WO2019132209A1 - 황화수소를 포함하는 산성가스 정제방법 및 그 장치 - Google Patents

황화수소를 포함하는 산성가스 정제방법 및 그 장치 Download PDF

Info

Publication number
WO2019132209A1
WO2019132209A1 PCT/KR2018/012499 KR2018012499W WO2019132209A1 WO 2019132209 A1 WO2019132209 A1 WO 2019132209A1 KR 2018012499 W KR2018012499 W KR 2018012499W WO 2019132209 A1 WO2019132209 A1 WO 2019132209A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon dioxide
hydrogen sulfide
containing hydrogen
desulfurization
Prior art date
Application number
PCT/KR2018/012499
Other languages
English (en)
French (fr)
Inventor
조문경
심형도
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019132209A1 publication Critical patent/WO2019132209A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • B01D53/526Mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • One embodiment of the present invention relates to an acidic gas purification method and apparatus thereof containing hydrogen sulfide.
  • IGCC Integrated coal gasification combined cycle
  • the gas containing sulfur compounds such as hydrogen sulfide generated in the IGCC industry is converted into liquid sulfur by a wet process which absorbs and removes hydrogen sulfide by using a solvent, It is processed by the dry process Claus process.
  • the wet process is superior to the dry process in terms of removal efficiency and technical maturity, the dry process is widely applied due to disadvantages in terms of work environment and investment cost, accompanied by waste water and byproducts.
  • the basic reaction scheme of the Claus process is as follows.
  • Impurities contained in the acid gas results in a different in mainly ammonia, carbon dioxide, hydrocarbon compounds, and cause a number of side reactions in the process sulfur recovery decreases with the source.
  • the hydrocarbon compound reacts with the sulfur compound to generate carbonyl sulfide (carbon dioxide), and for the hydrolysis reaction to remove it, the catalytic reactor is operated at a temperature of 3501 or higher.
  • the sulfur recovery rate of the process is 90-95%, which is industrially useful for large-scale disposal of hydrogen sulphide.
  • 1 0 35 is additionally required.
  • the existing developed flue-gas treatment technology is based on oxidation / reduction reaction of residual hydrogen sulfide 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • an acid gas purification method and apparatus including hydrogen sulfide capable of increasing the efficiency of the acid gas purification process and reducing the facility load.
  • an acidic gas purifying method comprising hydrogen sulfide, comprising the steps of: preparing an acidic gas containing hydrogen sulfide generated from a gas generating source, removing the sulfur component from the acidic gas containing hydrogen sulfide, A step of removing the carbon dioxide from the flue gas obtained in the desulfurization step in the form of a salt and separating the flue gas into a flue gas and a salt, and the flue gas obtained in the step of removing carbon dioxide, And adding the acid gas to the desulfurization step together with the prepared acid gas.
  • an impurity removing step of removing impurities from the acid gas containing hydrogen sulfide prior to the desulfurization step is provided.
  • the carbon dioxide removing step may include a gas mixing step of mixing the exhaust gas obtained in the desulfurization step with ammonia, a carbon dioxide collecting step of removing carbon dioxide in a salt form by cooling the mixed gas and separating the flue gas into a salt and a salt, A salt solution forming step of forming a salt solution by adding water and heat to the formed salt, and a carbon dioxide gasification step of heating the salt solution to gasify the carbon dioxide, wherein the exhaust gas obtained in the carbon dioxide trapping step contains the acid gas May be introduced into the desulfurization step together with the acid gas prepared in the step.
  • the gas obtained by the carbon dioxide gasification step may further include a gas cleaning step of removing impurities using an absorbent.
  • the gas mixing step comprises supplying ammonia to the carbon dioxide 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • the gas mixing step may be performed at 60 to 901 ° C.
  • the salt may include at least one selected from ammonium carbonate, ammonium bicarbonate, and carbamate.
  • the carbon dioxide collecting step may be a cooling of the mixed gas to 10 to 501.
  • the carbon dioxide capture step may include a reaction represented by the following general formula (1).
  • the carbon dioxide phatization step may be performed using a pyrolyzer or a distillation tower.
  • the concentration of carbon dioxide in the exhaust gas obtained in the step of removing carbon dioxide may be more than 0% by volume and less than 20% by volume.
  • the flow rate change rate of the gas introduced into the desulfurization step by the exhaust gas obtained in the carbon dioxide removal step may be more than 0% by volume and not more than +10% by volume.
  • the carbon dioxide concentration change rate of the gas introduced into the desulfurization step by the exhaust gas obtained in the carbon dioxide removal step may be more than 0 vol% and not more than +80 vol%.
  • an acidic gas purifying apparatus including hydrogen sulfide, comprising: a gas generating source for generating an acidic gas containing hydrogen sulfide; a gas generator connected to the gas generating source and the carbon dioxide removing equipment, To obtain a clean gas and an exhaust gas . And a carbon dioxide removing unit connected to the desulfurizing unit and separating the carbon dioxide from the flue gas obtained in the desulfurization step into a salt form and separating the flue gas into a salt and a salt, wherein the flue gas obtained in the carbon dioxide removing unit includes hydrogen sulfide It is to be put into the desulfurization facility together with the acid gas. 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • an impurity refining facility for removing impurities from the acid gas supplied from the gas generating source and the gas supplied from the carbon dioxide removing equipment to the desulfurization equipment and supplying the acid gas containing hydrogen sulfide to the desulfurization equipment.
  • the carbon dioxide removal system is obtained in the desulfurization step.
  • a carbon dioxide collector for separating carbon dioxide into a salt form and a flue gas by cooling the mixed gas supplied from the gas mixer, a salt solution obtained by adding heat and moisture to the salt obtained in the carbon dioxide collector, , And a heater for heating the salt solution obtained in the reactor to vaporize the carbon dioxide.
  • the salt formed in the carbon dioxide sorbent may include at least one selected from ammonium carbonate, ammonium bicarbonate, and carbamate.
  • the carbon dioxide removing equipment may include a washing tower for removing impurities from the gas obtained by the heater using an absorbent and distributing carbon dioxide.
  • the heater may be a pyrolyzer or a distillation column.
  • the concentration of carbon dioxide in the exhaust gas obtained in the carbon dioxide removal facility may be more than 0% and not more than 20%.
  • the rate of change of the flow rate of the desulfurization process-influxed gas by the exhaust gas obtained in the carbon dioxide removal facility may be more than 0% by volume and not more than 10% by volume.
  • the carbon dioxide concentration change rate of the gas introduced into the desulfurization process by the exhaust gas obtained in the carbon dioxide removal equipment may be more than 0 vol% and not more than 80 vol%.
  • the gas mixer may be capable of regulating the molar ratio of ammonia to carbon dioxide in the mixed gas to at least 0.01 and at a sub a.
  • the gas mixer may be operated at 60 to 90 °.
  • the carbon dioxide collector is a Or less by indirect cooling. 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • the gas purification efficiency can be improved and the load of the gas purification facility can be reduced.
  • it can be used as a high-value-added product by using clean gas 0: ⁇ 0 33 ), sulfur, and carbon dioxide gas separated at each stage.
  • FIG. 1 is a schematic diagram of an apparatus for purifying an acidic gas containing hydrogen sulfide according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a carbon dioxide removal facility according to one embodiment of the invention.
  • the untreated hydrogen sulfide is contained in the obtained flue gas.
  • the flue gas obtained in the desulfurization step may be reintroduced into the desulfurization facility for removal of the untreated hydrogen sulfide.
  • the carbon dioxide of the gas flowing into the desulfurization step is concentrated. Hydrogen sulphide and carbon dioxide are similar in properties to acidic behavior, so they react competitively to alkaline and amine based absorbers used in refinery facilities. Therefore, when a large amount of carbon dioxide is present, the hydrogen sulfide removal efficiency is reduced, and the problem of accompanying the refining facility load may arise.
  • the step of removing carbon dioxide is introduced before the step of re-introducing the flue gas obtained in the desulfurization step into the desulfurization step.
  • the concentration of carbon dioxide in the desulfurization facility can be reduced even when the concentration of carbon dioxide in the exhaust gas obtained in the step of removing carbon dioxide is low and the amount of gas to be treated in the desulfurization facility is reduced due to the carbon dioxide removal, .
  • the burden on the generation of carbon dioxide in the gas source can be reduced, which can broaden the choice of raw materials and additives, enable the expansion of the process, and reduce investment and operating costs.
  • An acidic gas purification method comprising hydrogen sulfide
  • the method for purifying an acidic gas containing hydrogen sulfide includes the steps of preparing an acidic gas for preparing an acidic gas containing hydrogen sulfide generated from a gas source, removing the sulfuric acid from the acidic gas containing the hydrogen sulfide, And a carbon dioxide removing step of removing carbon dioxide in a salt form from the flue gas obtained in the desulfurization step and separating the flue gas into a salt and a salt,
  • the flue gas obtained in the step of removing carbon dioxide may be supplied to the desulfurization step together with the acid gas prepared in the acid gas preparation step.
  • an acidic gas preparation step for preparing an acidic gas containing hydrogen sulfide generated in the gas generating source may be performed.
  • the acid gas containing hydrogen sulfide from the source can be supplied to the desulfurization step.
  • the gas generated from the gas generating source may be a gas including carbon dioxide, hydrogen sulfide, ammonia, methane, hydrogen, nitrogen, moisture, and the like.
  • the gas (a) generated in the gas generating source may be a gas containing sulfur compounds such as hydrogen sulfide generated in all industries such as coal gasification combined cycle (IGCC) and integrated coal gasification combined cycle (IGCC).
  • an impurity removing step of removing impurities in the acidic gas containing hydrogen sulfide after the step of preparing the acid gas including the hydrogen sulfide generated from the gas generating source carbon dioxide, hydrogen sulfide, ammonia, and the like may be removed as impurities.
  • the desulfurization step of removing the sulfur component from the acid gas containing the hydrogen sulfide to obtain a clean gas and an exhaust gas may be performed.
  • the hydrogen sulfide gas in the acid gas can be purified by the above step, and a clean gas (Clean Gas Kc) generated after purification can be produced and utilized or profit can be generated.
  • the clean gas includes carbon dioxide, nitrogen, moisture, and the like.
  • the exhaust gas obtained in the desulfurization step may contain hydrogen sulfide, carbon dioxide, sulfur dioxide, carbon disulfide, nitrogen, moisture, etc. which have not been treated in the desulfurization step.
  • the flue gas (f) obtained in the step of removing the carbon dioxide from the flue gas may contain untreated carbon dioxide, hydrogen sulfide, sulfur dioxide, carbon disulfide, nitrogen, moisture And so on.
  • the carbon dioxide removing step may include a gas mixing step of mixing the flue gas obtained in the desulfurization step with ammonia, a carbon dioxide collecting step of removing the carbon dioxide in a salt form by cooling the mixed gas and separating the mixed gas into a flue gas and a salt, The salt is superheated to form a salt solution. 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • the carbon dioxide gasification step may further include a gas cleaning step of removing impurities using the absorbent in the gas obtained in the carbon dioxide gasification step.
  • the gas obtained in the carbon dioxide gasification step may include gases such as ammonia and water vapor in addition to carbon dioxide.
  • the absorbent may be used to remove ammonia, water vapor, and other impurities, thereby discharging high purity carbon dioxide.
  • the salt obtained in the carbon dioxide capture step may be ammonium carbonate, ammonium bicarbonate, or carbamate.
  • the carbon dioxide capture step may include cooling the mixed gas obtained by mixing the exhaust gas and the ammonia obtained in the desulfurization step. And collecting the carbon dioxide in the exhaust gas obtained in the desulfurization step in the form of a salt by a reaction such as the formula (1) . Lt; / RTI > Thus, carbon dioxide in the exhaust gas obtained in the desulfurization step can be removed.
  • the gas mixing step of mixing the exhaust gas obtained in the desulfurization step with ammonia may further include adjusting the molar ratio of ammonia to carbon dioxide to 0.01 or more and 0.8 or less in the mixed gas. Specifically, it may be 0.01 or more and 0.5 or less, 0.01 or more and 0.4 or less, or 0.01 or more and 0.3 or less.
  • ammonia when the molar ratio of ammonia to carbon dioxide is less than 0.01, ammonia may be introduced, and the ammonia may be a mixed gas of ammonia gas and steam.
  • Ammonia gas can be added for efficient removal of carbon dioxide in the acid gas.
  • the amount of input can be adjusted.
  • the operation efficiency of the gas purification process can be increased by feeding an appropriate amount of ammonia in the carbon dioxide removal step and performing feedback control.
  • the removal efficiency of carbon dioxide in the gas is improved. Further, it is possible to improve the process efficiency of the desulfurization process, reduce the exhaust gas at the carbon dioxide removal stage, and reduce the load of the desulfurization facility and the gas purification facility.
  • the gas mixing step may be performed at 60 to 90 ° C. Specifically Can be.
  • the mixed gas may be cooled to 10 to 501 ° C, and the mixed gas may be indirectly cooled using cooling water. Specifically, it can be 20 to 40 (:).
  • the cooling is not limited to indirect cooling, but may be performed by direct cooling. However, since the indirect cooling does not require a separate impurity removal operation in the process for discharging the carbon dioxide, the process can be simplified.
  • the salt solution may be in the form of a slurry in a salt solution forming step of forming a salt solution by adding water and heat to the salt formed in the carbon dioxide collecting step.
  • the carbon dioxide gasification step may be performed using a pyrolyzer or a distillation column.
  • the carbon dioxide gasification step may be performed as a pyrolysis step of heating the salt solution to convert it to carbon dioxide, ammonia, or water vapor.
  • the pyrolysis step may use a high temperature nitrogen gas and steam.
  • the commercial carbon dioxide gasification step may be to separate and concentrate the salt solution into gas and liquid using a distillation column.
  • the gas may be carbon dioxide and / 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • Ammonia, and the liquid may comprise water.
  • the gasification step is 70 (: over and. 110 < / RTI > 1: may be carried out in the following.
  • the salt solution can be efficiently gasified with carbon dioxide, ammonia, and water vapor without unnecessary energy consumption.
  • a gas cleaning step for removing impurities using the absorbent in the gas obtained in the carbon dioxide gasification step may be performed.
  • the impurities may be ammonia, water vapor, trace hydrogen sulfide, and the like.
  • the gas containing carbon dioxide, ammonia, and water vapor is transferred to the carbon dioxide separation and discharge stage, and the water vapor, ammonia, and other impurity gases can be removed by the absorbent to discharge the high purity carbon dioxide.
  • the carbon dioxide is gasified by using the distillation tower, the salt solution is separated into a liquid containing water and a gas containing carbon dioxide and ammonia, and the liquid can be separated and discharged in the carbon dioxide gasification step. Then, the gas containing the carbon dioxide and the ammonia is transferred to the carbon dioxide separation and discharge step, and ammonia and other gases are removed by the absorbent to discharge the high purity carbon dioxide.
  • the absorbent may be water or an amine, but is not limited thereto and may be selected depending on the substance to be removed and the operating conditions.
  • the gas cleaning step may be performed several times. Depending on the purity of the carbon dioxide discharged through the above steps, it can be utilized in resources, chemical raw materials, and agricultural fields.
  • the exhaust gas obtained in the carbon dioxide removal step may be introduced into the desulfurization step together with the acid gas prepared in the acid gas preparation step.
  • the exhaust gas obtained in the step of removing carbon dioxide may contain untreated carbon dioxide, sulfur dioxide, hydrogen sulfide, nitrogen, water, and the like.
  • the concentration of untreated carbon dioxide in the exhaust gas obtained in the step of removing carbon dioxide may be more than 0% by volume and less than 20% by volume. Specifically, it may be more than 0% by volume and less than 15% by volume or 10 to 15% by volume. 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • the flow rate change rate of the gas introduced into the desulfurization step by the exhaust gas obtained in the carbon dioxide removal step may be more than 0 vol% and not more than +10 vol%. Specifically +3 to +10 vol%, +3 to +9 vol%. Or +5 to +8% by volume.
  • the carbon dioxide concentration change rate of the gas introduced into the desulfurization step by the exhaust gas obtained in the carbon dioxide removal step may be more than 0 vol% and not more than +80 vol%, more specifically, +20 to +80 vol%, +20 to +70 vol% , +20 to +60 vol%, or +30 to + 50 vol%.
  • the carbon dioxide in the exhaust gas obtained in the desulfurization step can be efficiently removed, and the flow rate of the exhaust gas obtained in the carbon dioxide removal step can be remarkably reduced.
  • An acidic gas refining apparatus comprising hydrogen sulfide
  • an acidic gas refining apparatus including hydrogen sulfide, comprising: a gas generating source for generating an acid gas containing hydrogen sulfide; a gas generator connected to the gas generating source and the carbon dioxide removing equipment, And a carbon dioxide removing unit connected to the desulfurizing unit for removing carbon dioxide in a salt form from the flue gas obtained in the desulfurization step and separating the flue gas into a flue gas and a salt,
  • the flue gas obtained in the carbon dioxide removal facility may be supplied to the desulfurization equipment together with the acid gas including the hydrogen sulfide discharged from the gas source.
  • FIG. 1 is a schematic view of a purification apparatus including hydrogen sulfide according to an embodiment of the present invention. 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • FIG. 1 A first figure.
  • the acidic gas refining apparatus containing hydrogen sulfide may remove impurities from the acid gas supplied from the gas generating source and the gas supplied from the carbon dioxide removing unit to the desulfurizing unit to remove acidic gas containing hydrogen sulfide It may further include an impurity refining facility supplied to a desulfurization facility.
  • FIG. 2 is a schematic view of a carbon dioxide removing system according to an embodiment of the present invention.
  • the carbon dioxide removing unit includes a gas mixer for mixing the flue gas and ammonia obtained in the desulfurization step, a carbon dioxide gasifier for removing carbon dioxide in a salt form by cooling the gas mixture supplied from the gas mixer and separating the flue gas into a salt and a carbon dioxide gas collector, , A reactor for producing a salt solution by adding heat and moisture to the salt obtained in the reactor, and a heater for heating the salt solution obtained in the reactor to vaporize the carbon dioxide.
  • the salt obtained in the carbon dioxide collector may be ammonium carbonate, ammonium bicarbonate, or carbamate.
  • carbon dioxide may be collected in the form of a salt by a reaction represented by the following Chemical Formula 1.
  • the heater may be a pyrolyzer or a distillation column.
  • the salt solution obtained in the reactor is converted to carbon dioxide, ammonia, and water vapor, and the pyrolyzer can be advantageous in a simple process.
  • the salt solution can be separated into water and a gas containing carbon dioxide, water vapor and ammonia.
  • the distillation tower When the distillation tower is used, it can include reboilers and condensers. In this case, there is an advantage that the amount of absorbent used in the washing tower and the amount of generated wastewater can be minimized. 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • the carbon dioxide removing unit may further include a cleaning tower for removing impurities from the gas obtained from the heater using an absorbent and distributing carbon dioxide.
  • the gas obtained in the heater may contain not only carbon dioxide but also water vapor and ammonia gas.
  • water vapor, ammonia and other impurities can be removed by using the absorbent, high purity carbon dioxide gas can be discharged.
  • the absorbent may be water, amine, or the like, but is not limited thereto, and an appropriate absorbent may be selected depending on the substance to be removed.
  • ammonia, water vapor and other impurity gases in the gas can be removed by spraying water in the scrubbing tower
  • a plurality of washing towers can be used.
  • the molar ratio of ammonia to carbon dioxide in the mixed gas of the gas mixer can be adjusted to 0.01 or more and 0.8 or less, and gas mixing can be performed at 60 to 90 °.
  • carbon dioxide can be efficiently removed. If the temperature of the gas mixer is low, it may be converted to some carbon dioxide halide in the course of gas mixing. If the temperature is high, the energy required for gas cooling is increased in the next step for salt production. In the carbon dioxide collector, the mixed gas can be cooled to 10 to 50 ° C. The cooling may be indirect or direct cooling. If the temperature is satisfied, the carbon dioxide can be effectively adhered and separated by a salt.
  • the pyrolyzer pyrolyzes the salt solution obtained in the reactor with carbon dioxide, ammonia and water vapor,
  • the distillation column can separate the salt solution obtained in the reactor into a gas containing carbon dioxide and ammonia and a liquid containing water. 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • the heater may be operated at a value of not less than 70 and not more than 110 I :.
  • the salt solution can be efficiently gasified with carbon dioxide, ammonia, and water vapor without unnecessary energy consumption.
  • the concentration of carbon dioxide in the exhaust gas discharged from the scrubbing column may be greater than 0% by volume, and less than 20% by volume, and more specifically greater than 0% by volume and less than 15% by volume.
  • the flow rate change rate of the desulfurization equipment inflow gas by the exhaust gas obtained in the carbon dioxide removal facility may be more than 0 vol% and not more than +10 vol%. Specifically +3 to +10 vol%, +3 to +9 vol%. Or +5 to +8% by volume.
  • the rate of change of the concentration of carbon dioxide in the desulfurization equipment-introduced gas by the exhaust gas obtained in the carbon dioxide removal facility may be more than 0 vol% and not more than +80 vol%, specifically, +20 to +80 vol%, +20 to +70 vol% %, +20 to +60 vol%, or +30 to + 50 vol%.
  • the carbon dioxide is effectively removed, thereby reducing the carbon dioxide concentration and the flow rate of the gas flowing into the desulfurization equipment, The rate of change of the flow rate of the gas and the rate of change of the concentration of the carbon dioxide can be reduced. As a result, the process efficiency and the equipment load of the desulfurization facility can be reduced.
  • Coke oven gas ((1) 6, An exhaust gas obtained in the desulfurization step to be generated in the desulfurizing process of the 0 ⁇ 611 6 greater 3) adapted to re-introduced into the desulfurization step,
  • Example 1 was constructed such that the exhaust gas obtained in the desulfurization step was introduced into the desulfurization step together with the coke oven gas through the carbon dioxide removal step, 2019/132209 1 »(: 1 ⁇ 1 ⁇ 2018/012499
  • Table 1 shows the results of comparison between the carbon dioxide concentration and the flow rate of 000 in the case where the flue gas obtained in the desulfurization step is introduced into the desulfurization step together with the coke oven gas without introducing the carbon dioxide removal step.
  • Example 1 As compared with the comparison has not been applied to the carbon dioxide removal step in Example 1, exemplary flow rates and ⁇ 2 concentration is significantly decreased in the Example 1 of the case being due to the application ⁇ 2 gas is removed in the carbon dioxide removal step, the off-gas obtained from the carbon dioxide removal step) .
  • Example 3 the flue gas obtained in the desulfurization step under the condition of excessive ammonia feed was cooled to confirm the carbon dioxide removal performance and the gas flow rate change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 황화수소를 포함하는 산성가스 정제방법 및 그 장치에 관한 것이다 가스 발생원에서 발생하는 황화수소를 포함하는 산성가스를 준비하는 산성가스 준비단계, 상기 황화수소를 포함하는 산성가스에서 황성분을 제거하여 클린가스 및 배가스를 수득하는 탈황단계, 상기 탈황단계에서 수득된 배가스에서 이산화탄소를 염 형태로 제거하여 배가스와 염으로 분리하는 이산화탄소 제거단계, 및 상기 이산화탄소 제거단계에서 수득된 배가스는 상기 산성가스 준비단계에서 준비된 산성가스와 함께 상기 탈황단계로 투입하는 단계를 포함하는 황화수소를 포함하는 산성가스 정제방법을 제공한다.

