WO1999049653A1 - Survolteur et systeme utilisant ce survolteur - Google Patents

Survolteur et systeme utilisant ce survolteur Download PDF

Info

Publication number
WO1999049653A1
WO1999049653A1 PCT/JP1998/001229 JP9801229W WO9949653A1 WO 1999049653 A1 WO1999049653 A1 WO 1999049653A1 JP 9801229 W JP9801229 W JP 9801229W WO 9949653 A1 WO9949653 A1 WO 9949653A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output
signal
output circuit
collector
Prior art date
Application number
PCT/JP1998/001229
Other languages
English (en)
French (fr)
Inventor
Masahiko Ishihara
Makoto Furihata
Masayuki Horie
Original Assignee
Hitachi,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi,Ltd. filed Critical Hitachi,Ltd.
Priority to PCT/JP1998/001229 priority Critical patent/WO1999049653A1/ja
Publication of WO1999049653A1 publication Critical patent/WO1999049653A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/148Video amplifiers

Definitions

  • the present invention relates to an amplification output circuit and a system using the same, and is mainly used for video equipment such as a camera-integrated VTR (video tape recorder) and a digital still camera which are operated by batteries.
  • the present invention relates to a technology that is effective when used in a video signal output circuit that is used. Background art
  • an S-terminal output system that separates and outputs a luminance signal and a color signal, and a so-called composite that outputs a luminance signal and a color signal in the form of a composite video signal
  • the output circuit is connected to a video input terminal of a display device such as a television receiver through a 75 ⁇ evening emission.
  • the luminance signal level is specified as 2 Vpp (peak to peak) when the output terminal is open, and 1 Vpp when the 75 ⁇ is short-circuited.
  • the luminance signal output level is defined as 2 Vp P when the terminal is open and 1 Vpp when 75 ⁇ is shorted, and the color signal output level is 0.57 1 Vpp when the terminal is open and 0.286 Vpp when the 75 ⁇ is shorted. It is stipulated.
  • the photoelectric conversion signal output from the CCD charge transfer device
  • a video signal is formed by processing the video signal, and the video signal is output to a video output terminal via an emitter-follower output transistor, and a video output terminal via a coupling consisting of a coupling capacitor and a 75 ⁇ resistor.
  • This video output terminal is connected to a hidden input terminal of a television receiver TV via a video cable.
  • the above-mentioned video signal output circuit requires an operating frequency band of at least 5 MHz, has good linearity, and can drive a heavy load of 75 ⁇ (load resistance of the video input terminal of a television receiver). There must be.
  • the emitter voltage (maximum output voltage) of the emitter flow output transistor is 2 V pp as described above, and the voltage between the base and the emitter of the transistor VBE is obtained by increasing or decreasing the emitter current to obtain a desired linearity. Must not fluctuate. For this reason, when operating with a 6 V battery, a 9 V voltage is formed by the DC-DC converter overnight to make the operating voltage supplied to the collector of the emitter follower output transistor, and the emitter resistance is fixed as much as possible.
  • the emitter current is 13.7 mA (1 VZ 75 ⁇ ) or more, and usually the bias current. It can output about 20 mA including current. Therefore, the power consumption alone in the emitter-follower output circuit that drives this 75 ⁇ load can be as high as 18 O mW (9 V x 20 mA). Therefore, in conventional force-melted VTRs and digital still cameras, the video output circuit requiring large power consumption as described above shortens the battery life or requires a large battery with a large current capacity. There is a problem that.
  • the present inventor can output the operating voltage as it is.
  • the amplification output circuit by CMOS inverter circuit was studied.
  • a CMOS inverter circuit As an example of using a CMOS inverter circuit as an amplifier circuit, there is Japanese Patent Application Laid-Open No. H11-17511.
  • a CMOS inverter circuit is used as an input circuit of a PLL circuit, and a feedback resistor is added between input and output.
  • a CMOS inverter circuit is used as an input circuit of a PLL circuit, and a feedback resistor is added between input and output.
  • the inventor of the present application has studied to improve the linearity by applying a negative feedback by increasing the gain by connecting a plurality of CMOS inverter circuits in cascade. Cascade connection and apply feedback, the input capacitance in the CMOS inverter circuit causes a 180 ° phase shift for a specific frequency signal, oscillates, and cannot function as an ultimately amplified output circuit. found.
  • an object of the present invention to provide an amplifier output circuit that obtains a desired output current and greatly reduces current consumption while maintaining good linearity.
  • Another object of the present invention is to provide an amplified output circuit which can obtain a desired output current and operate at a low voltage while maintaining good linearity.
  • the present invention provides a negative feedback circuit that drives a CM ⁇ S output circuit composed of a P-channel MOSFET and an N-channel MOSFET by an input circuit composed of a bipolar transistor and feeds back a CMOS output signal to the input circuit. And a negative feedback amplification operation is performed to obtain an output signal from the above CMOS output circuit.
  • FIG. 1 is a circuit diagram showing an embodiment in which an amplification output circuit according to the present invention is applied to a video signal output circuit
  • FIG. 2 is an input / output transfer characteristic diagram of the amplified output circuit shown in FIG. 1, and FIG. 3 is another embodiment in which the amplified output circuit according to the present invention is applied to a video signal output circuit.
  • FIG. 4 is a circuit diagram showing an example
  • FIG. 4 is a circuit diagram showing another embodiment in which the amplification output circuit according to the present invention is applied to a video signal output circuit.
  • FIG. 5 is a circuit diagram showing another embodiment in which the amplification output circuit according to the present invention is applied to a video signal output circuit.
  • FIG. 6 is an input / output transfer characteristic diagram of the amplified output circuit shown in FIG. 5, and FIG. 7 is another embodiment in which the amplified output circuit according to the present invention is applied to a video signal output circuit.
  • FIG. 4 is a circuit diagram showing an example
  • FIG. 8 is a circuit diagram showing another embodiment in which the amplification output circuit according to the present invention is applied to a video signal output circuit.
  • FIG. 9 is a circuit diagram showing an example of a DZA conversion circuit that forms an input signal current of the amplification output circuit according to the present invention.
  • FIG. 10 is a block diagram showing one embodiment of a digital still camera equipped with a video signal signal output circuit according to the present invention.
  • FIG. 11 is a block diagram showing another embodiment of a digital still camera equipped with a video signal output circuit according to the present invention.
  • FIG. 12 is a block diagram showing an embodiment of a camera body type VTR equipped with a video signal signal output circuit according to the present invention
  • FIG. 13 is a schematic element cross-sectional view showing one embodiment in which the amplification output circuit according to the present invention is mounted on a semiconductor integrated circuit device
  • FIG. 14 is a block diagram showing an example of a conventional digital still camera. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a circuit diagram showing an embodiment in which the amplified output according to the present invention is applied to a video signal output circuit.
  • the video signal output circuit of this embodiment has an input circuit 1 composed of bipolar transistors, a CMOS output circuit 2 composed of a CMOS inverter circuit, and an output signal of the CMOS output circuit 2 to a video output terminal. Composed of 75 ⁇ termination 3
  • the input circuit 1 includes a positive-phase amplifier circuit including an input stage circuit and a drive stage circuit.
  • the video input signal Vin is supplied through an input resistor R4 to the base of a PNP transistor T1 constituting an input stage circuit.
  • An emitter resistor R1 is provided between the emitter of the transistor T1 and the power supply voltage VCC, although not particularly limited.
  • a load resistor R2 is provided between the collector of the transistor T1 and the ground potential GND of the circuit.
  • the transistor T1 operates as an inverting amplifier circuit, and the collector output signal is supplied to the base of the NPN transistor T2 forming the inverting amplifier circuit forming the driving stage.
  • the emitter of the transistor T2 is connected to the ground potential of the circuit, and a load resistor R3 is provided between the collector and the power supply voltage VCC.
  • the collector output signal of the transistor T2 is used as a drive signal of a CMOS inverter circuit constituting the CM ⁇ S output circuit 2 described below.
  • the input circuit 1 connects the input stage circuit consisting of the inverting amplifier circuit and the drive stage circuit in cascade. Thus, an operation as a positive-phase amplifier circuit is performed.
  • the CMOS output circuit 2 includes a series circuit of a P-channel MOSFET Q1 and an N-channel MOSFET Q2, and a commonly connected gate is supplied with a drive signal formed by the transistor T2.
  • the source of MOSFETQ1 and the board (channel) are connected to the power supply voltage VCC.
  • the source of MOSFET Q2 and the substrate (channel) are connected to the circuit ground potential GND. Then, the output signal output from the drains of the commonly connected MOSFETs Q 1 and Q 2 is connected to the output terminal through the short circuit 3.
  • the output signal of the CMOS output circuit 2 is negatively fed back to the base of the transistor T1, which is the input of the input circuit 1, through the feedback resistor R5, and performs a negative feedback amplification operation.
  • Termination 3 consists of a series circuit of a coupling (direct current blocking) capacitor mounted on the mounting board and a resistor (almost 75 ⁇ ) for impedance matching.
  • the output terminal is connected to a video input terminal of a display device such as a television receiver TV via a video cable.
  • the CMOS output circuit 2 composed of a CMOS inverter circuit is driven by the drive signal of the input circuit 1, and the output signal is negatively fed back to the input circuit 1 by the resistor R5. Therefore, this negative feedback amplifier circuit operates as an inverting amplifier circuit, and its gain G can be obtained from the following equation (1) because the total gain (open gain) of the three-stage inverting amplifier circuit is sufficiently large. .
  • the maximum output signal level is determined by the power supply voltage VC C It can be enlarged up to the vicinity. Therefore, when the input signal Vin supplied to the input circuit 1 is a composite video signal in the composite output method, 2 V pp when the output terminal is open and 1 V when 75 ⁇ is short-circuited as described above. pp, and if the input signal Vin is a brightness signal in the S terminal output method, 2 V pp is output when the output terminal is open and 1 V pp is output when 75 ⁇ is short-circuited. It can be seen that the power supply voltage VCC required for this can be as low as around 2 V above.
  • the input circuit 1 provided to increase the power consumption is configured using bipolar transistors.
