WO1999047464A2 - Erbium doped optical glass - Google Patents
Erbium doped optical glass Download PDFInfo
- Publication number
- WO1999047464A2 WO1999047464A2 PCT/GB1999/000726 GB9900726W WO9947464A2 WO 1999047464 A2 WO1999047464 A2 WO 1999047464A2 GB 9900726 W GB9900726 W GB 9900726W WO 9947464 A2 WO9947464 A2 WO 9947464A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- erbium doped
- glass
- mol
- optical glass
- erbium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/11—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
- C03C3/112—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/122—Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/32—Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
- C03C3/325—Fluoride glasses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/0071—Compositions for glass with special properties for laserable glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06716—Fibre compositions or doping with active elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/17—Solid materials amorphous, e.g. glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1608—Solid materials characterised by an active (lasing) ion rare earth erbium
Definitions
- This invention relates to an erbium doped optical glass. More particularly but not exclusively the invention relates to an erbium doped optical glass for use as an optical amplifier or laser in the third telecommunication window and to such amplifiers and lasers.
- Erbium doped fibre amplifiers used for optical amplification at 1550nm are known. Such amplifiers are usually based on two types of glass host, silica or fluorozirconate with silica being by far the most common. The use of such glass hosts is disclosed in P.Wlksocki et al, OFC 1997, paper WF2; D Bayart et al, IEEE Photon Technol letter 6 (1994), 615 and B Clesca et al, IEEE Photon Technol letters 6 (1994) 509.
- Fibre amplifiers based on a silica glass host have a gain profile which varies rapidly with wavelength. This makes such fibre amplifiers unsuitable for use in wavelength division multiplexers (WDM) as such devices must be capable of simultaneously transmitting signals at many different wavelengths at uniform power and without distortion.
- WDM wavelength division multiplexers
- Such fibre amplifiers can only be used as wave division multiplexers in combination with complex filters; as described in P Wysocki et al, OFC 1997, paper PD2-1.
- Fibre amplifiers based on fluorozirconate host glass have a smoother gain profile than amplifiers based on silica glass and are suitable for use in wavelength division multiplexing.
- fluorozirconate glass is difficult and expensive to fabricate and is vulnerable to environmental attack, especially by moisture.
- erbium doped ZBLAN fibre amplifiers cannot be pumped at 980 nm.
- silica glass and fluorozirconate host glasses will only accept a low erbium ion concentration (a few 1000 ppm by weight) before concentration quenching significantly affects gain.
- fibre amplifiers based on these host glasses are typically several metres in length so precluding the manufacture of planar waveguide optical amplifiers.
- EP 0 673 892 A2 discloses a silica glass including oxides of metals. Such oxides broaden the width of the gain profile and also increase the concentration of erbium dopant than can be accepted by the glass. However, further broadening and smoothing of the emission cross section is desirable.
- the present invention provides an erbium doped silica glass comprising
- the erbium doped silica glass of the invention has the advantage that it has a gain profile which is both smoother and broader than known silica based glasses. This makes the silica glass of the invention more suitable for use in WDM devices than known silica glasses. It also has a high stability and environmental resistance.
- the silica glass of the invention also has the advantage that it is amenable to conventional splicing techniques with standard silica fibres resulting in low insertion losses.
- the silica glass of the invention also has a relatively symmetric emission cross section peak in the third telecommunication window, again making this glass more suitable for use in WDM devices than known silica glasses.
- the concentration of Si0 2 is in the range 60-90 mol%, more preferably in the range 70-80 mol%. This results in a stable glass.
- the metal fluoride can be at least one of NaF, PbF 2 , LaF 3 , A1F 3 , LiF, KF, GaF 3 and mixtures thereof. Such metal fluorides are particularly effective as network modifiers to produce a broad gain profile.
- the silica glass further comprises a network modifying metal oxide, preferably at least one of Na 2 0, PbO, La 2 0 3 , A1 2 0 3 and mixtures thereof.
- a network modifying metal oxide preferably at least one of Na 2 0, PbO, La 2 0 3 , A1 2 0 3 and mixtures thereof.
- a combination of metal oxide and metal fluoride further broadens the gain profile.
- the silica glass further comprises an alkali or alkaline phosphate, preferably an alkali earth phosphate, more preferably NaP0 3 .
- the concentration of alkali or alkaline earth phosphate can be from trace to 5 mol%.
- the concentration of erbium dopant can be in the range 0.01 to 5 mol%, preferably not less than 1 mol%.
- an erbium doped tellurite or germanate glass comprising
- Such a tellurite or germanate glass has a large emission cross section and a broad emission peak at around 1.55 micron. This enables broadband amplification and lasing. It also has excellent fibre drawing properties.
- the concentration of the Ge0 2 or Te0 2 is in the range 50 to 80 mol%. This results in a stable glass.
- the oxide of a metal comprises an oxide of at least one of barium, bismuth, lead, zinc, gallium, lanthanum, niobium, tungsten, tantalum, vanadium and mixtures thereof.
- These oxides act to break up the uniform network of the glass to create different sites for the erbium dopant, increase refractive index and erbium dopant solubility.
- Including such oxides into the glass of the invention results in the glass having a large refractive index of the order 1.7 or higher at a wavelength of 589 nm sodium line. This in turn gives rise to a relatively large emission cross section which is important in the production of short fibre amplifiers and planar optical devices and enables the production of broadband, flat - gain amplifiers.
- the oxide of a metal can include at least one selected from the group BaO, Bi 2 0 3 , PbO, ZnO, Ga 2 0 3 , La 2 0 3 , Li 2 0, BiO, Nb 2 0 5 , W0 3 , Ta 2 0 5 , V 2 0 5 and mixtures thereof. Such oxides are particularly effective at broadening the emission cross section.
- the tellurite or germanate optical glass according to the invention can further comprise at least one of Na 2 or K 2 0 and mixtures thereof, the concentration of which preferably being in the range trace to 20 mol%.
- the tellurite or germanate optical glass according to the invention can further comprise a metal halide, preferably selected from the group comprising BaCl 2 , PbCl 2 , PbF 3 , LaF 3 , ZnF 2 , BaF 2 , NaF, NaCl, LiF and mixtures thereof.
- the concentration of the metal halide can be in the range trace to 20 mol%.
- the concentration of erbium dopant in the tellurite or germinate optical glass can be in the range 0.01 to 5 mol%.
- the tellurite or germanate optical glass has an emission cross section greater than 7 x 10 "21 cm 2 at a wavelength of 1530nm, preferably greater than 8 x 10 ⁇ 21 cm 2 at a wavelength of 1530nm.
- the tellurite or germanate optical glass has a peak in the emission cross section in the 1450 to 1650 nanometres range, the emission peak having a full width at half maximum of at least 60nm, preferably at least 70nm, more preferably at least 80nm, more preferably at least 90 nm.
- the tellurite or germanate optical glass has a refractive index of at least 1.7 more preferably at least 1.8 at the 589 nm sodium line.
- an erbium doped fluoroluminate optical glass including
- the erbium doped fluoroalummate glass of the further aspect of the invention also has a smooth gain profile. Such a glass is environmentally stable, and accepts a large erbium doping of at least 1 mol%. Such a glass can also be optically pumped at 980 nm which is efficient for amplification.
- the concentration of each of the YF 3 , ZrF 4 and Hf 4 of the network modifier is in the range 0 to 15 mol%.
- the network modifier can comprise YF 3 in combination with at least one of at least one of HfHf and ZrF 4 and a mixture thereof.
- the concentration of A1F 3 is in the range 25 to 40mol%, more preferably 25 to 35 mol%.
- the fluoroalummate glass according to the invention further comprises an alkali or alkaline earth phosphate, preferably an alkali earth phosphate, more preferably NaP0 3 .
- the concentration of alkali or alkaline phosphate being in the range 0 to 10 mol%.
- Figure 1 shows a partial energy level diagram of Er 3+ ;
- Figure 2 shows emission cross section spectra of erbium in several glasses
- Table 1 lists some examples of erbium doped silica glass compositions according to the invention.
- Table 2 lists the lifetimes and cross sections of the amplifying erbium transition; in the glass compositions listed in table one.
- HMO heavy metal oxide
- Table 4 lists lifetimes and emission cross sections for the glass compositions listed in table 3.
- Shown in figure 1 is a partial energy level diagram of Er 3+ .
- 980 nm has several advantages. In-band pumping, as at 1480 nm, gives rise to amplifier noise, and therefore degrades amplifier performance. Moreover, in-band pumping makes the short-wavelength part of the emission spectrum unavailable for amplification. However, in order to utilize the 980 nm pump, the nonradiative 4I 112 - 4I 132 transition must be very fast, i.e.
- the lifetime of the I u 2 level must be short compared with the pumping rate. This is important for two reasons. First, in order to maintain population inversion between the lasing
- the upper lasing level ( I ⁇ 32 ) it is necessary for the upper lasing level ( I ⁇ 32 ) to be rapidly repopulated. In conditions of high-pump high-gain, the 4 I 11/2 state can accumulate population, creating a bottleneck and
- the lifetime of the I 112 level is determined by the phonon energy of the host glass: the higher the phonon energy, the shorter the lifetime, in a roughly exponential relationship.
- high-phonon energy glasses such as silica
- the 980 nm pumping scheme is very efficient.
- low-phonon energy glasses, such as ZBLAN the 980 nm pump cannot be used
- the modified silica glasses retain the high phonon energy of the silica family.
- the heavy-metal-oxide and fluoroaluminate glasses have lower phonon energies than silica
- the value of the emission cross-section increases with the refractive index of the host. This increase reflects the relationship between the oscillator strength and the host field as represented by the refractive index of the bulk glass.
- the second effect modifies the emission profile and arises from the local ligand field environment of the dopant ions.
- the amplifying transition takes place between two energy level manifolds consisting of several Stark sub-levels
- the emission and gain profiles combine the contributions of all the transitions between the sub-levels.
- the profiles are determined by the Stark splitting of the two levels and the oscillator strengths of the individual transitions.
- Stark splittings and the oscillator strengths are strongly affected by the ligand field of the ion environment.
- the ligand field is the local electromagnetic field as experienced by the dopant ion, and determined by the symmetry and the chemical nature of the host material.
- the emission and gain profiles of an Er 3+ ion will therefore depend on the ligand field at the ion site.
- Asymmetric ionic ligand fields produce especially strong broadening effects. If the host glass offers a multiplicity of different dopant sites with different ligand fields, the ions at these sites will emit slightly different spectra.
- the total Er 3+ emission in the glasses according to the invention combine the contributions of all ions from different sites, and will therefore produce a broader, smoother emission profile.
- the role of network modifiers in the erbium doped glasses according to the invention is to break up the uniform host glass network and to create numerous different sites for the Er 3+ dopant.
- the network modifiers are chosen so as to achieve two aims. Heavy-metal-oxides/fluorides are employed to increase the refractive index, thereby increasing the emission cross-section. All network modifiers are designed to provide new strongly-bonded ionic sites for the erbium dopant. Ionic bonding is associated with ionicity of ligand fields, and therefore broader emission spectrum. Furthermore, strong ionic bonding leads to increased solubility, thereby allowing higher erbium doping levels.
- the erbium doped optical glasses of the invention provide a multiplicity of different erbium dopant sites.
- the erbium ions of these sites experience different ligand fields and so will emit slightly different spectra.
- the total Er 3+ emission spectrum in these glasses will be a combination of contributions from all Er 3+ ions from different sites, and will therefore produce a broad, smooth emission profile.
- Figure 2 shows emission cross section spectra of erbium in several glasses.
- MS Modified silica
- HMO heavy metal oxide
- ALF Fluoroaluminate
- erbium doped modified silica glass compositions of the invention are shown in Table 1; Table 2 gives the lifetimes and emission cross-sections of the amplifying erbium transition in these glasses. Also included in Table 2 is the product of lifetime and emission cross- section; this product constitutes a figure-of-merit for gain. Also included in Table 2 for comparison are data for erbium doped Al/P-silica glass which is the industry standard.
- Table 3 shows some erbium doped HMO and fluoroaluminate glass compositions of the invention; Table 4 gives erbium lifetimes, emission cross-sections and the figure-of-merit product in these glasses.
- Fluorozirconate ZBLAN glass is included for comparison.
- Also included is a tellurite glass developed by NTT as disclosed in A Mori et al, OFC 1997, paper PD1-1.
- All glasses were prepared from commercial high purity powders and were melted under clean conditions in platinum crucibles .
- Modified silica glasses were melted at 1150°C-1350°C and were annealed in the crucible at 400°C.
- HMO glasses were melted at 650-750°C and were annealed in the crucible at 200-250°C.
- Fluoroaluminate glasses were melted at 950°-1000°C under dry nitrogen atmosphere, and were cast into preheated moulds at 280°-330°C.
- the melting temperature and duration are such as to allow a thorough homogenization of the glass, while avoiding losses due to volatilization.
- the annealing stage is designed to remove quenching stresses and to prevent glass cracking. High purity raw materials are required to avoid OH " and transition metal impurities in the produced glass.
- Table 1 Some example compositions of Er 3+ -doped modified silica glasses.
- Table 2 Spectroscopic parameters of Er 3+ in some of the modified silica glasses listed in Table 1.
- Table 3 Some example compositions of Er 3+ -doped HMO and fluoroaluminate glasses.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Glass Compositions (AREA)
- Lasers (AREA)
- Optical Elements Other Than Lenses (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU29419/99A AU2941999A (en) | 1998-03-19 | 1999-03-19 | Erbium doped optical glass |
| DE69925470T DE69925470T2 (de) | 1998-03-19 | 1999-03-19 | Erbium-dotiertes, optisches glas |
| JP2000536663A JP2002506791A (ja) | 1998-03-19 | 1999-03-19 | エルビウム添加光学ガラス |
| AT99910477T ATE296270T1 (de) | 1998-03-19 | 1999-03-19 | Erbium-dotiertes, optisches glas |
| EP99910477A EP1064234B1 (en) | 1998-03-19 | 1999-03-19 | Erbium doped optical glass |
| CA2324321A CA2324321C (en) | 1998-03-19 | 1999-03-19 | Erbium doped optical glass |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB9805800.1 | 1998-03-19 | ||
| GBGB9805800.1A GB9805800D0 (en) | 1998-03-19 | 1998-03-19 | Erbium doped optical glass |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO1999047464A2 true WO1999047464A2 (en) | 1999-09-23 |
| WO1999047464A3 WO1999047464A3 (en) | 1999-11-04 |
Family
ID=10828816
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB1999/000726 Ceased WO1999047464A2 (en) | 1998-03-19 | 1999-03-19 | Erbium doped optical glass |
Country Status (8)
| Country | Link |
|---|---|
| EP (1) | EP1064234B1 (enExample) |
| JP (2) | JP2002506791A (enExample) |
| AT (1) | ATE296270T1 (enExample) |
| AU (1) | AU2941999A (enExample) |
| CA (1) | CA2324321C (enExample) |
| DE (1) | DE69925470T2 (enExample) |
| GB (1) | GB9805800D0 (enExample) |
| WO (1) | WO1999047464A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10139904A1 (de) * | 2001-08-15 | 2003-02-27 | Univ Schiller Jena | Optische Telluritgläser für Lichtwellenleiterverstärker und Oszillatoren sowie Verfahren zu ihrer Herstellung |
| JP2005502576A (ja) * | 2001-09-10 | 2005-01-27 | カール−ツァイス−シュティフトゥング | 酸化ゲルマニウムを含有する酸化ビスマスガラス |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4621456B2 (ja) * | 2004-08-27 | 2011-01-26 | 学校法人トヨタ学園 | 光機能導波路材料および光増幅媒体、光増幅器、レーザ装置、光源 |
| DE102013226636A1 (de) * | 2013-12-19 | 2015-06-25 | Friedrich-Schiller-Universität Jena | Glaszusammensetzung, Bauelement und Verfahren zur Herstellung eines Bauelements |
| CN111370983B (zh) * | 2020-03-19 | 2022-03-08 | 吉林大学 | 一种掺铒氟化铟基玻璃光纤在实现3.3μm波段激光输出方面的应用 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2500317A1 (de) * | 1974-01-17 | 1975-07-24 | South African Inventions | Photochromes glas |
| CA2051104C (en) * | 1990-02-05 | 1996-05-14 | Akira Oyobe | Quartz glass doped with rare earth element and production thereof |
| JP3145136B2 (ja) * | 1991-01-18 | 2001-03-12 | 株式会社住田光学ガラス | 赤外線透過フッ化物ガラス |
| JP3411067B2 (ja) * | 1993-08-27 | 2003-05-26 | 株式会社住田光学ガラス | 波長上方変換透明化ガラスセラミックスおよびその製造方法 |
| US5475528A (en) * | 1994-03-25 | 1995-12-12 | Corning Incorporated | Optical signal amplifier glasses |
| CA2201576A1 (en) * | 1996-04-17 | 1997-10-17 | James Edward Dickinson, Jr. | Rare earth doped oxyhalide laser glass |
| US5955388A (en) * | 1997-01-02 | 1999-09-21 | Corning Incorporated | Transparent oxyflouride glass-ceramic composition and process of making |
| EP1284247B1 (en) * | 1997-02-14 | 2004-08-11 | Nippon Telegraph and Telephone Corporation | Tellurite glass, optical amplifier and light source |
-
1998
- 1998-03-19 GB GBGB9805800.1A patent/GB9805800D0/en not_active Ceased
-
1999
- 1999-03-19 EP EP99910477A patent/EP1064234B1/en not_active Expired - Lifetime
- 1999-03-19 AU AU29419/99A patent/AU2941999A/en not_active Abandoned
- 1999-03-19 WO PCT/GB1999/000726 patent/WO1999047464A2/en not_active Ceased
- 1999-03-19 JP JP2000536663A patent/JP2002506791A/ja active Pending
- 1999-03-19 CA CA2324321A patent/CA2324321C/en not_active Expired - Fee Related
- 1999-03-19 AT AT99910477T patent/ATE296270T1/de not_active IP Right Cessation
- 1999-03-19 DE DE69925470T patent/DE69925470T2/de not_active Expired - Lifetime
-
2010
- 2010-07-28 JP JP2010169388A patent/JP5309096B2/ja not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10139904A1 (de) * | 2001-08-15 | 2003-02-27 | Univ Schiller Jena | Optische Telluritgläser für Lichtwellenleiterverstärker und Oszillatoren sowie Verfahren zu ihrer Herstellung |
| JP2005502576A (ja) * | 2001-09-10 | 2005-01-27 | カール−ツァイス−シュティフトゥング | 酸化ゲルマニウムを含有する酸化ビスマスガラス |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1064234A2 (en) | 2001-01-03 |
| JP5309096B2 (ja) | 2013-10-09 |
| AU2941999A (en) | 1999-10-11 |
| ATE296270T1 (de) | 2005-06-15 |
| CA2324321A1 (en) | 1999-09-23 |
| DE69925470T2 (de) | 2006-02-02 |
| JP2002506791A (ja) | 2002-03-05 |
| EP1064234B1 (en) | 2005-05-25 |
| DE69925470D1 (de) | 2005-06-30 |
| GB9805800D0 (en) | 1998-05-13 |
| CA2324321C (en) | 2010-06-15 |
| WO1999047464A3 (en) | 1999-11-04 |
| JP2010260790A (ja) | 2010-11-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Shen et al. | Tellurite glasses for broadband amplifiers and integrated optics | |
| EP1180835B1 (en) | Optical amplifying glass | |
| US6589895B2 (en) | Thulium-doped germanate glass composition and device for optical amplification | |
| US6503860B1 (en) | Antimony oxide glass with optical activity | |
| US6515795B1 (en) | Borosilicate cladding glasses for germanate core thulium-doped amplifiers | |
| EP0535798B1 (en) | Optical fiber for optical amplifier | |
| US6413891B1 (en) | Glass material suitable for a waveguide of an optical amplifier | |
| US6410467B1 (en) | Antimony oxide glass with optical activity | |
| Shen et al. | Compositional effects and spectroscopy of rare earths (Er 3+, Tm 3+, and Nd 3+) in tellurite glasses | |
| JP2001213636A (ja) | 光増幅ガラスおよびその製造方法 | |
| JPH11317561A (ja) | 光増幅ガラス | |
| JP5309096B2 (ja) | エルビウム添加光学ガラス | |
| US6859606B2 (en) | ER3+ doped boro-tellurite glasses for 1.5 μm broadband amplification | |
| US6821917B2 (en) | Tellurite glass and applications thereof | |
| EP1732856B1 (en) | Glass for optical amplifier fiber | |
| Cho et al. | Improvement of 4I11/2→ 4I13/2 Transition Rate and Thermal Stabilities in Er3+‐Doped TeO2‐B2O3 (GeO2)‐ZnO‐K2O Glasses | |
| JP4862233B2 (ja) | 光増幅ガラス | |
| US20020041750A1 (en) | Rare earth element-doped, Bi-Sb-Al-Si glass and its use in optical amplifiers | |
| US6344425B1 (en) | Fluorotellurite, amplifier glasses | |
| US6797657B2 (en) | Tm-doped fluorophosphate glasses for 14xx amplifiers and lasers | |
| EP0727395A2 (en) | Optical fibers and optical fiber amplifiers | |
| WO2001001529A1 (en) | A wide band optical amplifier | |
| US6916753B2 (en) | Tm3+-doped silicate glass and the use thereof | |
| JP2001516958A (ja) | 高く平らな利得を有する1.55μmの光増幅器のためのガラス | |
| Davey et al. | Waveguide glasses |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| AK | Designated states |
Kind code of ref document: A3 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1999910477 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2324321 Country of ref document: CA Ref country code: CA Ref document number: 2324321 Kind code of ref document: A Format of ref document f/p: F |
|
| NENP | Non-entry into the national phase |
Ref country code: KR |
|
| WWP | Wipo information: published in national office |
Ref document number: 1999910477 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 09646746 Country of ref document: US |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1999910477 Country of ref document: EP |