Description

2019/132209 1»(:1^1{2018/012499
【명세세
【발명의 명칭】
황화수소를포함하는산성가스정제방법 및그장치
【기술분야】
본 발명의 일 구현예는 황화수소를 포함하는 산성가스 정제방법 및 그 장치에 관한것이다.
【발명의 배경이 되는기술】
석탄가스화 복합발전 (IGCC, Integrated coal Gasi f icat ion Combined Cycle)등전산업군에서 발생하는황화수소등의 황화합물을포함한가스는 용매를 사용하여 황화수소를 흡수, 제거하는 습식법과 촉매반응에 의한 액체유황으로 전환하는 건식법인 클라우스 (Claus)공정으로 처리되고 있다. 제거효율과 기술성숙도 측면에서 습식법이 건식법에 비해 우수하나, 폐수, 부산물 등 처리공정을 수반하고 작업환경, 투자비 측면에서 불리하여 건식법이 널리 적용되고있는실정으로써 클라우스 (Claus)공정에 의해 전체 황 생산량의 50% 정도가 생산되고 있다. 클라우스 (Claus) 공정의 기본 반응식은다음과같다.
2¾ + 02 28 + 2¾0 ( 1)
2¾£ + 302 ® 2엤2 + 2¾0 ⑵
2¾으 + 502
Figure imgf000003_0001
(3)
산성가스 (此 1 1 633)에 포함된 불순물은 발생원에 따라 다르나 주로 암모니아, 이산화탄소, 탄화수소화합물이며 공정 내에서 여러 부반응을 일으켜 황회수율 감소를 초래한다. 특히 탄화수소화합물은 황화합물과의 반응으로 황화카르보닐 ((幻幻와 이황화탄소를 생성하여, 이의 제거를 위한 가수분해 반응을 위해 촉매반응기의 온도를 3501: 이상으로 운전한다. 암모니아는 니켈 함유 촉매층을 통과하며 질소와 물로 분해 후 처리한다. 클라우스띠크배) 공정의 황회수율은 90-95%로 산업적으로 황화수소 대량처리에 유용한 공정이나 그 자체로만은 대기오염 방지설비로서의 기능에 한계가 있어 배가스奸^ 1 035 ) 처리를 위한 설비가 추가적으로 요구된다.
기존개발된 배가스처리기술은잔류황화수소의 산화/환원 반응을통한 2019/132209 1»(:1^1{2018/012499
처리 목적으로 별도의 배가스 처리설비 (TGTU, Tai l Gas Treatment Uni t) 투자가 필요하고, 대기 배출을 목적으로 하여 환경기준 만족이라는 부담이 수반된다.
【발명의 내용】
【해결하고자하는과제】
산성가스 정제공정 효율을 높이고, 설비부하를 감소시킬 수 있는 황화수소를포함하는산성가스정제방법 및그장치를제공한다.
【과제의 해결수단】
본발명의 일 구현예에 따른황화수소를포함하는산성가스정제방법은, 가스 발생원에서 발생하는 황화수소를 포함하는 산성가스를 준비하는 산성가스 준비단계, 상기 황화수소를 포함하는 산성가스에서 황성분을 제거하여 클린가스 및 배가스를 수득하는 탈황단계, 상기 탈황단계에서 수득된 배가스에서 이산화탄소를 염 형태로 제거하여 배가스와 염으로 분리하는 이산화탄소 제거단계, 및 상기 이산화탄소 제거단계에서 수득된 배가스는 상기 산성가스 준비단계에서 준비된 산성가스와 함께 상기 탈황단계로투입하는단계포함하는것일수있다.
상기 탈황단계 이전에 황화수소를 포함하는 산성가스에서 불순물을 제거하는불순물제거단계더 포함하는것일수있다.
상기 이산화탄소 제거단계는 상기 탈황단계에서 수득된 배가스를 암모니아와 혼합하는 가스혼합단계, 상기 혼합가스를 냉각을 통해 이산화탄소를 염 형태로 제거하고 배가스와 염으로 분리하는 이산화탄소 포집단계, 상기 이산화탄소 포집단계에서 형성된 염에 물과 열을 가하여 염용액을 형성하는 염용액 형성단계, 및 상기 염용액을 가열하여 이산화탄소를기체화하는이산화탄소기체화단계포함하고,상기 이산화탄소 포집단계에서 수득된 배가스는 상기 산성가스 준비단계에서 준비된 산성가스와함께상기 탈황단계로투입되는것일수있다.
이산화탄소기체화단계 이후에, 상기 이산화탄소기체화단계에서 수득된 가스에서 흡수제를 이용하여 불순물을 제거하는 가스세정단계 더 포함하는 것일수있다.
상기 가스혼합단계는 혼합가스 내에 이산화탄소에 대한 암모니아의 2019/132209 1»(:1^1{2018/012499
몰비가 0.01이상및 0.8이하가되도록조절하는단계를더 포함하는것일 수있다.
상기 가스혼합단계는 60내지 901:에서 수행하는것일수있다.
상기 이산화탄소포집단계에서 상기 염은탄산암모늄, 중탄산암모늄, 및 카르밤산염 중에서 선택된 1이상을포함하는것일수있다.
상기 이산화탄소포집단계는 혼합가스를 10 내지 501:로 냉각하는 것일 수있다.
상기 이산화탄소 포집단계는 하기 화학식 1과 같은 반응을 포함하는 것일수있다.
[화학식 1]
0¾ + 2^3 + ¾0 = (^4)2¥3
3 + 002 + ¾0 =■ ¾
21^3 + 002 = ·,
상기 이산화탄소 가체화 단계는 열분해기 또는 증류탑을 이용하여 수행되는것일수있다.
상기 이산화탄소 제거단계에서 수득된 배가스의 이산화탄소의 농도는 0 부피%초과, 및 20부피%미만인것일수있다.
상기 이산화탄소 제거단계에서 수득된 배가스에 의한 탈황단계 유입가스의 유량변화율은 0부피%초과, 및 +10부피%이하인것일수있다. 상기 이산화탄소 제거단계에서 수득된 배가스에 의한 탈황단계 유입가스의 이산화탄소농도변화율은 0부피%초과,및 +80부피%이하인 것일 수있다.
본발명의 일 구현예에 따른황화수소를포함하는산성가스정제장치 는, 황화수소를 포함하는 산성가스를 발생시키는 가스발생원, 상기 가스발생원 및 이산화탄소 제거설비와 연결되고, 황화수소를 포함하는 산성가스에서 황성분을 제거하여 클린가스 및 배가스를 수득하는 탈황설비, 상기 . 탈황설비와 연결되고 탈황단계에서 수득된 배가스에서 이산화탄소를 염 형태로제거하여 배가스와염으로분리하는 이산화탄소제거설비 포함하고, 상기 이산화탄소 제거설비에서 수득된 배가스를 상기 가스발생원에서 배출되는 황화수소를 포함하는산성가스와 함께 탈황설비로 투입하는 것일 2019/132209 1»(:1^1{2018/012499
수있다.
상기 가스발생원에서 공급되는 산성가스 및 이산화탄소 제거설비로부터 탈황설비로 공급되는 가스에서 불순물을 제거하여, 황화수소를 포함하는 산성가스를 탈황설비로 공급하는 불순물 정제설비 더 포함하는 것일 수 있다.
상기 이산화탄소 제거설비는 상기 탈황단계에서 수득된. 배가스와 암모니아를 혼합하는 가스 혼합기, 상기 가스 혼합기로부터 공급된 혼합가스를 냉각하여 이산화탄소를 염 형태로 제거하고 배가스와 염으로 분리하는이산화탄소포집기,상기 이산화탄소포집기에서수득된염에 열과 수분을 가해 염용액을 생성하는 반응기, 및 상기 반응기에서 수득된 염용액을 가열하여 이산화탄소를 기체화하는 가열기 포함하는 것일 수 있다.
상기 이산화탄소 포집기에서 형성되는 염은 탄산암모늄, 중탄산암모늄, 및카르밤산염 중에서 선택된 1이상을포함하는것일수있다.
상기 이산화탄소제거설비는상기 가열기에서 수득된 가스에서 흡수제를 이용하여 불순물을 제거하고, 이산화탄소를 배줄하는 세정탑 더 포함하는 것일수있다.
상기 가열기는열분해기 또는증류탑인것일수있다.
상기 이산화탄소 제거설비에서 수득된 배가스의 이산화탄소의 농도는 0%초과, 및 20%이하인것일수있다.
상기 이산화탄소 제거설비에서 수득된 배가스에 의한 탈황공정 유입가스의 유량변화율은 0부피%초과, 및 10부피 %이하인것일수있다. 상기 이산화탄소 제거설비에서 수득된 배가스에 의한 탈황공정 유입가스의 이산화탄소농도변화율은 0부피%초과, 및 80부피%이하인것일 수있다.
상기 가스 혼합기는 혼합가스 내에, 이산화탄소에 대한 암모니아의 몰비를 0.01이상및 0.8아하로조절하는것일수있다.
상기 가스혼합기는 60내지 90°(:에서 수행하는것일수있다.
상기 이산화탄소포집기는혼합가스를
Figure imgf000006_0001
이하로 간접 냉각하는 것일 수있다. 2019/132209 1»(:1^1{2018/012499
【발명의 효과】
본발명의 일 구현예에 의한황화수소를포함하는산성가스정제방법 및 장치를 통해, 가스 정제효율 향상 및 가스 정제설비 부하감소 도모할 수 있다. 또한, 각 단계에서 분리된 클린가스 0:^^ 033), 유황, 이산화탄소 가스를이용하여 고부가가치 상품으로유용화할수있다.
【도면의 간단한설명】
도 1는 본 발명의 일 구현예에 따른 황화수소를 포함하는 산성가스의 정제장치의 개략도이다.
도 2은본발명의 일구현예에 따른이산화탄소제거설비의 개략도이다. 【발명을실시하기 위한구체적인내용】
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과함께 상세하게 후술되어 있는실시예들을참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로다른다양한형태로구현될수 있으며, 단지 본실시예들은본발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은청구항의 범주에의해 정의될뿐이다.명세서 전체에 걸쳐 동일 참조 부호는동일구성요소를지칭한다.
따라서, 몇몇 실시예들에서, 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적으로 설명되지 않는다. 다른 정의가 없다면 본 명세서에서 사용되는모든 용어(기술 및 과학적 용어를포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 ”포함”한다고할때, 이는특별히 반대되는기재가 없는한다른구성요소를제외하는것이 아니라다른구성요소를더 포함할 수 있는 것을 의미한다. 또한단수형은문구에서 특별히 언급하지 않는 한 복수형도포함한다.
제철, 석유화학 등 황화수소를 포함한 가스를 발생시키는 산업에서는 가스를 배출하기 위해서는 환경기준을 만족하여야 한다. 이에 가스 배출을 위한가스정제공정이 수반되며, 탈황설비의 운전효율한계로탈황단계에서 2019/132209 1»(:1^1{2018/012499
수득된 배가스에는 미처리된 황화수소가 포함되게 된다. 미처리된 황화수소의 제거를 위하여 탈황단계에서 수득된 배가스를 탈황설비로 재유입시킬 수 있다. 그러나, 이 경우 탈황공정에 유입되는 가스의 이산화탄소가 농축된다. 황화수소와 이산화탄소가 산성거동을 하는 성상아 유사하여, 정제설비에서 사용하는알칼리계 및 아민계 흡수재에 경쟁적으로 반응하여 한다. 따라서, 이산화탄소가 다량 존재할 경우 황화수소 제거 효율이 감소하고, 정제설비 부하가수반되는문제가발생할수있다.
본발명의 일 구현예에 따른황화수소를포함하는산성가스정제방법 및 정제장치에 의하는 경우, 탈황단계에서 수득된 배가스를 탈황 공정으로 재유입시키는 단계 이전에 이산화탄소 제거단계를 도입한다. 이산화탄소 제거단계에서 수득된 배가스는 이산화탄소 농도가 낮아 탈황 공정으로 재유입하더라도탈황설비 유입가스의 이산화탄소농축을저감시킬수 있고, 이산화탄소 제거에 의해 배가스의 유량이 감소하는바, 탈황설비에서 처리해야하는가스의 양을감소시킬수있다. 결과적으로, 황화수소제거의 효율을향상시키고, 정제설비 부하를감소시킬수 있다. 또한가스발생원의 이산화탄소 발생량에 대한 부담이 줄어들어 원료 및 부원료 선택의 폭이 넓어질 수 있으며, 공정 확대가 가능하고, 투자비 및 운영비 절감이 가능하다.
황화수소를포함하는산성가스정제방법
본 발명의 일 구현예에 의한 황화수소를포함하는산성가스 정제방법은 가스 발생원에서 발생하는 황화수소를 포함하는 산성가스를 준비하는 산성가스 준비단계, 상기 황화수소를 포함하는 산성가스에서 황성분을 제거하여 클린가스 및 배가스를 수득하는 탈황단계, 상기 탈황단계에서 수득된 배가스에서 이산화탄소를 염 형태로 제거하여 배가스와 염으로 분리하는이산화탄소제거단계를포함하고,
상기 이산화탄소 제거단계에서 수득된 배가스는 상기 산성가스 준비단계에서 준비된 산성가스와 함께 상기 탈황단계로 투입하는 단계를 포함할수있다.
먼저, 상기 가스 발생원에서 발생하는 황화수소를 포함하는 산성가스를 준비하는 산성가스 준비단계를 실시할 수 있다. 상기 단계에 의해 가스 2019/132209 1»(:1^1{2018/012499
발생원으로부터 황화수소를 포함하는 산성가스는 탈황단계로 공급될 수 있다. 상기 가스 발생원에서 발생되는 가스는 이산화탄소, 황화수소, 암모니아, 메탄, 수소, 질소, 수분등을포함한가스일수 있다. 상기 가스 발생원에서 발생되는 가스 (a)는 석탄가스화 복합발전 (IGCC, Integrated coal Gasi f icat ion Combined Cycle) 등 전 산업군에서 발생하는 황화수소 등의 황화합물을포함한가스일수있다.
상기 가스 발생원에서 발생하는 황화수소를 포함하는 산성가스를 준비하는 산상가스 준비단계 이후, 황화수소를 포함하는 산성가스 내의 불순물을 제거하는 불순물 제거단계가 더 포함될 수 있다. 상기 불순물 제거단계에서는 이산화탄소, 황화수소, 암모니아등이 불순물로 제거될 수 있다.
이후, 상기 황화수소를 포함하는 산성가스에서 황성분을 제거하여 클린가스 및 배가스를 수득하는 탈황단계를 실시할 수 있다. 상기 단계에 의해상기산성가스내 황화수소가스를정제할수있고,정제후발생되는 클린가스 (Clean GasKc)를제조하여 활용하거나,판매하여수익을창출할수 있다. 상기 클린가스 (Clean Gas)는 이산화탄소, 질소, 수분등을포함한다. 상기 단계에 의해 산성가스내 황성분은유황형태로제거되어 분리 배출될 수 있다. 상기 탈황단계에서 수득된 배가스 ( 에는 탈황단계에서 미처리된 황화수소, 이산화탄소, 이산화황, 이황화탄소, 질소, 수분 등이 포함될 수 있다.
이후, 상기 탈황단계에서 수득된 배가스에서 이산화탄소를 염 형태로 제거하여 배가스와염으로분리하는 이산화탄소제거단계를실시할수 있다. 상;기 단계에 의해 탈황단계에서 수득된 배가스 내 이산화탄소가 탄산암모늄의 형태로제거될수있다.상가이산화탄소제거단계에서 수득된 배가스 (f)는미처리된 이산화탄소, 황화수소, 이산화황, 이황화탄소, 질소, 수분등이 포함될수있다.
상기 이산화탄소 제거단계는 탈황단계에서 수득된 배가스를 암모니아와 혼합하는 가스혼합단계, 상기 혼합가스를 냉각을 통해 이산화탄소를 염 형태로 제거하고 배가스와 염으로 분리하는 이산화탄소 포집단계, 상기 이산화탄소포집단계에서 형성된 염에 물과열을가하여 염용액을형성하는 2019/132209 1»(:1^1{2018/012499
염용액 형성단계, 및 상기 염용액을 가열하여 이산화탄소를 기체화하는 이산화탄소기체화단계를포함할수있다.
상기 이산화탄소 기체화단계 이후에, 상기 이산화탄소 기체화단계에서 수득된 가스에서 흡수제를 이용하여 불순물을 제거하는 가스세정단계를 더 포함할수있다.
이산화탄소 기체화단계에서 수득된 가스에는 이산화탄소 이외에도 암모니아, 수증기 등의 기체가 포함될 수 있으며, 가스세정단계에서는 흡수제를사용하여 암모니아, 수증기 및 기타불순물을제거하여, 고순도의 이산화탄소를배출할수있다.
상기 이산화탄소포집단계에서 수득되는염은탄산암모늄,중탄산암모늄, 또는카르밤산염 일수있다.
상기 이산화탄소 포집단계는 탈황단계에서 수득된 배가스와 암모니아가 혼합된 혼합가스를 냉각하여, 하기. 화학식 1과 같은 반응에 의해 탈황단계에서 수득된 배가스 내 이산화탄소를 염의 형태로 포집하는.것일 수 있다. 이에 따라, 탈황단계에서 수득된 배가스 내 이산화탄소를 제거할 수있다.
[화학식 1]
002 + 2^3 + ¾0 = (■4 )2。03
3 + 002 + ¾0 = _¥3
2^3 + ¥2 =■■■4
상기 탈황단계에서 수득된 배가스를 암모니아와 혼합하는 가스혼합단계는 혼합가스 내에 이산화탄소에 대한 암모니아의 몰비가 0.01 이상및 0.8 이하로조절하는단계를 더 포함할수 있다. 구체적으로 0.01 이상및 0.5이하, 0.01 이상및 0.4이하, 또는 0.01 이상및 0.3이하일 수 있다.
구체적으로, 상기 이산화탄소에 대한 암모니아의 몰비가 0.01 미만인 경우 암모니아를 투입할 수 있으며, 상기 암모니아는 암모니아 가스 및 스팀의 혼합가스형태일수있다.
