WO1999042404A1 - Multimetalloxidmassen - Google Patents

Multimetalloxidmassen Download PDF

Info

Publication number
WO1999042404A1
WO1999042404A1 PCT/EP1999/000890 EP9900890W WO9942404A1 WO 1999042404 A1 WO1999042404 A1 WO 1999042404A1 EP 9900890 W EP9900890 W EP 9900890W WO 9942404 A1 WO9942404 A1 WO 9942404A1
Authority
WO
WIPO (PCT)
Prior art keywords
multimetal oxide
propane
mol
propene
vol
Prior art date
Application number
PCT/EP1999/000890
Other languages
English (en)
French (fr)
Inventor
Harald Jachow
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19807269A external-priority patent/DE19807269A1/de
Priority claimed from DE19838312A external-priority patent/DE19838312A1/de
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP99907537A priority Critical patent/EP1060129B1/de
Priority to AU27249/99A priority patent/AU2724999A/en
Priority to DE59900495T priority patent/DE59900495D1/de
Priority to BR9907937-2A priority patent/BR9907937A/pt
Priority to JP2000532362A priority patent/JP2002503628A/ja
Publication of WO1999042404A1 publication Critical patent/WO1999042404A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/006Compounds containing, besides molybdenum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to multimetal oxide compositions of the general formula I
  • M 1 Co, Ni, Mg, Zn, Mn and / or Cu, preferably Co, Ni and / or Mg, particularly preferably Co and / or Ni,
  • M 2 W, V, Te, Nb, F, Cr, Fe, Sb, Ce, Sn and / or La, preferably Sn, W, P, Sb and / or Cr, particularly preferably Sn and / or Sb,
  • a 0.5 to 1.5, preferably 0.7 to 1.2, particularly preferably 0.9 to 1.0,
  • b 0 to 0.5, preferably> 0 to 0.5 and particularly preferred
  • x a number that is determined by the valency and frequency of
  • Oxygen mixed elements m (I) is determined
  • the present invention further relates to the gas-phase catalytic oxidative dehydrogenation of propane to propene, using the multimetal oxide materials (I) as catalysts.
  • Multimetal oxide masses ⁇ er stochiomet ⁇ e (I) are known.
  • the object of the present invention was therefore to provide new multimetal oxide compositions which, when used as catalysts for the catalytic oxidative dehydrogenation of propane to propene or to propene, acrolein and acrylic acid, have an increased space-time under a given load and given reaction conditions - Enable yields.
  • the multimetal oxide materials (I) defined at the outset were found.
  • Multimetal oxide compositions (I) preferred according to the invention are those of the general formula (II)
  • a 0.5 to 1.5, preferably 0.7 to 1.2, particularly preferably 0.9 to 1.0
  • b 0 to 0.5, preferably> 0 to 0.5 and particularly preferably 0, 01 to 0, 3
  • x a number which is determined by the valency and frequency of the elements m (II) other than oxygen.
  • Multimetal oxide compositions (I) which are particularly preferred according to the invention are those of the general formula (III)
  • multimetal oxide materials (I), (II) and (III) are preferred whose average diameter of their pores is> 0.02 ⁇ m and ⁇ 0.035 ⁇ m.
  • such multimetal oxide materials (I), (II) and (III) are suitable according to the invention whose average diameter of their pores is> 0.025 ⁇ m and ⁇ 0.030 ⁇ m. 3
  • the specific surface area 0 means the specific surface area determined in accordance with DIN 66133 using the ⁇ method of mercury intrusion (measuring range: 1 ⁇ m to 3 nm pore diameter).
  • the mean pore diameter is defined as four times the ratio of the total pore volume to the specific surface area 0 determined according to the aforementioned mercury intrusion method
  • multimetal oxide active materials (I) which are suitable according to the invention can be prepared in a simple manner by producing an aqueous solution from suitable sources of their elemental constituents, spray drying them (outlet temperatures expediently 100 to 150 ° C.) and then calcining them in a rotating container.
  • the calibration temperature is usually 450 to 1000, preferably 450 to 700, frequently 450 to 600 or 550 to 570 ° C.
  • the calibration can take place both under inert gas and under an oxidative atmosphere such as, for example, air or mixtures of inert gas and oxygen, and also under a reducing atmosphere, for example under mixtures of inert gas, oxygen and NH 3 , CO and / or H. This can be achieved in a simple manner in that a corresponding gas mixture flows through the rotating container.
  • a rotating container or a rotating quartz round bottom flask can be considered as a rotating container.
  • Suitable sources for the elemental constituents of the multimetal oxide active compositions (I) are those compounds which are already oxides and / or those compounds which can be converted by heating, at least in the presence of oxygen, m oxides.
  • such starting compounds are, above all, halides, nitrates, formates, oxalates, citrates, acetates, carbonates, ammonium complexes, ammonium salts and / or hydroxides (compounds such as NH 4 OH, (NH) 2 CO 3 ,
  • NH 4 N0 3 , NH 4 CH0 2 , CH 3 COOH, NH 4 CH 3 C0 2 and / or ammonium oxalate which can decompose and / or decompose at the latest during later calcination to give completely gaseous compounds and / or can be decomposed, can also be incorporated into the aqueous solution
  • 4 alder cntern can be acidified if necessary, mixed with base and / or brought to an elevated temperature.
  • Particularly suitable starting points for Mo, V, W and Nb are their oxo compounds (molybdates, vanadates, tungstates and niobates) and the acids they guide (ammonium molybdate, ammonium vanadate, ammonium tungstate).
  • the multimetal oxide compositions (I) according to the invention can be used both in powder form and shaped into specific catalyst geometries, the shaping being able to take place before or after the final calibration.
  • full catalysts can be produced from the powder form of the active composition or its uncalcified precursor composition by compressing it to the desired catalyst geometry (e.g. by tableting, extruding or extruding).
  • Graphite or stearic acid can be added as a lubricant and / or molding aid and reinforcing agent such as microfibers made of glass, asbestos, silicon carbide or potassium titanate.
  • Suitable full catalyst geometries are e.g.
  • Full cylinder or hollow cylinder with an outer diameter and a length of 2 to 10 mm.
  • a wall thickness of 1 to 3 mm is advisable.
  • the full catalyst can of course also have a spherical geometry, the spherical diameter being 2 to 10 mm.
  • the powdery active composition or its powdery, not yet calcined, precursor composition can also be shaped by application to preformed inert catalyst supports.
  • the coating of the support bodies for the production of the shell catalysts is generally carried out in a suitable rotatable container, as is e.g. is known from DE-A 2909671 or from EP-A 293859.
  • the powder mass to be applied can expediently be moistened and, after application, e.g. by means of hot air.
  • the layer thickness of the powder mass applied to the carrier body is expediently chosen to be in the range from 50 to 500 ⁇ m, preferably in the range from 150 to 250 ⁇ m.
  • carrier materials Conventional porous or non-porous aluminum oxides, silicon dioxide, thorium dioxide, zirconium dioxide, silicon carbide or silicates such as magnesium or aluminum silicate can be used as carrier materials.
  • the carrier xpertra can be regular or 5 be regularly standardized, where regularly shaped support bodies with clearly developed surface roughness, such as spheres or hollow cylinders, are preferred.
  • the fixed-bed catalyst to be used according to the invention is located in the metal tubes (generally made of stainless steel) and a temperature control medium, usually a molten salt, is passed around the metal tubes. That is, in the simplest way, each contains
  • reaction tube a bed of a catalyst having at least one multimetal oxide (I) as active composition.
  • the reaction gas starting mixture suitably consists of> 50 vol .-% propane,> 15 vol .-% 0 2 and 0 to 35 vol .-% inert gas.
  • the reaction gas starting mixture advantageously comprises ⁇ 30% by volume, preferably ⁇
  • reaction gas starting mixture can also comprise no inert gas.
  • Inert gas is understood here to mean those gases whose conversion when the reaction gas starting mixture passes through the
  • 25 fixed bed catalyst to be used according to the invention is ⁇ 5 mol%.
  • H 2 0, C0 2 , CO, N 2 and / or noble gases are considered as inert gases.
  • the reaction gas starting mixture appropriately contains> 30 60 vol .-%, or> 70 vol .-%, or> 80 vol. -% propane.
  • the propane content of the reaction gas starting mixture to be used according to the invention is ⁇ 85% by volume, frequently ⁇ 83 or ⁇ 82 or ⁇ 81 or ⁇ 80% by volume.
  • the content of molecular oxygen in the reaction gas starting mixture can be up to 35% by volume in the process according to the invention. It is advantageously at least 20% by volume or at least 25% by volume.
  • Inexpensive reaction gas starting mixtures according to the invention contain> 65 vol.% And ⁇ 85 vol. -% propane as well as> 15 vol.% And ⁇ 35 vol. -% 40 molecular oxygen.
  • ⁇ 5 1, preferably ⁇ 4.75: 1, better ⁇ 4.5: 1 and particularly preferred
  • the reaction pressure is generally> 0.5 bar. As a rule, the reaction pressure will not exceed 100 bar, i.e. > 0.5 to 100 bar.
  • the peak pressure is expediently often> 1 to 50 or> 1 to 20 bar.
  • the reaction pressure is preferably> 1.25 or> 1.5 or> 1.75 or> 2 bar.
  • reaction pressure can also be 1 bar (the above statements regarding the reaction pressure apply in general to the method according to the invention).
  • the loading is advantageously chosen so that the residence time of the reaction gas mixture over the catalyst bed is 0.5 to 20 seconds, preferably 1 to 10 seconds, particularly preferably 1 to 4 seconds and often 3 seconds.
  • unreacted propane contained in the product mixture can be separated off and the catalytic oxidative dehydrogenation according to the invention can be recycled.
  • the process according to the invention can be followed by further heterogeneously catalyzed oxidation stages as are known for the heterogeneously catalyzed gas-phase oxidation of propene to acrolein and / or acrylic acid and as described in the earlier application DE-A 19751046.
  • Air flow constant 250 l / r.) Calcined as follows (K app oven heating):
  • Zunacnst was heated from room temperature (25 ° C) to 225 ° C at a heating rate of 180 ° C / h. The temperature was then maintained at 225 ° C. for 0.5 h and then the calibration temperature was increased from 225 ° C. to 300 ° C. with a heating rate of 60 ° C./h. This temperature was then maintained for 3 hours. The heating temperature was then increased from 300 to 550 ° C. at a heating rate of 125 ° C./h. This temperature was then maintained for 6 hours.
  • the multimetal oxide obtained in this way was comminuted and, as a catalytically active multimetal oxide mass (I) of stoichiometry Mo ⁇ C ⁇ o, 9 5 ⁇ x, the grain fraction with a grain size diameter of 0.6 to 1.2 mm was separated off by sieving.
  • the average diameter of the pores of the active composition was 0.027 ⁇ m and the specific surface area was 33.1 m 2 / g.
  • a reaction tube (V2A steel; 2.5 cm wall thickness; 8.5 mm inner diameter; electrically heated) the length of 1.4 m was from bottom to top on a contact chair (7 cm long) initially over a length of 23 cm with quartz chips ( number-average large diameter 1 to 2 mm) and then loaded with multimetal oxide mass I over a length of 75 cm, before the loading was completed over a length of 35 cm with quartz chips (number-average large diameter 1 to 2 mm).
  • the entire length of the reaction tube charged as above was heated to 395 ° C. and then charged with 56 Nl / h of a reaction gas starting mixture of 80 vol.% Propane and 20 vol. Oxygen from top to bottom.
  • the pressure at the reaction tube inlet was 1.6 bar (abs.).
  • the pressure drop along the reaction tube was 0.22 bar.
  • the first step was to heat from 25 ° C to 300 ° C at a heating rate of 120 ° C / h. The temperature was then maintained at 300 ° C. for 3 hours and then with a heating rate of
  • the multimetal oxide obtained in this way was comminuted and, as the catalytically active multimetal oxide composition I of the Stochiomet ⁇ e M ⁇ Coo, 95 ⁇ x the grain fraction with a grain size diameter of 0.6 to 1.2 mm separated by sieving.
  • the average diameter of the pores of the active composition was 0.048 ⁇ m and the specific surface area was 28.4 m 2 .
  • Example 1 The oxidative catalytic dehydrogenation of propane was carried out as in Example 1, but the active composition used was that according to Comparative Example, a).
  • the multimetal oxide thus obtained was comminuted and, as the catalytically active multimetal oxide mass I of the stochiometne M ⁇ C ⁇ o, 95 ⁇ x, the grain fraction with a grain size diameter of 0.6 to 1.2 mm was separated off by sieving.
  • the average diameter of the pores of the active composition was 0.024 ⁇ m and the specific surface area was 29.2 m 2 / g.
  • Example 2 As in Example 1, a reaction tube was filled with the active composition from Example 2. The filled reaction tube was heated over its entire length to 400 ° C. and then charged with 112 Nl / h of a reaction gas starting mixture of 80 vol. Propane and 20 vol.% Oxygen. The pressure at the reactor inlet was 2.7 bar (abs.). The pressure drop along the reaction tube was 0.5 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Multimetalloxidmassen mit spezifischer Elementzusammensetzung und physikalischer Beschaffenheit, die als Katalysatoren für die oxidative katalytische Dehydrierung von Propan zu Propen geeignet sind.

Description

Multimetalloxidmasser.
Bescnreibung
Vorliegende Erfindung oetrifft Multimetalloxidmassen der allgemeinen Formel I
MaJ-MOi-bMi^Oa (I)
mit
M1 = Co, Ni , Mg, Zn, Mn und/oder Cu, vorzugsweise Co, Ni und/oder Mg, besonders bevorzugt Co und/oder Ni ,
M2 = W, V, Te, Nb, F, Cr, Fe, Sb, Ce, Sn und/oder La, vorzugsweise Sn, W, P, Sb und/oder Cr, besonders bevorzugt , Sn und/oder Sb ,
a = 0,5 bis 1,5, vorzugsweise 0,7 bis 1,2, besonders bevorzugt 0,9 bis 1,0,
b = 0 bis 0,5, vorzugsweise > 0 bis 0,5 und besonders bevorzugt
0,01 bis 0, 3 sowie
x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von
Sauerstoff verscmedenen Elemente m (I) bestimmt wird,
mit der Maßgabe, daß
der mittlere Durchmesser der Poren der Multimetalloxidmasse (I) < 0,04 μm und > 0,01 μm und die spezifische Oberflache der Multimetalloxidmasse (I) > 20 m2/g betragt .
Ferner betrifft vorliegende Erfindung die gasphasenkatalytisch oxidative Dehydrierung von Propan zu Propen, unter Verwendung der Multimetalloxidmassen (I) als Katalysatoren.
Multimetalloxidmassen αer Stochiometπe (I) sind bekannt.
Beispielsweise werden αerartige Multimetalloxidmassen in Topics in Catalysis 3 (1996) 265-275, m Catalysis Letters 35 (1995) 57-64, m Catalysis Toαay 24 (1995) 327-333, m Ind. Eng. Chem. Res. 1996, 35, 14-18, m US-A 4,255,284, m 3 World Congress on Oxidation Catalysis, R.K. Grasselli et. al. (Editors) 1997 Elsevier Science B.V., 357-364, m J. of Catalysis 167, 560-569 (1997), m Catalysis Letters 10 (1991) 131-192, m 2
US-A 5,036,032, m US-A 4,255,284, :r. US-A 5,086,032, in J. of Catalysis 170, 346-356 (1997) und in der alteren Anmeldung DE-A 19751046 als geeignete Katalysatoren für die gasphasenkata- lytische oxidative Dehydrierung von Propan zu Propen beschrieben. Nachteilig an den vorgenannten Multimetalloxidmassen des Standes der Technik ist jedoch, daß die mit ihnen bei vorgegebener Belastung mit Propan und molekularem Sauerstoff enthaltendem Reaktionsgasausgangsgemisch bei vorgegebenen Reaktionsbedingungen erzielbaren Raum-Zeit-Ausbeuten an Propen bzw. an Propen, Acrolein und Acrylsäure ( gemeinsam : Wertprodukt ) nicht zu befriedigen vermögen.
Die Aufgabe der vorliegenden Erfindung bestand daher darin, neue Multimetalloxidmassen zur Verfügung zu stellen, die bei Verwendung als Katalysatoren für die katalytische oxidative Dehydrierung von Propan zu Propen bzw. zu Propen, Acrolein und Acrylsäure bei vorgegebener Belastung und vorgegebenen Reaktions- bedingungen erhöhte Raum-Zeit-Ausbeuten ermöglichen.
Demgemäß wurden die eingangs definierten Multimetalloxidmassen (I) gefunden.
Erfindungsgemäß bevorzugte Multimetalloxidmassen (I) sind solche der allgemeinen Formel (II)
[Co , Ni u . /o . Mg] a Mθι-b [Sn , W , P , Sb u . /o . Cr] b Ox (II)
mit a = 0,5 bis 1,5, vorzugsweise 0,7 bis 1,2, besonders bevorzugt 0,9 bis 1, 0, b = 0 bis 0,5, vorzugsweise > 0 bis 0,5 und besonders bevorzugt 0 , 01 bis 0, 3 sowie x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente m (II) bestimmt wird.
Erfindungsgemäß besonders bevorzugte Multimetalloxidmassen (I) sind solche der allgemeinen Formel (III)
[Co u./o. Ni]a Mθι-b [W, Sn u./o. Sb]b Ox (III),
mit den vorstehenden Bedeutungen für a, b und x.
Ferner sind solche Multimetalloxidmassen (I), (II) und (III) bevorzuge, deren mittlerer Durchmesser ihrer Poren > 0,02 μm und < 0,035 um betragt. Darüber hinaus eignen sich erfindungsgemäß solche Multimetalloxidmassen (I) , (II) und (III) , deren mittlerer Durchmesser ihrer Poren > 0,025 um und < 0,030 μm betragt. 3
Ferner ist es gunstig, uenn αie vorgenannten Multimetalloxidmassen bei vorgenannten mittleren Poren urchmessern gleichzeitig eine spezifische Ooert-ache von > 25 m2/g DZ von > 30m2/g aufweisen. In der Regel .vird die spezifische Ooerflache der erfmdungsgemaßen Multι etalloxιdmassen < 50 m2/g betragen.
Unter der spezifischen Oberflache 0 wird in dieser Schrift die gemäß DIN 66133 mittels αer Methode der Quecksiloeπntrusion (Meßbereich : 1 μm bis 3 nm Porendurchmesser) ermittelte spezi- fische Oberflache verstanden.
Der mittlere Poren urcnmesser ist in dieser Schrift als das vierfache des Verhältnisses von gemäß vorgenannter Quecksilber- mtrusionsmethode ermitteltem Porengesamtvolumen zu spezifischer Oberflache 0 definiert
Prinzipiell können erfindungsgemäß geeignete Multimetall oxidaktivmassen (I) m einfacher Weise αadurch hergestellt werden, daß man von geeigneten Quellen ihrer elementaren Konstituenten eine wäßrige Losung erzeugt, diese spruhtrocknet (Austrittstemperaturen zweckmäßig 100 bis 150°C) und anschließend m einem rotierenden Behalter calcmiert. Üblicherweise betragt die Calcmationstemperatur 450 bis 1000, vorzugsweise 450 bis 700, häufig 450 bis 600 oder 550 bis 570°C. Die Calcmation kann sowohl unter Inertgas als auch unter einer oxidativen Atmosphäre wie z.B. Luft oder Gemischen aus Inertgas und Sauerstoff sowie auch unter reduzierender Atmosphäre, z.B. unter Gemischen aus Inertgas, Sauerstoff und NH3, CO und/oder H , erfolgen. Dies laßt sich m einfacher Weise dadurch realisieren, daß der rotierende Behalter von einem entsprechenden Gasgemisch durchströmt wird. Als rotierender Behalter kommen z.B ein Drehrohrofen oder ein rotierender Quarzrundkolben m Betracht.
Als Quellen für die elementaren Konstituenten der Multimetall - oxidaktivmassen (I) kommen solche Verbindungen in Betracht, bei denen es sich bereits um Oxide handelt und/oder solche Verbindungen, die durch Erhitzen, wenigstens m Anwesenheit von Sauerstoff, m Oxide uberfuhrbar sind.
Neben den Oxiden kommen als solche Ausgangsverbindungen vor allem Halogenide, Nitrate, Formiate, Oxalate, Citrate, Acetate, Carbonate, Ammkomplexe, Ammonium-Salze und/oder Hydroxide in Betracht (Verbindungen wie NH4OH, (NH )2C03,
NH4N03, NH4CH02, CH3COOH, NH4CH3C02 und/oder Ammomumoxalat , die spätestens beim spateren Calcinieren zu vollständig gasförmig entweichenden Verbinαungen zerfallen und/oder zersetzt werden können, können in αie wäßrige Losung zusätzlich eingearbeitet werden) .Um das Losen im wäßrigen Medium gegebenenfalls zu 4 erle cntern, kann selbiges bei Bedarf angesäuert, mit Base versetze und/oder auf erhöhte Temperatur gebracht werden.
Besonders geeignete AusgangsverDinctunσen des Mo, V, W und Nb sind deren Oxoverbmdungen (Molybdate, Vanadate, Wolframate und Niobate) bzw. die von diesen angeleiteten Sauren (Ammoniummo- lybdat, Ammoniumvanadat, Ammoniumwolframat) .
Für αie gasphasenkatalytische oxidative Dehydrierung von Propan zu Propen können die erfmdungsgemaßen Multimetalloxidmassen (I) sowohl m Pulverform als auch zu bestimmten Katalysatorgeometrien geformt eingesetzt werden, wobei die Formgebung vor oder naen der abschließenden Calcmation erfolgen kann. Beispielsweise können aus der Pulverform der Aktivmasse oder ihrer uncalcmierten Vorlaufermasse durch Verdichten zur gewünschten Katalysator - geometrie (z.B. durch Tablettieren, Extrudieren oder Strangpressen) Vollkatalysatoren hergestellt werden, wobei gegebenenfalls Hilfsmittel wie z.B. Graphit oder Stearinsaure als Gleitmittel und/oder Formhilfsmittel und Verstarkungsmittel wie Mikro- fasern aus Glas, Asbest, Siliciumcarbid oder Kaliumtitanat zugesetzt werden können. Geeignete Vollkatalysatorgeometπen sind z.B. Vollzylmder oder Hohlzylmder mit einem Außendurchmesser und einer Lange von 2 bis 10 mm. Im Fall der Hohlzylmder ist eine Wandstärke von 1 bis 3 mm zweckmäßig. Selbstverständlich kann der Vollkatalysator auch Kugelgeometrie aufweisen, wobei der Kugeldurchmesser 2 bis 10 mm betragen kann.
Naturlich kann die Formgebung der pulverformigen Aktivmasse oder ihrer pulverformigen, noch nicht calcimerten, Vorlaufermasse aucn durch Aufbringen auf vorgeformte inerte Katalysatortrager erfolgen. Die Beschichtung der Tragerkorper zur Herstellung der Schalenkatalysatoren wird m der Regel m einem geeigneten drehbaren Behalter ausgeführt, wie er z.B. aus der DE-A 2909671 oder aus der EP-A 293859 bekannt ist. Zweckmaßigerweise kann zur Beschichtung der Tragerkorper die aufzubringende Pulvermasse befeuchtet und nach dem Aufbringen, z.B. mittels heißer Luft, wieder getrocknet werden. Die Schichtdicke der auf den Tragerkorper aufgebrachten Pulvermasse wird zweckmaßigerweise im Bereich 50 bis 500 μm, bevorzugt im Bereich 150 bis 250 μm, liegend gewählt.
Als Tragermaterialien können dabei übliche poröse oder unporöse Aluminiumoxide, Siliciumdioxid, Thoriumdioxid, Zirkondioxid, Siliciumcarbid oder Silicate wie Magnesium- oder Aluminiumsilikat verwendet werden. Die Tragerxorper können regelmäßig oder un- 5 regelmäßig gerormt sein, wooei regelmäßig geformte Tragerkörper mit deutlich ausgenildeter Oberflachenraunigxeit , z.B. Kugeln oder Hohlzylmder, oevorzugt werden .
Geeignet ist αie Verwendung von im wesentlichen unporosen, ober- 5 flachenrauhen, kugelförmigen Tragern aus Steatit, deren Durchmesser 1 bis 8 mm, bevorzugt 4 bis 5 mm betragt.
In anwendungstechnisch zweckmäßiger Weise erfolgt die Durchfuhrung des erfmdungsgemaßen Verfahrens Rohrbundelreaktoren wie
10 sie z.B. m der EP-A 700893 und in der EP-A 700714 beschrieben sind. In den Metallronren (in der Regel aus Edelstahl) befindet sich der erfindungsgemäß zu verwendende Festnettkatalysator und um die Metallrohre wird ein Temperiermedium, in der Regel eine Salzschmelze, gefuhrt. D.h., m einfachster Weise enthalt jedes
15 Reaktionsrohr eine Schuttung eines wenigstens ein Multimetalloxid (I) als Aktivmasse aufweisenden Katalysators.
Das Reaktionsgasausgangsgemisch besteht zweckmäßig aus > 50 Vol.-% Propan, > 15 Vol.-% 02 und 0 bis 35 Vol.-% Inertgas. Mit Vorteil umfaßt das Reaktionsgasausgangsgemisch < 30 Vol.- , vorzugsweise <
20 20 Vol.-% und besonders bevorzugt < 10 Vol-% bzw. < 5 Vol-% Inertgas. Selbstverständlich kann das Reaktionsgasausgangsgemisch auch kein Inertgas umfassen.
Unter Inertgas werden hier solche Gase verstanden, deren Umsatz beim Durchgang des Reaktionsgasausgangsgemischs durch den
25 erfindungsgemäß zu verwendenden Festbettkatalysator < 5 mol-% betragt. Als Inertgas Kommen z.B. H20, C02, CO, N2 und/oder Edelgase Betracht.
Weiterhin enthalt das Reaktionsgasausgangsgemisch zweckmäßig > 30 60 Vol.-%, oder > 70 Vol.-%, oder > 80 Vol . -% Propan. Generell liegt der Propangehalt des erfindungsgemäß einzusetzenden Reaktionsgasausgangsgemisches bei < 85 Vol.-%, häufig bei < 83 oder < 82 oder < 81 oder < 80 Vol.-%. Der Gehalt des Reaktionsgasausgangsgemisches an molekularem Sauerstoff kann beim erfmdungs- 35 gemäßen Verfahren bis zu 35 Vol.-% betragen. Mit Vorteil liegt er bei wenigstens 20 Vol.-% oder bei wenigstens 25 Vol.-%.
Erf indungsgemäß gunstige Reaktionsgasausgangsgemische enthalten > 65 Vol.-% und < 85 Vol . -% Propan sowie > 15 Vol.-% und < 35 Vol . -% 40 molekularen Sauerstoff.
Erfindungsgemäß von Vorteil ist, wenn das Molverhalt is von Propan zu molekularem Sauerstoff im Reaktionsgasausgangsgemisch
< 5:1, bevorzugt < 4,75:1, besser < 4,5:1 und besonders bevorzugt
< 4:1 betragt. In der Regel wird vorgenanntes Verhältnis > 1:1 45 bzw. > 2:1 betragen. 6
Der Reaktionsdruck betragt im allgemeinen > 0,5 bar. Im Regelfall wird der Reaktionsαruck 100 bar nicht üoerscnreiten, d.h. > 0,5 bis 100 bar betragen. Zweckmäßig betragt der Peaktionsdruck häufig > 1 bis 50 bzw. > 1 bis 20 bar. Bevorzugt liegt der Reaktionsdruck bei > 1,25 bzw. > 1,5 oder > 1, 75 bzw. > 2 bar.
Häufig wird dabei die Obergrenze von 10 bzw. 20 bar nicht uber- scnritten. Selbstverständlich kann der Reaktionsdruck auch 1 bar betragen (vorstehende Aussagen bezüglich des Reaktionsdruckes gelten für das erfmdungsgemaße Verfahren ganz generell) .
Ferner wird die Belastung mit Vorteil so gewählt, daß die Ver- weilzeit des Reaktionsgasgemisches über αie Katalysatorschuttung 0,5 bis 20 sec, bevorzugt 1 bis 10 sec, besonders bevorzugt 1 bis 4 sec und häufig 3 sec betragt.
Wird das erfmdungsgemaße Verfahren kontinuierlich durchgeführt kann im Produktgemisch enthaltenes nicht umgesetztes Propan abgetrennt und die erf dungsgemaße katalytische oxidative Dehydrierung ruckgefuhrt werden.
Ferner können sich an das erf dungsgemaße Verfahren weitere heterogen katalysierte Oxidationsstufen anschließen, wie sie für die heterogen katalysierte Gasphasenoxidation von Propen zu Acrolein und/oder Acrylsäure bekannt sind und wie es m der lteren Anmeldung DE-A 19751046 beschrieben ist.
Beispiele
Beispiel 1
a) Herstellung einer Multimetalloxidmasse I
In 3,6 kg Wasser wurden bei 45°C 877,2 g Ammoniumhepta- molybdat (81,5 Gew.-% M0O3) gelost und zu der resultierenden Losung 2227,2 g einer w ßrigen Cobaltnitratlosung (auf die Losung bezogen 12,5 Gew.-% Co) zugegeben. Die entstandene klare rote Losung wurde m einem Sprühtrockner der Fa. Niro bei einer Eingangstemperatur von 330-340°C und einer Ausgangstemperatur von 110°C sprühgetrocknet (A/S Niro Atomizer transportable M or-Anlage) . 450 g des Spruhpulvers wurden innerhalb von 40 mm. mit 75 ml Wasser verknetet (1-1-Kneter vom Typ Sigmaschaufel-Kneter der Fa. Werner & Pfleiderer) und m einem Umluf ttrockenschrank 16 h bei 110°C getrocknet. Anschließend wurde der getrocknete Feststoff in einem von Luft durchströmten, rotierenden (15 Umdrehungen/mm) Quarzrundkolben (Innenvolumen: 2 1, 7
Luf durchsatz: konstant 250 1/r.) wie folgt calcmiert (K app- ofenbeheizung) :
Zunacnst wurde mit einer Aufheizrate von 180°C/h von Raum- temperatur (25°C) auf 225°C aufgeneizt. Anschließend wurde die Temperatur von 225°C wahrend 0,5 h aufrechterhalten und danach wurde mit einer Aufheizrate von 60°C/h die Calcmationstemperatur von 225°C auf 300°C erhöht. Diese Temperatur wurde anschließend wahrend 3 h aufrechterhalten. Danacn wurde mit einer Aufheizrate von 125°C/h die Calcmationstemperatur von 300 auf 550°C erhöht. Diese Temperatur wurde anschließend wahrend 6 h aufrechterhalten.
Das so erhaltene Multimetalloxid wurde zerkleinert und als katalytisch aktive Multimetalloxidmasse (I) der Stόchiometrie MoιCθo,95θx die Kornfraktion mit einem Korngrόßtdurchmesser vonO , 6 bis 1,2 mm durch Sieben abgetrennt. Der mittlere Durchmesser der Poren der Aktivmasse betrug 0,027 um und die spezifische Oberflache betrug 33,1 m2/g.
Oxidative katalytische Dehydrierung von Propan
Em Reaktionsrohr (V2A Stahl; 2,5 cm Wandstärke; 8,5 mm Innendurchmesser; elektrisch beheizt) der Lange 1,4 m wurde von unten nach oben auf einem Kontaktstuhl (7 cm Länge) zunächst auf einer Lange von 23 cm mit Quarzsplitt (zahlenmittlerer Großtdurchmesser 1 bis 2 mm ) und anschließend auf einer Lange von 75 cm mit der Multimetalloxidmasse I beschickt, bevor die Beschickung auf einer Lange von 35 cm mit Quarzsplitt (zahlenmittlerer Großtdurchmesser 1 bis 2 mm) abgeschlossen wurde.
Das wie vorstehend beschickte Reaktionsrohr wurde auf seiner gesamten Lange auf 395°C aufgeheizt und dann mit 56 Nl/h einer Reaktionsgasausgangsmischung aus 80 Vol.-% Propan und 20 Vol.- Sauerstoff von oben nach unten beschickt. Der Druck am Reaktionsrohreingang betrug 1,6 bar (abs.). Der Druckabfall längs des Reaktionsrohres betrug 0,22 bar.
Bei einfachem Durchgang wurde em Produktgasgemisch erhalten, das nachfolgende Charakteristik aufwies:
Propanumsatz: 12,4 mol-%
Selektivität der Propenbildung: 69 mol-% Selektivität der Acrole bildung: 2 mol-% Selektivität der Acrylsaurebil ung: 4 mol-%
Raumzeitausbeute an Propen: 3,8 mol/1 Kat-h
Raumzeitausbeute an Wertprodukt: 4,1 mol/1 Kat-n. 8 v'ergleicnsoeispiel
a) Herstellung einer "lultimetalloxidmasse I
In 1,2 kg Wasser vurüen bei 80°C 292,4 g Ammoniumnepta- molybdat (81,5 Gew - M0O3) gelost und zu αer resultierenden Losung 742,4 g wäßrige Cobaltnitratlosung (auf αie Losung bezogen 12,5 Gew -% Co) zugegeben. Die entstandene Losung wurde unter Ruhren auf dem Wasserbad bei 100°C eingedampft, bis eine pastose Masse entstanden war. Die pastose Masse wurde wahrend 40 mm mit 30 ml Wasser verknetet (1 1-Kneter vom Typ Sigmaschaufel Kneter der Fa. Werner & Pf leiderer) . Die resultierende Masse wurde in einem Trockenschrank 16 h bei 110°C getrocknet und anschließend m einem luftdurch- strömten Muffelofen (60 1 Innenvolumen, Luftdurchsatz 500 1/h) wie folgt calcmiert:
Zunächst wurde mit einer Aufheizrate von 120°C/h von 25°C auf 300°C aufgeheizt. Anschließend wurde die Temperatur von 300°C wahrend 3 h auf - rechterhalten und danach wurde mit einer Aufheizrate von
125°C/h die Calcmationstemperatur von 300 auf 550°C erhöht. Diese Temperatur wurde anschließend wahrend 6 h aufrechterhalten. Das so erhaltene Multimetalloxid wurde zerkleinert und als katalytisch aktive Multimetalloxidmasse I der Stochiometπe MθιCoo,95θx die Kornfraktion mit einem Korngroßtdurchmesser von 0,6 bis 1,2 mm durch Sieben abgetrennt. Der mittlere Durchmesser der Poren der Aktivmasse lag bei 0,048 μm und die spezifische Oberflache betrug 28,4 m2.
b) Oxidative katalytische Dehydrierung von Prooan
Die oxidative katalytische Dehydrierung von Propan wurde wie m Beispiel 1 durchgeführt, die eingesetzte Aktivmasse war jedoch jene gemäß Vergleichsbeispiel , a) .
Bei einfachem Durchσang wurde em Produktgasgemisch erhalten, das nachfolgende Charakteristik aufwies:
Propanumsatz: 8,8 mol-%
Selektivität der Propenbildung: 76 mol-% Selektivität der Acrole bildung : 2 mol-%
Selektivität der Acrylsaurebildung. 2 mol-% Raumzeitausroeute an Propen: 2,9 mol/1 Kat h
Raumzeitausoeute an Wertprodukt: 3,1 mol/1 Kat-h. 9
Beispiel 2
a) Herstellung einer Multimetalloxiαmasse I
In 3 , 6 kg Wasser wurden bei 45°C 877,2 g Ammoniumnepta- olybdat (81,5 Gew.-% MoOj) gelost und zu der resultierenden Losung 2227,2 g wäßrige Cobaltnitratlosung (auf die Losung bezogen 12,5 Gew.-% Co) zugegeben. Die entstandene klare rote Losung wurde m einem Spruh- trockner wie m Beispiel 1, a) sprühgetrocknet. 450 g des Sprunpuivers wurden wie m Beispiel 1, a) mit Wasser verknetet und anschließend getrocknet und calcimert. Im Unterschied zu Beispiel 1, a) wurde bei der Calcinierung abschließend die Calcmationstemperatur mit einer Aufheizrate von 133°C/h von 300°C auf 565°C erhöht und diese Calcmationstemperatur für 6 h aufrechterhalten.
Das so erhaltene Multimetalloxid wurde zerkleinert und als katalytisch aktive Multimetalloxidmasse I der Stochiometne MθχCθo,95θx die Kornfraktion mit einem Korngroßtdurchmesser von 0,6 bis 1,2 mm durch Sieben abgetrennt.
Der mittlere Durchmesser der Poren der Aktivmasse lag bei 0,024 μm und die spezifische Oberflache betrug 29,2 m2/g.
b) Oxidative katalytische Dehydrierung von Propan
Wie in Beispiel 1 wurde em Reaktionsrohr mit der Aktivmasse aus Beispiel 2 befullt. Das befullte Reaktionsrohr wurde auf se er gesamten Lange auf 400°C aufgeheizt und dann mit 112 Nl/h einer Reaktionsgasausgangsmischung aus 80 Vol.- Propan und 20 Vol.-% Sauerstoff beschickt. Der Druck am Reaktoreingang betrug 2,7 bar (abs.). Der Druckabfall längs des Reaktionsrohres betrug 0,5 bar.
Bei einfachem Durchgang wurde em Produktgasgemisch erhalten, das nachfolgende Charakteristik aufwies :
Propanumsatz: 9,4 mol-%
Selektivität der Propenbildung: 77 mol-% Selektivität der Acrolembildung: 2 mol-% Selektivität der Acrylsaurebildung: 3 mol-% Raumzeitausbeute an Propen: 6,3 mol/1 Kat h
Raumzeitausbeute an Wertprodukt: 6,8 mol/1 Kat h.

Claims

10Patentansprüche
1 . Mul timetal loxidmas sen der al lgemeinen Formel I
Ma 1Mθι-bMb 2Ox ( I ) ,
mit
M1 = Co, Ni, Mg, Zn, Mn und/oder Cu,
M2 = W, V, Te, Nb, P, Cr, Fe , Sb, Ce, Sn und/oder La, a = 0,5 bis 1,5 , b = 0 bis 0,5 , sowie x = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in (I) bestimmt wird,
mit der Maßgabe, daß
der mittlere Durchmesser der Poren der Multimetalloxidmasse (I) < 0,04 μm und > 0,01 μm und die spezifische Oberflache der Multimetalloxidmasse (I) > 20 m2/g betragt.
2. Verfahren der oxidativen katalytischen Dehydrierung von
Propan zu Propen, dadurch gekennzeichnet, daß als Katalysator em solcher eingesetzt wird, dessen Aktivmasse eine Multimetalloxidmasse gemäß Anspruch 1 ist.
PCT/EP1999/000890 1998-02-20 1999-02-11 Multimetalloxidmassen WO1999042404A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP99907537A EP1060129B1 (de) 1998-02-20 1999-02-11 Multimetalloxidmassen
AU27249/99A AU2724999A (en) 1998-02-20 1999-02-11 Polymetallic oxide materials
DE59900495T DE59900495D1 (en) 1998-02-20 1999-02-11 Multimetalloxidmassen
BR9907937-2A BR9907937A (pt) 1998-02-20 1999-02-11 Material de óxido multimetálico, e, processo para a desidrogenação oxidativa de propano para propeno
JP2000532362A JP2002503628A (ja) 1998-02-20 1999-02-11 複合金属酸化物材料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19807269A DE19807269A1 (de) 1998-02-20 1998-02-20 Multimetalloxidmassen
DE19807269.4 1998-02-20
DE19838312A DE19838312A1 (de) 1998-08-24 1998-08-24 Multimetalloxidmassen
DE19838312.6 1998-08-24

Publications (1)

Publication Number Publication Date
WO1999042404A1 true WO1999042404A1 (de) 1999-08-26

Family

ID=26044037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/000890 WO1999042404A1 (de) 1998-02-20 1999-02-11 Multimetalloxidmassen

Country Status (8)

Country Link
EP (1) EP1060129B1 (de)
JP (1) JP2002503628A (de)
CN (1) CN1288445A (de)
AU (1) AU2724999A (de)
BR (1) BR9907937A (de)
DE (1) DE59900495D1 (de)
MY (1) MY133084A (de)
WO (1) WO1999042404A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048971A1 (en) * 1999-02-22 2000-08-24 Symyx Technologies, Inc. Compositions comprising nickel and their use as catalyst in oxidative dehydrogenation of alkanes
US6355854B1 (en) 1999-02-22 2002-03-12 Symyx Technologies, Inc. Processes for oxidative dehydrogenation
US6436871B1 (en) 1999-02-22 2002-08-20 Symyx Technologies, Inc. Catalysts for oxidative dehydrogenation
US6534437B2 (en) 1999-01-15 2003-03-18 Akzo Nobel N.V. Process for preparing a mixed metal catalyst composition
JP2003201260A (ja) * 2001-12-04 2003-07-18 Rohm & Haas Co アルカンからオレフィン、不飽和カルボン酸および不飽和ニトリルを調製するための改良されたプロセス
US6677497B2 (en) 2001-03-22 2004-01-13 Symyx Technologies, Inc. Ni catalysts and methods for alkane dehydrogenation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260793A (ja) * 2007-08-30 2010-11-18 Nippon Shokubai Co Ltd アルカンの酸化脱水素用触媒、当該触媒の製造方法、並びに当該触媒を用いた不飽和炭化水素化合物および/または含酸素炭化水素化合物の製造方法、または不飽和酸の製造方法。

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2042216A1 (de) * 1969-08-27 1971-03-04 Esso Res And Engineering Co Verfahren zur Herstellung komplexer Metalloxyde mit grosser Oberflaeche

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2042216A1 (de) * 1969-08-27 1971-03-04 Esso Res And Engineering Co Verfahren zur Herstellung komplexer Metalloxyde mit grosser Oberflaeche

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KEELY: "preparation techniques for hydrotreating catalysts...", 8TH INTERNATIONAL CONGRESS ON CATALYSIS, vol. IV, 1985, pages 403 - 414, XP002106522 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534437B2 (en) 1999-01-15 2003-03-18 Akzo Nobel N.V. Process for preparing a mixed metal catalyst composition
US6652738B2 (en) 1999-01-15 2003-11-25 Akzo Nobel N.V. Process for preparing a mixed metal catalyst composition
US6436871B1 (en) 1999-02-22 2002-08-20 Symyx Technologies, Inc. Catalysts for oxidative dehydrogenation
WO2000048971A1 (en) * 1999-02-22 2000-08-24 Symyx Technologies, Inc. Compositions comprising nickel and their use as catalyst in oxidative dehydrogenation of alkanes
US6417422B1 (en) 1999-02-22 2002-07-09 Symyx Technologies, Inc. Ni catalysts and methods for alkane dehydrogenation
US6355854B1 (en) 1999-02-22 2002-03-12 Symyx Technologies, Inc. Processes for oxidative dehydrogenation
US6777371B2 (en) 1999-02-22 2004-08-17 Yumin Liu Ni catalysts and methods for alkane dehydrogenation
US6891075B2 (en) 1999-02-22 2005-05-10 Symyx Technologies, Inc. Processes for oxidative dehyrogenation
US7227049B2 (en) 1999-02-22 2007-06-05 Celanese International Corporation Ni catalysts and methods for alkane dehydrogenation
US7498289B2 (en) 1999-02-22 2009-03-03 Celanese International Corporation Ni catalysts and methods for alkane dehydrogenation
US7626068B2 (en) 1999-02-22 2009-12-01 Celanese International Corporation Ni catalysts and methods for alkane dehydrogenation
US7674944B2 (en) 1999-02-22 2010-03-09 Celanese International Corporation Ni catalysts and methods for alkane dehydrogenation
US6677497B2 (en) 2001-03-22 2004-01-13 Symyx Technologies, Inc. Ni catalysts and methods for alkane dehydrogenation
JP2003201260A (ja) * 2001-12-04 2003-07-18 Rohm & Haas Co アルカンからオレフィン、不飽和カルボン酸および不飽和ニトリルを調製するための改良されたプロセス

Also Published As

Publication number Publication date
DE59900495D1 (en) 2002-01-17
CN1288445A (zh) 2001-03-21
JP2002503628A (ja) 2002-02-05
BR9907937A (pt) 2000-11-14
AU2724999A (en) 1999-09-06
EP1060129B1 (de) 2001-12-05
MY133084A (en) 2007-10-31
EP1060129A1 (de) 2000-12-20

Similar Documents

Publication Publication Date Title
EP0609750B1 (de) Multimetalloxidmassen
EP0467144B1 (de) Massen der allgemeinen Formel Mo12PaVbX1cX2dX3eSbfRegShOn
EP1159246B1 (de) Verfahren der katalytischen gasphasenoxidation von acrolein zu acrylsäure
EP1159248B1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrylsäure
EP1159247B1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrylsäure
EP1025073B1 (de) Verfahren der heterogen katalysierten gasphasenoxidation von propan zu acrolein und/oder acrylsäure
EP0724481B1 (de) VERFAHREN ZUR HERSTELLUNG VON KATALYTISCH AKTIVEN MULTIMETALLOXIDMASSEN, DIE ALS GRUNDBESTANDTEILE DIE ELEMENTE V UND Mo IN OXIDISCHER FORM ENTHALTEN
EP2627622B1 (de) Verfahren zum langzeitbetrieb einer heterogen katalysierten partiellen gasphasenoxidation von propen zu acrolein
DE2249922C2 (de) Verfahren zur katalytischen Oxidation von Propylen oder Isobutylen zu Acrolein oder Methacrolein in der Gasphase mit molekularem Sauerstoff
WO2000053556A1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrolein
WO2001036364A1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrylsäure
DE19948523A1 (de) Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrylsäure
DE3410799C2 (de)
DE19948241A1 (de) Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrolein
EP1069948B1 (de) Multimetalloxidmassen mit einer zwei-phasigen struktur
WO2005016861A1 (de) Verfahren zur herstellung von (meth)acrolein und/oder (meth)acrylsäure
EP1611073B1 (de) Verfahren der heterogen katalysierten partiellen gasphasenoxidation von propen zu acrolein
EP1060129B1 (de) Multimetalloxidmassen
EP1611079B1 (de) Verfahren der heterogen katalysierten partiellen gasphasenoxidation von acrolein zu acryls ure
DE19746210A1 (de) Verfahren der heterogen katalysierten Gasphasenoxidation von Propan zu Acrolein und/oder Acrylsäure
DE19807269A1 (de) Multimetalloxidmassen
DE19838312A1 (de) Multimetalloxidmassen
DE19736105A1 (de) Verfahren zur Herstellung von Multimetalloxidmassen
WO2004085363A1 (de) Verfahren der heterogen katalysierten partiellen gasphasenoxidation von propen zu acrolein
EP1159243A1 (de) Verfahren der heterogen katalysierten gasphasenoxidation von propan zu acrolein und/oder acrylsäure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802281.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL IN JP KR KZ LT LV MK MX NO NZ PL RO RU SG SI SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999907537

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09622589

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999907537

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1999907537

Country of ref document: EP