  • the CMOS inverter is used as described above for a video signal up to a band of about 5 MHz. Oscillation operation due to phase shift caused by input capacitance of each stage as in the case of securing open gain by connecting cascaded evening circuits can be prevented.
  • FIG. 2 shows an input / output characteristic diagram when the amplified output circuit of FIG. 1 is operated at a power supply voltage V CC of 3 V.
  • this input / output characteristic diagram it becomes an inverting amplification characteristic, and the input / output characteristic of good linearity is almost within the range of the ground potential 0 V to the power supply voltage VCC.
  • Input / output transfer characteristics can be realized. Therefore, it can be seen that it is possible to use this circuit as a video signal output circuit and output 2 Vpp when the output terminal is open and 1 Vpp when 75 ⁇ is short-circuited as described above.
  • the signal component is 13.7 mA.
  • the input circuit 1 is for increasing the oven gain as described above, and does not require current driving capability.
  • the current consumption can be made negligibly smaller than the current consumption of 20 mA.
  • FIG. 3 is a circuit diagram showing another embodiment in which the amplified output according to the present invention is applied to a video signal output circuit.
  • the input current signal I in the current form is supplied to the collector of the input stage transistor T1.
  • Other configurations are the same as those in the embodiment of FIG.
  • the power supply voltage has been reduced by digital processing, and signal processing has been performed with a power supply voltage of 3 V to 3.3 V, and the digital signal in the final stage has been converted to a digital Z analog D (D). / A)
  • D digital Z analog D
  • the current output signal formed by the DZA conversion circuit does not need to be converted into a voltage signal, and can be used as it is as the input signal I in of the video signal output circuit.
  • a video output signal of the current output format for example, a 75 ⁇ output circuit of the output signal by the above DZA conversion circuit can be realized.
  • FIG. 4 is a circuit diagram showing another embodiment in which the amplified output according to the present invention is applied to a video signal output circuit.
  • This embodiment is a modification of the embodiment shown in FIG. 3, in which the input current signal Iin in the current form is It is supplied at the emitter instead of the collector of the input stage transistor T1.
  • Other configurations are the same as those in the embodiment of FIG.
  • FIG. 5 is a circuit diagram showing another embodiment in which the amplified output according to the present invention is applied to a video signal output circuit.
  • the input circuit is constituted by one stage of an inverting amplifier circuit which is grounded.
  • This inverting amplifier circuit is composed of the transistor ⁇ 3, the emitter resistor R7 provided between the emitter and the ground potential GND, and the load resistor R6 provided between the collector and the power supply voltage VCC.
  • the input voltage signal Vin is supplied to the base, and the collector output is transmitted to the commonly connected gates of the P-channel MOSFET Q1 and the N-channel MOSFET Q2 that constitute the CMOS output circuit.
  • the input circuit and the CMOS output circuit perform a positive-phase amplification operation.
  • an emitter resistor R7 is provided at the emitter of the transistor T3, and a negative feedback signal is supplied through the feedback resistor R8 at the emitter. Supply.
  • the emitter grounding amplifier circuit performs an inverting amplification operation on the input voltage signal Vin supplied from the base, but performs a positive phase amplification operation on the feedback signal input from the emitter. . That is, when the base potential of the NPN transistor T3 increases, the collector voltage decreases because the common-emitter amplifier circuit operates as an inverting amplifier circuit. This collector output signal is transmitted to the input of the CMOS output circuit, and the CMOS output signal rises. This rise in the potential of the CMOS output signal causes the emitter potential to rise through the resistor R8. Negative feedback.
  • the gain G in the circuit of this embodiment can be obtained from the following equation (2).
  • FIG. 6 shows the input / output characteristics when the amplified output circuit of Fig. 5 above is operated with a power supply voltage VCC of 3 V. .
  • VCC power supply voltage
  • FIG. 6 shows the input / output characteristics when the amplified output circuit of Fig. 5 above is operated with a power supply voltage VCC of 3 V. .
  • positive-phase amplification characteristics occur, and a voltage loss is seen in the DC voltage component flowing through the collector load resistor R6 on the power supply voltage VCC side.
  • the input / output characteristics with good linearity that is, the input / output transfer characteristics corresponding to the above-described resistance ratio (R8 + R7) / R7 can be realized in the range up to the voltage VCC. Therefore, it can be seen that it is sufficiently possible to use this circuit as a video signal output circuit and output 2 Vpp when the output terminal is opened and 1 Vpp when 75 ⁇ is short-circuited as described above.
  • FIG. 7 is a circuit diagram showing another embodiment in which the amplified output according to the present invention is applied to a video signal output circuit.
  • the input current signal Iin in the current form is supplied to the emitter of the amplification transistor T3 of the embodiment of FIG. 5, and a fixed bias voltage is applied to the base of the amplification transistor T3. VB is applied.
  • Other configurations are the same as those of the embodiment of FIG.
  • the output signal of the CMOS output circuit is fed back to the input gate (gates of ⁇ 21 and ⁇ 32) through the resistor R8, the base and the collector of the transistor T8. Therefore, the output DC component of the CMOS output circuit is negatively fed back to the input of the 100% CMOS output circuit. Therefore, the DC potential of the input gate of the CMOS output circuit settles at the midpoint voltage VCC / 2 of the power supply voltage VCC. That is, the collector potential of the transistor T3 becomes constant.
  • the emitter potential of the transistor T3 is fixed to the bias voltage V Since B is applied, it becomes VB-VBE (base of transistor T3, emitter voltage). Therefore, when the input current signal Iin is zero, the circuit constant is determined so that a current flows from the output side to the input side through the feedback resistor R8.
  • FIG. 8 is a circuit diagram showing another embodiment in which the amplified output according to the present invention is applied to a video signal output circuit.
  • an input current signal I in a current form is supplied to a collector instead of the emitter of the amplification transistor T3 in the embodiment of FIG.
  • Other configurations and amplifying operations are the same as those of the embodiment of FIG.
  • the current output signal formed by the D / A conversion circuit is not converted into a voltage signal as in the case of FIG. 3 or FIG. It can be used as the input signal I in of the video signal output circuit.
  • a current output type video signal for example, a 75 ⁇ output circuit of the output signal from the DZA conversion circuit can be realized. Things.
  • FIG. 9 is a circuit diagram illustrating an example of a D / A conversion circuit that forms an input current signal of the video signal output circuit.
  • the power supply voltage VCC is supplied to the source as a representative.
  • a P-channel MOSFET Q4 that forms a constant current source with a gate to which a constant voltage formed by a reference voltage generator described later is applied, and a P-channel switch MOSFET Q5 and an N channel that form an output selector Type switch MOSFETQ6.
  • the P-channel MOSFET Q5 has a source / drain path connected between the constant current source MOS FETQ4 and the output terminal ZOUT, and the N-channel M0 SFETQ 4 has a constant current source MOSFETQ2
  • the source and drain paths are connected to the output terminal 0 UT.
  • the constant current ⁇ 0 formed by the constant current source MOSFET Q4 is supplied to the output terminal ZOUT or OUT through the MOSFET Q5 or Q6, which is switch-controlled complementarily by the input signal.
  • the digital signals D 4 to D 9 corresponding to the upper 6 bits range from the minimum value such as 00 to 0 to the maximum value such as 1 1.
  • the current of 0 to 63 I0 is caused to flow to the output terminal OUT through the switch MOSFETQ6 and the like in accordance with the input signal of the above.
  • the constant currents of IoZ2, Io / 4, Io / 8 and Io / 16 are formed by the size ratio of the MOSFET, and the lower 4 bits of the digital signal D
  • the output is supplied to the output terminal by the switch MOSFET corresponding to the switch MO SFETQ 6 corresponding to 3 to D 0, and the above-mentioned step-like step by the constant current I 0 is further decomposed into 16 steps to obtain 1 024
  • An analog current is formed. If the maximum value of the output voltage of the video signal output circuit is 1 V, a video signal with a resolution of about 1 mV can be obtained.
  • Such an output current can be directly used as an input signal of the embodiment circuit as shown in FIG. 3, FIG. 4 or FIG. 7, FIG.
  • the following reference voltage generation circuit is used in order to accurately set the maximum value (full-scale voltage) of the output voltage to a desired voltage.
  • the source and gate of the constant current source MOSFET Q3 having the same structure as the constant current source MOSFETQ4 and the source and gate of the constant current source MOSFETQ4 etc. are commonly connected.
  • a reference resistor Rref is connected between the drain of the MOSFET Q3 and the ground potential of the circuit. When a voltage conversion resistor is connected to the output terminal, this reference resistor Rref is a multiple of the resistance value corresponding to the number of the current mirror MOS groups such as the constant current source MOSFETQ4. Be made to have.
  • the voltage generated by the reference resistance Rref forms a negative feedback circuit between the differential amplifier circuit 0 PA and the MOS FET Q 3 when the constant current source is configured by the P-channel MOSFET as described above.
  • the differential amplifier circuit 0 is supplied to the non-inverting input of the PA.
  • a reference voltage Vref corresponding to the maximum value of the output voltage is supplied to the inverted input of the differential amplifier circuit PA.
  • the current 1 o flowing through the control circuit 33 controls the gate voltage of the MOS FET Q3 such that the voltage drop generated at the reference resistor R ref matches the reference voltage Vref.
  • the same constant current I 0 as the above-mentioned M 0 SFET Q 3 also flows through the constant current MOS FET Q 4 of the current mirror MOS group, and when 63 constant currents are provided and all the constant currents flow to the output terminal OUT, the load resistance is The generated output voltage is 63 times that, and the output voltage at full scale can be made equal to the reference voltage Vref.
  • FIG. 10 is a block diagram showing an embodiment of a digital still camera using the video signal output circuit according to the present invention. In the figure, only a portion related to an electric signal is shown, and a mechanical mechanism such as a switch is omitted.
  • the optical image of the subject input through the lens is converted to an electric signal by the CCD, and a luminance signal and a color signal are generated from the RGB (red, green, blue) electric signal by the video signal processing circuit, and AZD converted. Output as digital signal.
  • This digital signal is recorded on a memory card after its data amount is compressed by a data compression / expansion circuit JPEG.
  • the signal read from the memory card is subjected to data expansion by the data compression / expansion circuit JPEG, digital / analog conversion by the video signal processing circuit, and video through the video signal output circuit as described in the above embodiment. Output from the output terminal.
  • the video signal output circuit is used when the composite output method is used as described above.
  • One circuit is provided.
  • two circuits corresponding to the luminance signal and the color signal are provided.
  • a single battery voltage such as 6 V is used as a power supply, converted to 3.3 V by a DC-DC converter, and processed as described above for video signal processing, a data compression / expansion circuit JPEG, and video.
  • the operating voltage of the signal output circuit By reducing the voltage of such internal circuits, Pond life can be extended.
  • a small and lightweight battery having a small current capacity can be used.
  • FIG. 11 is a block diagram of another embodiment of a digital still camera using the video signal output circuit according to the present invention.
  • the DC-DC converter converts the 3 V battery voltage to 2 V and supplies it to the above-mentioned video signal processing and data compression / decompression circuits.
  • Digital circuits such as JPEG are formed by the DC-DC converter.
  • 3 V is the operating voltage of the video signal output circuit. This DC-DC converter can maintain the operating voltage of the video signal output circuit at 3 V by its voltage conversion function when the battery voltage drops to 3 V or less due to battery voltage.
  • FIG. 12 is a block diagram showing one embodiment of an integrated VTR using the video signal output circuit according to the present invention.
  • the image signal photoelectrically converted by the solid-state imaging device CCD is taken into a digital signal processor DSP composed of a semiconductor integrated circuit device LSI through a correlated double sampling circuit CDS and an automatic gain control circuit AGC.
  • DSP digital signal processor
  • an analog signal is converted into a digital signal by an ADC (analog / digital conversion circuit) provided in the input section, and the Y (luminance) signal for image quality control and recording is converted by digital signal processing.
  • ADC analog alog / digital conversion circuit
  • the Y (luminance) signal for image quality control and recording is converted by digital signal processing. (Color) Form a signal.
  • the digital signal processing is performed by a line memory, matrix circuit, luminance processing, color processing, and encoder, and the above-mentioned Y (luminance) signal converted to an analog signal by a DAC (digital / analog conversion circuit), and the C (color) signal And are formed.
  • the above DSP is provided with a digital interface and outputs an enlarged digital image signal supplied from the electronic zoom control unit.
  • the electronic zoom control section is provided with a line memory, a memory control, and a zoom control.
  • the image signal captured through the digital interface is captured into the line memory, and the Take out the part you want to magnify and send it to the DSP through the digital interface and output a signal corresponding to the magnified image.
  • the CCD is supplied with a drive signal by a sensor drive system.
  • the microcomputer forms control signals for controlling the sensor drive system and the electronic zoom control.
  • the output section of the DAC is provided with a video signal output circuit that operates by the input signal current as described above.
  • the S terminal output type luminance signal (Y signal) and the color signal ( C signal) is output.
  • digital processing for forming a composite signal is performed at a stage subsequent to the encoder, a composite video signal is output from one DAC, and a video signal provided at the output unit is provided. Output through the output circuit.
  • the digital processing circuit and the video signal output circuit can be operated at a low voltage of about 3 V as described above, and the battery life can be extended. Alternatively, a small and lightweight battery with a small current capacity can be used.
  • FIG. 13 is a schematic cross-sectional view of one embodiment of an embodiment in which the amplification output circuit according to the present invention is mounted on a semiconductor integrated circuit device.
  • an N + type buried layer is formed in a portion where an NPN transistor and a PMOS (P-channel MOSFET) are formed on a P-type substrate to form an NMOS (N-channel MOSFET).
  • a P + type buried layer is formed in this part.
  • the N + buried layer in which the NPN transistor and the PMOS are formed is electrically separated by a P + buried layer for element isolation.
  • an epitaxial layer is formed as an element formation region.
  • the epitaxial layer on which the above-mentioned PMOS is formed is regarded as N-type, and a P + type source S and a drain D are formed there.
  • the source S and the drain D are formed on a semiconductor surface between the source S and the drain D via a gate insulating film.
  • a gate electrode G is formed.
  • the epitaxial layer on which the above-mentioned NMOS is formed is a P-type layer, on which an N + type source S and a drain D are formed, and a gate insulating film is formed on the semiconductor surface between the source S and the drain D.
  • a gate electrode G is formed through the gate.
  • the epitaxy layer in which the NPN transistor is formed is N-type, similarly to the above-described PMOS, and a P-type semiconductor region forming the base B, and an N-type semiconductor region forming the emitter E in the P-type semiconductor region. It is formed.
  • the N-type well and the N + -type buried layer constitute the collector C together with the N + -type region for the ohmic contact.
  • an N-type base region is formed in a P-well similar to the above NMOS, and a P-type emitter is formed in this base region.
  • the P + type buried layer is used as a collector, and the collector electrode is taken out from the semiconductor surface by the P + type region for ohmic contact.
  • the amplification output circuit according to the present invention can be formed by one semiconductor integrated circuit, and can be built in a digital signal processing circuit such as the DSPLSI.
  • An input circuit composed of bipolar transistors Oscillation operation is achieved by driving a CMOS output circuit consisting of a MOSFET and an N-channel MOSFET, and providing an amplified output circuit by providing a negative feedback circuit that feeds back the output signal of the CMOS output circuit to the input circuit.
  • the output operation up to the power supply voltage level by the above-mentioned CMOS output circuit makes it possible to obtain the desired output current and greatly reduce the current consumption while realizing input / output characteristics with good linearity by preventing The effect is obtained.
  • a video signal is supplied to the input terminal of the input circuit, and the output signal of the output circuit is transmitted to the output terminal via a coupling consisting of a coupling capacitor and a 75 ⁇ resistor.
  • a coupling consisting of a coupling capacitor and a 75 ⁇ resistor.
  • an input voltage signal is supplied to a base via an input resistor, and a first conductive type first amplifying transistor having a collector provided with a load resistor; and a collector of the first amplifying transistor.
  • An output signal is supplied to a base, and a second amplification transistor having a collector provided with a load resistor.
  • the CMOS output circuit is driven by the collector output of the second amplification transistor.
  • the output signal of the CMOS output circuit is fed back to the base of the first amplification transistor via a feedback resistor, thereby preventing an undesired oscillation operation due to amplification operation up to a high frequency band.
  • a bias voltage is supplied to a base via an input resistor, a first conductivity type first amplification transistor having a collector provided with a load resistor, and a collector output of the first amplification transistor.
  • the signal is And a second amplification transistor having a collector provided with a load resistor, and driving the CMOS output circuit with the collector output of the second amplification transistor.
  • the output signal of the circuit is fed back to the base of the first amplification transistor via a feedback resistor, and the input current signal is supplied to the collector of the first amplification transistor. It is possible to obtain an effect that it is possible to obtain an excellent linear input / output transfer characteristic corresponding to the resistance ratio between the input resistance and the feedback resistance while preventing an undesired oscillation operation.
  • a bias voltage is supplied to a base via an input resistor, and a first conductive type first amplifying transistor having a collector provided with a load resistor; and A collector output signal is supplied to the base, and a second amplification transistor having a collector provided with a load resistor is configured to drive a CMOS output circuit by the collector output of the second amplification transistor.
  • the output signal of the CMOS output circuit is fed back to the base of the first amplifying transistor via a feedback resistor, and an input current signal is supplied to the emitter of the first amplifying transistor.
  • the input current signal supplied to the emitter of the first amplification transistor is an analog current signal formed by a digital / analog conversion circuit.
  • the signal it is possible to simplify the circuit because the current-voltage conversion circuit at the output of the digital-to-analog converter can be omitted, and the digital voltage can be reduced by the emitter voltage. The effect that the output terminal can be fixed potential can be obtained.
  • the input circuit comprises an amplification transistor in which an input voltage signal is supplied to a base, a collector is provided with a load resistor, and an emitter is provided with an emitter resistor.
  • the input circuit comprises an amplification transistor in which a bias voltage is supplied to a base, a load resistance is provided in a collector, and an emitter resistance is provided in an emitter.
  • a bias voltage is supplied to a base
  • a load resistance is provided in a collector
  • an emitter resistance is provided in an emitter.
  • the input circuit comprises an amplification transistor having a bias voltage supplied to the base, a collector provided with a load resistor, and an emitter provided with an emitter resistor.
  • the output signal of the CMOS output circuit is fed back to the emitter of the amplifying transistor via a feedback resistor, and the input current signal is supplied to the collector of the amplifying transistor.
  • the output of the digital / analog conversion circuit can be obtained.
  • the current-voltage conversion circuit can be omitted, so that the circuit can be simplified.
  • the input circuit using the bipolar transistor may be any circuit that increases the open gain.
  • Each circuit element constituting the amplification output circuit according to the present invention may be constituted by a semiconductor integrated circuit as shown in FIG. 13 or each circuit element constituted by a single transistor or a MOS FET.
  • various embodiments can be adopted such as a configuration in which a transistor circuit forming an input circuit and a MOS FET forming a CMOS output circuit are each configured by a single-chip IC and combined.
  • the configuration of a DZA conversion circuit that forms an input voltage signal or an input current signal can employ various embodiments.
  • the present invention can be widely applied to an amplification output circuit such as a video signal output circuit having a large load driving capability at a low voltage and a system using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Amplifiers (AREA)

Description

明 紬 増幅出力回路およびそれを用いた 技術分野
この発明は、 増幅出力回路およびそれを用いたシステムに関し、 主と して電池動作させられるカメラ一体型 VTR (ビデオ .テープ' レコ一 ダ) 、 デジ夕ルスチルカメラ等のような映像機器に用いられる映像信号 出力回路に利用して有効な技術に関するものである。 背景技術
VTR等の映像機器 (映像システム) においては、 輝度信号とカラ一 信号を分けて出力するという S端子出力方式と、 輝度信号とカラ一信号 とを合成した複合映像信号の形態で出力するいわゆるコンポジット出力 方式があり、 そのいずれの方式においても、 その出力回路には 75Ω夕 一ミネーシヨンを介してテレビジョン受像機等のような表示装置のビデ ォ入力端子に接続される。
上記コンポジッ ト出力方式の場合、 輝度信号レベルが出力端子解放時 に 2Vpp (peak to peak)、 75 Ω短絡時 1 Vp pと規定されている 。 上記 S端子出力方式では、 輝度信号出力レベルが端子解放時に 2 Vp P、 75Ω短絡時に 1 Vppと規定され、 カラー信号出力レベルは端子 解放時に 0. 57 1 Vpp, 75 Ω短絡時に 0. 286 Vppと規定さ れている。
このような規格を満した映像信号出力回路として、 第 1 4図に示した ようなデジ夕ルスチルカメラがある。 このデジタルスチルカメラでは、 CCD (電荷移送素子) から出力された光電変換信号をシステム LS I で信号処理して映像信号を形成し、 それをェミッタフォロワ出カトラン ジスタを介して、 結合容量と 7 5 Ωの抵抗からなる夕一ミネ一シヨンを 介してビデオ出力端子に出力させるものである。 このビデオ出力端子は 、 ビデオケ一ブルを介してテレビジョン受像機 TVのヒデォ入力端子に 接続される。
上記映像信号出力回路では、 動作周波数は少なくとも 5 MH zまでの 帯域が必要であり、 かつ直線性がよくて 7 5 Ωという重い負荷 (テレビ ジョン受像機のビデオ入力端子の負荷抵抗) を駆動できなければならな い。 この場合、 エミッタフロォヮ出力トランジスタのエミッタ電圧 (最 大出力電圧) は、 上記のように 2 V p pであり、 所望の直線性を得るた めにエミッタ電流の増減によってトランジスタのベース, エミッタ間電 圧 VBEが変動しないようにする必要がある。 このため、 6 Vのバッテリ 一で動作させる場合には、 D C— D Cコンバ一夕で 9 Vの電圧を形成し て上記エミッタフォロワ出力トランジスタのコレクタに供給される動作 電圧とし、 ェミッタ抵抗を極力定電流源に近づけるよう抵抗にかかる電 位差を大きくするものである。 また、 7 5 Ωという負荷をドライブする ためには、 輝度信号、 コンネポジット信号が 1 V p pであることからェ ミッタ電流は、 1 3 . 7 mA ( 1 VZ 7 5 Ω) 以上、 通常はバイアス電 流を含めて 2 0 mA程度を出力できるようにするものである。 したがつ て、 この 7 5 Ωの負荷をドライブするェミッタフォロワ出力回路での消 費電力だけでも 1 8 O mW ( 9 V X 2 0 mA) にもなつてしまう。 したがって、 従来の力メラー体型 V T Rやデジ夕ルスチルカメラでは 、 上記のような大きな消費電力を必要とする映像出力回路によって電池 寿命を短くしたり、 あるいは大きな電流容量の大型のバッテリーを必要 とするという問題を有する。
本願発明者にぉレ、ては、 動作電圧をそのまま出力させることができる CMOSインバ一タ回路による増幅出力回路を検討した。 CMOSイン バー夕回路を増幅回路として用いる例として、 特開平 1一 1 1 75 1 1 号公報がある。 この公報では、 PLL回路の入力回路に CMOSインバ 一夕回路を用レ、て入出力間に帰還抵抗を付加するものである。 しかしな がら、 このような CMOSインバー夕回路を用いた入力回路では、 上記 映像信号の出力動作に求められるような直線性を得ることは到底期待で きない。 そこで、 本願発明者においては、 CMOSインバー夕回路を複 数個縦列接続して利得を大きくしておいて、 負帰還をかけることにより 直線性の改善を図ることを検討したが、 CMOSインバー夕回路を縦列 接続して帰還をかけると、 CMOSインバー夕回路における入力容量に よって特定の周波数信号に対して 1 80° の位相シフトが生じて発振が 起こり、 到底増幅出力回路として機能し得ないことが判明した。
したがって、 この発明は、 良好な直線性を維持しつつ、 所望の出力電 流を得るとともに消費電流を大幅に低減させた増幅出力回路を提供する ことを目的としている。 この発明は、 良好な直線性を維持しつつ、 所望 の出力電流を得るとともに低電圧での動作を可能にした増幅出力回路を 提供することを他の目的としている。 この発明の前記ならびにそのほか の目的と新規な特徴は、 本明細書の記述および添付図面から明らかにな るであろう。 発明の開示
本発明は、 バイポーラ型トランジス夕で構成された入力回路により P チャンネル型 MOSFETと Nチャンネル型 MOSFETからなる CM 〇S出力回路を駆動し、 その CMOS出力信号を上記入力回路に帰還さ せる負帰還回路を設けて負帰還増幅動作を行わせ、 上記 CMO S出力回 路から出力信号を得るようにする。 図面の簡単な説明
第 1図は、 この発明に係る増幅出力回路を映像信号出力回路に適用し た場合の一実施例を示す回路図であり、
第 2図は、 第 1図に示した増幅出力回路の入出力伝達特性図であり、 第 3図は、 この発明に係る増幅出力回路を映像信号出力回路に適用し た場合の他の一実施例を示す回路図であり、
第 4図は、 この発明に係る増幅出力回路を映像信号出力回路に適用し た場合の他の一実施例を示す回路図であり、
第 5図は、 この発明に係る増幅出力回路を映像信号出力回路に適用し た場合の他の一実施例を示す回路図であり、
第 6図は、 第 5図に示した増幅出力回路の入出力伝達特性図であり、 第 7図は、 この発明に係る増幅出力回路を映像信号出力回路に適用し た場合の他の一実施例を示す回路図であり、
第 8図は、 この発明に係る増幅出力回路を映像信号出力回路に適用し た場合の他の一実施例を示す回路図であり、
第 9図は、 この発明に係る増幅出力回路の入力信号電流を形成する D Z A変換回路の一例を示す回路図であり、
第 1 0図は、 この発明に係る映像信号信号出力回路が搭載されたデジ 夕ルスチルカメラの一実施例を示すブロック図であり、
第 1 1図は、 この発明に係る映像信号信号出力回路が搭載されたデジ 夕ルスチルカメラの他の一実施例を示すブロック図であり、
第 1 2図は、 この発明に係る映像信号信号出力回路が搭載されたカメ ラー体型 V T Rの一実施例を示すプロック図であり、
第 1 3図は、 この発明に係る増幅出力回路を半導体集積回路装置に搭 載した場合の一実施例を示す概略素子断面図であり、 第 1 4図は、 従来のデジタルスチルカメラの一例を示すブロック図で める。 発明を実施するための最良の形態
この発明をより詳細に説述するために、 添付の図面に従ってこれを説 明する。
第 1図には、 この発明に係る増幅出力を映像信号出力回路に適用した 場合の一実施例を示す回路図が示されている。 この実施例の映像信号出 力回路は、 バイポーラ型トランジスタで構成された入力回路 1と、 CM OSインバ一夕回路からなる CMOS出力回路 2と、 この CMOS出力 回路 2の出力信号をビデオ出力端子に伝える 75Ωのターミネーシヨン 3から構成される。
上記入力回路 1は、 入力段回路と駆動段回路からなる正相増幅回路に より構成される。 映像入力信号 V i nは、 入力抵抗 R4を通して入力段 回路を構成する PNPトランジスタ T 1のベースに供給される。 このト ランジス夕 T 1のエミッ夕と電源電圧 VCCとの間には、 特に制限され ないが、 ェミッタ抵抗 R 1が設けられる。 上記トランジスタ T 1のコレ ク夕と回路の接地電位 GNDとの間には、 負荷抵抗 R 2が設けられる。 これにより、 上記トランジスタ T 1は、 反転増幅回路としての動作を行 い、 コレクタ出力信号を駆動段を構成する反転増幅回路を構成する NP Nトランジスタ T2のベースに供給される。 上記トランジスタ T2のェ ミッタは、 回路の接地電位に接続され、 コレクタと電源電圧 VCCとの 間には、 負荷抵抗 R 3が設けられる。 そして、 このトランジスタ T 2の コレクタ出力信号は、 次に説明する CM〇 S出力回路 2を構成する CM OSインバー夕回路の駆動信号として用いられる。 上記のように入力回 路 1は、 反転増幅回路からなる入力段回路と駆動段回路を縦列接続する ことにより正相増幅回路としての動作を行う。
上記 CMOS出力回路 2は、 Pチャンネル型 MOSFETQ 1と Nチ ヤンネル型 M 0SFETQ2の直列回路から構成され、 共通接続された ゲートに上記トランジスタ T2で形成された駆動信号が供給される。 M OSFETQ 1のソースと、 基板(チャンネル) とは電源電圧 VCCに 接続される。 MOSFETQ 2のソースと基板 (チャンネル) とは回路 の接地電位 GNDに接続される。 そして、 共通接続された MOSFET Q 1と Q 2のドレインから出力される出力信号は、 夕一ミネーシヨン 3 を通して出力端子に接続される。 また、 上記 CMOS出力回路 2の出力 信号は、 帰還抵抗 R 5を通して上記入力回路 1の入力であるトランジス 夕 T 1のベースに負帰還されて、 負帰還増幅動作を行う。
ターミネーシヨン 3は、 実装基板上に搭載されたカップリング (直流 阻止) 用のコンデンサとインピーダンスマッチング用の抵抗(ほぼ 75 Ω) の直列回路から構成される。 出力端子は、 ビデオケーブルを介して テレビジョン受像機 TV等の表示装置のビデオ入力端子に接続される。 上記入力回路 1での駆動信号により CMOSインバー夕回路からなる CMOS出力回路 2を駆動し、 その出力信号を抵抗 R 5により入力回路 1の人力に負帰還をかけている。 したがって、 この負帰還増幅回路は反 転増幅回路として動作し、 その利得 Gは上記 3段の反転増幅回路での総 合利得 (オープン利得) が十分大きいので、 次式(1) より求めること できる。
G^-R 5/R 4 (1) 上記式 ( 1 ) より入出力伝達特性は上記抵抗比— R 5 ZR 4に対応し た良好な直線性を実現することができる。
この実施例回路では、 上記 CMOSインバー夕回路を CMOS出力回 路として用いているので、 その最大の出力信号レベルを電源電圧 VC C 付近までまで大きくすることができる。 したがって、 上記入力回路 1に 供給される入力信号 V i nが上記コンポジッ ト出力方式での複合映像信 号の場合には、 前記のように出力端子解放時に 2 V p p、 7 5 Ω短絡時 1 V p pを出力させ、 上記入力信号 V i nが上記 S端子出力方式での輝 度信号の場合には、 出力端子解放時に 2 V p p、 7 5 Ω短絡時に 1 V p Pを出力させるようにするために必要な電源電圧 V C Cは、 上記 2 V近 くまで低くてよいことが判る。
上記入力抵抗 R 4と負帰還抵抗 R 5との抵抗比 R 5 /R 4で上記利得 Gが近似できるようにするための条件として、 上記オーブン利得が十分 大きいことが必要である力 かかるオープン利得を大きくするために設 けられた入力回路 1がバイポーラ型トランジスタを用いて構成されてい る。 このようなバイポーラ型トランジスタを用いた場合には、 等価回路 的には入力回路 1が抵抗として見えるために、 約 5 MH zの帯域までの 映像信号に対して、 前記のように C MO Sインバー夕回路を縦列接続し てオープン利得を確保した場合のような各段の入力容量が原因となる位 相シフトによる発振動作を生じなくすることができる。
第 2図には、 上記第 1図の増幅出力回路を 3 Vの電源電圧 V C Cで動 作させた場合の入出力特性図が示されている。 この入出力特性図に示す ように、 反転増幅特性となり、 ほぼ回路の接地電位 0 Vから電源電圧 V C Cの範囲で良好な直線性の入出力特性、 つまり上記抵抗比— R 5 ZR 4に対応した入出力伝達特性を実現することができる。 したがって、 本 回路を映像信号出力回路として用い、 前記のように出力端子解放時に 2 V p p、 7 5 Ω短絡時 1 V p pを出力させることが十分可能であること が判る。
前記同様に 7 5 Ωという負荷をドライブするために、 輝度信号ゃコン ネポジット信号が 1 V p pであることから信号成分として 1 3 . 7 mA 必要であるが、 上記のように電源電圧 V C Cが 3 Vと低くなつており、 消費電力は 3 V x 1 3. 7 mA = 4 1 . 1 mWと小さくなる。 仮にバイ ァス電流を含めて 2 0 m A程度を出力させるようにしたとしても上記 C MO S出力回路での消費電力は 6 O mW ( 3 V x 2 O mA) に大幅に低 減できる。
なお、 上記入力回路 1でも電流消費が行われるが、 入力回路 1では前 記のようにオーブン利得をかせぐためのものであり、 電流駆動能力は必 要ないから上記のような C M〇 S出力回路 2での消費電流 2 0 m Aに比 ベて無視できる程度に小さくできるものである。
第 3図には、 この発明に係る増幅出力を映像信号出力回路に適用した 場合の他の一実施例を示す回路図が示されている。 この実施例では、 電 流形態での入力電流信号 I i nが前記入力段トランジスタ T 1のコレク 夕に供給される。 他の構成は、 前記第 1図の実施例と同様である。 近年、 映像信号処理回路においては、 デジタル処理による低電源電圧 化が進み、 3 V〜3 . 3 Vの電源電圧での信号処理を行い、 最終段のデ ジタル信号をデジタル Zアナ Dグ (D/A) 変換回路によって電流出力 とする場合が多くなつている。
第 3図の実施例回路では、 上記 DZA変換回路で形成された電流出力 信号を電圧信号に変換するまでもなく、 そのまま上記映像信号出力回路 の入力信号 I i nとして用いるようにすることができる。 このように映 像信号出力回路に対して電流信号での入力を可能とすることにより、 電 流出力形式の映像信号、 例えば上記 DZA変換回路による出力信号の 7 5 Ω出力回路も実現可能となる。
第 4図には、 この発明に係る増幅出力を映像信号出力回路に適用した 場合の他の一実施例を示す回路図が示されている。 この実施例は、 上記 第 3図の実施例の変形例であり、 電流形態での入力電流信号 I i nが前 記入力段トランジスタ T 1のコレクタに代えてエミッ夕に供給される。 他の構成は、 前記第 3図の実施例と同様である。
上記電流出力の DZA変換回路においては、 その出力端子の電圧は固 定されていることが望ましい。 この点においても、 上記第 4図の実施例 回路のように、 エミッ夕入力の場合はその条件を満たしており、 有効な 構成となるものである。
第 5図には、 この発明に係る増幅出力を映像信号出力回路に適用した 場合の他の一実施例を示す回路図が示されている。 この実施例は、 入力 回路がェミッ夕接地の反転増幅回路 1段で構成される。 この反転増幅回 路は、 ΝΡΝトランジスタ Τ3と、 そのエミッ夕と接地電位 GNDとの 間に設けられたエミッ夕抵抗 R 7、 そのコレクタと電源電圧 VCCとの 間に設けられた負荷抵抗 R 6から構成され、 ベースに入力電圧信号 V i nが供給され、 コレクタ出力が CMOS出力回路を構成する Pチャンネ ル型 MOSFETQ 1と Nチャンネル型 MOSFETQ2の共通接続さ れたゲートに伝えられる。 したがって、 入力回路と CMOS出力回路と により正相増幅動作を行うものとなるので、 上記トランジスタ T 3のェ ミッ夕にエミッタ抵抗 R 7を設けて、 エミッ夕に帰還抵抗 R 8を通して 負帰還信号を供給するものである。
本回路では、 ェミッタ接地増幅回路は、 ベースから供給される入力電 圧信号 V i nに対しては反転増幅動作を行うが、 エミッ夕から入力され る帰還信号に対しては正相増幅動作を行う。 すなわち、 NPNトランジ スタ T 3のべ一ス電位が上昇すると、 このエミッタ接地増幅回路が反転 増幅回路として動作するためにコレクタ電圧は低下する。 このコレクタ 出力信号が CMOS出力回路の入力に伝えられ、 CMOS出力信号は上 昇する。 この CMOS出力信号の電位の上昇は抵抗 R 8を介してェミツ 夕電位を上昇させるものであり、 上記入力電圧信号 Vi nの上昇に対し て負帰還をかけることとなる。 この実施例回路での利得 Gは、 次式 (2 ) より求めることができる。
(R 8 +R 7) /R 7 (2) 第 6図には、 上記第 5図の増幅出力回路を 3 Vの電源電圧 V C Cで動 作させた場合の入出力特性図が示されている。 この入出力特性図に示す ように、 正相増幅特性となり、 電源電圧 VCC側でコレクタ負荷抵抗 R 6に流れる直流電流成分での電圧ロスがみられるが、 ほぼ回路の接地電 位 0 Vから電源電圧 V C C近傍までまでの範囲で良好な直線性のよい入 出力特性、 つまり上記抵抗比 (R 8 + R 7) /R 7に対応した入出力伝 達特性を実現することができる。 したがって、 前記同様に本回路を映像 信号出力回路として用い、 出力端子解放時に 2Vpp、 75Ω短絡時 1 Vppを出力させることは十分可能であることが判る。
第 7図には、 この発明に係る増幅出力を映像信号出力回路に適用した 場合の他の一実施例を示す回路図が示されている。 この実施例では、 電 流形態での入力電流信号 I i nが前記第 5図の実施例の増幅トランジス 夕 T 3のエミッ夕に供給され、 増幅トランジスタ T 3のべ一スには固定 のバイアス電圧 VBが印加される。 他の構成は、 前記第 5図の実施例と 同様である。
増幅トランジスタ T 3が能動状態のとき、 CMOS出力回路の出力信 号が抵抗 R 8、 トランジスタ T8のベース、 コレクタを通して入力ゲ一 ト (<21と<32のゲ一卜) に帰還される。 このため、 CMOS出力回路 の出力直流成分は 1 00%CMOS出力回路の入力に負帰還される。 こ のため、 CMOS出力回路の入力ゲートの直流電位は、 電源電圧 VCC の中点電圧 VCC/ 2に落ち着く。 つまり、 トランジスタ T3のコレク タ電位は一定になる。
トランジスタ T 3のエミッ夕電位は、 ベースに固定のバイアス電圧 V Bが印加されているので V B— VBE( トランジスタ T 3のベース, エミ ッ夕間電圧) になる。 したがって、 入力電流信号 I i nが零のときには 、 帰還抵抗 R 8に出力側から入力側に向けて電流が流れるように回路定 数が決められる。
入力電流信号 I i nが入力されると、 抵抗 R 6と抵抗 R 7に流れる電 流は、 上記の固定電圧により制限されるので、 入力信号電流 I i nを帰 還抵抗 R 8が吸収することとなる。 つまり、 抵抗 R 8を流れる電流が入 力電流信号 I i n分減り、 出力電圧が低下する。 この出力電圧の低下に より、 帰還量が減り抵抗 R 7に流れる電流が減少して抵抗 R 6に流れる 電流も減少する。 このとき、 R 7く R 6に設定されているので、 帰還信 号が増幅されて上記 CMO S出力回路の入力ゲートに伝えられる。 第 8図には、 この発明に係る増幅出力を映像信号出力回路に適用した 場合の他の一実施例を示す回路図が示されている。 この実施例では、 電 流形態での入力電流信号 I i nが前記第 5図の実施例の増幅トランジス 夕 T 3のェミッタに代えてコレクタに供給される。 他の構成及び増幅動 作は、 前記第 7図の実施例と同様である。
これら第 7図と第 8図の実施例回路では、 前記第 3図又は第 4図と同 様に D / A変換回路で形成された電流出力信号を電圧信号に変換するま でもなく、 そのまま上記映像信号出力回路の入力信号 I i nとして用い るようにすることができる。 このように映像信号出力回路に対して電流 信号での入力を可能とすることにより、 電流出力形式の映像信号、 例え ば上記 DZA変換回路による出力信号の 7 5 Ω出力回路も実現可能とな るものである。
第 9図には、 上記映像信号出力回路の入力電流信号を形成する D/A 変換回路の一例を説明するための回路図が示されている。
定電流 ( I 0 ) セル群は、 代表としてソースに電源電圧 V C Cが供給 され、 ゲートに後述する基準電圧発生部で形成された定電圧が印加され た定電流源を構成する Pチャンネル型の MOSFETQ4と、 出力選択 部を構成する Pチャンネル型のスィツチ MOSFETQ 5及び Nチャン ネル型のスィツチ MOSFETQ 6から構成される。 上記 Pチャンネル 型 MOSFETQ 5は、 上記定電流源 MOS F ETQ 4と出力端子 ZO UTとの間にソース, ドレイン経路が接続され、 上記 Nチャンネル型 M 0 S F E T Q 4は、 上記定電流源 M OSFETQ2と出力端子 0 U Tと の間にソース, ドレイン経路が接続される。 これにより、 定電流源 MO SFETQ4で形成された定電流〗 0は、 入力信号により相補的にスィ ツチ制御される MOSFETQ 5又は Q 6を通して出力端子 ZOUT又 は OUTに供給される。
特に制限されないが、 10ビッ トからなるデジタル信号のうちの上位 6ビッ トに対応したデジタル信号を 63通りにデコードして形成され、 かかる 63通りのデコ一ド信号に対応して上記定電流 I 0が形成される 。 他の残り 62個のカレントミラ一MOS群も上記同様な MOSFET Q 4〜Q 6と同様な構成にされる。
つまり、 10ビットからなる入力信号 D 0〜D 9のうち、 上位 6ビッ トに対応したディジタル信号 D 4〜D 9の 00〜0のような最小値から 1 1… 1のような最大値までの入力信号に対応して 0〜63 I 0の電流 が上記スィツチ MOSFETQ 6等を通して出力端子 OUTに流れるよ うにされる。
同図では省略されているが、 I oZ2、 I o/4, I o/8及び I o /1 6の各定電流を MOSFETのサイズ比で形成し、 下位 4ビッ 卜の ディジ夕ル信号 D 3〜D 0に対応して上記スィツチ MO S F E T Q 6に 対応したスィッチ MOSFETにより出力端子に供給し、 上記のような 定電流 I 0による階段状のステップを更に 1 6段階に分解して 1 024 通りのアナ口グ電流が形成される。 映像信号出力回路の出力電圧の最大 値が 1 Vなら、 約 1 mVの分解能の映像信号を得るようにすることがで きる。 このような出力電流は、 前記第 3図、 第 4図あるいは第 7図、 第 8図に示したような実施例回路の入力信号として直接利用することがで きる。
この実施例では、 出力電圧の最大値 (フルスケール電圧) を所望の電 圧に精度よく設定できるようにするため、 次のような基準電圧発生回路 が用いられる。 上記定電流源 MOSFETQ4と同じ構造の定電流源 M OS FETQ 3のソースとゲートと、 上記定電流源 MOSFETQ 4等 のソースとゲートにそれぞれ共通に接続する。 上記 MOSFETQ 3の ドレインと回路の接地電位との間には、 基準抵抗 Rref を接続する。 こ の基準抵抗 Rref は、 出力端子に電圧変換用の抵抗を接続する場合、 そ の抵抗値に対して、 上記定電流源 M OSFETQ4等のカレントミラー MOS群の数に対応した倍数の抵抗値を持つようにされる。
上記基準抵抗 Rref で発生した電圧は、 上記のように Pチャンネル型 MOSFE Tで定電流源を構成した場合には、 差動増幅回路 0 P Aと M OSFETQ 3との間で負帰還回路を構成するようにするため、 差動増 幅回路 0 P Aの非反転入力に供給される。 上記差動増幅回路〇 P Aの反 転入力には、 出力電圧の最大値に対応した基準電圧 Vref が供給される 。 これにより、 1\〇8?£丁(33に流れる電流1 oは、 上記基準抵抗 R ref で発生する電圧降下が上記基準電圧 Vref と一致するように MOS FETQ 3のゲート電圧を制御する。 例えば、 Vref >Rref x I oな ら差動増幅回路〇P Aの出力電圧は低くなり、 MOSFETQ 1のつ一 ス, ゲート間電圧を大きくして上記定電流 I 0を増加させ、 Vref <R ref x I oなら差動増幅回路〇 P Aの出力電圧は高くなり、 MOSFE TQ 1のソース, ゲート間電圧を小さくして上記定電流 I 0を減少させ 、 Vref =Rref x I oになるように制御するものである。
カレントミラ一 MOS群の定電流 M OSFETQ4等にも、 上記 M 0 SFETQ 3と同じ定電流 I 0が流れ、 それが 63個設けられて全ての 定電流が出力端子 OUTに流れると、 負荷抵抗で発生する出力電圧は、 その 63倍となり、 フルスケール時の出力電圧を、 上記基準電圧 Vref に等しくすることができる。
第 1 0図には、 この発明に係る映像信号出力回路を用いたデジ夕ルス チルカメラの一実施例のブロック図が示されている。 同図においては、 電気信号に関する部分のみが示され、 スィツチ等のメカニカルな機構は 省略されている。
レンズを通して入力された被写体の光学像は、 C C Dによつて電気信 号に変換され、 ビデオ信号処理回路により RGB (赤緑青) 電気信号か ら輝度信号とカラ一信号を生成し、 AZD変換してデジ夕ル信号として 出力される。 このデジタル信号は、 デ一夕圧縮伸長回路 J PEGにより データ量が圧縮されてメモリカードに記録される。 メモリカードから読 み出された信号は、 上記デー夕圧縮伸長回路 J P E Gによりデータ伸長 され、 ビデオ信号処理回路によりデジタル/アナログ変換され、 前記実 施例にて説明したような映像信号出力回路を通してビデオ出力端子から 出力される。
映像信号出力回路は、 前記のようなコンポジット出力方式のときには
1回路が設けられ、 いわゆる S端子出力方式では輝度信号とカラ一信号 に対応した 2回路が設けられる。
特に制限されないが、 6 Vのようなバッテリ一電圧が電源として用い られ、 DC— DCコンバータによって 3. 3Vに変換されて、 上記のよ うなビデオ信号処理、 デ一夕圧縮伸長回路 JPEG、 及び映像信号出力 回路の動作電圧とされる。 このような内部回路の低電圧化によって、 電 池寿命を長くすることができる。 あるいは、 電流容量の小さな小型軽量 の電池を用いることができる。
第 1 1図には、 この発明に係る映像信号出力回路を用いたデジ夕ルス チルカメラの他の一実施例のプロック図が示されている。 この実施例で は、 電池電圧と内部回路の動作電圧のいっそうの低電圧化が進められて いる。 DC— DCコンパ一夕によって 3 Vの電池電圧が 2 Vに変換され て、 上記のようなビデオ信号処理、 データ圧縮伸長回路 J PEG等のデ ジタル回路に供給され、 DC— DCコンバータによって形成された 3 V が上記映像信号出力回路の動作電圧とされる。 この DC— DCコンパ一 夕は、 電池電圧力 肖耗よって 3 V以下に低下したときに、 その電圧変換 機能によって上記映像信号出力回路の動作電圧を 3 Vに維持するもので める。
第 1 2図には、 この発明に係る映像信号出力回路を用いた一体型 VT Rの一実施例のブロック図が示されている。 固体撮像素子 C C Dにより 光電変換された画像信号は、 相関二重サンプリング回路 CDS及び自動 ゲイン制御回路 AG Cを通して、 半導体集積回路装置 LS Iで構成され たデジタル信号処理プロセッサ DSPに取り込まれる。 この信号処理プ 口セッサ DSPでは、 入力部に設けられた ADC (アナログ /デジタル 変換回路) でアナログ信号をデジタル信号に変換し、 デジタル信号処理 により画質制御や記録用の Y (輝度) 信号、 C (色) 信号を形成する。 デジタル信号処理は、 ラインメモリ、 マトリックス回路、 輝度処理、 色 処理及びエンコーダによって行われ、 DAC (デジタル/アナログ変換 回路) によってアナログ信号に変換された上記 Y (輝度) 信号と、 C ( 色) 信号とを形成する。
上記 DSPには、 デジタルインタフェースが設けられ、 電子ズームコ ントロ一ル部から供給される拡大されたデジ夕ル画像信号を出力させる o 電子ズ一厶コントロール部には、 ラインメモリやメモリコント一ル及 びズームコントロールが設けられており、 上記デジタルインタフェース を通して取り込まれた画像信号をレ、つたんラインメモリに取り込み、 そ のうちの拡大したい部分を取り出して上記デジ夕ルイン夕フェースを通 して DSPに送って上記拡大画像に対応した信号を出力させる。 上記 C CDは、 センサ駆動システムによって駆動信号が供給される。 マイクロ コンピュータは、 上記センサ駆動システム及び電子ズームコントロール を制御する制御信号を形成する。
上記 D A Cの出力部には、 前記のような入力信号電流によつて動作す る映像信号出力回路が設けられ、 前記のような S端子出力方式の輝度信 号 (Y信号) とカラ一信号 (C信号) とが出力される。 前記のようにコ ンポジッ ト出力方式のときには、 エンコーダの後段に合成信号を形成す るためのデジタル処理が行われ、 1つの D ACから合成映像信号が出力 され、 その出力部に設けられる映像信号出力回路を通して出力される。 このようなカメラ一体型 VTRにおいても、 上記デジタル処理処理回 路及び映像信号出力回路を前記のように 3 V程度の低電圧で動作させる ことができ、 電池寿命を長くすることができる。 あるいは、 電流容量の 小さな小型軽量の電池を用いることができる。
第 1 3図には、 この発明に係る増幅出力回路を半導体集積回路装置に 搭載した場合の一実施例の概略素子断面図が示されている。 特に制限さ れないが、 P型基板上に NPNトランジスタと PMOS (Pチャンネル 型 MOSFET) とを形成する部分には、 N+型の埋込層が形成され、 NMOS (Nチャンネル型 MOSFET) を形成する部分には P+型の 埋込層が形成される。 なお、 上記 NPNトランジスタと PMOSが形成 される N+型の埋込層は、 素子分離用の P+型の埋込層によって電気的 な分離が行われている。 上記埋込層上には、 素子形成領域としてのェピタキシャル層が形成さ される。 上記 PMOSが形成されるェピタキシャル層は、 Nゥヱルとさ れて、 そこに P+型のソース Sとドレイン Dが形成され、 かかるソース Sとドレイン Dを間の半導体表面上にゲート絶縁膜を介してゲート電極 Gが形成される。 上記 NMOSが形成されるェピタキシャル層は、 Pゥ ヱルとされて、 そこに N+型のソース Sとドレイン Dが形成され、 かか るソース Sとドレイン Dを間の半導体表面上にゲート絶縁膜を介してゲ 一ト電極 Gが形成される。
NPNトランジスタが形成されるェピタキシャル層は、 上記 PMOS と同様に Nゥヱルとされ、 そこにベース Bを構成する P型半導体領域、 かかる P型半導体領域にはェミッタ Eを構成する N型半導体領域が形成 される。 上記 N型ゥエル及び N+型埋込層は、 ォ一ミックコンタクト用 の N+型領域とともにコレクタ Cを構成する。
同図では、 省略されているが、 PNPトランジスタを構成する場合に は、 上記 NMOSと同様な Pゥエルに N型のベース領域を形成し、 この ベース領域に P型のェミッタを形成し、 Pゥヱル及び P+型埋込層をコ レクタとし、 ォーミックコンタクト用の P+型領域により半導体表面に コレクタ電極を取り出すようにする。
このようにすることにより、 1つの半導体基板上にバイポーラ型トラ ンジス夕及び CMOS回路を構成する Nチャンネル型 MOSFETと P チャンネル型 MOSFETとを形成することができる。 したがって、 こ の発明に係る増幅出力回路を 1つの半導体集積回路で形成すること、 及 び前記 D S P L S Iのようなデジタル信号処理回路に内蔵させることが できるものとなる。
上記の実施例から得られる作用効果は、 下記の通りである。
( 1 ) バイポーラ型トランジスタで構成された入力回路で Pチャンネ ル型 MOSFETと Nチャンネル型 MOSFETからなる CMOS出力 回路を駆動し、 上記 CMOS出力回路の出力信号を上記入力回路に帰還 させる負帰還回路を設けて増幅出力回路を構成することことにより、 発 振動作を防止して良好な直線性を持つ入出力特性を実現しつつ、 上記 C MOS出力回路による電源電圧レベルまでの出力動作によって、 所望の 出力電流を得るとともに消費電流を大幅に低減させることができるとい う効果が得られる。
(2) 上記入力回路の入力端子に映像信号を供給し、 上記出力回路の 出力信号をカツプリングコンデンサと 75 Ωの抵抗からなる夕一ミネ一 シヨンを介して出力端子に伝えるようにすることにより、 消費電流を大 幅に低減させた映像出力回路の実現によって、 電池駆動れる映像機器に おけるノくッテリ一の長寿命化あるいはバッテリーの小型軽量化が実現で きるという効果が得られる。
(3) 上記入力回路として、 入力電圧信号が入力抵抗を介してベース に供給され、 コレクタに負荷抵抗が設けられた第 1導電型の第 1の増幅 トランジスタと、 上記第 1の増幅トランジスタのコレクタ出力信号がベ —スに供給され、 コレクタに負荷抵抗が設けられた第 2の増幅トランジ ス夕とで構成し、 上記第 2の増幅トランジスタのコレクタ出力により上 記 CMOS出力回路を駆動し、 上記 CMOS出力回路の出力信号を帰還 抵抗を介して上記第 1の増幅トランジスタのベースに帰還することによ り、 高域周波数までの増幅動作にぉレ、て不所望な発振動作を防止ししつ つ、 上記入力抵抗と帰還抵抗の抵抗比に対応した良好な直線性の入出力 伝達特性を実現できるという効果が得られる。
(4) 上記入力回路として、 バイアス電圧が入力抵抗を介してベース に供給され、 コレクタに負荷抵抗が設けられた第 1導電型の第 1の増幅 トランジスタと、 上記第 1の増幅トランジスタのコレクタ出力信号がベ ースに供給され、 コレクタに負荷抵抗が設けられた第 2の増幅トランジ ス夕とで構成し、 上記第 2の増幅トランジスタのコレクタ出力により C MO S出力回路を駆動し、 上記 C MO S出力回路の出力信号を帰還抵抗 を介して上記第 1の増幅トランジス夕のベースに帰還し、 上記第 1の増 幅トランジスタのコレクタに入力電流信号を供給することにより、 高域 周波数までの増幅動作において不所望な発振動作を防止ししつつ、 上記 入力抵抗と帰還抵抗の抵抗比に対応した良好な直線性の入出力伝達特性 を得ることができるという効果が得られる。
( 5 ) 上記第 1の増幅トランジスタのコレクタに供給される入力電流 信号として、 デジタル/アナログ変換回路で形成されたアナログ電流信 号を用いることにより、 デジ夕ル /ァナ口グ変換回路の出力部での電流 電圧変換回路を省略できるから回路の簡素化が可能になるという効果が 得られる。
( 6 ) 上記入力回路として、 バイアス電圧が入力抵抗を介してべ一ス に供給され、 コレクタに負荷抵抗が設けられた第 1導電型の第 1の増幅 トランジスタと、 上記第 1の増幅トランジスタのコレクタ出力信号がベ ースに供給され、 コレクタに負荷抵抗が設けられた第 2の増幅トランジ ス夕とで構成し、 上記第 2の増幅トランジスタのコレクタ出力により C MO S出力回路を駆動し、 上記 C MO S出力回路の出力信号を帰還抵抗 を介して上記第 1の増幅トランジスタのベースに帰還し、 上記第 1の増 幅トランジスタのエミッ夕に入力電流信号を供給することにより、 高域 周波数までの増幅動作にぉレ、て不所望な発振動作を防止ししつつ、 上記 入力抵抗と帰還抵抗の抵抗比に対応した良好な直線性の入出力伝達特性 を得ることができるという効果が得られる。
( 7 ) 上記第 1の増幅トランジスタのエミッ夕に供給される入力電流 信号として、 デジタル/アナ口グ変換回路で形成されたアナ口グ電流信 号を用いることにより、 デジ夕ル アナ口グ変換回路の出力部での電流 電圧変換回路を省略できるから回路の簡素化が可能になるとともに、 ェ ミッタ電圧によってデジ夕ル Zァナ口グ電流出力端子を固定電位化する ことができるという効果が得られる。
( 8 ) 上記入力回路として、 入力電圧信号がベースに供給され、 コレ クタに負荷抵抗が設けられ、 ェミッタにエミッ夕抵抗が設けられた増幅 トランジス夕で構成し、 かかる増幅トランジス夕のコレクタ出力により C MO S出力回路を駆動し、 上記 C MO S出力回路の出力信号を帰還抵 抗を介して上記増幅トランジスタのェミッタに帰還させることにより、 入力回路の簡素化を図りつつ、 高域周波数までの増幅動作において不所 望な発振動作を防止ししつつ、 上記エミッタ抵抗と帰還抵抗の抵抗値に 対応した良好な直線性の入出力伝達特性を得ることができるという効果 が得られる。
( 9 ) 上記入力回路として、 バイアス電圧がベースに供給され、 コレ クタに負荷抵抗が設けられ、 ェミツ夕にエミッタ抵抗が設けられた増幅 トランジスタで構成し、 かかる増幅トランジスタのコレクタ出力により 上記 C MO S出力回路を駆動し、 上記 C MO S出力回路の出力信号を帰 還抵抗を介して上記増幅トランジスタのエミッ夕に帰還し、 上記増幅ト ランジス夕のエミッ夕に入力電流信号を供給することにより、 入力回路 の簡素化を図りつつ、 高域周波数までの増幅動作において不所望な発振 動作を防止ししつつ、 上記エミッタ抵抗と帰還抵抗の抵抗値に対応した 良好な直線性の入出力伝達特性を得ることができるという効果が得られ る。
(10) 上記増幅トランジスタのエミッ夕に供給される入力電流信号と して、 デジタル/アナログ変換回路で形成されたアナログ電流信号を用 いることにより、 デジタル /ァナ口グ変換回路の出力部での電流電圧変 換回路を省略できるから回路の簡素化が可能になるとともに、 ェミッタ 電圧によってデジ夕ル zァナ口グ電流出力端子を固定電位化することが できるという効果が得られる。
(11) 上記入力回路として、 バイアス電圧がベースに供給され、 コレ クタに負荷抵抗が設けられ、 ェミッタにエミッ夕抵抗が設けられた増幅 トランジスタで構成し、 かかる増幅トランジスタのコレクタ出力により 上記 CMO S出力回路を駆動し、 上記 C MO S出力回路の出力信号を帰 還抵抗を介して上記増幅トランジスタのェミッタに帰還し、 上記増幅ト ランジス夕のコレクタに入力電流信号を供給することにより、 入力回路 の簡素化を図りつつ、 高域周波数までの増幅動作において不所望な発振 動作を防止ししつつ、 上記エミッタ抵抗と帰還抵抗の抵抗値に対応した 良好な直線性の入出力伝達特性を得ることができるという効果が得られ る。
(12) 上記増幅トランジスタのコレクタに供給される入力電流信号と して、 デジタル/アナログ変換回路で形成されたアナログ電流信号を用 いることにより、 デジ夕ル Zァナ口グ変換回路の出力部での電流電圧変 換回路を省略できるから回路の簡素化を実現できるという効果が得られ る。
(13) 上記入力回路及び CMO S出力回路を電池電圧に基づいて形成 された約 3 V以下の動作電圧により動作させることにより、 C MO S出 力回路での消費電力の低減によつて電池の長寿命化あるいは電池の小型 軽量化が可能になるという効果が得られる。
(14) 上記増幅出力回路を電池駆動される映像機器の映像出力回路に 用いることにより、 かかる映像機器での電池動作時間を長く、 あるいは 小型軽量化を実現できるという効果が得られる。
以上本発明者よりなされた発明を実施例に基づき具体的に説明したが 、 本願発明は前記実施例に限定されるものではなく、 その要旨を逸脱し ない範囲で種々変更可能であることはいうまでもなレ、。 バイポーラ型ト ランジス夕を用いた入力回路は、 オープン利得を大きくするものであれ ば何であつてもよい。 この発明に係る増幅出力回路を構成する各回路素 子は、 前記第 1 3図に示したように半導体集積回路で構成するもの他、 それぞれの回路素子を単体のトランジスタあるいは MO S F E Tにより 構成するもの、 あるいは入力回路を構成するトランジスタ回路と CMO S出力回路を構成する MO S F E Tとをそれぞれ 1チップの I Cにより 構成して組み合わせるもの等種々の実施形態を採ることができる。 デジ タル信号処理による映像機器の映像信号出力回路として用いる場合、 入 力電圧信号又は入力電流信号を形成する DZA変換回路の構成は、 種々 の実施形態を採ることができるものである。 産業上の利用可能性
以上のように、 この発明は、 低電圧により大きな負荷駆動能力を有す る映像信号出力回路等のような増幅出力回路およびそれを用いたシステ ムに広く利用できる。

Claims

請 求 の 範 囲
1. 入力端子に映像信号が供給され、 バイポーラ型トランジスタで構成 された入力回路と、
上記入力回路の出力信号がゲ一トに供給された Pチャンネル型 MOS ?£丁と1^チャンネル型1^03?£丁からなり、 共通接続されたドレイ ンから出力信号を送出させる CMOS出力回路と、
上記 CMOS出力回路の出力信号を上記入力回路に帰還させる負帰還 回路と、
実装基板上に搭載されたカツプリングコンデサと 75Ωの抵抗とか らなり、 上記 CMO S出力回路の出力信号を出力端子に伝える夕一ミネ ーシヨンとを具備することを特徴とする増幅出力回路。
2. 上記入力回路は、
映像電圧信号が入力抵抗を介してベースに供給され、 コレクタ に負荷抵抗が設けられた第 1導電型の第 1の増幅トランジス夕と、 上記第 1の増幅トランジスタのコレクタ出力信号がベースに供 給され、 コレクタに負荷抵抗が設けられた第 2の増幅トランジスタから なり、
上記第 2の増幅トランジスタのコレクタは上記 CMOS出力回路を 構成する Pチヤンネル型 MO SFETと Nチャンネル型 M〇 S F E Tの ゲートに接続され、
上記 CMOS出力回路の出力信号は帰還抵抗を介して上記第 1の増 幅トランジス夕のベースに帰還されるものであることを特徴とする請求 の範囲第 1項記載の増幅出力回路。
3. 上記入力回路は、
バイアス電圧が入力抵抗を介してベースに供給され、 コレクタ に負荷抵抗が設けられた第 1導電型の第 1の増幅トランジスタと、 上記第 1の増幅トランジスタのコレクタ出力信号がベ一スに供 給され、 コレクタに負荷抵抗が設けられた第 2の増幅トランジスタから なり、
上記第 2の増幅トランジスタのコレクタは上記 CMOS出力回路を ゲートに接続され、
上記 CMOS出力回路の出力信号は帰還抵抗を介して上記第 1の増 幅トランジスタのベースに帰還され、
上記第 1の増幅トランジスタのコレクタに映像電流信号が供給され るものであることを特徴とする請求の範囲第 1項記載の増幅出力回路。
4. 上記第 1の増幅トランジスタのコレクタに供給される映像電流信号 は、 デジタルノアナログ変換回路で形成されたアナログ電流信号である ことを特徴とする請求の範囲第 3項記載の増幅出力回路。
5. 上記入力回路は、
バイアス電圧が入力抵抗を介してベースに供給され、 コレクタ に負荷抵抗が設けら、 ェミッタにエミッ夕抵抗が設けられた第 1導電型 の第 1の増幅トランジスタと、
上記第 1の増幅トランジスタのコレクタ出力信号がベースに供 給され、 コレクタに負荷抵抗が設けられた第 2の第 2の増幅トランジス 夕からなり、
上記第 2の増幅トランジスタのコレクタは上記 C MO S出力回路を 構成する Pチャンネル型 MOSFETと Nチャンネル型 MOSFETの ゲートに接続され、
上記 CMOS出力回路の出力信号は帰還抵抗を介して上記第 1の増 幅トランジスタのベースに帰還され、 上記第 1の増幅トランジスタのェミッタに映像電流信号が供給され るものであることを特徴とする請求の範囲第 1項記載の増幅出力回路。
6 . 上記第 1の増幅トランジスタのエミッ夕に供給される入力電流信号 は、 デジタル Zアナ口グ変換回路で形成されたアナ口グ電流信号である ことを特徴とする請求の範囲第 5項記載の増幅出力回路。
7 . 上記入力回路は、
映像電圧信号がベースに供給され、 コレクタに負荷抵抗が設け られ、 エミッ夕にエミッ夕抵抗が設けられた増幅トランジスタで構成さ れ、 かかる増幅トランジスタのコレクタが上記 C MO S出力回路を構成 トに接続され、
上記 C MO S出力回路の出力信号は帰還抵抗を介して上記増幅トラ ンジス夕のェミッ夕に帰還されるものであることを特徴とする請求の範 囲第 1項記載の増幅出力回路。
8 . 上記入力回路は、
バイアス電圧がベースに供給され、 コレクタに負荷抵抗が設け られ、 エミッ夕にエミッ夕抵抗が設けられた増幅トランジスタで構成さ れ、 かかる増幅トランジスタのコレクタが上記 C MO S出力回路を構成 卜に接続され、
上記 C MO S出力回路の出力信号は帰還抵抗を介して上記増幅トラ ンジス夕のエミッ夕に帰還され、
上記増幅トランジスタのェミッタに映像電流信号が供給されるもの であることを特徴とする請求の範囲第 1項記載の増幅出力回路。
9 . 上記増幅トランジスタのェミッタに供給される入力電流信号は、 デ
'ログ変換回路で形成されたアナ πグ電流信号であることを 特徴とする請求の範囲第 8項記載の増幅出力回路。
10. 上記入力回路は、
くィァス電圧がベースに供給され、 コレクタに負荷抵抗が設け られ、 エミッ夕にエミッ夕抵抗が設けられた増幅トランジスタで構成さ れ、 かかる増幅トランジスタのコレクタが上記 CMOS出力回路を構成 する Pチャンネル型 MOSFETと Nチャンネル型 MOSFETのゲ一 トに接続され、
上記 CM〇 S出力回路の出力信号は帰還抵抗を介して上記増幅トラ ンジス夕のェミッタに帰還され、
上記増幅トランジスタのコレクタに映像電流信号が供給されるもの であることを特徴とする請求の範囲第 1項記載の増幅出力回路。
11. 上増幅トランジスタのコレクタに供給される映像電流信号は、 デジ タル Zアナログ変換回路で形成されたアナログ電流信号であることを特 徵とする請求の範囲第 10項記載の増幅出力回路。
12. 上記入力回路及び CMOS出力回路は、 電池電圧に基づいて形成さ れた約 3 V以下の動作電圧により動作させられるものであることを特徴 とする請求の範囲第 1項記載の増幅出力回路。
13. 上記増幅出力回路は、 電池駆動される映像機器の映像出力回路に用 レ、られるものであることを特徴とする請求の範囲第 12項記載の増幅出力 回路。
14. 映像信号を形成する信号処理回路と、
上記信号処理回路で形成された映像信号が入力端子に供給され、 ィポーラ型トランジスタで構成された入力回路と、
上記入力回路の出力信号がゲー卜に供給された Pチャンネル型 M〇S FETと Nチャンネル型 MOSFETからなり、 共通接続されたドレイ ンから出力信号を送出させる CMOS出力回路と、 上記 C M O S出力回路の出力信号を上記入力回路に帰還させる負帰還 回路とを備えてなる映像増幅出力回路と、
上記映像増幅出力回路の出力信号を出力端子に伝える力ップリング コンデンサと 7 5 Ωの抵抗からなるターミネーシヨンとを備えてなるこ とを特徴とするシステム。
15. 上記システムは、 電池駆動されるカメラ一体型 V T Rであることを 特徴とする請求の範囲第 14項記載のシステム。
16. 上記システムは、 電池駆動されるデジ夕ルスチルカメラであること を特徴とする請求の範囲第 14項記載のシステム。
PCT/JP1998/001229 1998-03-23 1998-03-23 Survolteur et systeme utilisant ce survolteur WO1999049653A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001229 WO1999049653A1 (fr) 1998-03-23 1998-03-23 Survolteur et systeme utilisant ce survolteur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001229 WO1999049653A1 (fr) 1998-03-23 1998-03-23 Survolteur et systeme utilisant ce survolteur

Publications (1)

Publication Number Publication Date
WO1999049653A1 true WO1999049653A1 (fr) 1999-09-30

Family

ID=14207865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001229 WO1999049653A1 (fr) 1998-03-23 1998-03-23 Survolteur et systeme utilisant ce survolteur

Country Status (1)

Country Link
WO (1) WO1999049653A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070844A1 (ja) * 2004-12-28 2006-07-06 Cocomo Mb Communications, Inc. 通信システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148848A (ja) * 1995-11-27 1997-06-06 Hitachi Ltd 広帯域信号伝達回路およびアンプ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148848A (ja) * 1995-11-27 1997-06-06 Hitachi Ltd 広帯域信号伝達回路およびアンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070844A1 (ja) * 2004-12-28 2006-07-06 Cocomo Mb Communications, Inc. 通信システム

Similar Documents

Publication Publication Date Title
EP0664605B1 (en) Amplifier device
US7463282B2 (en) Solid-state image pickup device and clamp control method therefor
EP1492334A4 (en) SEMICONDUCTOR IMAGE ANALYZING DEVICE
JPH09326698A (ja) オフセットを補正する方法および装置
US5844443A (en) Linear high-frequency amplifier with high input impedance and high power efficiency
JPS60105320A (ja) レベル変換回路
JP4019439B2 (ja) Ccd型電荷転送読出し用レジスタの電荷/電圧変換装置
US7078668B2 (en) Photoelectric conversion apparatus
US4728811A (en) Sample-and-hold circuit
JPH0879286A (ja) トライ・ステート・ビデオ・バス駆動装置および方法
KR100245101B1 (ko) 출력 증폭기 회로를 포함하는 촬상 장치 및 출력 증폭기의 형성 방법
US6573784B2 (en) Low power wide bandwidth programmable gain CDS amplifier/instrumentation amplifier
JP3844143B2 (ja) 差動−シングルエンデッド・ビデオ母線受信装置
WO1999049653A1 (fr) Survolteur et systeme utilisant ce survolteur
JPH05308233A (ja) 高周波増幅装置
US6225616B1 (en) Solid-state image pickup devices having source follower buffer circuits therein with actively controlled gain characteristics
JP3242422B2 (ja) 広帯域増幅器
US5515260A (en) Current-voltage conversion circuit, current compressing and extension circuit, automatic exposure control system, and automatic exposure control system with built-in sensor
US6188283B1 (en) Amplifier and semiconductor device therefor
Matsuzawa Low voltage mixed analog/digital circuit design for portable equipment
JP3806617B2 (ja) テレビジョンチューナ
JP2672731B2 (ja) 電力増幅回路
US20060022708A1 (en) Semiconductor device and camera using same
US6470084B1 (en) Current amplifier, particularly for a telephone line
US4065681A (en) Voltage storage circuit useful in television receiver control applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase