WO1999041629A1 - Dispositif pour superposer des signaux optiques de longueurs d'onde differentes - Google Patents

Dispositif pour superposer des signaux optiques de longueurs d'onde differentes Download PDF

Info

Publication number
WO1999041629A1
WO1999041629A1 PCT/DE1999/000429 DE9900429W WO9941629A1 WO 1999041629 A1 WO1999041629 A1 WO 1999041629A1 DE 9900429 W DE9900429 W DE 9900429W WO 9941629 A1 WO9941629 A1 WO 9941629A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
input
input light
output
guide unit
Prior art date
Application number
PCT/DE1999/000429
Other languages
German (de)
English (en)
Inventor
Georges Przyrembel
Berndt Kuhlow
Original Assignee
HEINRICH-HERTZ-INSTITUT FüR NACHRICHTENTECHNIK BERLIN GMBH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1998106371 external-priority patent/DE19806371A1/de
Application filed by HEINRICH-HERTZ-INSTITUT FüR NACHRICHTENTECHNIK BERLIN GMBH filed Critical HEINRICH-HERTZ-INSTITUT FüR NACHRICHTENTECHNIK BERLIN GMBH
Publication of WO1999041629A1 publication Critical patent/WO1999041629A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section

Definitions

  • the invention relates to a device for superimposing optical signals with different wavelengths with an input free-beam coupler and an output free-beam coupler, the free-beam areas of which are connected to one another via an optical fiber grating, with a first input optical fiber unit, which is connected to the input free-beam coupler, with at least one further input optical fiber unit, wherein at least one wavelength can be guided in each input light guide unit, with an output light guide unit having a number of output light guides, the at least one further input light guide unit opening into the free beam area of the input free beam coupler and opening areas of the input light guide units in the free beam area of the input free beam coupler so arranged and dimensioned relative to the output light guides are that each output light guide with at least two optical signals with different Chen wavelengths can be applied.
  • Such a device is from the article "Novel muitichannel 1 .3 ⁇ m / 1 .55 ⁇ m AWG multiplexer / demultipiexer for WDM-PONs" by G. Przyrembel, B. Kuhlow, E. Pawlowski et al., Published in ELECTRONICS LETTERS Vol. 34 No . 3 of February 5, 1,998.
  • This device has an input free beam coupler and an output free beam coupler, the free beam areas of which are connected to one another via an optical fiber grating.
  • input light guides of a first input light guide unit are each acted upon with optical signals each having a specific wavelength and open into the free beam area of the Free entry coupler.
  • Input light guides of a further second input light guide unit are each fed with optical signals with the same wavelength, that is to say so-called broadcast signals at a broadcast wavelength, and open into the free beam area of the input free beam coupler at a distance from the input light guides of the first input light guide unit.
  • the mouth areas of the input light guides of the input light guide units are arranged and dimensioned with respect to output light guides of an output light guide unit connected to the output free-beam coupler so that each output light guide receives a superposition of optical signals with one of the specific wavelengths and the broadcast signals at the broadcast wavelength.
  • the previously known device can implement multiplex and de-multiplex functions, it has the disadvantage that optical signals with specific wavelengths superimposed in a wavelength division multiplex scheme have to be separated externally before being fed into the first input light guide unit.
  • the invention has for its object to develop a device of the type mentioned in such a way that, for example, to carry out a demultiplexing function, optical signals with specific wavelengths superimposed in a wavelength division multiplexing scheme can be fed directly, without the need for further frequency-selective components.
  • the first input light guide unit has at least one input light guide, the opening area of the or each input light guide of the first input light guide unit being arranged and dimensioned in the free beam area of the input free beam coupler such that one of at least two in the relevant input Waveguide guided wavelength applied to an associated output light guide.
  • the or each input light guide of the first input light guide unit which can be acted upon by optical signals with specific wavelengths superimposed in a wavelength division multiplexing scheme, is arranged and dimensioned with respect to the output light guides such that one of at least two specific ones guided in the relevant input light guide Wavelengths each applied to an output light guide, the separation of the optical signals superimposed in a wavelength division multiplexing scheme is carried out directly by means of the arrangement of input free beam coupler, light guide grating and output free beam coupler without further dispersive components.
  • the light guide grating for operation in relatively high diffraction orders with, for example, approximately 10 to approximately 150.
  • the or each input optical fiber of the first input optical fiber unit and the or each input optical fiber of the or each additional input optical fiber unit are arranged in such a way that the output optical fibers are connected with in different orders of the diffraction wavelengths diffracted from the first input light guide unit and the or each further input light guide unit are applied.
  • the difference between the orders is typically between 1 and 10, in some cases even higher.
  • the or at least one further input light guide unit is designed with a single input light guide that widens hyperbolically in the direction of the mouth area into the free beam area, so that an essentially rectangular intensity distribution of the optical signals fed into the input light guide of the or at least one further input light guide unit is in the mouth area of the output light guide is reproducible.
  • the input light guides of the input light guide units, the output light guides of the output light guide unit and phase shifting light guides of the light guide grating are designed as planar waveguides and the free beam areas as two-dimensional waveguide layers.
  • FIG. 1 shows a schematic illustration of an exemplary embodiment of the invention with a first input light guide unit having a single input light guide and a further second input light guide unit formed from a plurality of input light guides and
  • FIG. 2 shows a schematic representation of a further exemplary embodiment of the invention with a first input light guide having a plurality of input light guides. unit and a further expanded second input light guide unit having a single expanded input light guide.
  • FIG. 1 shows a schematic representation of an embodiment of an inventive device for superimposing optical signals with different wavelengths, which has an input free-beam coupler 1.
  • a single input light guide 4 of a first input light guide unit 5 is connected to a convex curved coupling side 3 that delimits an input free beam area 2 as the free beam area of the input free beam coupler 1, the output-side end of a single input light guide 4 of a first input light guide unit 5, the output-side end in a first mouth area into the input free beam area 2 flows.
  • a further second input light guide unit 14 are connected to the input side 3 at a distance from the input light guide unit 5 with their output ends, so that whose ends on the output side in a second mouth area open into the entrance free jet area 2.
  • the input light guide units 5, 14 are thus arranged at a distance from one another, the optical position of a central wavelength being between the mouth regions.
  • phase shifting light guides 1 6 of a light guide grid 1 7 formed with a so-called arrayed waveguide grating (AWG) structure are connected to a convex, circularly curved coupling-out side 1 5 of the input free beam coupler 1, which delimits the free entry area 2.
  • the phase shift light guides 1 6 are of different lengths, the length difference between adjacent phase shift light guides 1 6 being constant and corresponding to the central wavelength multiplied by a grating order for this central wavelength. 6
  • phase shift light guides 1 6 shown in very shortened form in FIG. 1 are connected to a convex circular coupling side 18 of an output free beam coupler 19 and open into its output free beam area 20 as a free beam area.
  • the input free beam coupler 1, the input light guides 4, 6 to 1 3 of the input light guide units 5, 14, the phase shifting light guides 1 6 of the light guide grid 17, the output free beam coupler 1 9 and the output light guides 22 to 29 of the output light guide unit 30 are preferably implemented in planar waveguide technology as planar waveguides or waveguide layers .
  • the input light guides 4 of the first input light guide unit 5 and the input light guides 6 to 13 of the second input light guide unit 1 4 are arranged and dimensioned with their mouth areas on the entrance free beam area 2 such that each output light guide 22 to 29 of the output light guide unit 30 with at least two optical signals with different wavelengths is acted upon.
  • optical signals are fed to the input light guide 4 of the first input light guide unit 5, which have different specific wavelengths superimposed in a wavelength division multiplexing scheme, which are each to be supplied to an output light guide 22 to 29.
  • Optical signals of a single wavelength, the so-called broadcast signals to be distributed to all the output optical fibers 22 to 29, are inserted into the input optical fibers 6 of the second input optical fiber unit 14 at the so-called broadcast wavelength, which can be fed, for example, via a coupling light guide to a star coupler (not shown in FIG. 1) and can be distributed via this to the input light guides 6 to 13 of the second input light guide unit 14.
  • each output light guide 22 to 29 has optical signals fed to the input light guide 4 of the first input light guide unit 5 broadcast signals fed to a specific wavelength and to the second input optical fiber unit 14 are fed in at the broadcast wavelength.
  • the positions of the output optical fibers 22 to 29 of the output optical fiber unit 30 are given for the given position of the input optical fiber 4 of the first input optical fiber unit 5 according to the following basic positioning equation:
  • ⁇ « ⁇ - ⁇ ⁇ ⁇ ( _ ⁇ c [1 + J_ ⁇ £
  • the positions of the input light guides 6 to 1 3 of the second input light guide unit 1 4 are calculated for given positions of the output light guides 22 to 29.
  • the intermediate angles between adjacent input light guides 6 to 1 3 of the second input light guide unit 1 4 correspond to the intermediate angles between adjacent output light guides 22 to 29.
  • the input light guides 6 to 1 3 of the second input light guide unit 1 4 are arranged with respect to the output light guides 22 to 29 such that each input light guide 6 to 13 of the second input light guide unit 14 is fed with optical signals, each with one An additional optical wavelength can be fed as a carrier to an output light guide 22 to 29, which overlap with the broadcast wavelength fed into all input light guides 6 to 1 3 of the second input light guide unit 14.
  • the intermediate angles between adjacent output light guides 22 to 29 and intermediate angles between associated adjacent input light guides 6 to 1 3 of the second input light guide unit 14 are also set up according to the positioning equation given above.
  • Mouth areas of the input light guide 6 to 1 3 guiding the broadcast wavelength of the second input light guide unit 14 In the so-called multimode interference technology, according to which the mouth areas are widened, so that, due to the imaging properties of the phased-array spectrograph formed by the input free-beam coupler 1, the optical fiber grating 17 and the output free-beam coupler 19, all the output optical fibers 22 to 29 be applied uniformly with an essentially rectangular intensity profile. Due to the broader intensity profile, the wavelength tolerance is significantly increased.
  • FIG. 2 shows a schematic illustration of a further exemplary embodiment of a device according to the invention for superimposing optical signals with different wavelengths, components corresponding to those in the exemplary embodiments according to FIGS. 1 and 2 being given the same reference numerals and not further described in the following are explained.
  • a plurality of input light guides 35, 36, 37 of a first input light guide unit 38 from the coupling-in side 3 are provided, which are arranged and dimensioned with respect to the output light guides 22 to 29 in such a way that one Apply optical fibers fed to input light guides 35, 36, 37 with a plurality of specific wavelengths superimposed in a wavelength division multiplexing scheme as carriers and output light guides 22 to 29 assigned to each with a specific wavelength.
  • the exemplary embodiment according to FIG. 2 has a further second input light guide unit 39, which has a single input light guide 40 that widens hyperbolically in the direction of the input free beam area 2.
  • the mouth area is widened to such an extent that all output light guides 22 to 29 are exposed to an essentially rectangular intensity profile of one or more spectrally relatively closely spaced broadcast wavelengths coupled into the second input light guides 39.
  • At least two specific wavelengths with at least one broadcast wavelength can be superimposed in output light guides 22 to 29.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

L'invention concerne un dispositif pour superposer des signaux optiques de longueurs d'onde différentes, dans lequel sont disposés un coupleur de faisceaux libres d'entrée (1) et un coupleur de faisceaux libres de sortie (19), entre lesquels se trouve un réseau de fibres optiques (19). Chaque fibre optique d'entrée (4) d'une première unité de fibres optiques d'entrée (5) est disposée et dimensionnée, par rapport aux fibres optiques de sortie (22 à 29), de sorte que chaque fibre optique de sortie (22 à 29) soit exposée à des signaux optiques présentant une longueur d'onde parmi plusieurs longueurs d'onde spécifiques superposées, selon un schéma de multiplexage de longueurs d'onde, dans la première unité de fibres optiques d'entrée (5). Chaque fibre optique d'entrée (6 à 13) d'au moins une autre unité de fibres optiques d'entrée (14) est disposée et dimensionnée, par rapport aux fibres optiques de sortie (22 à 29), de sorte que ces dernières soient exposées à au moins une longueur d'onde injectée dans ladite ou lesdites autres unités de fibres optiques d'entrée (14). Ce dispositif permet ainsi d'obtenir la répartition tant des longueurs d'onde superposées dans la première unité de fibres optiques d'entrée (5) en vue de l'exécution d'une fonction de démultiplexage, que d'au moins une longueur d'onde guidée dans l'autre unité de fibres optiques d'entrée (14), sur les fibres optiques de sortie (22 à 29), en vue de l'exécution d'une fonction d'imagerie.
PCT/DE1999/000429 1998-02-17 1999-02-11 Dispositif pour superposer des signaux optiques de longueurs d'onde differentes WO1999041629A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998106371 DE19806371A1 (de) 1997-05-17 1998-02-17 Vorrichtung zum Überlagern optischer Signale mit unterschiedlichen Wellenlängen
DE19806371.7 1998-02-17

Publications (1)

Publication Number Publication Date
WO1999041629A1 true WO1999041629A1 (fr) 1999-08-19

Family

ID=7857902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/000429 WO1999041629A1 (fr) 1998-02-17 1999-02-11 Dispositif pour superposer des signaux optiques de longueurs d'onde differentes

Country Status (1)

Country Link
WO (1) WO1999041629A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613263A1 (fr) * 1993-02-24 1994-08-31 AT&T Corp. Réseau optique comportant un démultiplexeur de longueur d'onde compact
EP0639782A1 (fr) * 1993-08-02 1995-02-22 Nippon Telegraph And Telephone Corporation Circuit intégré de guides d'ondes optiques et système de test de lignes de branchement optiques utilisant celui-ci
JPH09326780A (ja) * 1996-06-07 1997-12-16 Nippon Telegr & Teleph Corp <Ntt> 波長多重通信システムおよび方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613263A1 (fr) * 1993-02-24 1994-08-31 AT&T Corp. Réseau optique comportant un démultiplexeur de longueur d'onde compact
EP0639782A1 (fr) * 1993-08-02 1995-02-22 Nippon Telegraph And Telephone Corporation Circuit intégré de guides d'ondes optiques et système de test de lignes de branchement optiques utilisant celui-ci
JPH09326780A (ja) * 1996-06-07 1997-12-16 Nippon Telegr & Teleph Corp <Ntt> 波長多重通信システムおよび方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 098, no. 004 31 March 1998 (1998-03-31) *
PRZYRMBEL G ET AL: "MULTICHANNEL 1.3 MUM/1.55 MUM AWG MULTIPLEXER/DEMULTIPLEXER FOR WDM-PONS", ELECTRONICS LETTERS, vol. 34, no. 3, 5 February 1998 (1998-02-05), pages 263/264, XP000773717, ISSN: 0013-5194 *

Similar Documents

Publication Publication Date Title
DE69636334T2 (de) Kammverteilungsanordnung für optisches Mehrkanalnetz
DE60129407T2 (de) Auf einem einzigen Stufengitter basierender bidirektionaler Wellenlängenmultiplexer/-demultiplexer
EP0040706B1 (fr) Système de communication optique
DE60026497T2 (de) Optische dicht-wdm-multiplexer und -demultiplexer
DE69432814T2 (de) Optischer Bandpass-Filter
EP0476384A1 (fr) Réseau optique avec plusieurs bouts arrangés côte à côte pour sortie de guides d&#39;ondes optiques
EP0401654B1 (fr) Dispositif de couplage et/ou découplage des rayons lumineux avec élément d&#39;optique intégré
DE2842276A1 (de) Ein-/auskoppelelement
DE3414724C2 (fr)
DE3431448A1 (de) Optische multiplex-uebertragungseinrichtung
EP0767921B1 (fr) Dispositif de separation spatiale et/ou de reunion de canaux optiques de longueurs d&#39;onde
WO2003012505A1 (fr) Dispositif et procede pour multiplexer et/ou demultiplexer des signaux optiques de plusieurs longueurs d&#39;onde
EP1425616A1 (fr) Dispositif optique et module emetteur/recepteur destine a des systemes wdm optiques bidirectionnels et a des transmissions de donnees optiques
WO1999041629A1 (fr) Dispositif pour superposer des signaux optiques de longueurs d&#39;onde differentes
EP1390782B1 (fr) Coupleur a reseau selectif planaire destine a la separation de rayonnements electromagnetiques ayant differentes plages de longueurs d&#39;onde, et systeme de communication associe
DE60319318T2 (de) Optischer Multi-Demultiplexer
EP0786677B1 (fr) Méthode d&#39;opération d&#39;un réseau de phase
EP0118577B1 (fr) Multiplexeur ou démultiplexeur à longueur d&#39;onde en optique intégrée
DE19806371A1 (de) Vorrichtung zum Überlagern optischer Signale mit unterschiedlichen Wellenlängen
EP0981770B1 (fr) Dispositif pour superposer des signaux optiques a longueurs d&#39;ondes differentes
DE19821245C1 (de) Optischer Multiplexer und optischer Demultiplexer
DE202006017297U1 (de) Lichtwellenleiterverteilereinrichtung
DE19530644C1 (de) Optischer Kanalmultiplexer und/oder -demultiplexer
EP2328004A1 (fr) Système constitué d&#39;un connecteur optique et de plusieurs fibres conductrices d&#39;ondes lumineuses reliées à celui-ci
DE10134304A1 (de) AWG-Koppler zur Trennung von elektromagnetischer Strahlung mit verschiedenen Wellenlängenbereichen sowie nachrichtentechnisches System

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA