RU2508156C2 - Способ разделения многокомпонентной парогазовой смеси - Google Patents

Способ разделения многокомпонентной парогазовой смеси Download PDF

Info

Publication number
RU2508156C2
RU2508156C2 RU2012118350/05A RU2012118350A RU2508156C2 RU 2508156 C2 RU2508156 C2 RU 2508156C2 RU 2012118350/05 A RU2012118350/05 A RU 2012118350/05A RU 2012118350 A RU2012118350 A RU 2012118350A RU 2508156 C2 RU2508156 C2 RU 2508156C2
Authority
RU
Russia
Prior art keywords
target product
mixture
separation
vapor
helium
Prior art date
Application number
RU2012118350/05A
Other languages
English (en)
Other versions
RU2012118350A (ru
Inventor
Василий Михайлович Фомин
Виталий Николаевич Зиновьев
Иван Викторович Казанин
Вадим Аксентьевич Лебига
Алексей Юрьевич Пак
Антон Сергеевич Верещагин
Анна Федоровна Фомина
Александр Григорьевич Аншиц
Евгений Анатольевич Булучевский
Александр Валентинович Лавренов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт теоритической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт теоритической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт теоритической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН)
Priority to RU2012118350/05A priority Critical patent/RU2508156C2/ru
Publication of RU2012118350A publication Critical patent/RU2012118350A/ru
Application granted granted Critical
Publication of RU2508156C2 publication Critical patent/RU2508156C2/ru

Links

Images

Landscapes

  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Способ разделения многокомпонентной парогазовой смеси относится к химической, нефтехимической, газовой промышленности и может быть использован при извлечении или концентрировании одного или нескольких целевых компонентов из многокомпонентной парогазовой смеси, например гелия из природного газа. Согласно способу разделение многокомпонентной парогазовой смеси с ее одновременной осушкой производят в цикле. При этом парогазовую смесь, поступившую в адсорбционную емкость, выдерживают в течение времени, необходимого для достижения заданного перепада парциальных давлений целевого продукта вне и внутри полых сферических частиц, стенки которых выполнены из селективно-проницаемого материала по отношению к целевому продукту, например из алюмосиликатного стекла, одновременно происходит осушка и сорбция сопутствующего продукта гигроскопичным материалом гранул, например γ-оксидом алюминия (γ-Аl2О3), поглощающим пары жидкости, затем осуществляют десорбцию целевого и сопутствующего продуктов, после чего цикл повторяют. Изобретение позволяет повысить эффективность и качество разделения многокомпонентной парогазовой смеси с выделением целевого продукта при одновременной осушке смеси. 6 ил.

Description

Способ относится к химической, нефтехимической, газовой промышленности и может быть использован при извлечении или концентрировании одного или нескольких целевых компонентов из многокомпонентной парогазовой смеси, например гелия из природного газа.
Предлагаемый способ относится к области разделения газовых и парогазовых смесей, в частности к способам мембранного разделения.
Известен способ разделения газовой смеси, включающий стадии сжатия исходной газовой смеси, пропускания сжатой смеси через пространство между мембранными элементами, диффузию проникающего компонента газовой смеси через полупроницаемую мембрану мембранных элементов и отвод проникшего компонента. Мембранные элементы выполнены в виде полых замкнутых тел, а отвод проникшего компонента осуществляют после прекращения пропускания сжатой смеси путем вакуумирования пространства между мембранными элементами и обратной диффузии проникшего компонента через полупроницаемую мембрану [1].
Недостатком данного способа диффузионного газообмена является возможность вывода только одного или нескольких целевых продуктов из потока газовой смеси, проникающих через материал мембранных элементов, и невозможность дополнительного отделения сопутствующих элементов из газовой смеси, проходящей сквозь мембрану.
Известен также способ мембранного разделения газов и жидкостей, включающий подачу разделяемой смеси с одной стороны полупроницаемой мембраны из сополимера тетрафторэтилена с виниловыми эфирами общей формулы. Проникшие компоненты отбирают с другой стороны мембраны. Данная мембрана позволяет эффективно выделять амины [2].
Недостатком данного способа является ограниченная производительность в виду малой относительной площади поверхности мембраны и невысокая надежность. При любом повреждении полупроницаемой мембраны через нее начинает проходить исходная газовая смесь без разделения, в результате чего качество выделяемого продукта ухудшается.
Прототипом предлагаемого способа может служить способ и система разделения газовой смеси [3]. Система разделения газовой смеси, содержащая гелий, включает селективно-проницаемую мембрану, разделяющую область подачи указанной смеси и область выделения компонентов смеси. Согласно патенту мембрана выполнена в виде слоя гранул из материала, адсорбирующего сопутствующий и пропускающего целевой продукт - гелий, при этом гранулы заполнены полыми замкнутыми телами, стенки которых выполнены из материала, пропускающего и удерживающего внутри тела только целевой продукт. Указанную газовую смесь пропускают через слой элементов мембраны до их полного насыщения целевым продуктом, затем поток перекрывают и осуществляют процесс регенерации мембраны, при этом выделение целевого продукта из полых замкнутых тел осуществляют путем понижения давления и повышения температуры в пространстве между гранулами, а затем цикл повторяют.
Недостатком данного способа является неэффективное извлечение целевого продукта из газовой смеси при ее пропускании через слой элементов мембраны, так как часть продукта уносится вместе с потоком.
Выделение целевого продукта осуществляют после проведения стадии осушения смеси.
Задача изобретения - повышение эффективности и качества разделения многокомпонентной парогазовой смеси с выделением целевого продукта - гелия при одновременной осушке смеси.
Поставленная задача решается благодаря тому, что способ разделения многокомпонентной парогазовой смеси, включающий извлечение целевого продукта - гелия, осуществляется путем напуска смеси в адсорбционную емкость, заполненную селективно-проницаемым сорбционным слоем, состоящим из гранул с полыми замкнутыми сферическими частицами, сорбции целевого и сопутствующего продукта с последующей десорбцией разделенных продуктов. Согласно предложенному способу разделение многокомпонентной парогазовой смеси с ее одновременной осушкой производят в цикле, при этом парогазовую смесь, поступившую в адсорбционную емкость, выдерживают в течение времени, необходимого для достижения заданного перепада парциальных давлений целевого продукта вне и внутри полых сферических частиц в течение интервала времени 1<t≤2 часов, стенки которых выполнены из селективно-проницаемого материала по отношению к целевому продукту из алюмосиликатного или натрий-бромсиликатного стекла, одновременно происходит осушка и сорбция сопутствующего продукта гигроскопичным материалом гранул, выполненных из γ-оксида алюминия (γ-Аl2О3), поглощающего пары жидкости, затем осуществляют десорбцию целевого и сопутствующего продуктов, после чего цикл повторяют.
Технический результат, достигаемый при использовании изобретения: повышение эффективности процесса разделения многокомпонентной парогазовой смеси и степени извлечения целевого продукта - гелия за счет высокой селективности полых сферических частиц, стенки которых выполнены из алюмосиликатного стекла или натрий-бромсиликатного стекла, и одновременное осушение целевого продукта за счет гигроскопичного материала гранул из γ-оксида алюминия (γ-Аl2О3).
Предложенный способ разделения парогазовой смеси, по сравнению с известными, обеспечивает более полное и энергоэффективное разделение смеси с ее одновременной осушкой, что является положительным результатом.
На фиг.1 изображена адсорбционная емкость разделения многокомпонентной парогазовой смеси. На фиг.2 представлена схема экспериментальной установки (Пример 1); на фиг.3 и 4 - графики, отражающие изменение давления смеси в экспериментальной установке при процессе поглощения гелия полыми сферическими частицами и извлечения гелия из частиц (Пример 1). На фиг.5 изображена схема экспериментального стенда (Пример 2); на фиг.6 показан процесс поглощения гелия и осушка парогазовой смеси сорбционным слоем (Пример 2).
Способ разделения многокомпонентной парогазовой смеси осуществляется следующим образом. Сорбционный слой, селективно поглощающий полыми сферическими частицами один или несколько целевых продуктов и адсорбирующий гранулами пары жидкости, помещают в адсорбционную емкость. Многокомпонентную парогазовую смесь подают в емкость и выдерживают в течение времени, необходимого для достижения требуемого давления, которое определяется экспериментально и зависит от параметров полых сферических частиц (коэффициента проницаемости материала частиц, толщины стенки, размера внутренней полости), после чего перекрывают запорно-регулирующую арматуру. Для условий эксперимента, приведенного в Примере 1, это время может составить в течение интервала времени 1<t≤2 часов. При этом целевой продукт - гелий под действием перепада парциального давления проникает через стенки полых сферических частиц и накапливается внутри, а пары жидкости задерживаются и накапливаются в адсорбирующем материале гранул. После достижения заданного значения перепада парциального давления гелия вне и внутри частиц выполняют процесс извлечения целевого и сопутствующего продуктов из гранул. При этом требуемое значение перепада парциального давления гелия вне и внутри частиц выбирается исходя из технологических требований таким образом, чтобы подобрать соответствующие степень и темпы разделения смеси. Целевой продукт из полых замкнутых частиц извлекают созданием обратного перепада давления (когда давление внутри полых замкнутых частиц выше, чем давление в свободном объеме емкости) с возможным повышением температуры, а извлечение адсорбированной жидкости производят повышением температуры сорбционного слоя.
После извлечения целевых и сопутствующих продуктов из гранул в адсорбционную емкость вновь подают парогазовую смесь и цикл повторяют.
Пример 1
Экспериментальная проверка разделения многокомпонентной парогазовой смеси на стадии поглощения и извлечения целевого продукта проводилась на специальном стенде. Основу стенда составляет адсорбционная емкость, заполненная гранулами. Гранулы сорбционного слоя выполнены из γ-оксида алюминия (γ-Аl2О3) и заполнены полыми сферическими частицами - ценосферами HM-R-5A, с диаметром 125-160 мкм и толщиной стенок ~5-8 мкм, выполненными из алюмосиликатного стекла. На фиг.2 представлена схема экспериментальной установки, которая состоит из адсорбционной емкости 1, системы регистрации давления ДД и вентилей В1-В4 запорно-регулирующей арматуры.
В качестве гелийсодержащей смеси использовалась воздушно-гелиевая смесь с объемной концентрацией гелия ~2,25%. В емкость с гранулами подавалась парогазовая смесь до давления 0,95 МПа, затем запорная-регулирующая арматура перекрывалась, и в емкости протекал процесс сорбции гелия полыми частицами с одновременной осушкой, по окончании которого производился забор пробы смеси из емкости для измерения концентрации. На фиг.3 представлен график изменения давления в емкости с течением времени, происходящего в результате проникновения гелия внутрь полых частиц сорбционного слоя в течение интервала времени 1<t≤2 часов. В ходе этого процесса разница парциальных давлений гелия вне и внутри частиц уменьшается, что приводит к существенному снижению темпов процесса сорбции. Произведенный забор пробы обедненной смеси газа показал, что концентрация гелия в смеси составила 1,17%.
Далее из емкости удалялась обедненная смесь путем сброса давления до атмосферного с последующей откачкой смеси до давления 0,05 МПа с целью создания обратного перепада парциальных давлений гелия вне и внутри частиц (см. фиг.4). Увеличение давления в емкости с течением времени свидетельствует о десорбции гелия из гранул. Итоговое значение концентрации гелия в емкости составило ~8,6%, что показывает обогащение исходной смеси по гелию приблизительно в 4 раза.
Следует отметить, что степень обогащения во многом определяется технологическим процессом разделения многокомпонентной парогазовой смеси, так как при процессах сорбции и десорбции через стенки частиц проникает только целевой продукт. Здесь стоит вопрос об оптимальности технологического процесса, затрат и темпов обогащения.
Пример 2
Экспериментальная проверка осушки парогазовой смеси материалом гранул проводилась на стенде, схема которого представлена на фиг.5. Адсорбционная емкость 2 была заполнена гранулами из γ-оксида алюминия (γ-Аl2О3) в качестве связующего материала и полыми микросферами марки МСВ-1Л в качестве гелийпоглощающего материала. Микросферы выполнены из натрий-боросиликатного стекла, средний размер частиц - 55 мкм, толщина стенки ~1 мкм. Сначала воздушно-гелиевая смесь с объемной концентрацией гелия ~25% пропускалась через увлажнитель. В результате содержание паров воды в смеси, измеренное в момент времени t1 термогигрометром ИВА-6Б с преобразователем влажности и температуры ДВ2ТСМ-1Т-ЗП-В (ИВ 1), составило ~21,1 г/м3. Далее указанная смесь напускалась в емкость 2 до давления 0,79 МПа, после чего запорно-регулирующая арматура перекрывалась, и внутри емкости регистрировалось изменение давления (фиг.6). В течение 2 часов за счет сорбции гелия полыми частицами давление в емкости уменьшилось до значения 0,77 МПа. Далее обедненная смесь из адсорбционной емкости пропускалась через измеритель микровлажности ИВГ-1 МК-С-М с преобразователем влажности и температуры ИПВТ-08-01 (ИВ 2). Результаты измерения влажности в смеси показали, что содержание паров воды в смеси в момент времени t2 составило 6,9 мг/м3. Таким образом, содержание паров воды в смеси после осушки уменьшилось более чем на три порядка.
Источники информации
1. А.с. СССР №1159605, МКИ В01D 53/22, 1985 г.
2. Патент RU №2077373, МКИ B01D 61/00, 1997.
3. Патент RU №2291740, МПК В01D 69/12, 2006 г. - прототип.

Claims (1)

  1. Способ разделения многокомпонентной парогазовой смеси, включающий извлечение целевого продукта - гелия путем пропускания смеси через адсорбционную емкость, заполненную селективно-проницаемым сорбционным слоем, состоящим из гранул с полыми замкнутыми сферическими частицами, сорбцию целевого и сопутствующего продукта с последующей десорбцией разделенных продуктов, отличающийся тем, что разделение многокомпонентной парогазовой смеси с одновременной осушкой производят в цикле, при этом парогазовую смесь, поступившую в адсорбционную емкость, выдерживают в течение времени, необходимого для достижения заданного перепада парциальных давлений целевого продукта вне и внутри полых сферических частиц, стенки которых выполнены из селективно-проницаемого материала по отношению к целевому продукту: из алюмосиликатного или натрий-бромсиликатного стекла, одновременно при этом происходит осушка и сорбция сопутствующего продукта гигроскопичным материалом гранул, выполненных из γ-оксида алюминия (γ-Аl2О3), поглощающим пары жидкости, затем осуществляют десорбцию целевого и сопутствующего продуктов, после чего цикл повторяют.
RU2012118350/05A 2012-05-03 2012-05-03 Способ разделения многокомпонентной парогазовой смеси RU2508156C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012118350/05A RU2508156C2 (ru) 2012-05-03 2012-05-03 Способ разделения многокомпонентной парогазовой смеси

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012118350/05A RU2508156C2 (ru) 2012-05-03 2012-05-03 Способ разделения многокомпонентной парогазовой смеси

Publications (2)

Publication Number Publication Date
RU2012118350A RU2012118350A (ru) 2013-11-10
RU2508156C2 true RU2508156C2 (ru) 2014-02-27

Family

ID=49516701

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012118350/05A RU2508156C2 (ru) 2012-05-03 2012-05-03 Способ разделения многокомпонентной парогазовой смеси

Country Status (1)

Country Link
RU (1) RU2508156C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2626354C1 (ru) * 2016-07-25 2017-07-26 Игорь Анатольевич Мнушкин Способ разделения газового потока на отдельные компоненты или фракции
RU2627849C1 (ru) * 2016-07-22 2017-08-14 Игорь Анатольевич Мнушкин Способ разделения газового потока на отдельные компоненты или фракции

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507860A (en) * 1989-11-14 1996-04-16 Air Products And Chemicals, Inc. Composite porous carbonaceous membranes
WO1999054023A1 (fr) * 1998-04-17 1999-10-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de purification de gaz par adsorption avec pressions et temperatures controllees
RU2291740C2 (ru) * 2005-02-24 2007-01-20 Институт теоретической и прикладной механики им. С.А.Христиановича Сибирского отделения Российской академии наук Система и способ разделения газовой смеси
RU2455232C2 (ru) * 2010-07-09 2012-07-10 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Адсорбент-осушитель и способ его приготовления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507860A (en) * 1989-11-14 1996-04-16 Air Products And Chemicals, Inc. Composite porous carbonaceous membranes
WO1999054023A1 (fr) * 1998-04-17 1999-10-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de purification de gaz par adsorption avec pressions et temperatures controllees
RU2291740C2 (ru) * 2005-02-24 2007-01-20 Институт теоретической и прикладной механики им. С.А.Христиановича Сибирского отделения Российской академии наук Система и способ разделения газовой смеси
RU2455232C2 (ru) * 2010-07-09 2012-07-10 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Адсорбент-осушитель и способ его приготовления

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627849C1 (ru) * 2016-07-22 2017-08-14 Игорь Анатольевич Мнушкин Способ разделения газового потока на отдельные компоненты или фракции
RU2626354C1 (ru) * 2016-07-25 2017-07-26 Игорь Анатольевич Мнушкин Способ разделения газового потока на отдельные компоненты или фракции
RU2626354C9 (ru) * 2016-07-25 2017-10-04 Игорь Анатольевич Мнушкин Способ разделения газового потока на отдельные компоненты или фракции

Also Published As

Publication number Publication date
RU2012118350A (ru) 2013-11-10

Similar Documents

Publication Publication Date Title
Li et al. Competition of CO2/H2O in adsorption based CO2 capture
RU2605593C2 (ru) Способ извлечения гелия и устройство для его осуществления
RU2018121824A (ru) Адсорбирующие материалы и способы адсорбции диоксида углерода
CA2922664C (en) Carbon dioxide recovery apparatus, and carbon dioxide recovery method
WO2018217532A1 (en) Apparatus and system for swing adsorption processes using selectivation of adsorbent materials
US9387430B2 (en) Methods and systems of enhanced carbon dioxide recovery
KR20100057514A (ko) 압력 스윙 흡착 시스템의 얕은 베드에 있어서의 성능 안정성
EA201390708A1 (ru) Кинетические фракционаторы и циклические способы для фракционирования газовых смесей
US10471389B2 (en) Method for producing deuterium depleted water, method for separating heavy water and light water, and method for producing deuterium concentrated water
RU2508156C2 (ru) Способ разделения многокомпонентной парогазовой смеси
WO2014128048A1 (en) Separation process of gaseous compounds from natural gas with low exergy losses
Dasgupta et al. Adsorption properties and performance of CPO-27-Ni/alginate spheres during multicycle pressure-vacuum-swing adsorption (PVSA) CO2 capture in the presence of moisture
JP7498106B2 (ja) Co2の吸着及び捕捉のためのv型吸着剤及びガス濃縮の使用
EP3482813A1 (en) Device for effective capturing and concentration of co2 from gaseous streams in a radial bed adsorber
RU2291740C2 (ru) Система и способ разделения газовой смеси
CN109153003A (zh) 空调装置、空调系统、二氧化碳的除去方法、吸附剂以及二氧化碳除去器
KR102026884B1 (ko) 질소 및 탄화수소를 포함하는 공급 원료로부터 고순도 질소 및 선택적으로 고순도 탄화수소를 생산하기 위한 순환 방법
TW202103771A (zh) 氣體分離裝置及氣體分離方法
KR102018322B1 (ko) 흡착 공정을 위한 흡착탑 시스템 및 흡착 공정을 이용한 혼합 가스 분리 방법
TWM626483U (zh) 用於分離二氧化碳之真空變壓吸附系統
JP4087117B2 (ja) 同位体ガス分離方法および同位体ガス分離装置
JP5817780B2 (ja) 気体脱湿装置
JP6093519B2 (ja) 窒素含有炭化水素ガスからの窒素分離方法および装置
Zabielska et al. Influence of humidity on carbon dioxide adsorptionon zeolite 13X
WO2013109200A1 (en) Mini nitrogen/oxygen generator