WO1999054023A1 - Procede de purification de gaz par adsorption avec pressions et temperatures controllees - Google Patents

Procede de purification de gaz par adsorption avec pressions et temperatures controllees Download PDF

Info

Publication number
WO1999054023A1
WO1999054023A1 PCT/FR1999/000898 FR9900898W WO9954023A1 WO 1999054023 A1 WO1999054023 A1 WO 1999054023A1 FR 9900898 W FR9900898 W FR 9900898W WO 9954023 A1 WO9954023 A1 WO 9954023A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
regeneration
cations
tads
preg
Prior art date
Application number
PCT/FR1999/000898
Other languages
English (en)
Inventor
Cyrille Millet
Georges Kraus
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to AU33352/99A priority Critical patent/AU3335299A/en
Publication of WO1999054023A1 publication Critical patent/WO1999054023A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/416Further details for adsorption processes and devices involving cryogenic temperature treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the object of the present invention is to provide a process for the pretreatment or purification of a gas flow consisting of atmospheric air, prior to the cryogenic separation of said air, in particular by cryogenic distillation.
  • atmospheric air contains compounds which must be removed before the introduction of said air into the heat exchangers of the cold box of an air separation unit, in particular the carbon dioxide (CO 2 ), vapor compounds. water (H 2 O) and / or hydrocarbons (CnH) for example.
  • hydrocarbon impurities which may be present in the air in order to avoid any risk of deterioration of the equipment, in particular of the distillation column or columns located downstream of the cold box.
  • this air pretreatment is carried out, as the case may be, by TSA process (Temperature Swing Adsorption) or by PSA process (Pressure Swing Adsorption); by PSA process is meant PSA processes proper, VSA (Vacuum Swing Adsorption) processes, VPSA processes and the like.
  • an ASD air purification process cycle comprises the following steps: a) purification of the air by adsorption of impurities at superatmospheric pressure and at ambient temperature, b) depressurization of the adsorber to atmospheric pressure or below atmospheric pressure, c) regeneration of the adsorbent at atmospheric pressure, in particular by waste gases or waste gases, typically impure nitrogen coming from an air separation unit and heated to a temperature above + 100 ° C by means of one or more exchangers d) cooling the adsorbent to ambient or sub-ambient temperature, in particular by continuing to introduce said residual gas therefrom from the air separation unit, but not reheated, e) repressurization of the adsorber with purified air from, for example, another adsorber in the production phase.
  • a PSA process cycle for air purification comprises, for its part, substantially the same steps a), b) and e), but is distinguished from a TSA process by an absence of heating of the waste gas or gases during of the regeneration step (step c)), therefore the absence of step d) and, in general, a shorter cycle time than in the TSA process.
  • the air pretreatment devices comprise two adsorbers, operating in alternating fashion, that is to say that one of the adsorbers is in the production phase, while the other is in the regeneration phase.
  • TSA air purification methods are described in particular in documents US-A-3, 738,084 and FR-A-7725845.
  • the removal of CO 2 and water vapor is carried out on one or more beds adsorbents, preferably several beds of adsorbents, namely generally a first adsorbent intended to preferentially stop the water, for example a bed of activated alumina, silica gel or zeolites, and a second bed of adsorbent to preferentially stop CC> 2 , for example a zeolite.
  • a first adsorbent intended to preferentially stop the water
  • a bed of activated alumina, silica gel or zeolites for example a bed of activated alumina, silica gel or zeolites
  • a second bed of adsorbent to preferentially stop CC> 2 for example a zeolite.
  • Mention may in particular be made of documents US-A-5, 531,808, US-A-5, 587, 003 and US-A-4,233,038.
  • the selectivity of the adsorbents is more favorable for water than for CO 2 .
  • cooling is usually carried out by heat exchange of the compressed gas, that is to say the pressurized air, leaving the compressor, in general, to a temperature conventionally higher by a few degrees than the ambient temperature.
  • the ambient temperature varies according to the season and it follows that, during the so-called hot periods of the year, especially in summer, the efficiency of the adsorbent will decrease.
  • adsorption temperature by means of a heat exchanger and one or more refrigeration units in order to keep it substantially constant throughout the year, for example within a given range, which is a function of the subsequent process used, for example a cryogenic air distillation process.
  • Another solution consists in carrying out an oversizing of the quantity of adsorbent used, so as to compensate for these fluctuations in the adsorption temperature and therefore in the adsorption performance by a larger quantity of adsorbent.
  • the adsorption temperature of such an air purification process varies between approximately 5 ° C and 65 ° C.
  • the performance is very variable for the same purification unit.
  • regeneration is carried out at a temperature above 150 ° C.
  • the regeneration temperature is therefore a parameter to be considered carefully if one wishes to obtain an efficient and economically acceptable purification from an industrial point of view.
  • the adsorption pressure is usually between 4.10 5 Pa and 60.10 5 Pa depending on the application considered.
  • Regeneration of the adsorbent is usually carried out by waste gases, in particular nitrogen or impure oxygen but free of dioxide dioxide. carbon and water from the cryogenic distillation unit located downstream.
  • the regeneration pressure is either slightly higher than atmospheric pressure, or lower than atmospheric pressure; the vacuuming being carried out using a vacuum pump.
  • the adsorption flow rate is imposed by the quantity of gas to be produced and therefore varies as a function of said quantity of gas to be produced and of the nature of said gas.
  • the regeneration flow rate of the regeneration gas used generates fluctuations in the adsorption performance.
  • the ratio of the regeneration flow rate to the adsorption flow rate varies, depending on the process, from 5 to 80%.
  • the purpose of the present invention is to provide a air purification process leading to an efficient and economically acceptable purification from an industrial point of view, which process is based on a judicious selection of the above parameters.
  • Another object of the invention is to propose a method making it possible to lead to constant and regular sensitive performances throughout the year, that is to say whatever the ambient atmospheric conditions.
  • the invention therefore relates to a process for purifying an air flow containing at least one impurity chosen from carbon dioxide (C0 2 ), water vapor (H 2 O) and hydrocarbons (CnHm), comprising at least :
  • a step of adsorption of at least one of said impurities on at least one bed of adsorbent said adsorption being carried out at at least one adsorption temperature (Tads) and at at least one adsorption pressure (Pads) ), and
  • a step of regenerating at least part of said adsorbent bed said regeneration being carried out at at least one regeneration temperature (Treg) and at least one regeneration pressure (Preg).
  • At least one bed of adsorbent contains particles of zeolite X having an Si / Al ratio of 1 to 1.15 and, on the other hand, one chooses and / or one adjusts the temperature of one adsorption (Tads), the pressure of adsorption (Pads), the regeneration temperature (Treg) and the regeneration pressure (Preg), such as:
  • temperatures are expressed in ° C, pressures in Pa and flow rates in m 3 / h.
  • the method of the invention may include one or more of the following characteristics:
  • the adsorption step is carried out, in addition, at an adsorption flow rate (Dads) and said regeneration step is carried out at a regeneration flow rate (Dreg), such that:
  • At least one bed of adsorbent contains an LSX zeolite (Low Silica X) having an Si / Ai ratio of approximately 1.
  • At least one bed of activated alumina particles is located upstream of a bed of adsorbent containing at least one adsorbent of the zeolite X type having an Si / Ai ratio of approximately 1.
  • the adsorption pressure is between 3.10 5 Pa and 6.10 6 Pa
  • the regeneration pressure is between 10 5 Pa and 3.10 5 Pa.
  • the adsorption temperature is between 0 ° C and + 80 ° C.
  • the regeneration temperature is between 20 ° C and 200 ° C.
  • the alumina is chosen from activated aluminas impregnated and calcined, activated aluminas impregnated non-calcined and activated aluminas calcined.
  • the ratio of the regeneration flow to the adsorption flow is between 5% and 80%. separation is carried out by cryogenic distillation of the purified air obtained.
  • the process is PSA (Pressure Swing Adsorption) or TSA (Temperature Swing Adsorption) type, preferably TSA type.
  • Alumina is an alumina impregnated with a solution of alkali or alkaline earth metal salts, preferably the alumina contains less than 10% by weight of one or more alkali or alkaline earth metals, in particular the metal (s) are chosen from the group formed by sodium (Na + ), potassium (K + ) and calcium (Ca 2+ ).
  • the alumina contains at least 1% by weight of one or more alkali or alkaline earth metals, preferably from 2 to 9.8% by weight of one or more alkali or alkaline earth metals, preferably at least 3.5% by weight of one or more alkali or alkaline earth metals.
  • the zeolite X having a Si / Ai ratio ⁇ 1.15, preferably of the order of 1, is exchanged or contains less than 35% of potassium cations (K + ), from 1 to 99% of sodium cations (Na + ) and less than 99% of calcium cations (Ca 2+ ), preferably from 0.01% to 12% of potassium cations (K + ), from 1 to 99% of calcium cations (Ca 2 + ) and from 1 to 99% of sodium cations (Na + ).
  • the zeolite X having an Si / Ai ratio ⁇ 1.15, preferably of the order of 1, is exchanged or contains less than 10% of potassium cations (K + ), from 1 to 50% of sodium cations (Na + ) and from 50 to 99% of calcium cations (Ca 2+ ), preferably at least 66% of calcium cations (Ca 2+ ) and more preferably still from 80 to 96% of calcium cations.
  • K + potassium cations
  • Na + sodium cations
  • Ca 2+ calcium cations
  • Ca 2+ calcium cations
  • the zeolite X having a Si / Ai ratio ⁇ 1.15, preferably of the order of 1, is exchanged or contains from 0 to 7% of potassium cations (K + ), from 4 to 11% of sodium cations (Na + ) and from 82 to 92% of calcium cations (Ca 2+ ),
  • the zeolite X having a Si / Ai ratio ⁇ 1.15, preferably of the order of 1, is exchanged or contains, in addition, from 0 to 98% of lithium (Li + ) cations, preferably from 60 to 96% of lithium cations.
  • LSX Low Silica X
  • the adsorbent bed is used in a TSA type process used in an installation with two adsorbers operating in parallel, that is to say that one of the adsorbers is in the regeneration phase while the another is in the purification phase, that is to say adsorption.
  • the time cycle, the adsorption flow (Dads), the diameter of the adsorbers, the durations of pressurization and decompression of the adsorbers kept constant.
  • the regeneration temperature (Treg) is top high, which leads to a waste of energy, that is to say an energy overconsumption.
  • test B the regeneration temperature used is not high enough to guarantee efficient regeneration of the adsorbent bed.
  • the impurities adsorbed during the purification phase will not be completely desorbed during the regeneration phase.
  • the adsorbent used is either a zeolite of type X, preferably of type LSX, exchanged or not by metal cations, or an activated alumina doped or not.
  • an adsorbent to high performance such as a zeolite X or LSX and / or a doped activated alumina, under the operating conditions according to the present invention makes it possible to significantly reduce energy consumption.
  • the method according to the invention makes it possible to reduce the quantity of adsorbent to be used, therefore the pressure drops within the adsorption bed and the compression energy to be used, and to obtain a shorter crossing time of the adsorption bed by the heat front during the regeneration phase and therefore a more efficient and less energy-intensive regeneration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Procédé de purification d'air en ses impuretés dioxyde de carbone, vapeur d'eau et hydrocarbures, dans lequel on adsorbe lesdites impuretés sur un lit d'adsorbant. L'adsorption est réalisée à une température (Tads) et à une pression d'adsorption (Pads). La régénération de l'adsorbant est réalisée à une température (Treg) et à une pression de régénération (Preg). Selon le procédé, on a: 7,3 < Treg/Tads x Pads/Preg < 33. En outre, l'adsorbant utilisé est une zéolite X ayant un rapport Si/Al < 1.15, éventuellement associée à une alumine activée, éventuellement imprégnée et/ou calcinée, laquelle alumine contient des cations métalliques alcalins ou alcalino-terreux, tels le calcium ou le sodium.

Description

PPOΠEΠ DE PTΓRTETΓΆTTON DE ΠΆZ PΆP ΆΓ)SOPPTTOΓJ ΆVEΓ
PKESSTONS FIT TETVTPEP.ΑTτTPES rOrJTPOT.EE.ς
Le but de la présente invention est de proposer un procédé de prétraitement ou purification d'un flux gazeux constitué d'air atmosphérique, préalablement à la séparation cryogénique dudit air, en particulier par distillation cryogénique. II est connu que l'air atmosphérique contient des composés devant être éliminé avant 1 * introduction dudit air dans les échangeurs thermiques de la boîte froide d'une unité de séparation d'air, notamment les composés dioxyde de carbone (CO2) , vapeur d'eau (H2O) et/ou hydrocarbures (CnH ) par exemples.
En effet, en l'absence d'un tel prétraitement de l'air pour en éliminer ses impuretés C0 et eau, on assiste à une condensation et à une solidification en glace de ces impuretés lors du refroidissement de 1 ' air à température cryogénique, d'où il peut résulter des problèmes de colmatage de l'équipement, notamment les échangeurs thermiques, des colonnes de distillation...
En outre, il est également d'usage d'éliminer les impuretés hydrocarbures susceptibles d'être présentes dans l'air afin d'éviter tout risque de détérioration de l'équipement, en particulier de la ou des colonnes de distillation situées en aval de la boîte froide.
Actuellement, ce prétraitement de l'air est effectué, selon le cas, par procédé TSA (Température Swing Adsorption) ou par procédé PSA (Pressure Swing Adsorption) ; par procédé PSA, on entend les procédés PSA proprement-dits, les procédés VSA (Vacuum Swing Adsorption) , les procédés VPSA et analogues.
Classiquement, un cycle de procédé TSA de purification d'air comporte les étapes suivantes: a) purification de l'air par adsorption des impuretés à pression super-atmosphérique et à température ambiante, b) dépressurisation de l'adsorbeur jusqu'à la pression atmosphérique ou en-dessous de la pression atmosphérique, c) régénération de l'adsorbant à pression atmosphérique, notamment par les gaz résiduaires ou gaz déchets, typiquement de l'azote impur provenant d'une unité de séparation d'air et réchauffé jusqu'à une température supérieure à +100°C au moyen d'un ou plusieurs échangeurs thermiques, d) refroidissement à température ambiante ou subambiante de l'adsorbant, notamment en continuant à y introduire ledit gaz résiduaire issu de l'unité de séparation d'air, mais non réchauffé, e) repressurisation de l'adsorbeur avec de l'air purifié issu, par exemple, d'un autre adsorbeur se trouvant en phase de production.
Habituellement, un cycle de procédé PSA de purification d'air comporte, quant à lui, sensiblement les mêmes étapes a), b) et e) , mais se distingue d'un procédé TSA par une absence de réchauffement du ou des gaz résiduaires lors de l'étape de régénération (étape c) ) , donc l'absence de l'étape d) et, en général, un temps de cycle plus court qu'en procédé TSA.
Généralement, les dispositifs de prétraitement d'air comprennent deux adsorbeurs, fonctionnant de manière alternée, c'est-à-dire que l'un des adsorbeurs est en phase de production, pendant que l'autre est en phase de régénération.
De tels procédés TSA de purification d'air sont notamment décrit dans les documents US-A-3 ,738,084 et FR- A-7725845.
En général, l'élimination du CO2 et de la vapeur d'eau est effectuée sur un ou plusieurs lits d'adsorbants, de préférence plusieurs lits d' adsorbants, à savoir généralement un premier adsorbant destiné à arrêter préférentiellement l'eau, par exemple un lit d'alumine activée, de gel de silice ou de zéolites, et un deuxième lit d'adsorbant pour arrêter préférentiellement le CC>2, par exemple une zéolite. On peut citer notamment les documents US-A-5, 531,808, US-A-5, 587 , 003 et US-A- 4,233,038.
Cependant, obtenir une élimination efficace du CO2 et de la vapeur d'eau contenus dans l'air sur un même et unique lit d'adsorbant n'est pas chose aisée, car l'eau présente une affinité pour les adsorbants nettement supérieure à celle du CO2.
En d'autres termes, la sélectivité des adsorbants est plus favorable à l'eau qu'au CO2. En outre, pour pouvoir régénérer un adsorbant saturé en eau, il est usuel de porter cet adsorbant à une température de régénération supérieure à 100°C.
Cependant, très peu d'adsorbants mis en oeuvre actuellement à l'échelle industrielle dans des unités TSA possèdent une structure physico-chimique susceptible de résister longtemps à un tel traitement hydrothermique; les matériaux de type alumine en font partie.
On peut citer le document US-A-5,232 , 474 qui décrit l'utilisation d'une alumine activée pour sécher et décarbonater l'air par un procédé PSA.
Dans tous les cas, obtenir une purification efficace du flux d'air à traiter en ses impuretés dioxyde de carbone et vapeur d'eau n'est pas chose aisée, dans la mesure où l'efficacité de purification dépend de nombreuses conditions opératoires.
Ainsi, un certain nombre de paramètres ou conditions de mise en oeuvre du procédé lui-même influencent considérablement les performances de purifications obtenues. A ce titre, on peut citer, en particulier, la température d' adsorption et la température de régénération.
En effet, il est connu que 1 ' adsorption et donc la purification sont favorisées par les températures basses.
En d'autres termes, plus la température diminue, plus les performances d' adsorption de l'adsorbant augmentent.
De là, il est habituellement réalisé un refroidissement par échange thermique du gaz comprimé, c'est-à-dire de l'air sous-pression, sortant du compresseur, en général, jusqu'à une température classiquement supérieure de quelques degrés à la température ambiante.
Or, la température ambiante varie en fonction de la saison et il s'ensuit que, pendant les périodes dites chaudes de l'année, notamment en été, l'efficacité de l'adsorbant va diminuer.
Afin de résoudre ce problème, il est possible de réguler la température d' adsorption au moyen d'échangeur de chaleur et d'un ou plusieurs groupes frigorifiques afin de la maintenir sensiblement constante durant toute l'année, par exemple dans une plage donnée, laquelle est fonction du procédé subséquent utilisé, par exemple un procédé de distillation cryogénique de l'air.
Cette solution engendre, cependant, des investissements supplémentaires en matériels, tels des échangeurs de chaleur, des canalisations, groupe frigorifique...
Une autre solution consiste à effectuer un surdimensionnement de la quantité d'adsorbant mise en oeuvre, de manière à compenser ces fluctuations de la température d' adsorption et donc des performances d' adsorption par une quantité plus importante d'adsorbant.
Toutefois, augmenter la quantité d'adsorbant utilisée implique inévitablement une augmentation des coûts du procédé.
Actuellement, selon la solution choisie, la température d' adsorption d'un tel procédé de purification d'air varie entre approximativement 5°C et 65°C.
En d'autres termes, les performances sont très variables pour une même unité de purification.
En outre, il est également connu que la température de régénération de l'adsorbant influence aussi l'efficacité d* adsorption.
En effet, plus la température de régénération est élevée, meilleure est la régénération et donc plus efficace sera la phase de purification subséquente. En général, la régénération est effectué à une température supérieure à 150°C.
Or, plus la température de régénération mise en oeuvre est élevée, plus la consommation énergétique du réchauffeur et donc les coûts du procédé augmentent.
La température de régénération est donc un paramètre à considérer avec soin si l'on souhaite obtenir une purification efficace et économiquement acceptable du point de vue industriel.
Par ailleurs, il est également indispensable de prendre en compte les pressions d' adsorption et de désorption mises en oeuvre.
Actuellement, la pression d' adsorption est habituellement comprise entre 4.105 Pa et 60.105 Pa selon l'application considérée.
En effet, il est connu qu'une pression d' adsorption élevée favorise l'efficacité de l' adsorption des impuretés . Or, la pression d' adsorption d'une unité de purification d'air, située en amont d'une colonne de distillation cryogénique, ne peut pas être fixée avec une grande liberté, dans la mesure où celle-ci dépend étroitement des caractéristiques de la boîte froide de l'unité de séparation d'air. A l'inverse, l'efficacité de régénération augmente avec la diminution de la pression de régénération.
La régénération de 1 ' adsorbant est habituellement réalisée par les gaz résiduaires, en particulier de l'azote ou de l'oxygène impur mais exempt de dioxyde de. carbone et d'eau, provenant de l'unité de distillation cryogénique située en aval.
Or, pour obtenir un flux de gaz résiduaire, il est nécessaire que la pression dudit gaz résiduaire soit supérieure à la pression de régénération régnant dans l'unité de purification contenant l'adsorbant devant être régénéré.
De là, une augmentation de la pression la plus basse de l'unité de distillation cryogénique engendre une augmentation de la pression au refoulement du compresseur d'air et donc, par conséquent, de la consommation en énergie de compression de l'ensemble de l'installation.
Habituellement, la pression de régénération est soit légèrement supérieure à la pression atmosphérique, soit inférieure à la pression atmosphérique; la mise en dépression étant réalisée à l'aide d'une pompe à vide.
En outre, on sait que le débit d' adsorption influence aussi les performances de l'unité de purification.
Or, le débit d' adsorption est imposé par la quantité de gaz à produire et varie donc en fonction de ladite quantité de gaz à produire et de la nature dudit gaz .