산성가스 내 이산화탄소의 효율적인 제거를 위해 암모니아 가스를 추가적으로 투입할 수 있으며, 이산화탄소 농도 변화에 따라 암모니아 2019/132209 1»(:1^1{2018/012499
투입양을 조절할 수 있다. 탈황단계에서 수득된 배가스 중 이산화탄소와 암모니아 가스 농도의 분석을 통해 이산화탄소 제거단계에서 적절한 양의 암모니아를 투입하고, 피드백 제어함으로써, 가스정제공정의 운영효율을 증대시킬수있다.
상기 혼합가스 내에 이산화탄소에 대한 암모니아의 몰비를 만족하는 경우가스내 이산화탄소의 제거효율향상된다. 또한, 탈황공정의 공정효율 향상, 이산화탄소 제거 단계의 배가스 감소, 탈황설비 및 가스정제설비의 부하를감소시킬수있다.
혼합가스 내에 이산화탄소에 대한 암모니아의 몰비(배3八: 02)가 작은 경우 탈황단계에서 수득된 배가스 내 존재하는 이산화탄소를 포집하기에 충분한 암모니아가 공급되지 못하므로, 이산화탄소 제거 효율이 감소하게 되며, 암모니아에 대한이산화탄소의 몰비 큰경우암모니아가과잉공급되어 이산화탄소제거율은높으나경제성 측면에서 불리할수있다
상기 가스혼합단계는 60 내지 90(:에서 수행되는 것일 수 있다. 구체적으로
Figure imgf000011_0001
일수있다.
이산화탄소포집단계에서 혼합가스는 10내지 501:로 냉각되는 것일 수 있으며, 냉각수를 이용하여 혼합가스를 간접 냉각에 의하는 것일 수 있다. 구체적으로 20내지 40(:일수있다. 냉각은간접냉각방식에 한정되는것은 아니며, 직접냉각에 의할 수 있다. 그러나, 간접냉각에 의하는 경우 이산화탄소 배출을위한공정에서 별도의 불순물 제거 작업을 필요로하지 않으므로, 공정이 간소화될수있다.
상기 이산화탄소포집단계에서 형성된 염에 물과 열을 가하여 염용액을 형성하는염용액 형성단계에서 상기 염용액은슬러리 형태일수있다.
상기 이산화탄소 기체화 단계는 열분해기 또는 증류탑을 이용하여 수행되는것일수있다.
상기 이산화탄소기체화단계는염용액을가열하여 이산화탄소, 암모니아, 수증기로전환하는열분해단계로실시되는것일수있다.상기 열분해단계는 고온의 질소가스및스팀을이용할수있다.
또한, 상가이산화탄소기체화단계는상기 염용액을증류탑을이용하여 가스와액체로분리하고농축하는것일수있다.상기 가스는이산화탄소및 2019/132209 1»(:1^1{2018/012499
암모니아를포함할수있으며, 상기 액체는물을포함할수있다.
상기 기체화단계는 70(:이상 및 . 1101:이하에서 실시되는 것일 수 있다. 상기 온도를 만족하는 경우 불필요한 에너지 소모 없이 상기 염 용액을 이산화탄소, 암모니아, 수증기로효율적으로가스화가능하다.
이후, 상기 이산화탄소 기체화 단계에서 수득된 가스에서 흡수제를 이용하여 불순물을제거하는가스세정단계를실시할수있다.
상기 불순물은암모니아, 수증기, 미량의 황화수소등일수있다.
열분해기를 이용한 경우 이산화탄소, 암모니아, 수증기를 포함하는 가스가이산화탄소분리배출단계로이송되며,수증기,암모니아,기타불순물 가스가흡수제에 의해 제거되어 고순도의 이산화탄소를배출할수있다. 증류탑을 이용하아이산화탄소를가스화한경우 염용액은물을포함하는 액체와 이산화탄소, 암모니아를 포함하는 기체로 분리되며, 이산화탄소 기체화단계에서 액체는 분리 배출될 수 있다. 이후, 상기 이산화탄소와 암모니아를포함하는가스는이산화탄소분리배출단계로이송되며 , 암모니아 및 기타가스가흡수제에 의해 제거되어 고순도의 이산화탄소를 배출할수 있다.
흡수제는 물 또는 아민일 수 있고, 이에 한정되는 것은 아니며, 제거하고자 하는 물질 및 조업조건에 따라 선택하여 사용할 수 있다. 복수개의 불순물가스를제거하기 위하여, 복수개의 흡수재가필요한경우, 가스세정단계를 여러 번 수행할 수 있다. 상기 단계를 거쳐 배출되는 이산화탄소의 순도에 따라 자원화, 화학원료, 농업분야 등에서 활용할 수 있다.
이후, 상기 이산화탄소 제거단계에서 수득된 배가스는 상기 산성가스 준비단계에서 준비된 산성가스와 함께 상기 탈황단계로 투입하는 단계를 실시할수있다.
상기 이산화탄소 제거단계에서 수득된 배가스는 미처리된 이산화탄소, 이산화황, 황화수소, 질소, 수분등을포함할수있다.
상기 이산화탄소 제거단계에서 수득된 배가스 내의 미처리된 이산화탄소의 농도는 0부피%초과,및 20부피%미만일수있다.구체적으로 0부피%초과및 15부피%미만, 또는 10내지 15부피%일수있다. 2019/132209 1»(:1^1{2018/012499
상기 이산화탄소 제거단계에서 수득된 배가스에 의한 탈황단계 유입가스의 유량 변화율은 0 부피%초과, 및 +10 부피%이하일 수 있다. 구체적으로 +3내지 +10부피%, +3내지 +9부피%. 또는 +5내지 +8부피%일 수있다.
상기 이산화탄소 제거단계에서 수득된 배가스에 의한 탈황단계 유입가스의 이산화탄소농도변화율은 0부피%초과, 및 +80부피%이하일 수 있다.구체적으로 +20내지 +80부피%, +20내지 +70부피%, +20내지 +60부피%, 또는 +30내지 +50부피%일수있다.
이와 같이 암모니아를 사용함으로써, 탈황단계에서 수득된 배가스 내 이산화탄소가 효율적으로 제거될 수 있고, 이산화탄소 제거단계에서 수득되는배가스의 유량도현저히 감소할수있다.
결과적으로, 이산화탄소 제거단계를 거친 배가스를 탈황공정으로 재투입하는경우에 이산화탄소의 농축으로 인한탈황효율저하를방지할수 있으며, 이산화탄소의 농도 감소와 함께 정제처리가 필요한 가스량도 감소하므로공정설비 부하를감소시킬수있다.
이하 황화수소를 포함하는 산성가스 정제장치에 대하여 설명하며, 황화수소를 포함하는 산성가스 정제 방법에서 설명한 내용과 중복되는 부분에 대해서는설명을생략한다.
황화수소를포함하는산성가스정제장치
본발명의 일 구현예에 의한황화수소를포함하는산성가스정제장치는, 황화수소를 포함하는 산성가스를 발생시키는 가스발생원, 상기 가스발생원 및 이산화탄소 제거설비와 연결되고, 황화수소를 포함하는 산성가스에서 황성분을 제거하여 클린가스 및 배가스를 수득하는 탈황설비, 상기 탈황설비와 연결되고 탈황단계에서 수득된 배가스에서 이산화탄소를 염 형태로 제거하여 배가스와 염으로 분리하는 이산화탄소 제거설비를 포함하고,
상기 이산화탄소 제거설비에서 수득된 배가스를 상기 가스발생원에서 배출되는 황화수소를 포함하는산성가스와 함께 탈황설비로 투입하는 것일 수있다.
도 1에는본 발명의 일 구현예에 의한황화수소를포함하는 정제장치의 2019/132209 1»(:1^1{2018/012499
개략도를나타내었다.
본발명의 일 구현예에 따른황화수소를포함하는산성가스정제장치는, 상기 가스발생원에서 공급되는 산성가스 및 이산화탄소 제거설비로부터 탈황설비로 공급되는 가스에서 불순물을 제거하여, 황화수소를 포함하는 산성가스를탈황설비로공급하는불순물정제설비를더 포함할수있다. 도 2에는본 발명의 일 구현예에 따른 이산화탄소 제거설비의 개략도를 나타내었다.
상기 이산화탄소 제거설비는 상기 탈황단계에서 수득된 배가스와 암모니아를 혼합하는 가스 혼합기, 상기 가스 혼합기로부터 공급된 혼합가스를 냉각하여 이산화탄소를 염 형태로 제거하고 배가스와 염으로 분리하는 이산화탄소 포잡기, 이산화탄소 포집기에서 수득된 염에 열과 수분을 가해 염용액을 생성하는 반응기, 및 상기 반응기에서 수득된 염용액흘가열하여 이산화탄소를기체화하는가열기를포함할수있다. 상기 이산화탄소 포집기에서 수득되는 염은 탄산암모늄, 중탄산암모늄, 또는카르밤산염 일수있다.
상기 이산화탄소 포집기에서는 하기 화학식 1과 같은 반응에 의해 이산화탄소를염의 형태로포집하는것일수있다.
[화학식 1]
C02 + 2NH3 + ¾0 = (NH4)2C03
NH3 + C02 + ¾0 = NH4HCO3
2N¾ + C02 = NH2COONH4
상기 가열기는열분해기 또는증류탑을이용하는것일수있다.
열분해기를 이용하는 경우, 반응기에서 수득된 염용액은 이산화탄소, 암모니아, 수증기로 전환되며, 열분해기는 운전조건이 단순한 공정의 경우 유리할수있다.
증류탑을이용하는경우, 염용액을물과이산화탄소,수증기, 암모니아를 포함하는가스로분리할수있다.
증류탑을이용하는경우, 재비등기 (Reboi ler)및응축기 (Condenser )를더 포함할수 있으며, 이 경우세정탑에서의 흡수액 사용량 및 폐수 발생량을 최소화할수있다는이점이 있다. 2019/132209 1»(:1^1{2018/012499
재비등기를 이용하는 경우 온도조절을 통한 운전조건 확보가 가능하여 여러 성분이 혼합된용액의 경우유리하다.
상기 이산화탄소제거설비는상기 가열기에서 수득된 가스에서 흡수제를 이용하여 불순물을 제거하고, 이산화탄소를 배줄하는 세정탑;를 더 포함할 수 있다. 가열기에서 수득된 가스에는 이산화탄소 뿐만 아니라, 수증기, 암모니아 가스 등이 포함될 수 있으며, 세정탑에서는 흡수제를 사용하여 수증기, 암모니아, 기타 불순물을 제거 가능하므로, 고순도 이산화탄소 가스를배출할수있다.
상기 흡수제는물또는아민등이사용될수있으며, 이에 한정되는것은 아니고, 제거하고자하는물질에 따라적절한흡수제를선택하여 사용할수 있다.
본 발명의 일 구현예에 따르면, 세정탑에서는 물을 분사하여 가스 내 암모니아, 수증기 및 기타불순물가스를제거할수있다
복수의 물질을 제거할 필요가 있는 경우에는 복수개의 세정탑을사용할 수있다.
상기 가스 혼합기의 혼합가스 내에, 이산화탄소에 대한 암모니아의 몰비가 0.01이상및 0.8이하로조절할수 있으며, 60내지 90°(:에서 가스 혼합을수행할수있다.
상기 이산화탄소에 대한 암모니아의 몰비 범위를 만족하는 경우, 이산화탄소를효율적으로제거할수 있다. 가스혼합기의 온도가낮은경우 가스혼합과정에서 일부이산화탄소가염으로전환될수있으며,온도가높은 경우 염 생성을 위한다음단계에서 가스냉각에 팔요한에너지가 커지므로, 에너지 효율이 저하된다. 상기 이산화탄소 포집기에서 혼합가스를 10 내지 50 X:로 냉각할수 있다. 상기 냉각은 간접냉각또는 직접냉각에 의할 수 있다.상기 온도를만족하는경우이산화탄소를염으로효과적으로고착하여 분리할수있다.
상기 열분해기는 반응기에서 수득된 염용액을 이산화탄소, 암모니아 및 수증기로열분해한다,
상기 증류탑은 반응기에서 수득된 염용액을 이산화탄소, 암모니아를 포함하는기체와물을포함하는액체로분리할수있다. 2019/132209 1»(:1^1{2018/012499
상기 가열기는 70이상및 110 I:이하에사수행하는것일수 있다. 상기 온도 범위를 만족하는 경우 불필요한 에너지 소모 없이 상기 염 용액을 이산화탄소, 암모니아, 수증기로효율적으로가스화가능하다.
세정탑및 흡수액 설계를통한불순물제어로고농도이산화탄소배출이 가능하며, 분리 배출된 이산화탄소의 고부가가치화를 통하여 경제성을 증대시킬수있다
세정탑에서 배출된 배가스의 이산화탄소의 농도는 0 부피%초과, 및 20 부피%미만일수있으며,구체적으로 0부피%초과및 15부피%미만일수있다. 상기 이산화탄소 제거설비에서 수득된 배가스에 의한 탈황설비 유입가스의 유량 변화율은 0 부피%초과, 및 +10 부피%이하 일 수 있다. 구체적으로 +3내지 +10부피%, +3내지 +9부피%. 또는 +5내지 +8부피%일 수있다.
상기 이산화탄소 제거설비에서 수득된 배가스에 의한 탈황설비 유입가스의 아산화탄소농도변화율은 0부피%초과, 및 +80부피%이하일수 있다.구체적으로 +20내지 +80부피%, +20내지 +70부피%, +20내지 +60부피%, 또는 +30내지 +50부피%일수있다.
상기와같이 본발명의 일 구현예에 따른산성가스정제설비를이용하는 경우 이산화탄소를 효과적으로 제거함으로써, 이산화탄소 제거설비에서 수득되어 탈황설비로 유입되는 가스의 이산화탄소 농도 및 유량을 감소시키고, 탈황설비에 유입되는 가스의 유량변화율, 이산화탄소의 농도 변화율을 감소시킬 수 있어, 결과적으로 탈황설비의 공정 효율 및 설비 부하를감소시킬수있다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실사예일뿐 본 발명이 하기 실시예에 한정되는것은아니다.
시험예 1
코크스 오븐가스 ((1)6,
Figure imgf000016_0001
0^611 63)의 탈황공정에서 발생되는 탈황단계에서 수득된배가스를탈황공정으로재유입하도록구성하였다,
실시예 1은 탈황단계에서 수득된 배가스를 이산화탄소 제거공정을 거쳐 코크스 오븐가스와 함께 탈황 공정으로 유입하도록 구성하였으며, 비교예 2019/132209 1»(:1^1{2018/012499
1은 이산화탄소 제거공정을 도입하지 않고, 탈황단계에서 수득된 배가스를 코크스 오븐가스와 함께 탈황 공정으로 유입 하도록 구성하여 이산화탄소 농도및 000유량을비교검토한결과를표 1에 나타내었다.
【표 11
Figure imgf000017_0001
이산화탄소제거 공정을적용하지 않은비교예 1과비교하여,실시예 1의 경우 이산화탄소 제거 공정의 적용으로 인하여 ¥2 가스가 제거됨으로써, 이산화탄소 제거단계에서 수득된 배가스 )의 유량 및 期2 농도가 현저히 감소되었다.
그 결과, 비교예 1의 경우 정제공정 유입가스의 유량 변화율 /1))이 +8.5%이고, ¥2의 농도 변화율 /1))은 +73.3%임에 반해, 실시예 1의 경우 정제공정 유입가스의 유량변화율(3/ 은 +4.7%이고,(:¾농도변화율 / 도 +1.3%에 불과하다. 따라서, 정제공장 유입가스의 유량 증가로 인한 정제설비의 설비부하를크게 감소시킬 수 있으며, 期2농도도거의 일정하게 유지되므로 ,탈황공정 유입 가스내(:¾가스농축으로인한정제효율감소를 방지할수있음을확인하였다.
시험예 2
코크스오븐가스(期 此( 에 033)정제공정 중탈황단계에서 수득된 배가스 0 1 크 에 암모니아 가스를 공급양을 달리하여 이산화탄소의 2019/132209 1»(:1^1{2018/012499
제거효율에 대한실험을진행하여 표 2에 나타내었다.
Figure imgf000018_0001
1500 20의 탈황단계에서 수득된배가스에 암모니아를 공급하여 혼합하는단계를거치고,
Figure imgf000018_0003
공정냉각수를이용하여
Figure imgf000018_0002
이하로 간접 냉각시켜 이산화탄소제거성능및가스유량변화를확인하였다.
비교예 2는 상기 실시예 2에 대해 암모니아를 공급하지 않고 탈황단계에서 수득된 배가스를 냉각시켜 이산화탄소 제거성능 및 가스유량 변화를평가하였다.
실시예 3은 상기 실시예 2보다 암모니아를 과량 공급 조건에서 탈황단계에서 수득된 배가스를 냉각시켜 이산화탄소 제거성능 및 가스유량 변화를확인하였다.
【표 2]
Figure imgf000018_0004
표 1을 보면, 암모니아( %)를 투입하지 않은 비교예 2의 경우 期2제거율이 22.5%이고, 가스 유량 감소율도 22.5%인 것으로 확인되나, 암모니아(比)를투입한실시예 2및 실시예 3의 경우 이산화탄소제거율이 각각 92.7%, 90.7%로향상되었으며 ,가스유량감소율도각각 45.4%, 30.2%로 2019/132209 1»(:1^1{2018/012499
비교예 2보다 향상되었다. 이는 암모니아어比)를 투입하지 않는 경우 가스 중 수분이 냉각되어 응축되면서 이산화탄소가 용해되어 일부 제거될 수 있으나, 암모니아(■:¾)를 투입함으로써, 탄산암모늄 형태로 대량의 이산화탄소를제거하는것이 가능하여 이산화탄소제거 효율이 향상된다. 실시예 3( 3투입량 3 3 /%·)의 경우,실시예 2( 투입량 1 3/^)보다 가스유량감소율이 감소한것을확인할수있다. 이는미반응된암모니아가 배가스로함께배출되기 때문이다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌것으로이해해야만한다.
【부호의 설명】
3: 황화수소포함산성가스
탈황설비 유입가스(3 + 0
Figure imgf000019_0001
V. 이산화탄소제거단계에서수득된배가스
용: 이산화탄소가스
11: 암모니아가스
탈황단계에서 수득된배가스(<!)+암모니아(11
뇨: 염용액
이산화탄소, 암모니아가스
이산화탄소, 암모니아, 수증기
암모니아수

Claims

2019/132209 1»(:1^1{2018/012499
【청구범위】
【청구항 11
가스 발생원에서 발생하는 황화수소를 포함하는 산성가스를 준비하는 산성가스준비단계;
상기 황화수소를포함하는산성가스에서 황성분을제거하여클린가스및 배가스를수득하는탈황단계;
상기 탈황단계에서 수득된 배가스에서 이산화탄소를 염 형태로 제거하여 배가스와염으로분리하는이산화탄소제거단계 ; 및
상기 이산화탄소 제거단계에서 수득된 배가스는 상기 산성가스 준비단계에서 준비된 산성가스와 함께 상기 탈황단계로 투입하는 단계;를 포함하는
황화수소를포함하는산성가스정제방법 .
【청구항 2]
제 1항에 있어서,
상기 탈황단계 이전에
.화수소를 포함하는 산성가스에서 불순물을 제거하는 불순물 제거단계;를더 포함하는
황화수소를포함하는산성가스정제방법 .
【청구항 3】
제 1항에 있어서,
상기 이산화탄소제거단계;는
상기 탈황단계에서수득된배가스를암모니아와혼합하는가스혼합단계; 상기 혼합가스를 냉각을 통해 이산화탄소를 염 형태로 제거하고 배가스와염으로분리하는이산화탄소포집단계;
상기 이산화탄소포집단계에서 형성된 염에 물과 열을 가하여 염용액을 형성하는염용액 형성단계; 및
상기 염용액을 가열하여 이산화탄소를 기체화하는 이산화탄소 기체화단계; 를포함하고,
상기 이산화탄소 포집단계에서 수득된 배가스는 상기 산성가스 준비단계에서 준비된산성가스와함께상기 탈황단계로투입되는 2019/132209 1»(:1^1{2018/012499
황화수소를포함하는산성가스정제방법 .
【청구항 4]
제 3항에 있어서,
이산화탄소기체화단계 이후에,
상기 이산화탄소 기체화단계에서 수득된 가스에서 흡수제를 이용하여 불순물을제거하는가스세정단계;를더 포함하는
황화수소를포함하는산성가스정제방법 .
【청구항 5】
제 3항에 있어서,
상기 가스혼합단계는
혼합가스 내에 이산화탄소에 대한 암모니아의 몰비가 0.01 이상 및 0.8 이하가되도록조절하는단계를더 포함하는
황화수소를포함하는산성가스정제방법.
【청구항 6】
제 3항에 있어서,
상기 가스혼합단계는
60내지 90°(:에서 수행하는
황화수소를포함하는산성가스정제방법 .
【청구항 7】
제 3항에 있어서,
상기 이산화탄소포집단계에서
상기 염은 탄산암모늄, 중탄산암모늄, 및 카르밤산염 중에서 선택된 1 이상을포함하는
황화수소를포함하는산성가스정제방법 .
【청구항 8]
제 3항에 있어서,
상기 이산화탄소포집단계는
혼합가스를 10내지 50 로냉각하는것인,
황화수소를포함하는산성가스정제방법.
【청구항 9] 2019/132209 1»(:1^1{2018/012499
제 3항에 있어서,
상기 이산화탄소포집단계는
하기 화학식 1과같은반응을포함하는
황화수소를포함하는산성가스정제방법 .
[화학식 1]
¥2 + 2^3 + ¾0 = (^4)2003
3 + 002 + ¾0 =■4敗03
2^3 + ¥2 =■2¥0
【청구항 10】
제 3항에 있어서,
상기 이산화탄소기체화단계는
열분해기 또는증류탑을이용하여 수행되는
황화수소를포함하는산성가스정제방법 .
【청구항 11】
제 1항에 있어서,
상기 이산화탄소 제거단계에서 수득된 배가스의 이산화탄소의 농도는 0 부피%초과, 및 20부피%미만인
황화수소를포함하는산성가스정제방법 .
【청구항 12】
제 1항에 있어서,
상기 이산화탄소 제거단계에서 수득된 배가스에 의한 탈황단계 유입가스의 유량변화율은 0부피%초과, 및 +10부피%이하인
황화수소를포함하는산성가스정제방법 .
【청구항 13】
제 1항에 있어서,
상기 이산화탄소 제거단계에서 수득된 배가스에 의한 탈황단계 유입가스의 이산화탄소농도변화율은 0부피%초과, 및 +80부피%이하인 황화수소를포함하는산성가스정제방법.
【청구항 14】
황화수소를포함하는산성가스를발생시키는가스발생원; 2019/132209 1»(:1^1{2018/012499
상기 가스발생원 및 이산화탄소 제거설비와 연결되고, 황화수소를 포함하는 산성가스에서 황성분을 제거하여 클린가스 및 배가스를 수득하는 탈황설비;
상기 탈황설비와 연결되고 탈황단계에서 수득된 배가스에서
5 이산화탄소를 염 형태로 제거하여 배가스와 염으로 분리하는 이산화탄소 제거설비 ;를포함하고,
상기 이산화탄소 제거설비에서 수득된 배가스를 상기 가스발생원에서 배출되는황화수소를포함하는산성가스와함께 탈황설비로투입하는
황화수소를포함하는산성가스정제장치.
10
【청구항 15】
제 14항에 있어서,
상기 가스발생원에서 공급되는 산성가스 및 이산화탄소 제거설비로부터 탈황설비로 공급되는 가스에서 불순물을 제거하여, 황화수소를 포함하는 산성가스를탈황설비로공급하는불순물정제설비;를더 포함하는것인 15 황화수소를포함하는산성가스정제장치.
【청구항 16]
제 14항에 있어서,
상기 이산화탄소제거설비는 _
상기 탈황단계에서 수득된배가스와암모니아를혼합하는가스혼합기 ;
20 상기 가스 혼합기로부터 공급된 혼합가스를 냉각하여 이산화탄소를 염 형태로제거하고배가스와염으로분리하는이산화탄소포집기 ;
상기 이산화탄소 포집기에서 수득된 염에 열과 수분을 가해 염용액을 생성하는반응기; 및
상기 반응기에서 수득된 염용액을 가열하여 이산화탄소를 기체화하는 25 가열기; 를포함하는
황화수소를포함하는산성가스정제장치 .
【청구항 17】
제 16항에 있어서,
상기 이산화탄소 포집기에서 형성되는 염은 탄산암모늄, 중탄산암모늄, 30 및카르밤산염 중에서 선택된 1이상을포함하는 · 2019/132209 1»(:1^1{2018/012499
황화수소를포함하는산성가스정제장치 .
【청구항 18]
제 16항에 있어서,
상기 이산화탄소제거설비는
5 상기 가열기에서 수득된가스에서 품수제를 이용하여 불순물을제거하고, 이산화탄소를배출하는세정탑;를더 포함하는
황화수소를포함하는산성가스정제장치.
【청구항 19】
제 16항에 있어서,
10 상기 가열기는
열분해기 또는증류탑인
황화수소를포함하는산성가스정제장치 .
【청구항 20]
제 14항에 있아서,
15 상기 이산화탄소 제거설비에서 수득된 배가스의 이산화탄소의 농도는 0%초과, 및 20부피%미만인
황화수소를포함하는산성가스정제장치.
【청구항 21]
제 14항에 있어서,
20 상기 이산화탄소 제거설비에서 수득된 배가스에 의한 탈황공정 유입가스의 유량변화율은 0부피%초과, 및 10부피 %이하인
황화수소를포함하는산성가스정제장치.
【창구항 22】
제 14항에 있어서,
25 상기 이산화탄소 제거설비에서 수득된 배가스에 의한 탈황공정 유입가스의 이산화탄소농도변화율은 0부피%초과, 및 80부피%이하인
황화수소를포함하는산성가스정제장치 .
【청구항 23】
제 16항에 있어서,
30 상기 가스혼합기는 2019/132209 1»(:1^1{2018/012499
혼합가스내에, 이산화탄소에 대한암모니아의 몰비를 0.01이상및 0.8 이하로조절하는것인
황화수소를포함하는산성가스정제장치.
【청구항 24】
5 제 16항에 있어서,
상기 가스혼합기는
60내지 901:에서 수행하는것인
황화수소를포함하는산성가스정제장치 .
【청구항 25】
10 제 16항에 있어서,
상기 이산화탄소포집기는
혼합가스를 50 이하로간접 넁각하는것인
황화수소를포함하는산성가스정제장치 .
PCT/KR2018/012499 2017-12-26 2018-10-22 황화수소를 포함하는 산성가스 정제방법 및 그 장치 WO2019132209A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0179894 2017-12-26
KR1020170179894A KR102031836B1 (ko) 2017-12-26 2017-12-26 황화수소를 포함하는 산성가스 정제방법 및 그 장치

Publications (1)

Publication Number Publication Date
WO2019132209A1 true WO2019132209A1 (ko) 2019-07-04

Family

ID=67064200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012499 WO2019132209A1 (ko) 2017-12-26 2018-10-22 황화수소를 포함하는 산성가스 정제방법 및 그 장치

Country Status (2)

Country Link
KR (1) KR102031836B1 (ko)
WO (1) WO2019132209A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111994873A (zh) * 2020-10-27 2020-11-27 苏州金宏气体股份有限公司 采用工业级溴化氢气体生产高纯氢溴酸的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160078726A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 탈황공정 발생가스로부터 성분별 분리회수 방법
JP6217845B2 (ja) * 2014-04-15 2017-10-25 株式会社Ihi 脱硫装置及びそれを用いた排ガス処理システム
KR101796236B1 (ko) * 2015-11-27 2017-11-09 주식회사 포스코 산성 가스 내 이산화탄소 제거 방법 및 그 장치
KR101795466B1 (ko) * 2016-10-31 2017-11-10 주식회사 포스코 가스 처리 방법 및 가스 처리 장치
JP6244819B2 (ja) * 2013-10-29 2017-12-13 株式会社Ihi 排ガスの処理システム及び処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244819B2 (ja) * 2013-10-29 2017-12-13 株式会社Ihi 排ガスの処理システム及び処理方法
JP6217845B2 (ja) * 2014-04-15 2017-10-25 株式会社Ihi 脱硫装置及びそれを用いた排ガス処理システム
KR20160078726A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 탈황공정 발생가스로부터 성분별 분리회수 방법
KR101796236B1 (ko) * 2015-11-27 2017-11-09 주식회사 포스코 산성 가스 내 이산화탄소 제거 방법 및 그 장치
KR101795466B1 (ko) * 2016-10-31 2017-11-10 주식회사 포스코 가스 처리 방법 및 가스 처리 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111994873A (zh) * 2020-10-27 2020-11-27 苏州金宏气体股份有限公司 采用工业级溴化氢气体生产高纯氢溴酸的方法及装置

Also Published As

Publication number Publication date
KR20190078135A (ko) 2019-07-04
KR102031836B1 (ko) 2019-10-15

Similar Documents

Publication Publication Date Title
TWI751430B (zh) 酸性氣處理
RU2545273C2 (ru) Способ и устройство для обработки обогащенного диоксидом углерода кислого газа в процессе клауса
JP5684785B2 (ja) オフガス流れを処理する方法およびそのための装置
US8535613B2 (en) Method and apparatus for separating acidic gases from syngas
CN101918104B (zh) 用于处理包含co2的工艺气流的方法
US9272239B2 (en) Two-stage gas washing method applying sulfide precipitation and alkaline absorption
CN100427391C (zh) 电石炉尾气的处理与再利用方法
CN102061197B (zh) 一种焦炉煤气脱硫脱氨联合的净化方法及其专用装置
CN102642810B (zh) 一种焦炉气制备费托合成油原料气的组合工艺
CN102079689A (zh) 生产甲醇的方法和设备
WO2012145910A1 (zh) 生产甲醇的方法和设备
JP2018538394A (ja) 酸性ガス内の二酸化炭素除去方法およびその装置
CN103509609A (zh) 吸收净化与吸附净化相结合的煤气净化工艺方法
WO2019132209A1 (ko) 황화수소를 포함하는 산성가스 정제방법 및 그 장치
KR101795466B1 (ko) 가스 처리 방법 및 가스 처리 장치
KR20170083564A (ko) 코크스 플랜트들에서 산성 가스를 처리하는 프로세스 및 이 프로세스를 실시하기 위한 시스템
CN102876828B (zh) 一种与气基竖炉配套的还原气净化工艺及系统
KR101981457B1 (ko) 가스처리장치 및 그 방법
CN220758035U (zh) 一种变换凝液单塔高效氨汽提装置
US11083995B2 (en) Elimination of SO2 and CO2 from a gas
CN106477597A (zh) 洁净煤尾气综合利用生产氢氰酸衍生物的环保清洁方法
CN115703981A (zh) 一种天然气脱硫净化系统及工艺
Strickroth et al. Elimination of SO 2 and CO 2 from a gas
CN116694370A (zh) 一种处理未变换气的低温甲醇洗系统及方法
CN106701132A (zh) 煤基能源高效清洁精细化综合利用褐煤提质方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896291

Country of ref document: EP

Kind code of ref document: A1