン 1 1 1を介してガス化反応工程 1 0 1へ供給する。
ガス化反応工程 1 0 1において、 温度 1 3 0 0〜 1 4 0 0 :、 圧力 6 0〜 8 0 Kg/cm2一 Gの条件下で部分酸化反応を行う。 この部分酸化反応によりガス化した 粗ガスを約 2 0 0〜2 5 O t:まで排熱回収した後、 ライン 1 1 4から冷却 ·力一 ボン洗浄工程 1 0 2へ供給する。 このときの粗ガスには、 硫化水素がシアン化水 素に対して相対的に多量含まれている。 例えば、 硫化水素がシアン化水素に対し て容量比で 1 0〜4 0倍であると好ましく、 1 5〜2 0倍であると更に好ましレ^ 冷却 ·カーボン洗浄工程 1 0 2において、 ガス化された粗ガスは約 1 3 0〜1 4 0でで一旦カーボン除去のために水洗されて冷却され、 約 4 0 ~ 5 0でで粗ガ ス中のカーボンを完全に除去するために水洗され、 粗ガスとカーボンスラリーに 分離する。 このカーボンスラリー中においては、 硫化ニッケルあるいは他の硫黄 化合物が優先的に生成しており、 ニッケルーシァン錯体の生成が大幅に抑制され ている。 このようにして冷却 ·力一ボン洗浄工程 1 0 2で粗ガス中の力一ボンが 完全に除去された硫化水素等を含む粗ガスを、 ライン 1 1 5から脱硫工程 1 0 3 へ供給する。 脱硫工程 1 0 3において、 二酸化炭素で飽和にされた吸収液により硫黄化合物、 が選択的に吸収除去される。 吸収除去されたガスは、 硫化水素に加えて吸収液に 由来する多量の二酸化炭素を含んでいる。 このため、 必要に応じて設けられた濃 縮工程で、 硫化水素を 2 0重量%程度にまで濃縮することができる。 濃縮された 酸性ガスはライン 1 1 7から排出するが、 大部分はガス化反応工程 1 0 1へ供給 する硫黄源として、 ライン 1 1 8からライン 1 1 1へ循環する。 残りの酸性ガス は系外の硫黄回収工程に供給してもよいし、 燃焼炉で処理してもよい。 脱硫工程 1 0 3で脱硫された粗ガスは、 ライン 1 1 6から他の処理工程へ供給する。
冷却 ·カーボン洗浄工程 1 0 2において生じたカーボンスラリーは加圧状態に あるため、 減圧して常圧に戻した後、 ライン 1 1 9からカーボン回収工程 1 0 4 へ供給する。 このカーボンスラリーは、 カーボンの他に、 硫化水素 (H2 S ) 、 ァ ンモニァ (N H3) 、 シアン化水素 (H C N) 等の溶存ガスと硫化ニッケルおよび 硫化鉄等の重金属を含んでいる。
硫化ニッケルおよび硫化鉄等の一部の重金属分と回収カーボンは、 ライン 1 2 4から供給したガス化原料と混合して流動性を付与し、 ライン 1 2 3からライン 1 1 1を介してガス化反応工程 1 0 1へ循環する。
カーボン回収工程 1 0 4でカーボン等が回収除去されたスラリー中には、 残部 の硫化ニッケル、 硫化鉄等の重金属、 NH3、 H C N、 H 2 S、 C 02、 C O、 H 2 が溶存している。 硫化ニッケル、 硫化鉄等の重金属化合物は、 カーボン回収工程 1 0 4内の沈殿工程でガス化原料中に含まれる重金属の約 8 0重量%が沈殿除去 される。
カーボン回収工程 1 0 4からライン 1 2 0へ排出された排水には、 ガス化原料 中の重金属の約 2 0重量%と NH 3、 H C N、 H 2 S、 C〇2、 C〇、 H 2が溶存し ている。 この排水は、 排水処理工程で処理される前に溶存しているガスをスチー ムにより放散処理するため、 シアンスチームストリツビング工程 105に供給し、 約 1. 0〜1. 5Kg/cIIl2、 約100〜110cCの条件下、 主としてHCN、 NH 3の大部分を除去して、 ライン 122から放散する。
シアンスチ一ムストリッビング工程 105で上記のガスが除去された排水は、 主としてニッケル、 NH3および微量の鉄と HCNを含み、 ライン 121から排水 処理設備へ供給する。 ニッケル、 鉄は化学的排水処理工程において苛性ソーダで pH9. 5〜11に調整され、 それぞれ水酸化ニッケル、 水酸化鉄として除去す る。 一方、 少量の HCN、 NH3を含む排水は生物学的排水処理工程にて処理し、 最終的に系外へ放流する。
尚、 さらにシアンスチームストリッピング工程 105において、 以下の排水の 処理方法を適用してもよい。
本発明の排水の処理方法は、 重金属イオン (ニッケルイオン、 バナジウムィォ ン、 鉄イオン等) 、 シアン、 アンモニア、 二酸化炭素、 硫化水素およびニッケル 一シアン錯体を含む排水 (以下、 「シアン含有排水」 という) に適用されるもの である。 ただし、 この発明の排水の処理方法は、 水素、 炭素、 窒素、 硫黄および 重金属であるニッケル、 バナジウム、 鉄等を含む石炭や、 重質油、 常圧残渣油、 減圧残渣油、 アスファルト等の石油精製残渣油を原料とし、 空気分離装置より供 給される酸素および外部から供給されるスチームとともに高温でガス化が行われ るガス化工程において生成する排水が本来的な処理対象となるものであるため、 上記した重金属イオン、 シアン、 アンモニア、 二酸化炭素、 硫化水素およびニッ ケルーシアン錯体以外の成分が含有される排水もこの発明の適用対象となるもの である。
この発明の排水の処理方法は、 1基以上の放散塔を用いてスチームストリツビ ング処理を行い、 その場合の排水の pHを 2. 0〜6. 0に調節することを要件 とするものであるが、 かかる要件を充足する限りにおいては、 他の構成について 当業者により通常なされる改変はこの発明に含まれる。 以下、 この発明の排水の 処理方法の実施形態を図面に基づいて説明する。
第 2図は、 シアンスチームストリツビング工程 1 0 5において、 排水の処理方 法も組み入れた発明の実施形態 (1 ) 及び (2 ) のプロセスフローを示す概念図 である。 第 3図及び第 4図は、 発明の実施形態 (2 ) のプロセスフローを示す概 念図であって、 第 2図と同一の符号は同一のものを示す。
更に詳しくは、 第 3図は、 排水の処理方法の一実施形態を説明するための放散 塔を 1基用いた場合のプロセスフローを示す概念図であり、 第 4図は、 排水の処 理方法の他の実施形態を説明するための放散塔を 2基用いた場合のプロセスフロ 一を示す概念図である。
まず、 第 3図に基づいて排水処理の方法の一実施形態を説明する。 第 3図にお いて、 放散塔 2 0 1は、 内部の棚段が上部棚段 2 0 2と下部棚段 2 0 3の 2プロ ックから構成されている。 棚段の数及び棚の間隔等は特に限定されるものではな く、 一般的な構造のものを使用することができる。
シアン含有排水は、 放散塔 2 0 1に接続されたライン 2 1 0から、 上部棚段 2 0 2に供給する。 この排水の一例としては、 ガス化工程で生成されるシアン化水 素が硫化水素に対して相対的に多量含まれる原料を使用した際に発生する、 温度 が約 4 0〜6 0 、 p Hが約 8 . 0 - 1 1 . 0のものを挙げることができる。 酸は、 放散塔 2 0 1に接続されたライン 2 1 1から、 上部棚段 2 0 2と下部棚 段 2 0 3との中間部に供給する。 酸としては、 塩酸、 硫酸等の強酸を使用するこ とができる。 酸の温度は、 シアン含有排水の温度に比べてあまり低すぎないよう に調節することが望ましく、 シアン含有排水の温度が上記範囲の場合は、 約 1 5 〜5 0での酸を使用する。 酸の供給量は、 シアン含有排水の p Hを 2 . 0〜6 . 0、 好ましくは 2 . 5〜 4 . 5に調節できる量である。 p Hを前記範囲に調節することにより、 ニッケル 一シアン錯体をニッケルイオンとシアンイオンとに容易に分解させることができ る。
スチームは、 放散塔 2 0 1に接続されたライン 2 1 2から、 下部棚段 2 0 3の 下方に供給する。 スチームは、 例えば、 温度が約 1 2 0〜2 0 0で、 圧力が約 2 〜1 l KgZcm2のものを供給することができる。
このようにしてシアン含有排水、 酸及びスチームが供給された放散塔 2 0 1に おいては、 上部棚段 2 0 2内において、 主にアンモニア、 硫化水素、 二酸化炭素 等がスチームストリッビングによってシアン含有排水から分離される。 シアン含 有排水に含まれるニッケル一シアン錯体は、 上部棚段 2 0 2内では分解されず、 p Hが 2 . 0〜6 . 0に調節されることにより、 下部棚段 2 0 3において、 遊離 ニッケルイオン (N i 2+) とシアンイオン (C N— ) とに分解される。 このとき、 上部棚段 2 0 2の圧力と下部棚段 2 0 3の圧力は、 上部棚段 2 0 2の圧力を 1と したとき、 下部棚段 2 0 3の圧力は 1 . 0 1〜1 . 1であることが好ましい。 下部棚段 2 0 3において生成したシアンイオンは、 同所において、 スチームス トリッピングにより、 シアン化水素として排水から分離され、 放散塔 2 0 1の上 部棚段 2 0 2内を上昇し、 高温状態のアンモニア、 硫化水素、 二酸化炭素および スチームとともに、 放散塔 2 0 1に接続されたライン 2 1 3を介して凝縮器 2 0 4へ供給される。
そして、 凝縮器 2 0 4において冷却された後、 ライン 2 1 4から分離器 2 0 5 へ供給され、 凝縮水はライン 2 1 5から放散塔 2 0 1の上部棚段 2 0 2の上方へ 返送される。 分離器 2 0 5で凝縮水と分離されたシアン化水素、 アンモニア、 二 酸化炭素、 硫化水素と一部のスチームは、 ライン 2 1 6から系外に排出される。 一方、 放散塔 2 0 1の下部棚段 2 0 3で分離された遊離ニッケルイオンを含む— 高温排水は、 ライン 2 1 7から排出され、 化学的排水処理工程で処理される。 こ の化学的排水処理工程は、 例えば遊離ニッケルイオンを苛性ソーダで処理し、 P H 9 . 5 - 1 1に調整して水酸化ニッケルとして除去する。
次に、 第 4図に基づいて、 排水の処理方法の他の実施形態を説明する。 第 4図 で示す実施形態における処理条件は、 第 3図に示す実施形態に準じて設定するこ とができる。 即ち、 第 4図に示される排水処理の方法を、 第 3図と同様にシアン スチームストリッビング工程 1 0 5に組み入れることができる。 第 4図において、 放散塔は 2基 (第 1放散塔 3 0 0と第 2放散塔 3 1 0 ) 設置され、 第 1放散塔 3 0 0および第 2放散塔 3 1 0の内部は、 それぞれ 1プロックの棚段 3 0 1、 3 1 1から構成されている。
シアン含有排水は、 第 1放散塔 3 0 0に接続されたライン 3 2 0から、 棚段 3 0 1の上方に供給する。
酸は、 第 1放散塔 3 0 0の下方と第 2放散塔 3 1 0の上方を連結するライン 3 2 5の所望の部位において、 p Hが 2 . 0〜6 . 0となるように第 1放散塔 3 0 0の下方から排出されるシアン含有排水と混合する。 酸が混合されたシアン含有 排水は、 第 2放散塔 3 1 0の棚段 3 1 1の上方へ供給する。
スチームは、 第 2放散塔 3 1 0に連結されたライン 3 2 6から、 棚段 3 1 1の 下方に供給する。 第 2放散塔 3 1 0に供給されたスチームは、 ライン 3 2 8を通 つて第 1放散塔 3 0 0の棚段 3 0 1の下方にも供給される。
このようにしてシアン含有排水、 酸及びスチームが供給された第 1放散塔 3 0 0においては、 主にアンモニア、 硫化水素、 二酸化炭素がスチームストリツピン グにより排水から分離される。
シアン含有排水に含まれるニッケル—シアン錯体は、 p Hが 2 . 0〜6 . 0に 調節されることにより、 第 2放散塔 3 1 0の棚段 3 1 1において、 遊離ニッケル— イオン (N i 2 +) とシアンイオン (C N— ) とに分解される。 そして、 棚段 3 1 1 において生成したシアンイオンは、 同所において、 スチームストリツビングによ り、 シアン化水素として排水から分離される。 このように、 第 2放散塔 3 1 0内 においては、 二ッケルーシアン錯体の分解およびシァン化水素の分離が同時に行 なわれる。
シアン化水素は第 2放散塔 3 1 0の上部棚段 3 1 1内を上昇し、 ライン 3 2 8 を通り、 さらに第 1放散塔 3 0 0に接続されたライン 3 2 1を通って、 高温状態 のアンモニア、 硫化水素、 二酸化炭素およびスチームとともに凝縮器 3 0 4へ供 給される。
そして、 凝縮器 3 0 4において冷却された後、 ライン 3 2 2から分離器 3 0 5 へ供給され、 凝縮水はライン 3 2 3から第 1放散塔 3 0 0の棚段 3 0 1上方へ返 送される。 分離器 3 0 5で凝縮水と分離されたシアン化水素、 アンモニア、 二酸 化炭素、 硫化水素と一部のスチームは、 ライン 3 2 4から系外に排出される。 一方、 第 2放散塔 3 1 0の棚段 3 1 1で分離された遊離ニッケルイオンを含む 高温排水は、 ライン 3 2 7から排出され、 化学的排水処理工程で処理される。
この発明によれば、 硫黄含有量が少ないガス化原料を使用した部分酸化法によ るガス化において、 発生する排水中におけるニッケル一シアン錯体の生成を大幅 に抑制することができる。 従って、 従来のスチームストリツビング法により排水 を処理することができるため、 排水処理が容易となり、 環境に悪影響及ぼすこと もない。
更に、 この発明によれば、 硫黄含有量が少ない原料を使用したガス化の際に発 生する排水中のニッケル—シアン錯体を、 従来のスチームストリッビング法によ り分解することができるため、 排水処理が容易となり、 環境に悪影響及ぼすこと もない。 実施例
以下、 この発明を実施例によりさらに詳細に説明するが、 この発明はこれらの 実施例により限定されるものではない。 実施例 1
ガス化原料として石油精製により得られた下記組成の減圧残渣油を用い、 第 図に示すプロセスフローにより、 下記の方法によって処理した。
分) (含有量)
C 86. 70重量%
H 12. 10重量%
S 0. 17重量%
N 0. 51重量%
0 0. 50重量%
灰分 0. 02重量%
ニッケル 75. 10堇重 ppm
バナジウム 0. 90堇量顯
鉄 5. 60重量 ppm。
ガス化原料の 50重量%の流量を部分酸化法によるガス化のためにガス化反応 工程 101へ供給し、 50重量%の流量をカーボン回収工程 104へ供給した。 ガス化反応工程 101には、 ライン 1 12から約 400でのスチームを供給し, ライン 1 13から約 230 の酸素を供給した。 また、 脱硫工程 103で濃縮さ れた H2Sを含む酸性ガスを、 ガス化原料 10 OKgに対して 0. 83Kg相当となる ようにガス化反応工程 101に供給した。 なお、 運転当初においては、 外部から 硫黄を前記と同量だけガス化反応工程 101に供給した。 ガス化反応工程 101 において、 温度 1300〜 1400で、 圧力 60〜 80 Kg/cm2— Gの条件下で部 分酸化反応を行った。
ガス化反応工程 101の入口においては、 重金属が当初の 3重量倍、 硫黄が 1 重量%の組成となるように調整した。 それぞれの成分を以下に示す。
(成 分) (含有量)
C 86. 07重量%
H 1 1. 88重量%
S 1. 00重量%
N 0. 51重量%
0 0. 49重量%
灰分 0. 05重量%
ニッケル 225. 30重量 ppm
2. 70重量 ppm
鉄 16. 80重量 ppm。
ガス化反応工程 101においてガス化された粗ガスは、 約 200°Cまで排熱回 収した後、 ライン 1 14から冷却 'カーボン除去工程 102に供給した。 なお、 ガス化反応工程 101出口のガス中には、 ガス化原料の約 1. 0重量%の未反応 カーボンが含まれていた。
冷却 .カーボン除去工程 102において、 粗ガスは約 140°Cで力一ボン除去 のため洗浄して 45°Cまで冷却した後、 さらに水洗した。 洗浄水は、 スラリー中 の力一ボンが 1 . 0重量%になる量を使用した。 洗浄水は、 力一ボン回収工程 1— 0 4内での再生水を使用したため、 ガス化原料中の重金属の約 1 . 1重量倍が含 まれていた。 従って、 カーボンスラリー中の重金属は、 ガス化反応工程 1 0 1力、 らのガス化原料中の約 3重量倍の重金属との和である約 4 . 1重量倍の重金属が 含まれていた。
冷却 ·カーボン洗浄工程 1 0 2から排出したカーボンスラリーは、 ライン 1 1 9からカーボン回収工程 1 0 4に供給した。 カーボンスラリー中には、 ニッケル が硫化ニッケルを生成するに充分な H 2 Sが含まれていたため、 硫化ニッケル等を 優先的に生成できた。 カーポンスラリーに含まれるガス化原料中の重金属の 4 . 1重量倍に相当する重金属のうち、 2 . 0重量倍に相当する重金属は、 カーボン オイル循環流に含ませた状態で、 ライン 1 2 3からガス化反応工程 1 0 1へ循環 した。
カーボンオイル循環流はガス化原料の 5 0重量%であり、 実際の重金属の濃度 は、 5重量倍に濃縮されていた。 従って、 ガス化原料に対する 2 . 1重量倍の重 金属が、 力一ボンを除去して再使用した洗浄水中に含まれる。
ガス化原料中の重金属の 1 . 3重量倍の重金属を含む排水のうち、 ガス化反応 工程 1 0 1に供給したスチームおよび反応により生成する余剰の水は、 シアンス チ一ムストリッピング工程 1 0 5と排水処理工程で処理した。 洗浄水として循環 再使用した水とシアンスチームストリツビング工程 1 0 5へ供給した水の重量比 率は 1 1 0 : 2 0であった。 シアンスチームストリツビング工程 1 0 5へ供給し た排水は、 ガス化原料中の重金属の 2 0重量%を含んでおり、 その形態は硫化二 ッケル、 硫化鉄であった。
残存する重金属は、 カーボン回収工程 1 0 4内の沈降分離設備で 8 0重量%を 沈殿分離し、 シアンスチ一ムストリッピング工程 1 0 5で処理した後、 排水処理 工程で残部の重金属 20重量%を処理した。 重金属は硫化ニッケル、 硫化鉄の形 ' 態で、 シアンは HCNの形態で、 それぞれシアンスチームストリッピング工程 1 05へ供給したため、 1. 5Kg/cm2、 約 11 Ot:の条件下で容易に分解し、 H2S、 HCNとして放散分離可能であった。 放散されたガス組成は、 NH383容量%、 C0212容量%、 H2S 2. 5容量%、 HCN2. 5容量%と微量の CO、 H2で あり、 必要に応じて補助燃料として利用するか、 フレアにて燃やすことにより処 理した。
排水処理工程へ供給する排水は、 主としてニッケル 15重量 ppm、 NH3250 重量 ppm、 微量の鉄と HCNを含んでいるが、 排水処理工程で規制値以内に充分処 理できた。 比較例 1
実施例 1と同様のガス化原料を用い、 第 1図に示すプロセスフローにより、 実 施例 1に準じて処理した。 ただし、 脱硫工程 103からの H2Sを含む酸性ガスの 循環を行わないため、 ガス化反応工程 101入口でのガス化原料の組成は、 重金 属に関しては 7. 2重量倍、 硫黄に関しては 0. 17重量%であった。 それぞれ の成分を以下に示す。
(成 分) (含有量)
C 86. 72 重量%
H 11. 975重量%
S 0. 17 重量%
N 0. 50 重量%
0 0. 495重量%
灰分 0. 14 重量% ニッケル 540. 70 重量 ppm
バナジウム 2. 70 重量 ppm
鉄 16. 80 重量 ppm。
ガス化反応工程 101の出口ガスは、 ガス化原料の約 1. 0重量%の未反応の カーボンを含んでいた。
冷却 ·カーボン洗浄工程 102において、 洗浄水はスラリー中のカーボンが 1. 0重量%となる量を使用した。 洗浄水はカーボン回収工程 104内での再生水を 使用したため、 ガス化原料中の重金属の約 5. 5重量倍が含まれていた。 従って、 スラリー中の重金属は、 ガス化反応工程 101からのガス化原料中の約 7. 2重 量倍の重金属との和である約 12. 7重量倍の重金属が含まれていた。 冷却 *カ 一ボン洗浄工程 102から排出したスラリー中には、 ニッケルが硫化ニッケルを 生成するに充分な H 2 Sが含まれていなかつたため、 優先的にニッケル一シアン錯 体が生成した。
スラリー中の 12. 7重量倍に相当する重金属のうち、 6. 2重量倍に相当す る重金属は力一ボンオイル循環流に含ませてガス化反応工程 101へ循環した。 カーボンオイル循環流は、 ガス化原料の 50重量%であり、 実際の重金属の濃度 は 13. 4倍に濃縮されていた。
ガス化原料に対する 6. 6重量倍の重金属がカーボンを除去して再使用した洗 浄水中に含まれるが、 ガス化原料中のニッケルは、 アルカリ領域では非常に安定 なニッケル一シアン錯体 [N i (CO) 4] 2—を生成しているため、 カーボン回収 工程 104内で沈殿分離されなかった。
ガス化原料中の重金属の 6. 6重量倍の重金属を含む排水のうち、 ガス化反応 工程 101へ供給したスチームおよび反応により生成した余剰の水は、 シアンス チームストリツビング工程 105と排水処理工程で処理した。 洗浄水として循環 再使用した水とシアンスチームストリツビング工程 1 0 5へ供給した水の比率は 5 5 0 : 1 0 0であった。
シアンスチームストリツビング工程 1 0 5へ供給した排水は、 ガス化原料中の 重金属の 1 0 0重量%を含んでおり、 その形態はニッケル一シアン錯体、 硫化鉄 であった。 重金属はニッケル一シアン錯体、 硫化鉄の形態で、 シアンはニッケル 一シアン錯体の形態で、 それぞれシアンスチームストリツビング工程 1 0 5へ供 給したため、 アルカリ領域における 1 . 5 Kg/cm2、 約 1 1 0での条件下では全く 分離除去できなかった。
残存する重金属は、 シアンスチームストリッビング工程 1 0 5で処理した後、 排水処理工程においてすベてを処理した。 排水処理工程へ供給した処理水には、 主としてニッケル一シアン錯体 7 5重量卯 m (ニッケルとして) 、 NH 3が 2 5 0 重量 ppmおよび微量の鉄とが含まれていたが、 排水処理工程での化学処理および生 物学的処理の双方とも処理することは困難であった。 実施例 2
更に好ましくシアンスチームストリツビング工程 1 0 5では、 以下の排水の処 理方法を適用し得る。
以下、 第 3図を用いて排水の処理方法を説明する。
原料として石油精製により得られた下記組成の減圧残渣油を用い、 これを部分 酸化法によりガス化し、 ガス化の際に発生した排水 (シアン含有排水) を第 3図 に示すプロセスフローにより、 下記の方法によって処理した。
(成 分) (含有量)
C 8 6 . 7 0重量%
H 1 2 . 1 0重量% s 0. 17重量%
N 0. 51重量%
〇 0. 50重量%
灰分 0. 02重量%
ニッケル 75. 1 0重量 ppm
バナジウム 0. 90重量 ppm
5. 60重量綱。
温度 60で、 pH9. 79のシアン含有排水約 8000 LZHをライン 210 から放散塔 201の上部棚段 202の上方に供給した。 そして、 シアン含有排水 の供給と同時に、 pH調整のための硫酸 (2 OX:) をライン 21 1から放散塔 2 01の上部棚段 202と下部棚段 203の間に供給した。 供給量は、 放散塔 20 1の下部棚段 203の下方におけるシアン含有排水の pHが 4. 13となるよう に調節した。 さらにスチーム (温度 180°C、 圧力 4. 5 Kg/cm2) は、 ライン 2 12から放散塔 201の下部棚段 203の下方に 1. 9トン 時の割合で供給し た。 このとき、 上部棚段 202の圧力は、 下部棚段 203の圧力が 1. 5Kg/cm2 となるように運転した。
約 24時間の運転の後、 シアン化水素、 アンモニア、 硫化水素、 二酸化炭素お よび一部のスチームを含む気体混合物 (温度 107で) は、 凝縮器 204で 90 でまで冷却した後、 分離器 205を経て、 ライン 216から系外に排出した。 ま た、 放散塔 201の下部棚段 203で分離された遊離ニッケルイオンを含む 1 1 0°Cの高温排水はライン 217から排出した。 このようにして排出された排水の 組成を測定した。 結果を表 1に示す。 比較例 2 実施例 2と同一組成のシアン含有排水を用い、 第 3図に示した放散塔 2 0 1を 用いて処理した。 ただし、 棚段は 1ブロックとし (棚段の総数は実施例 2と同数 にした。 ) 、 酸の供給は行わなかった。 処理後の排水の組成を測定した。 結果を 表 1に示す。
Figure imgf000023_0001
ニッケル—シアン錯体は分解され、 排水中に殆ど存在しない程度であった。

Claims

請求の範囲
1. ニッケルを 10〜100重量 ppmおよび硫黄を 0. 1〜1. 0重量%含むガ ス化すべき原料を部分酸化法によりガス化処理し、 冷却およびカーボンを洗浄し、 脱硫して、 粗ガス生成物を得る方法において、
洗浄工程の排水よりカーボンを回収し、
( 1 ) 硫化水素がシアン化水素に対して相対的に多量にガス化工程で生成する 量の硫黄をガス化すべき原料に混合し、 および排水をシアンスチームストリッピ ング処理する、 或いは
(2) ニッケルーシアン錯体を含む洗浄工程の排水を 1基以上の放散塔でスチ 一ムストリッビングにより処理するにあたり、 放散塔に酸を供給して排水の pH を 2. 0〜6. 0に調節することにより、 ニッケル一シアン錯体をニッケルィォ ンとシアンイオンに分解し、 ニッケルイオンは水酸化ニッケルとして処理し、 シ ァンイオンはシァン化水素として処理することを特徴とするガス化方法。
2. ガス化すべき原料が石炭あるいは石油精製により得られる重油、 常圧残渣油、 減圧残渣油またはアスファルトである請求項 1記載の方法。
3. (1) を含む請求項 1記載の方法。
4. 硫黄含有量が、 0. 5〜2. 0重量%である請求項 3記載の方法。
5. 原料に混合される硫黄が、 脱硫工程で濃縮除去される硫化水素を含む酸性ガ スあるいは外部から供給される硫黄含有物である請求項 3記載の方法。
6. (2) を含む請求項 1記載の方法。
7. 1基の放散塔で処理する場合において、 内部の棚段が上部棚段と下部棚段の 2ブロックから構成された放散塔を用い、 上部棚段に排水を供給し、 下部棚段に 酸を供給する請求項 6記載の方法。
8 . 2基以上の放散瘩で処理する場合において、 各放散塔内部の棚段が 1ブロッ クから構成され、 第 1放散塔の棚段上方から排水を供給し、 第 1放散塔下方から 排出される排水に酸を混合したのち、 第 2放散塔の棚段上方に供給する請求項 6 記載の方法。
9 . 洗浄したカーボンをガス化工程へ回収する請求項 1記載の方法。
PCT/JP1999/002099 1998-04-27 1999-04-20 Procede de gazeification WO1999055804A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19983179T DE19983179T1 (de) 1998-04-27 1999-04-20 Vergasungsverfahren

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11641098A JPH11302667A (ja) 1998-04-27 1998-04-27 ガス化方法
JP10/116411 1998-04-27
JP11641198 1998-04-27
JP10/116410 1998-04-27
JP10143822A JP2000015249A (ja) 1998-04-27 1998-05-26 排水の処理方法
JP10/143822 1998-05-26

Publications (1)

Publication Number Publication Date
WO1999055804A1 true WO1999055804A1 (fr) 1999-11-04

Family

ID=27313150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002099 WO1999055804A1 (fr) 1998-04-27 1999-04-20 Procede de gazeification

Country Status (3)

Country Link
CN (1) CN1307626A (ja)
DE (1) DE19983179T1 (ja)
WO (1) WO1999055804A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948210A (zh) * 2010-09-14 2011-01-19 湖州德翔环境科技有限公司 一种钒矿废水的处理工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605220B2 (en) * 2014-06-28 2017-03-28 Saudi Arabian Oil Company Energy efficient gasification based multi generation apparatus employing advanced process schemes and related methods
CN113045045A (zh) * 2021-03-26 2021-06-29 长春黄金研究院有限公司 一种雾化气常温冷凝法处理酸化含氰废水成套装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422403A (en) * 1977-07-22 1979-02-20 Basf Ag Production of synthetic gas by partial oxidation
JPS621784A (ja) * 1985-06-26 1987-01-07 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ 炭素含有燃料のガス化法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422403A (en) * 1977-07-22 1979-02-20 Basf Ag Production of synthetic gas by partial oxidation
JPS621784A (ja) * 1985-06-26 1987-01-07 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ 炭素含有燃料のガス化法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948210A (zh) * 2010-09-14 2011-01-19 湖州德翔环境科技有限公司 一种钒矿废水的处理工艺
CN101948210B (zh) * 2010-09-14 2012-07-04 湖州德翔环境科技有限公司 一种钒矿废水的处理工艺

Also Published As

Publication number Publication date
DE19983179T1 (de) 2001-05-17
CN1307626A (zh) 2001-08-08

Similar Documents

Publication Publication Date Title
US4704137A (en) Process for upgrading water used in cooling and cleaning of raw synthesis gas
CN100577776C (zh) 湿式气体净化方法及系统
EP1108686B1 (en) Water treatment method for use in oil gasification
JPH0624703A (ja) 高純度水素の製造方法
WO2012145910A1 (zh) 生产甲醇的方法和设备
JP2006213535A (ja) 廃棄物をガス化溶融炉で処理する際に発生する塩水からの塩製造方法及び装置
JP2003003177A (ja) ガス化改質方式における廃棄物中の窒素分の処理方法
US4499060A (en) Process for removing hydrogen sulfide from gases, particularly coal distillation gases
KR101795466B1 (ko) 가스 처리 방법 및 가스 처리 장치
US3953577A (en) Process for purifying gases containing HCN
KR20170083564A (ko) 코크스 플랜트들에서 산성 가스를 처리하는 프로세스 및 이 프로세스를 실시하기 위한 시스템
US20190152777A1 (en) A method for the reduction of methanol emission from an ammonia plant
WO1999055804A1 (fr) Procede de gazeification
US4569832A (en) Method and apparatus for desulfurizing coke oven gases
KR101676134B1 (ko) 코크스 오븐 가스 정제 장치 및 코크스 오븐 가스 정제 방법
CN106277145A (zh) 一种芳烃清洁生产的装置与方法
JP6149821B2 (ja) コークス炉ガスの精製方法
CN116920570A (zh) 选择性分离co2的脱硫液、高浓度h2s的脱硫方法及装置
JPS63501485A (ja) コ−クス製造装置中で生じる水から揮発性内容物を除去する方法
JPH11302667A (ja) ガス化方法
WO2019132209A1 (ko) 황화수소를 포함하는 산성가스 정제방법 및 그 장치
JP4800569B2 (ja) 燃料ガス製造装置及び燃料ガスの製造方法
JP2004195400A (ja) ガス化改質方式における廃棄物からの混合塩製造方法
CN217809273U (zh) 一种煤制甲醇降氨氮系统
US2169282A (en) Removal of h2s and hcn from gases

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99807937.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09673565

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19983179

Country of ref document: DE

Date of ref document: 20010517

WWE Wipo information: entry into national phase

Ref document number: 19983179

Country of ref document: DE