De même, le débit de régénération du gaz de régénération utilisé engendre des fluctuations des performances d • adsorption. En pratique, le rapport du débit de régénération au débit d' adsorption varie, selon le procédé, de 5 à 80%.
Il s'ensuit que, plus ce rapport est élevé, plus les performances de régénération augmentent, mais plus les pertes de charge augmentent aussi. Le but de la présente invention est de proposer un procédé de purification d'air permettant de conduire à une purification efficace et économiquement acceptable du point de vue industriel, lequel procédé est basé sur une sélection judicieuse des paramètres précités.
Un autre but de l'invention est de proposer un procédé permettant de conduire à des performances sensibles constantes et régulières tout au long de l'année, c'est-à-dire quelles que soient les conditions atmosphériques ambiantes.
L'invention concerne alors un procédé de purification d'un flux d'air contenant au moins une impureté choisie parmi le dioxyde de carbone (C02) , la vapeur d'eau (H2O) et les hydrocarbures (CnHm) , comprenant au moins :
- une étape d' adsorption d'au moins l'une desdites impuretés sur au moins un lit d'adsorbant, ladite adsorption étant réalisée à au moins une température d' adsorption (Tads) et à au moins une pression d' dsorption (Pads) , et
- une étape de régénération d'au moins une partie dudit lit d'adsorbant, ladite régénération étant réalisée à au moins une température de régénération (Treg) et à au moins une pression de régénération (Preg) .
Selon le procédé de l'invention, d'une part, au moins un lit d'adsorbant contient des particules de zéolite X ayant un rapport Si/Al de 1 à 1.15 et, d'autre part, on choisit et/ou on ajuste la température d1 adsorption (Tads), la pression d' adsorption (Pads), la température de régénération (Treg) et la pression de régénération (Preg) , telles que :
Figure imgf000009_0001
Dans le cadre de l'invention, les températures sont exprimées en °C, les pressions en Pa et les débit en m3/h.
Selon le cas, le procédé de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes:
Treg Pads - 10 < — - x < 25
Tads Preg
„ _ Treg Pads
- de préférence : 11 < — x < 23
Tads Preg
- l'étape d' adsorption est réalisée, en outre, à un débit d' adsorption (Dads) et ladite étape de régénération est réalisée à un débit de régénération (Dreg) , tels que:
Treg Pads Dreg
2 . 8 < — x x - < 14
Tads Preg Dads
- de préférence : 3 < Treg . Pads . Dreg < 13 Tads Preg Dads
6.8 < Treg. Pads . Dreg < 12 Tads Preg Dads
- au moins un lit d'adsorbant contient une zéolite LSX (Low Silica X) ayant un rapport Si/Ai d'environ 1.
- au moins un lit de particules d'alumine activée est situé en amont d'un lit d'adsorbant contenant au moins un adsorbant de type zéolite X ayant un rapport Si/Ai d'environ 1.
- la pression d' adsorption est comprise entre 3.105 Pa et 6.106 Pa,
- la pression de régénération est comprise entre 105 Pa et 3.105 Pa.
- la température d' adsorption est comprise entre 0°C et +80°C.
- la température de régénération est comprise entre 20°C et 200°C.
- l'alumine est choisie parmi les alumines activées imprégnées et calcinées, les alumines activées imprégnées non calcinées et les alumines activées calcinées.
- le rapport du débit de régénération au débit d' adsorption est compris entre 5% et 80%. on opère une séparation par distillation cryogénique de l'air purifié obtenu. - le procédé est de type PSA (Pressure Swing Adsorption) ou de type TSA (Température Swing Adsorption) , de préférence de type TSA.
1 ' alumine est une alumine imprégnée par une solution de sels de métaux alcalins ou alcalino-terreux, de préférence l'alumine contient moins de 10% en poids d'un ou plusieurs métaux alcalins ou alcalino-terreux, en particulier le ou les métaux sont choisis dans le groupe formé par le sodium (Na+) , le potassium (K+) et le calcium (Ca2+) . - l'alumine contient au moins 1% en poids d'un ou plusieurs métaux alcalins ou alcalino-terreux, de préférence de 2 à 9.8 % en poids d'un ou plusieurs métaux alcalins ou alcalino-terreux, préférentiellement au moins 3.5 % en poids d'un ou plusieurs métaux alcalins ou alcalino-terreux.
- la zéolite X ayant un rapport Si/Ai < 1.15, de préférence de l'ordre de 1, est échangée ou contient moins de 35% de cations potassium (K+) , de 1 à 99% de cations sodium (Na+) et moins de 99% de cations calcium (Ca2+) , de préférence de 0.01% à 12% de cations potassium (K+) , de 1 à 99% de cations calcium (Ca2 +) et de 1 à 99% de cations sodium (Na+) .
- la zéolite X ayant un rapport Si/Ai < 1.15, de préférence de l'ordre de 1, est échangée ou contient moins de 10% de cations potassium (K+) , de 1 à 50% de cations sodium (Na+) et de 50 à 99% de cations calcium (Ca2+) , de préférence au moins 66% de cations calcium (Ca2+) et préférentiellement encore de 80 à 96% de cations calcium.
- la zéolite X ayant un rapport Si/Ai < 1.15, de préférence de l'ordre de 1, est échangée ou contient de 0 à 7% de cations potassium (K+) , de 4 à 11 % de cations sodium (Na+) et de 82 à 92% de cations calcium (Ca2+) ,
- la zéolite X ayant un rapport Si/Ai < 1.15, de préférence de l'ordre de 1, est échangée ou contient, en outre, de 0 à 98 % de cations lithium (Li+) , de préférence de 60 à 96% de cations lithium.
L'invention va maintenant être illustrée à l'aide d'exemples donnés à titre illustratif mais non limitatif.
EXEMPLES
Les exemples ci-après visent à comparer différentes conditions opératoires d'un procédé de purification selon l'invention, notamment la consommation énergétique qu'engendre la régénération de l'adsorbant, ainsi que l'importance des pertes de charges du lit d'adsorbant.
Dans ces exemples, plusieurs adsorbants de natures différentes ont été testés, à savoir des zéolites de type 13X ou de type LSX (Low Silica X) ayant un rapport Si/Al 1,15 et des alumines activées et dopées par des cations métalliques, en particulier le sodium, le calcium et/ou le potassium.
Le lit d'adsorbant est mis en oeuvre dans un procédé de type TSA mis en oeuvre dans une installation à deux adsorbeurs fonctionnant en parallèle, c'est-à-dire que l'un des adsorbeurs est en phase de régénération pendant que l'autre est en phase de purification, c'est-à-dire d' adsorption. Afin de faciliter les comparaisons, le temps de cycle, le débit d' adsorption (Dads), le diamètre des adsorbeurs, les durées de pressurisation et de décompression des adsorbeurs sons maintenus constants.
Pour chaque essai, on a calculé les rapports RTP et RDTP, avec:
Treg Pads
RTP - x et
Tads Preg
Treg Pads Dreg
R DTP x x = R. Dreg
TP X
Tads Preg Dads Dads
Les conditions d'essais et les résultats obtenus pour chacun des essais A à D ont été consignés dans le tableau I suivant.
TABLEAU I
Figure imgf000013_0001
II ressort du tableau I précédent que les essais A et B conduisent à des résultats médiocres, alors que les essais C et D donnent de bons résultats.
Plus précisément, dans l' essais A, la température de régénération (Treg) est top élevée, ce qui conduit à un gaspillage d'énergie, c'est-à-dire à une surconsommation énergétique.
A l'inverse, dans l'essai B, la température de régénération mise en oeuvre n'est pas assez élevée pour garantir une régénération efficace du lit d'adsorbant. Dans ce cas, les impuretés adsorbees durant la phase de purification ne seront pas complètement désorbées durant la phase de régénération.
Dans les essais C et D, conformes à la présente invention, on constate que, pour des conditions opératoires bien choisies, on obtient des résultats favorables tant en ce qui concerne les performances de purification de l'air ainsi traité, qu'en ce qui concerne les coûts notamment énergétiques, à savoir l'énergie de compression et celle de régénération par exemples.
Le tableau II ci-après donne des valeurs de pressions d* adsorption (Pads) et de température de régénération (Treg) conformes à la présente invention (ici TPDR est compris entre environ 3 et 12) , pour une température d' adsorption (Tads), une pression de régénération (Treg) et un rapport de débits (Dreg/Dads) constant, à savoir: Tads = 20°C, Preg = i,i.lθ5 Pa et Dreg/Dads = 10%.
Pour ces valeurs, l'adsorbant mis en oeuvre est soit une zéolite de type X, de préférence de type LSX, échangée ou non par des cations métalliques, soit une alumine activée dopée ou non.
TABLEAU II
Figure imgf000014_0001
Il s'ensuit que la mise en oeuvre d'un adsorbant à haute performance, telle une zéolite X ou LSX et/ou une alumine activée dopée, dans les conditions opératoires selon la présente invention permet de réduire nettement la consommation énergétique.
En outre, à performances d' adsorption équivalentes, le procédé selon l'invention permet de réduire la quantité d'adsorbant à utiliser, donc les pertes de charges au sein du lit d' adsorption et l'énergie de compression à mettre en oeuvre, et d'obtenir un temps de traversée du lit d' adsorption par le front de chaleur plus court durant la phase de régénération et donc une régénération plus efficace et moins coûteuse en énergie.
Les meilleurs résultats sont obtenus avec des adsorbants composites comprenant un lit de zéolite LSX (Si/Ai = 1 environ) et contenant moins de 12% de cations potassium, de 1 à 99% de cations sodium et moins de 99% de cations calcium, lequel lit de zéolite LSX est associé à un lit d'alumine imprégnée ou contenant un ou des métaux alcalins ou alcalino-terreux, en particulier le sodium (Na+) , le potassium (K+) et le calcium (Ca2+) , situé en aval du lit de zéolite LSX.

Claims

REVENDICATIONS
1. Procédé de purification d'un flux d'air contenant au moins une impureté choisie parmi le dioxyde de carbone, la vapeur d'eau et les hydrocarbures, comprenant au moins :
- une étape d* adsorption d'au moins l'une desdites impuretés sur au moins un lit d'adsorbant, ladite adsorption étant réalisée à au moins une température d' adsorption (Tads) et à au moins une pression d' adsorption (Pads), et
- une étape de régénération d'au moins une partie dudit lit d'adsorbant, ladite régénération étant réalisée à au moins une température de régénération (Treg) et à au moins une pression de régénération (Preg) , caractérisé en ce qu'on choisit ladite température d' adsorption (Tads), ladite pression d' adsorption (Pads), ladite température de régénération (Treg) et ladite pression de régénération (Preg) telles que :
Treg Pads
7 , 3 x 33
Tads Preg
et en ce qu'au moins un lit d'adsorbant contient des particules de zéolites X ayant un rapport Si/Ai de 1 à 1.15.
2. Procédé selon la revendication 1, caractérisé en ce que :
Treg Pads
10 < — - x < 25
Tads Preg „ „ Treg Pads de préférence : il < — — x < 23
Tads Preg
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que ladite étape d* adsorption est réalisée, en outre, à un débit d' adsorption (Dads) et ladite étape de régénération est réalisée à un débit de régénération (Dreg) tels que:
Treg Pads Dreg
2 . 8 < — - x x - < 14
Tads Preg Dads
de préférence : 3 < ïχe.g . p_ads • reg < 13
Tads Preg Dads
4. Procédé selon la revendication 3, caractérisé en ce que :
6.8 < Treg . Pads . Dreg < 12 Tads Preg Dads
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'au moins un lit d'adsorbant contient une zéolite LSX ayant un rapport Si/Ai d'environ 1.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'au moins un lit de particules d'alumine activée est situé en amont d'un lit d'adsorbant contenant au moins un adsorbant de type zéolite X ayant un rapport Si/Ai d'environ 1
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que :
- la pression d' adsorption est comprise entre 3.105 Pa et 6.106 Pa ; et/ou
- la pression de régénération est comprise entre 105 Pa et 3.105 Pa ; et/ou
- la température d' adsorption est comprise entre 0°C et +80°C ; et/ou
- la température de régénération est comprise entre 20°C et 200°C.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'alumine est choisie parmi les alumines activées imprégnées et calcinées, les alumines activées imprégnées non calcinées et les alumines activées calcinées.
9. Procédé selon l'une des revendications l à 8, caractérisé en ce que le rapport du débit de régénération au débit d' adsorption est compris entre 5% et 80%.
10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'il est choisi parmi les procédés TSA.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que l'alumine est une alumine imprégnée par une solution de sels de métaux alcalins ou alcalino- terreux ou contenant un ou plusieurs métaux alcalins ou alcalino-terreux, de préférence l'alumine contient moins de 10% en poids d'un ou plusieurs métaux alcalins ou alcalino-terreux choisis dans le groupe formé par le sodium, le potassium et le calcium.
12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que l'alumine contient de 1 à 9.8 % en poids d'un ou plusieurs métaux alcalins ou alcalino- terreux, préférentiellement au moins 3.5 % en poids d'un ou plusieurs métaux alcalins ou alcalino-terreux.
13. Procédé selon l'une des revendications 1 à 12 , caractérisé en ce que la zéolite X a un rapport Si/Ai inférieur ou égal à 1.15, de préférence de l'ordre de 1, et est échangée ou contient moins de 35% de cations potassium, de 1 à 99% de cations sodium et moins de 99% de cations calcium, de préférence de 0.01% à 12% de cations potassium, de 1 à 99% de cations calcium et de 1 à 99% de cations sodium.
14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que la zéolite X a un rapport Si/Ai inférieur ou égal à 1.15, de préférence de l'ordre de 1, et est échangée ou contient moins de 10% de cations potassium, de 1 à 50% de cations sodium et de 50 à 99% de cations calcium, de préférence au moins 66% de cations calcium et préférentiellement encore de 80 à 96% de cations calcium.
15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que la zéolite X a un rapport Si/Ai inférieur ou égal à 1.15, de préférence de l'ordre de 1, et est échangée ou contient de 0 à 7% de cations potassium, de 4 à 11 % de cations sodium et de 82 à 92% de cations calcium.
16. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que la zéolite X a un rapport Si/Ai inférieur ou égal à 1.15, de préférence de l'ordre de 1, est échangée ou contient, en outre, de 0 à 98 % de cations, de préférence de 60 à 96% de cations lithium.
PCT/FR1999/000898 1998-04-17 1999-04-16 Procede de purification de gaz par adsorption avec pressions et temperatures controllees WO1999054023A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU33352/99A AU3335299A (en) 1998-04-17 1999-04-16 Method for purifying gas by adsorption with controlled pressure and temperature levels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9804836A FR2777477B1 (fr) 1998-04-17 1998-04-17 Procede de purification de gaz par adsorption avec pressions et temperatures controlees
FR98/04836 1998-04-17

Publications (1)

Publication Number Publication Date
WO1999054023A1 true WO1999054023A1 (fr) 1999-10-28

Family

ID=9525370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000898 WO1999054023A1 (fr) 1998-04-17 1999-04-16 Procede de purification de gaz par adsorption avec pressions et temperatures controllees

Country Status (3)

Country Link
AU (1) AU3335299A (fr)
FR (1) FR2777477B1 (fr)
WO (1) WO1999054023A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1080773A1 (fr) * 1999-09-03 2001-03-07 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Procédé et système de purification d'air à régénération thermique
RU2455232C2 (ru) * 2010-07-09 2012-07-10 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Адсорбент-осушитель и способ его приготовления
RU2508156C2 (ru) * 2012-05-03 2014-02-27 Федеральное государственное бюджетное учреждение науки Институт теоритической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ разделения многокомпонентной парогазовой смеси

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2818920B1 (fr) * 2000-12-29 2003-09-26 Air Liquide Procede de traitement d'un gaz par absorption et installation correspondante
US20020185005A1 (en) * 2001-04-25 2002-12-12 Shuguang Deng Air separation process
US7682374B2 (en) 2003-10-21 2010-03-23 Arthrocare Corporation Knotless suture lock and bone anchor implant method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654643A1 (fr) * 1993-11-19 1995-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air
WO1996014917A1 (fr) * 1994-11-11 1996-05-23 The Secretary Of State For Defence Adsorption modulee en pression et en temperature et adsorption modulee en temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654643A1 (fr) * 1993-11-19 1995-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de distillation d'air
WO1996014917A1 (fr) * 1994-11-11 1996-05-23 The Secretary Of State For Defence Adsorption modulee en pression et en temperature et adsorption modulee en temperature

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1080773A1 (fr) * 1999-09-03 2001-03-07 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Procédé et système de purification d'air à régénération thermique
US6402809B1 (en) 1999-09-03 2002-06-11 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Management of an air purification system with thermal regeneration
RU2455232C2 (ru) * 2010-07-09 2012-07-10 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Адсорбент-осушитель и способ его приготовления
RU2508156C2 (ru) * 2012-05-03 2014-02-27 Федеральное государственное бюджетное учреждение науки Институт теоритической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ разделения многокомпонентной парогазовой смеси

Also Published As

Publication number Publication date
FR2777477B1 (fr) 2000-05-19
AU3335299A (en) 1999-11-08
FR2777477A1 (fr) 1999-10-22

Similar Documents

Publication Publication Date Title
EP1312406B1 (fr) Procédé de purification de gaz de synthèse
EP0930089B1 (fr) Procédé de purification par adsorption de l&#39;air avant distillation cryogenique
JP3553568B2 (ja) 酸素・窒素混合ガスより窒素分離するための吸着剤とそれを用いた窒素製造方法
EP0938920A1 (fr) Procédé et dispositif de purification de gaz par adsorption a lits horizontaux fixes
US8690990B2 (en) Method of purifying air
EP0922482B1 (fr) Procédé de purification d&#39;air par adsorption sur alumine calcinée des impuretés CO2 et H2O
AU702778B1 (en) Process for the removal of water, CO2, ethane and CO3+ hydrocarbons from gas stream
FR2811241A1 (fr) Procede pour la purification de melanges gazeux a base d&#39;hydrogene utilisant une zeolite x au calcium
EP1080773A1 (fr) Procédé et système de purification d&#39;air à régénération thermique
FR2784599A1 (fr) Procede de purification d&#39;un flux gazeux en ses impuretes n2o
EP1446223B1 (fr) Un procede de purification de l&#39;air utilisant un adsorbant zeolitique au barium et calcium
CA2743951A1 (fr) Adsorbeurs radiaux monolits en serie
JP4590287B2 (ja) 空気液化分離装置における原料空気の精製方法
EP1458461A1 (fr) Procede de traitement par adsorption d&#39;un melange gazeux
JP3084248B2 (ja) 燃焼排ガスから二酸化炭素を回収するための2段式吸着分離設備および2段式二酸化炭素吸着分離方法
WO1995011856A1 (fr) Procede d&#39;epuration d&#39;air
WO1999054023A1 (fr) Procede de purification de gaz par adsorption avec pressions et temperatures controllees
JP4839114B2 (ja) 液化炭酸ガス精製装置
FR2836058A1 (fr) Procede de separation d&#39;un melange gazeux et installation de mise en oeuvre d&#39;un tel procede
EP1035391B1 (fr) Procédé et installation de purification et de séparation d&#39;air par voie cryogénique sans pré-refroidissement
FR2739304A1 (fr) Procede et dispositif d&#39;epuration d&#39;air comprime, procede et installation de distillation d&#39;air les utilisant
JPH04227018A (ja) 高純度不活性ガスの製造方法
FR2960444A1 (fr) Procede d&#39;epuration d&#39;air par adsorption
JP3369424B2 (ja) 混合ガス分離方法
JP4171392B2 (ja) ガスの分離回収方法および圧力スイング吸着式ガス分離回収システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase