WO1999038179A1 - Schaltelement in folienbauweise - Google Patents

Schaltelement in folienbauweise Download PDF

Info

Publication number
WO1999038179A1
WO1999038179A1 PCT/EP1999/000260 EP9900260W WO9938179A1 WO 1999038179 A1 WO1999038179 A1 WO 1999038179A1 EP 9900260 W EP9900260 W EP 9900260W WO 9938179 A1 WO9938179 A1 WO 9938179A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
layer
resistance
resistance material
point
Prior art date
Application number
PCT/EP1999/000260
Other languages
English (en)
French (fr)
Inventor
Karl Billen
Laurent Federspiel
Edgard Theiss
Original Assignee
I.E.E. International Electronics & Engineering S.A.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I.E.E. International Electronics & Engineering S.A.R.L. filed Critical I.E.E. International Electronics & Engineering S.A.R.L.
Priority to EP99906147A priority Critical patent/EP1050057B1/de
Priority to DE59900979T priority patent/DE59900979D1/de
Priority to JP2000528988A priority patent/JP2002502082A/ja
Publication of WO1999038179A1 publication Critical patent/WO1999038179A1/de
Priority to US09/624,137 priority patent/US6429668B1/en
Priority to US09/629,178 priority patent/US6289747B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/12Adjustable resistors adjustable by mechanical pressure or force by changing surface pressure between resistive masses or resistive and conductive masses, e.g. pile type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2239/00Miscellaneous
    • H01H2239/078Variable resistance by variable contact area or point

Definitions

  • the present invention relates to a switching element in film construction which, when triggered, generates a signal which depends on the size of the triggered area.
  • Such a switching element in film construction comprises a first carrier film on which a release layer made of a first resistance material, e.g. Graphite, and a second carrier film on which a sensor layer made of a second resistance material, e.g. a semiconductor material is applied.
  • the first resistance material and the second resistance material are matched to one another in such a way that when the triggering layer and the sensor layer are contacted, the resistance of the boundary layer between the triggering layer and the sensor layer is essentially determined by the extent of the contact area.
  • the first carrier film and the second carrier film are arranged at a certain distance from one another by spacers in such a way that the release layer and the sensor layer face each other and are not in contact with one another when the switching element is not actuated.
  • the switching element is triggered or actuated, the triggering layer and the sensor layer are moved towards one another against the restoring force of the carrier films and contacted.
  • the two layers are contacted with one another in a first point of their area, this contact area increases with increasing pressure on the switching element.
  • Such pressure sensors are inexpensive to manufacture and have proven to be extremely robust and reliable in practice.
  • the trigger behavior or the dynamics of such pressure sensors is not suitable for certain applications. While in the case of the generally round sensors the radial extent of the triggered surface depends essentially linearly on the force exerted on the switching element, there is an essentially quadratic dependency for the contact surface. The resistance behavior of the sensor as a function of the triggering force consequently shows a course determined by this quadratic dependence, which makes the sensors unsuitable for certain applications.
  • a switching element in film construction with a first carrier film on which a triggering layer made of a first resistance material is applied, the triggering layer having a first electrical connection, and a second carrier film on which a sensor layer made of a second resistance material is applied is, wherein the sensor layer has a second electrical connection.
  • the first carrier film and the second carrier film are arranged at a certain distance from one another by spacers such that the triggering layer and the sensor layer face each other and are not in contact with one another when the switching element is not actuated, while when the switching element is triggered, the triggering layer and the sensor layer are initially in one be contacted with each other at the first point of their surface and the contact surface increases with increasing pressure on the switching element.
  • the first resistance material and the second resistance material are in such a way 3
  • the resistance of the boundary layer between the trigger layer and the sensor layer is essentially determined by the size of the contact area.
  • the sensor layer is designed in such a way that its specific electrical resistance, starting from the first point, varies in the direction of the increasing contact area with the distance from the first point in such a way that a predetermined triggering behavior of the switching element results as a function of the pressure force acting on the switching element .
  • the triggering behavior of such a switching element is also determined by the resistance in the sensor layer between the triggering point and the second electrical connection.
  • An electrical signal introduced into the sensor layer at a trigger point via the boundary layer e.g. an electrical voltage must in fact flow through the resistance path between the trigger point and the second connection.
  • the voltage drop in the resistance path can consequently be influenced as a function of the trigger point by a specific variation of the specific resistance over this resistance path, so that the triggering behavior of the switching element can be linearized, for example.
  • Such a switching element can consequently, with regard to its tripping behavior, i.e. its dynamics can be optimized for any application.
  • the varying specific resistance is generated by deliberately introducing a third resistance material into the second resistance material, the specific resistance of the third resistance material and the specific resistance of the second resistance material being different from one another, and the concentration of the third resistance material with the distance from the first point varies.
  • the specific resistance can be varied, for example, by introducing a low-resistance material, for example silver, into a high-resistance semiconductor material, the specific resistance 4
  • the sensor layer gets smaller with increasing amount of the introduced material.
  • the variation can also be carried out by introducing a high-resistance material in a layer of low-resistance material.
  • the third resistance material is preferably introduced into the second resistance material in the form of local enclosures. This type of introduction enables simple production of the sensor layer while at the same time controlling the concentration of the third resistance material in the sensor layer well.
  • the dependence of the concentration of the third resistance material can take place, for example, by a certain spatial arrangement of enclosures of the same extent or by a regular spatial arrangement of enclosures with a different extent or by a combination of the two.
  • the second resistance material preferably has a semiconductor material and the third resistance material has a substantially lower resistance than the second resistance material.
  • the semiconductor material can comprise, for example, a semiconductor ink used in the production of film pressure sensors, with which the required surface effect at the boundary layer with a release layer made of graphite can advantageously be brought about, while the third resistance material comprises silver.
  • the specific resistance of the sensor layer starting from the first point, for example the center of a round switching element, can increase proportionally in the radial direction with the distance to the first point.
  • the selected distance dimensions result from the desired sensor dynamics.
  • the enclosures are advantageously electrically isolated from the second electrical connection.
  • the enclosures are also preferably completely covered by the second resistance material on the side facing the release layer. 5 covers.
  • the cover layer made of second resistance material on the one hand prevents the release layer from directly switching through to the enclosures, on the other hand it serves as a protective layer against possible mechanical damage.
  • the trigger layer of the switching element can comprise a resistance material with a uniform resistivity. This is, for example, a graphite layer that can be easily produced in a screen printing process.
  • the triggering layer can be constructed similarly to the sensor layer, ie the triggering layer has a specific resistance which, starting from the first point, varies in the direction of the increasing contact area with the distance from the first point.
  • the course of the specific resistance in the triggering layer can correspond to the course of the specific resistance in the sensor layer or can have a completely different course.
  • FIG. 1 shows a section through a first embodiment of a switching element in FIG
  • Fig.3 a view of a further distribution of inclusions in the
  • Sensor layer of the switching element Figure 4 a section through a second embodiment, in which the trigger layer also has a varying specific resistance
  • Figure 5 a switching element with an alternative triggering method.
  • the trigger layer 12 and the sensor layer 14 each have an electrical connection 16, 18 at their edge.
  • the resistance material of the trigger layer 12 and the resistance material of the sensor layer are matched to one another such that when the trigger layer 12 and the sensor layer 14 are contacted, the resistance of the boundary layer between the trigger layer 12 and the sensor layer 14 is essentially determined by the extent of the contact area.
  • the switching element When the switching element is triggered, the two carrier foils 10 are pressed together against their respective restoring force until the triggering layer 12 and the sensor layer 14 are contacted.
  • the contacting of the two layers will initially take place in the middle of the two layers, the contact surface expanding radially outward with increasing force on the switching element. Since the linear expansion of the contact area increases essentially linearly with the force exerted, the size of the contact area increases correspondingly quadratically with the force. In the case of a conventional switching element, this results in a tripping behavior in which the electrical resistance drops approximately quadratically with the force.
  • the switching element shown has enclosures 20 of a third resistance material, the third resistance material, for example silver, having a significantly lower specific resistance than the second resistance material.
  • the specific resistance of the sensor layer 14 can be changed with the distance from the center of the switching element such that the non-linear trigger described above 7 is balanced.
  • the enclosures 20 are arranged, for example, in rings around the center of the switching element, the distance between two adjacent rings increasing towards the outside.
  • the resistance of this resistance path is strongly dependent on the extent of the contact area, so that the triggering behavior mentioned above can be largely linearized. It should be noted here that, as an alternative to a linear tripping behavior, in which the electrical resistance of the switching element is proportional to the force exerted on the switching element, any suitable dependency is made possible in principle by a suitable arrangement of the enclosures 20.
  • FIG. 2 and 3 show various distributions of the enclosures 20, which likewise lead to a linearization of the triggering behavior of the switching element.
  • the enclosures 20 are arranged essentially in a radial manner, the radial distance between two adjacent enclosures being essentially constant, while the enclosures 20 of the embodiment in FIG. 3 are arranged on spiral tracks. It is common to all distributions that the amount of material introduced in a circular ring around the center decreases with the distance from the center.
  • Trigger layer 12 similar to the sensor layer 14 inclusions 20.
  • the inclusions 20 are arranged in the release layer 12 at different locations with respect to the center of the switching element than the inclusions 8th
  • FIG. 5 A distribution of the enclosures 20 is shown in FIG. 5, in which the enclosures are evenly distributed over the surface of the sensor layer 14. Such a distribution of the enclosure leads to a tripping behavior that is very similar to that of conventional switching elements.
  • the low-resistance material into the sensor layer, the influence of resistance fluctuations in the high-resistance second resistance material on the specific resistance of the respective layer is greatly reduced. As a result, quality differences between different switching elements in series production can be largely avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)
  • Push-Button Switches (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)
  • Seats For Vehicles (AREA)

Abstract

Es wird ein Schaltelement in Folienbauweise vorgestellt, mit einer auf einer ersten Trägerfolie aufgebrachten Auslöseschicht aus einem ersten Widerstandsmaterial und einer auf einer zweiten Trägerfolie aufgebrachten Sensorschicht aus einem zweiten Widerstandsmaterial. Die beiden Trägerfolien sind durch Abstandshalter derart in einem gewissen Abstand zueinander angeordnet, daß sich die Auslöseschicht und die Sensorschicht gegenüberstehen und bei nicht betätigtem Schaltelement nicht miteinander kontaktiert sind, während bei der Auslösung des Schaltelements die Auslöseschicht und die Sensorschicht zunächst in einem ersten Punkt ihrer Fläche miteinander kontaktiert werden und sich die Kontaktfläche bei zunehmendem Druck auf das Schaltelement vergrößert. Das erste und zweite Widerstandsmaterial sind derart aufeinander abgestimmt, daß bei der Kontaktierung der Auslöseschicht und der Sensorschicht der Widerstand der Grenzschicht zwischen der Auslöseschicht und der Sensorschicht im wesentlichen durch die Ausdehnung der Kontaktfläche bestimmt wird. Die Sensorschicht ist erfindungsgemäß derart ausgestaltet, daß ihr spezifischer elektrischer Widerstand, ausgehend von dem ersten Punkt, in Richtung der zunehmenden Kontaktfläche derart mit dem Abstand von dem ersten Punkt variiert, daß sich ein vorbestimmtes Auslöseverhalten des Schaltelements in Abhängigkeit der auf das Schaltelement wirkenden Druckkraft ergibt.

Description

Schaltelement in Folienbauweise
Einleitung
Die vorliegende Erfindung betrifft ein Schaltelement in Folienbauweise, das beim Auslösen ein Signal generiert, das von der Größe der ausgelösten Fläche abhängt.
Ein solches Schaltelement in Folienbauweise umfaßt eine erste Trägerfolie, auf der eine Auslöseschicht aus einem ersten Widerstandsmaterial, z.B. Graphit, aufgebracht ist, und einer zweiten Trägerfolie, auf der eine Sensorschicht aus einem zweiten Widerstandsmaterial, z.B. einem Halbleitermaterial, aufgebracht ist. Das erste Widerstandsmaterial und das zweite Widerstandsmaterial sind dabei derart aufeinander abgestimmt, daß bei der Kontaktierung der Auslöse- Schicht und der Sensorschicht der Widerstand der Grenzschicht zwischen der Auslöseschicht und der Sensorschicht im wesentlichen durch die Ausdehnung der Kontaktfläche bestimmt wird.
Die erste Trägerfolie und die zweite Trägerfolie sind durch Abstandhalter derart in einem gewissen Abstand zueinander angeordnet, daß sich die Auslöse- schicht und die Sensorschicht gegenüberstehen und bei nicht betätigtem Schaltelement nicht miteinander kontaktiert sind. Bei der Auslösung oder Betätigung des Schaltelements werden die Auslöseschicht und die Sensorschicht gegen die Rückstellkraft der Trägerfolien aufeinander zubewegt und miteinander kontaktiert. Bei kleinen Auslösekräften werden die beiden Schich- ten in einem ersten Punkt ihrer Fläche miteinander kontaktiert, diese Kontaktfläche vergrößert sich bei zunehmendem Druck auf das Schaltelement.
Mißt man den elektrischen Widerstand des Schaltelementes, so erhält man eine Kenngröße, die direkt von der miteinander kontaktierten Fläche abhängt, und die, unter Einbeziehung der Rückstellkraft der Trägerfolien, Rückschlüsse auf die auf das Schaltelement wirkenden Auslösekräfte erlaubt. Aus diesem Grund können derartige Schaltelemente beispielsweise als Drucksensoren eingesetzt werden. 2
Derartige Drucksensoren sind kostengünstig herstellbar und haben sich in der Praxis als äußerst robust und zuverlässig erwiesen. Allerdings ist das Auslöseverhalten bzw. die Dynamik solcher Drucksensoren für bestimmte Anwendungen nicht geeignet. Während bei den im allgemeinen runden Sensoren die radiale Ausdehnung der ausgelösten Fläche im wesentlichen linear von der auf das Schaltelement ausgeübten Kraft abhängt, ergibt sich für die Kontaktfläche eine im wesentlichen quadratische Abhängigkeit. Das Widerstandsverhalten des Sensors in Abhängigkeit der Auslösekraft weist folglich einen von dieser quadratischen Abhängigkeit bestimmten Verlauf aus, was die Sensoren für bestimmte Anwendungen ungeeignet macht.
Aufgabe der Erfindung
Aufgabe der vorliegenden Erfindung ist es folglich, ein derartiges Schaltelement in Folienbauweise vorzuschlagen, das eine Anpassung des Auslöseverhaltens an den jeweiligen Einsatzzweck ermöglicht.
Allgemeine Beschreibung der Erfindung
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Schaltelement in Folienbauweise, mit einer ersten Trägerfolie, auf der eine Auslöseschicht aus einem ersten Widerstandsmaterial aufgebracht ist, wobei die Auslöseschicht einen ersten elektrischen Anschluß aufweist, und einer zweiten Trägerfolie, auf der eine Sensorschicht aus einem zweiten Widerstandsmaterial aufgebracht ist, wobei die Sensorschicht einen zweiten elektrischen Anschluß aufweist. Die erste Trägerfolie und die zweite Trägerfolie sind durch Abstandhalter derart in einem gewissen Abstand zueinander angeordnet, daß sich die Auslöseschicht und die Sensorschicht gegenüberstehen und bei nicht betätigtem Schaltelement nicht miteinander kontaktiert sind, während bei der Auslösung des Schaltelements die Auslöseschicht und die Sensorschicht zunächst in einem ersten Punkt ihrer Fläche miteinander kontaktiert werden und sich die Kontaktfläche bei zunehmendem Druck auf das Schaltelement vergrößert. Das erste Widerstandsmaterial und das zweite Widerstandsmaterial sind derart aufeinan- 3
der abgestimmt, daß bei der Kontaktierung der Auslöseschicht und der Sensorschicht der Widerstand der Grenzschicht zwischen der Auslöseschicht und der Sensorschicht im wesentlichen durch die Größe der Kontaktfläche bestimmt wird. Erfindungsgemäß ist die Sensorschicht derart ausgestaltet, daß ihr spezifischer elektrischer Widerstand, ausgehend von dem ersten Punkt, in Richtung der zunehmenden Kontaktfläche derart mit dem Abstand von dem ersten Punkt variiert, daß sich ein vorbestimmtes Auslöseverhalten des Schaltelements in Abhängigkeit der auf das Schaltelement wirkenden Druckkraft ergibt. Das Auslöseverhalten eines solchen Schaltelementes wird, neben dem Widerstand der Grenzschicht zwischen der Auslöseschicht und der Sensorschicht, auch durch den Widerstand in der Sensorschicht zwischen der Auslösestelle und dem zweiten elektrischen Anschluß bestimmt. Ein an einer Auslösestelle über die Grenzschicht in die Sensorschicht eingebrachtes elektrisches Signal, z.B. eine elektrische Spannung, muß in der Tat über die Widerstandsstrecke zwischen der Auslösestelle und dem zweiten Anschluß abfließen.
Durch eine gezielte Variation des spezifischen Widerstandes über diese Widerstandsstrecke kann folglich der Spannungsabfall in der Widerstandsstrecke abhängig von der Auslösestelle beeinflußt werden, so daß das Auslö- severhalten des Schaltelementes beispielsweise linearisiert werden kann. Ein solches Schaltelement kann folglich, bezüglich seines Auslöseverhaltens, d.h. seiner Dynamik für jeden beliebigen Einsatzzweck, optimiert werden.
In einer bevorzugten Ausgestaltung des Schaltelementes wird der variierende spezifische Widerstand durch gezieltes Einbringen eines dritten Widerstands- materials in das zweite Widerstandsmaterial erzeugt, wobei der spezifische Widerstand des dritten Widerstandsmaterials und der spezifische Widerstand des zweiten Widerstandsmaterials voneinander verschieden sind, und wobei Konzentration des dritten Widerstandsmaterials mit dem Abstand von dem ersten Punkt variiert. Die Variation des spezifischen Widerstandes kann beispielsweise durch Einbringen eines niederohmigen Materials, z.B. Silber, in ein hochohmiges Halbleitermaterial erfolgen, wobei der spezifische Widerstand 4
der Sensorschicht mit steigender Menge des eingebrachten Materials kleiner wird. Umgekehrt kann die Variation auch durch Einbringen eines hochohmigen Materials in Schicht aus niederohmigen Material erfolgen.
Das dritte Widerstandsmaterial ist vorzugsweise in Form von lokalen Einschlie- ßungen in das zweite Widerstandsmaterial eingebracht. Diese Einbringungsart ermöglicht eine einfache Herstellung der Sensorschicht bei gleichzeitig guter Kontrolle der Konzentration des dritten Widerstandsmaterials in der Sensorschicht. Die Abhängigkeit der Konzentration des dritten Widerstandsmaterials kann dabei beispielsweise durch eine bestimmte räumliche Anordnung von Einschließungen gleicher Ausdehnung oder durch eine regelmäßige räumliche Anordnung von Einschließungen mit unterschiedlicher Ausdehnung oder durch eine Kombination der beiden erfolgen.
Das zweite Widerstandsmaterial weist vorzugsweise ein Halbleitermaterial auf und das dritte Widerstandsmaterial weist einen wesentlich geringeren Wider- stand auf als das zweite Widerstandsmaterial. Das Halbleitermaterial kann beispielsweise eine bei der Herstellung von Foliendrucksensoren verwendete Halbleitertinte umfassen, mit der der erforderliche Flächeneffekt an der Grenzschicht zu einer Auslöseschicht aus Graphit vorteilhaft bewirkt werden kann, während das dritte Widerstandsmaterial Silber umfaßt. Auf die oben beschriebene Weise kann der spezifische Widerstand der Sensorschicht ausgehend von dem ersten Punkt, beispielsweise den Zentrum eines runden Schaltelementes, in radialer Richtung proportional mit dem Abstand zum ersten Punkt ansteigen. Die gewählten Abstandsmaße resultieren aus der gewünschten Sensordynamik. Die Einschließungen sind vorteilhaft elektrisch von dem zweiten elektrischen Anschluß isoliert. Hierdurch wird verhindert, daß das Schaltelement aufgrund von Einschließungen, die sich bis in die Grenzschicht zwischen Auslöseschicht und Sensorschicht hineinerstrecken, vollständig durchschaltet und eine Druk- kerkennung unmöglich wird. Die Einschließungen sind zudem auf der der Auslöseschicht zugewandten Seite vorzugsweise vollständig von dem zweiten Widerstandsmaterial über- 5 deckt. Die Deckschicht aus zweitem Widerstandsmaterial verhindert einerseits ein direktes Durchschalten der Auslöseschicht auf die Einschließungen, andererseits dient sie als Schutzschicht gegen eventuelle mechanische Beschädigung. Die Auslöseschicht des Schaltelementes kann ein Widerstandsmaterial mit einem gleichförmigen spezifischen Widerstand umfassen. Es handelt sich hierbei beispielsweise um eine Graphitschicht, die sich in einem Siebdruckverfahren leicht herstellen läßt. In einer alternativen Ausgestaltung kann die Auslöseschicht ähnlich wie die Sensorschicht aufgebaut sein, d.h. die Auslöse- schicht weist einen spezifischen Widerstand auf, der, ausgehend von dem ersten Punkt, in Richtung der zunehmenden Kontaktfläche mit dem Abstand von dem ersten Punkt variiert. Der Verlauf des spezifischen Widerstands in der Auslöseschicht kann dabei dem Verlauf des spezifischen Widerstands in der Sensorschicht entsprechen oder einen völlig anderen Verlauf aufweisen.
Beschreibung anhand der Figuren
Im folgenden werden vorteilhafte Ausgestaltungen der Erfindung anhand der beiliegenden Figuren beschrieben. Es zeigen:
Fig.1 : einen Schnitt durch eine erste Ausgestaltung eines Schaltelements in
Folienbauweise Fig.2: eine Ansicht einer alternativen Verteilung von Einschließungen in der Sensorschicht des Schaltelementes
Fig.3: eine Ansicht einer weiteren Verteilung von Einschließungen in der
Sensorschicht des Schaltelementes Fig.4: einen Schnitt durch eine zweite Ausgestaltung, in das auch die Auslöseschicht einen variierenden spezifischen Widerstand aufweist Fig.5: ein Schaltelement mit einem alternativen Auslöseverfahren.
In Fig. 1 ist ein Schnitt durch ein rundes Schaltelement in Folienbauweise dargestellt, das beim Auslösen ein Signal generiert, das von der Größe der ausgelösten Fläche abhängt. 6
Es umfaßt im wesentlichen zwei Trägerfolien 10, die mittels eines Abstandhalters 1 1 in einem gewissen Abstand zueinander angeordnet sind. Auf einer Trägerfolie ist eine Auslöseschicht 12 aus einem ersten Widerstandsmaterial, z.B. Graphit aufgebracht, während auf der anderen Trägerfolie eine Sensor- schicht 14 aus einem zweiten Widerstandsmaterial, z.B. einer Halbleitertinte, wie sie bei der Herstellung von Foliendrucksensoren verwendet wird, aufgebracht, die der Auslöseschicht 12 gegenübersteht. Die Auslöseschicht 12 und die Sensorschicht 14 weisen jeweils an ihrem Rand einen elektrischen Anschluß 16, 18 auf. Das Widerstandsmaterial der Auslöseschicht 12 und das Widerstandsmaterial der Sensorschicht sind derart aufeinander abgestimmt, daß bei der Kontaktierung der Auslöseschicht 12 und der Sensorschicht 14 der Widerstand der Grenzschicht zwischen der Auslöseschicht 12 und der Sensorschicht 14 im wesentlichen durch die Ausdehnung der Kontaktfläche bestimmt wird. Beim Auslösen des Schaltelementes werden die beiden Trägerfolien 10 gegen ihre jeweilige Rückstellkraft soweit zusammengedrückt, bis die Kontaktierung der Auslöseschicht 12 und der Sensorschicht 14 erfolgt. Die Kontaktierung der beiden Schichten wird dabei zunächst in der Mitte der beiden Schichten erfolgen, wobei sich die Kontaktfläche mit zunehmender Kraft auf das Schalte- lement radial nach außen ausdehnt. Da die lineare Ausdehnung der Kontaktfläche im wesentlichen linear mit der ausgeübten Kraft anwächst, wächst die Größe der Kontaktfläche entsprechend quadratisch mit der Kraft an. Hierdurch ergibt sich bei einem herkömmlichen Schaltelement ein Auslöseverhalten, bei dem der elektrische Widerstand etwa quadratisch mit der Kraft abfällt. Zur Linearisierung dieses Auslöseverhaltens weist das dargestellte Schaltelement Einschließungen 20 eines dritten Widerstandsmaterials auf, wobei das dritte Widerstandsmaterial, z.B. Silber, einen wesentlich geringeren spezifischen Widerstand aufweist als das zweite Widerstandsmaterial. Durch eine geeignete Verteilung der Einschließungen 20 kann der spezifische Widerstand der Sensorschicht 14 derart mit dem Abstand von dem Mittelpunkt des Schaltelements verändert werden, daß das oben beschriebene nicht-lineare Auslö- 7 severhalten ausgeglichen wird. In der dargestellten Ausführung sind die Einschließungen 20 z.B. in Ringen um das Zentrum des Schaltelementes angeordnet, wobei der Abstand zwischen zwei benachbarten Ringen nach außen hin zunimmt. Beim Auslösen des Schaltelementes wird eine elektrische Spannung, die an dem Anschluß 16 der Auslöseschicht 12 anliegt, über die Grenzschicht auf die Sensorschicht 14 übertragen. Diese Spannung liegt dann im wesentlichen zwischen, dem Rand der Kontaktfläche und dem Anschluß 18 der Sensorschicht 14 an, das Signal muß folglich in der Sensorschicht 14 die Wider- Standsstrecke zwischen diesen Punkten durchlaufen. Durch Variation des spezifischen Widerstandes der Sensorschicht 14 ist der Widerstand dieser Widerstandsstrecke stark abhängig von der Ausdehnung der Kontaktfläche, so daß das oben angesprochene Auslöseverhalten weitgehend linearisiert werden kann. Es ist hierbei anzumerken, daß alternativ zu einem linearen Auslöseverhalten, bei dem der elektrische Widerstand des Schaltelementes proportional zu der auf das Schaltelement ausgeübten Kraft ist, durch eine geeignete Anordnung der Einschließungen 20 im Prinzip jede beliebige Abhängigkeit ermöglicht wird.
In Fig.2 und Fig.3 sind verschiedene Verteilungen der Einschließungen 20 dargestellt, die ebenfalls zu einer Linearisierung des Auslöseverhaltens des Schaltelementes führen. In Fig.2 sind die Einschließungen 20 im wesentlichen strahlenförmig angeordnet, wobei der radiale Abstand zwischen zwei benachbarten Einschließungen im wesentlichen gleichbleibend ist, während die Einschließungen 20 der Ausgestaltung der Fig.3 auf Spiralbahnen angeordnet sind. Allen Verteilungen gemeinsam ist, daß die Menge des jeweils in einem Kreisring um das Zentrum eingebrachten Materials mit dem Abstand vom Zentrum abnimmt.
Bei der in Fig.4 dargestellten Ausgestaltung des Schaltelementes weist die
Auslöseschicht 12 ähnlich wie die Sensorschicht 14 Einschließungen 20 auf. Dabei sind die Einschließungen 20 in der Auslöseschicht 12 an anderen Stellen bezüglich des Zentrums des Schaltelementes angeordnet als die Einschließun- 8
gen in der Sensorschicht 14. Auf diese Weise kann eine noch komplexere Anpassung des Auslöseverhaltens an eine gegebene Aufgabe erfolgen.
In Fig.5 ist eine Verteilung der Einschließungen 20 dargestellt, bei der die Einschließungen gleichmäßig über die Fläche der Sensorschicht 14 verteilt sind. Eine solche Verteilung der Einschließung führt zu einem Auslöseverhalten, das dem konventioneller Schaltelemente sehr ähnlich ist. Allerdings wird durch das Einbringen des niederohmigen Materials in die Sensorschicht der Einfluß von Widerstandsschwankungen in dem hochohmigen zweiten Widerstandsmaterial auf den spezifischen Widerstand der jeweiligen Schicht stark verringert. Hierdurch können Qualitätsunterschiede zwischen verschiedenen Schaltelementen bei der Serienherstellung weitestgehend vermieden werden.

Claims

Patentansprüche
1. Schaltelement in Folienbauweise, mit einer ersten Trägerfolie, auf der eine Auslöseschicht aus einem ersten Widerstandsmaterial aufgebracht ist, wobei die Auslöseschicht einen ersten elektrischen Anschluß aufweist, . einer zweiten Trägerfolie, auf der eine Sensorschicht aus einem zweiten
Widerstandsmaterial aufgebracht ist, wobei die Sensorschicht einen zweiten elektrischen Anschluß aufweist, wobei die erste Trägerfolie und die zweite Trägerfolie durch Abstandhalter derart in einem gewissen Abstand zueinander angeordnet sind, daß sich die Auslöseschicht und die Sensorschicht gegenüberstehen und bei nicht betätigtem Schaltelement nicht miteinander kontaktiert sind, wobei das erste Widerstandsmaterial und das zweite Widerstandsmaterial derart aufeinander abgestimmt sind, daß bei der Kontaktierung der Auslöseschicht und der Sensorschicht der Widerstand der Grenzschicht zwi- sehen der Auslöseschicht und der Sensorschicht im wesentlichen durch die
Größe der Kontaktfläche bestimmt wird, und wobei bei der Auslösung des Schaltelements, die Auslöseschicht und die Sensorschicht zunächst in einem ersten Punkt ihrer Fläche miteinander kontaktiert werden und sich die Kontaktfläche bei zunehmendem Druck auf das Schaltelement vergrößert, dadurch gekennzeichnet, daß die Sensorschicht derart ausgestaltet ist, daß ihr spezifischer elektrischer Widerstand, ausgehend von dem ersten Punkt, in Richtung der zunehmenden Kontaktfläche derart mit dem Abstand von dem ersten Punkt variiert, daß sich ein vorbestimmtes Auslöseverhalten des Schaltelements in Abhängigkeit der auf das Schaltelement wirkenden Druckkraft ergibt.
2. Schaltelement nach Anspruch 1 , dadurch gekennzeichnet, daß der variierende spezifische Widerstand durch gezieltes Einbringen eines dritten Widerstandsmaterials in das zweite Widerstandsmaterial erzeugt wird, wobei der spezifische Widerstand des dritten Widerstandsmaterials und der spe- 10 zifische Widerstand des zweiten Widerstandsmaterials voneinander verschieden sind und, wobei Konzentration des dritten Widerstandsmaterials mit dem Abstand von dem ersten Punkt variiert.
3. Schaltelement nach Anspruch 2, dadurch gekennzeichnet, daß das dritte Widerstandsmaterial in Form von lokalen Einschließungen in das zweite
Widerstandsmaterial eingebracht ist.
4. Schaltelement nach Anspruch 3, dadurch gekennzeichnet, daß die Verteilung der lokalen Einschließungen in dem zweiten Widerstandsmaterial mit dem Abstand von dem ersten Punkt variiert.
5. Schaltelement nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Ausdehnung der lokalen Einschließungen mit dem Abstand von dem ersten Punkt variiert.
6. Schaltelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das zweite Widerstandsmaterial ein Halbleitermaterial aufweist und daß das dritte Widerstandsmaterial einen wesentlich geringeren Widerstand aufweist als das zweite Widerstandsmaterial.
7. Schaltelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der spezifische Widerstand der Sensorschicht in radialer Richtung mit dem Abstand zum ersten Punkt ansteigt.
8. Schaltelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Einschließungen elektrisch von dem zweiten elektrischen Anschluß isoliert sind.
9. Schaltelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Einschließungen auf der der Auslöseschicht zu- gewandten Seite vollständig von dem zweiten Widerstandsmaterial überdeckt sind.
10. Schaltelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Auslöseschicht einen spezifischen Widerstand aufweist, der, ausgehend von dem ersten Punkt, in Richtung der zuneh- menden Kontaktfläche mit dem Abstand von dem ersten Punkt variiert.
PCT/EP1999/000260 1998-01-21 1999-01-18 Schaltelement in folienbauweise WO1999038179A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP99906147A EP1050057B1 (de) 1998-01-21 1999-01-18 Schaltelement in folienbauweise
DE59900979T DE59900979D1 (de) 1998-01-21 1999-01-18 Schaltelement in folienbauweise
JP2000528988A JP2002502082A (ja) 1998-01-21 1999-01-18 フォイル構造のスイッチ部材
US09/624,137 US6429668B1 (en) 1998-01-21 2000-07-21 Switching element produced in the form of a film
US09/629,178 US6289747B1 (en) 1998-01-21 2000-07-31 Pressure-sensitive area sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU90200A LU90200B1 (de) 1998-01-21 1998-01-21 Schaltelement in Folienbauweise
LU90200 1998-01-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/000443 Continuation WO1999039168A1 (de) 1998-01-30 1999-01-23 Drucksensibler flächensensor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/624,137 Continuation US6429668B1 (en) 1998-01-21 2000-07-21 Switching element produced in the form of a film
US09/629,178 Continuation US6289747B1 (en) 1998-01-21 2000-07-31 Pressure-sensitive area sensor

Publications (1)

Publication Number Publication Date
WO1999038179A1 true WO1999038179A1 (de) 1999-07-29

Family

ID=19731734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/000260 WO1999038179A1 (de) 1998-01-21 1999-01-18 Schaltelement in folienbauweise

Country Status (7)

Country Link
US (2) US6429668B1 (de)
EP (1) EP1050057B1 (de)
JP (1) JP2002502082A (de)
DE (1) DE59900979D1 (de)
ES (1) ES2172305T3 (de)
LU (1) LU90200B1 (de)
WO (1) WO1999038179A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097838A1 (en) * 2001-05-28 2002-12-05 Iee International Electronics & Engineering S.A. Foil-type switching element
DE102004047516A1 (de) * 2004-09-28 2006-04-06 Carl Freudenberg Kg Sensor-Anordnung und Verwendungen einer Sensor-Anordnung

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU90200B1 (de) * 1998-01-21 1999-07-22 Iee Sarl Schaltelement in Folienbauweise
JP4595267B2 (ja) * 2001-08-29 2010-12-08 アイシン精機株式会社 感圧スイッチ
EP1429353B1 (de) * 2001-09-21 2011-11-16 Shin-Etsu Polymer Co., Ltd. Druckschalter-benutzungs-glied und herstellungsverfahren dafür
EP1636071B1 (de) 2003-06-23 2007-02-21 IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. Sitzbelegungssensor
JP2005069968A (ja) * 2003-08-27 2005-03-17 Aisin Seiki Co Ltd 着座検出装置
US7584016B2 (en) * 2003-09-30 2009-09-01 Intrinsic Marks International Llc Item monitoring system and methods
US6964205B2 (en) * 2003-12-30 2005-11-15 Tekscan Incorporated Sensor with plurality of sensor elements arranged with respect to a substrate
DE102004005952A1 (de) * 2004-02-02 2005-08-25 E.G.O. Elektro-Gerätebau GmbH Bedieneinrichtung für ein Elektrogerät mit einem Bedien-Feld und einem Sensorelement darunter sowie Verfahren zum Betrieb der Bedieneinrichtung
JP4218614B2 (ja) * 2004-08-27 2009-02-04 アイシン精機株式会社 座席状態検出装置、車両用ヘッドランプの照射方向調節装置及び着座検出装置
JP2006064572A (ja) * 2004-08-27 2006-03-09 Aisin Seiki Co Ltd 座席状態検出装置、車両用ヘッドランプの照射方向調節装置及び着座検出装置
US7362225B2 (en) 2004-11-24 2008-04-22 Elesys North America Inc. Flexible occupant sensor and method of use
DE102005056882B4 (de) * 2005-01-24 2012-06-14 F.S. Fehrer Automotive Gmbh Kraftfahrzeugsitz mit Insassendetektor
US7594442B2 (en) * 2005-10-14 2009-09-29 T-Ink Tc Corp Resistance varying sensor using electrically conductive coated materials
US20070241895A1 (en) * 2006-04-13 2007-10-18 Morgan Kelvin L Noise reduction for flexible sensor material in occupant detection
WO2007124754A2 (en) * 2006-05-01 2007-11-08 Linak A/S Electrically adjustable piece of furniture
US8449156B2 (en) * 2009-02-22 2013-05-28 Ford Global Technologies, Llc Automotive interior hidden switching
US10363453B2 (en) 2011-02-07 2019-07-30 New Balance Athletics, Inc. Systems and methods for monitoring athletic and physiological performance
CN106418870B (zh) 2011-02-07 2019-10-22 新平衡运动公司 用于监视运动表现的系统和方法
JP2012247372A (ja) * 2011-05-30 2012-12-13 Nippon Mektron Ltd 圧力センサ及びその製造方法並びに圧力検出モジュール
US11135973B2 (en) * 2019-04-12 2021-10-05 Akaisha Pinckney Driver alert system to prevent abandonment of a person or an animal in a vehicle and components thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145317A (en) * 1976-11-29 1979-03-20 Shin-Etsu Polymer Co., Ltd. Pressure-sensitive resistance elements
US4495236A (en) * 1982-11-29 1985-01-22 The Yokohama Rubber Co. Ltd. Pressure-sensitive electrically conductive composite sheet
US5431064A (en) * 1992-09-18 1995-07-11 Home Row, Inc. Transducer array

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014217A (en) * 1975-11-28 1977-03-29 Agence Nationale De Valorisation De La Recherche Etablissement Public De Droit Tactile pick-up
DE3039256A1 (de) * 1980-10-17 1982-04-29 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Widerstandswertveraenderliches schaltorgan
DE3224386A1 (de) * 1982-06-30 1984-01-05 Starkstrom-Apparatebau GmbH, 7022 Leinfelden Handbetaetigter geber
IL72736A0 (en) * 1984-08-21 1984-11-30 Cybertronics Ltd Surface-area pressure transducers
DE3642088A1 (de) * 1986-12-10 1988-06-23 Wolfgang Brunner Anordnung zur messung von kraftverteilungen
US4839512A (en) * 1987-01-27 1989-06-13 Tactilitics, Inc. Tactile sensing method and apparatus having grids as a means to detect a physical parameter
US5010774A (en) 1987-11-05 1991-04-30 The Yokohama Rubber Co., Ltd. Distribution type tactile sensor
DE4237072C1 (de) 1992-11-03 1993-12-02 Daimler Benz Ag Resistiver Foliendrucksensor
US5323650A (en) 1993-01-14 1994-06-28 Fullen Systems, Inc. System for continuously measuring forces applied to the foot
US5508700A (en) * 1994-03-17 1996-04-16 Tanisys Technology, Inc. Capacitance sensitive switch and switch array
DE19512813C1 (de) * 1995-04-05 1996-06-20 Sensotherm Temperatursensorik Verfahren zur Herstellung von Bauelementen
US5986221A (en) * 1996-12-19 1999-11-16 Automotive Systems Laboratory, Inc. Membrane seat weight sensor
LU90200B1 (de) * 1998-01-21 1999-07-22 Iee Sarl Schaltelement in Folienbauweise

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145317A (en) * 1976-11-29 1979-03-20 Shin-Etsu Polymer Co., Ltd. Pressure-sensitive resistance elements
US4495236A (en) * 1982-11-29 1985-01-22 The Yokohama Rubber Co. Ltd. Pressure-sensitive electrically conductive composite sheet
US5431064A (en) * 1992-09-18 1995-07-11 Home Row, Inc. Transducer array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097838A1 (en) * 2001-05-28 2002-12-05 Iee International Electronics & Engineering S.A. Foil-type switching element
LU90783B1 (en) * 2001-05-28 2003-05-09 Ie Internat Electronics & Engi Foil-type switching element
US7064650B2 (en) 2001-05-28 2006-06-20 Iee International Electronics & Engineering S.A. Foil-type switching element
DE102004047516A1 (de) * 2004-09-28 2006-04-06 Carl Freudenberg Kg Sensor-Anordnung und Verwendungen einer Sensor-Anordnung

Also Published As

Publication number Publication date
ES2172305T3 (es) 2002-09-16
US6429668B1 (en) 2002-08-06
EP1050057B1 (de) 2002-03-13
EP1050057A1 (de) 2000-11-08
US6289747B1 (en) 2001-09-18
DE59900979D1 (de) 2002-04-18
JP2002502082A (ja) 2002-01-22
LU90200B1 (de) 1999-07-22

Similar Documents

Publication Publication Date Title
EP1050057B1 (de) Schaltelement in folienbauweise
DE3013129C2 (de) Detektorvorrichtung für die X- und Y-Koordinaten von Eingabepunkten
EP1636812B1 (de) Drucksensor in folienbauweise
DE102012105411B4 (de) Verwendung eines Signatur-Widerstandselements in einer Sicherungsschleife
DE19738531C2 (de) Auf Druck ansprechender Widerstand
DE68927623T2 (de) Folienschalter
DE3707874C2 (de)
DE3779964T2 (de) Resistives bandelement, verfahren zur herstellung und verwendungen.
DE60204777T2 (de) Schaltelement des folientyps
EP2355274A1 (de) Überspannungsschutzelement
DE19929228A1 (de) Druckempfindlicher Wandler mit einer halbleitende Teilchen enthaltenden, druckempfindlichen Schicht
WO2003025961A1 (de) Schaltelement in folienbauweise
EP0201682B1 (de) Integrierter Drehzahlsensor mit magnetfeldabhängigen Sensorwiderständen
EP3769062B1 (de) Sensorelement zur druck- und temperaturmessung
DE60309351T2 (de) Folienartiges schaltelement
DE10340644B4 (de) Mechanische Steuerelemente für organische Polymerelektronik
DE3323582C2 (de)
CH660267A5 (de) Ladungsverstaerkerschaltung.
DE102019114185B4 (de) Taktiles Sensorelement
DE69113227T2 (de) Spannungs-/Strom-Charakteristik-Kontrollschaltung, insbesondere zum Schuzt von Leistungstransistoren.
DE4418472A1 (de) Sonde zur Temperaturmessung von Gasen oder Flüssigkeiten
DE2623697A1 (de) Verfahren und vorrichtung zur feuchtemessung von flaechengebilden, insbesondere textilbahnen
DE652202C (de) Potentiometer mit auf einer isolierenden Unterlage aufgetragener Widerstandsschicht
DE2547604B2 (de) Steuerungsanordnung für die Funkenstrecken eines Überspannungsabieiters
DE2711457C2 (de) Ionisationsbrandmelder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999906147

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09624137

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 09629178

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999906147

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999906147

Country of ref document: EP