WO1999031070A1 - Substituierte phenylpyrazolone, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen und tierischen schädlingen - Google Patents

Substituierte phenylpyrazolone, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen und tierischen schädlingen Download PDF

Info

Publication number
WO1999031070A1
WO1999031070A1 PCT/EP1998/008179 EP9808179W WO9931070A1 WO 1999031070 A1 WO1999031070 A1 WO 1999031070A1 EP 9808179 W EP9808179 W EP 9808179W WO 9931070 A1 WO9931070 A1 WO 9931070A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
hydrogen
methyl
formula
compounds
Prior art date
Application number
PCT/EP1998/008179
Other languages
English (en)
French (fr)
Inventor
Bernd Müller
Hubert Sauter
Herbert Bayer
Markus Gewehr
Wassilios Grammenos
Thomas Grote
Andreas Gypser
Arne Ptock
Franz Röhl
Norbert Götz
Roland Götz
Volker Harries
Eberhard Ammermann
Gisela Lorenz
Siegfried Strathmann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU20534/99A priority Critical patent/AU2053499A/en
Publication of WO1999031070A1 publication Critical patent/WO1999031070A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C243/00Compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C243/10Hydrazines
    • C07C243/22Hydrazines having nitrogen atoms of hydrazine groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/18One oxygen or sulfur atom
    • C07D231/20One oxygen atom attached in position 3 or 5
    • C07D231/22One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to substituted phenylpyrazolones of the formula I,
  • R A is halogen, cyano, C1-C4 alkyl or C ⁇ -C 4 haloalkyl
  • R B is hydrogen or C 1 -C 4 alkyl
  • R c cyano, -CC 6 alkyl or -CC 4 haloalkyl
  • T is a direct bond, oxygen or CH 0;
  • R 4 halogen, cyano, nitro, hydroxy, mercapto, amino, carboxyl, aminocarbonyl, aminothiocarbonyl, alkyl, haloalkyl, alkenyl, alkenyloxy, alkynyloxy, alkoxy, haloalkoxy, alkylthio, alkylamino, dialkylamino, formyl, alkylcarbonyl, alkylsulfonyl, alkylsulfoxyl,
  • Contain ring members where the cyclic systems can be partially or completely halogenated or can be substituted by one to three groups R 5 or by one or two groups R 6 :
  • R 5 halogen, cyano, nitro, hydroxy, Ci-C ß- alkyl, Ci-C ß -haloalkyl, Ci-C ⁇ -alkylcarbonyl, C 3 -C 6 cycloalkyl, Ci-C ß -alkoxy, Ci-Cg-halogenal - Koxy, -C-C 6 alkoxycarbonyl, -C-C 6 -alkyl hio, Ci-C ß -alkylamino, di-Ci-C ⁇ -alkylamino, C -C 6 ⁇ A1 kenyl, C 2 -C 6 alkenyloxy , C 3 -c 6 -alkynyloxy and -CC 4 -alkylenedioxy, which may be halogenated; and
  • Ci-C ß- alkyl T is oxygen, sulfur or NR d and 1 is 0 or 1;
  • W C ⁇ -C 6 alkyl, C -C ⁇ alkenyl, C -C 6 - lkinyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl or hetaryl, the cyclic systems containing 3 to 10 ring members and the Substituents can be partially or completely halogenated or can carry one to three groups R 5 ;
  • R 1 is hydrogen, cyano, C ⁇ 4 alkyl, C ⁇ -C4-haloalkyl, C ⁇ -C 4 -alkoxy, C 4 -alkoxy-C ⁇ -C 4 alkyl, C 3 -C 6 cycloalkyl;
  • R c is hydrogen, C ⁇ -C 6 alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl;
  • R d is hydrogen or Ci -C 6 alkyl;
  • R 3 is hydrogen, Ci-C ⁇ -alkyl, optionally C -C 6 alkenyl or C 2 -C 6 alkynyl, these substituents can be partially or completely halogenated or can carry one to three groups R 5 and
  • the invention relates to methods and intermediates for the preparation of the compounds I and the use of the compounds I for controlling harmful fungi and animal pests.
  • the compounds described in the abovementioned documents are used as crop protection agents against harmful fungi and, for. Suitable against animal pests.
  • the compounds of the formula I differ from the compounds known from the abovementioned publications by the configuration of the cycle E:
  • the group E is a pyrazolone.
  • the compounds of the formula I have an increased activity against harmful fungi and animal pests compared to the known compounds.
  • the compounds I can be obtained in various ways, it being irrelevant for the synthesis whether the pyrazolone or the T-Z group is built up first.
  • the name is used in the following reaction descriptions
  • the grouping T-Z in the compounds of the formula I can be obtained per se analogously to the methods described in WO-A 93 / 15,046, WO-A 96 / 07,633 and WO-A 97 / 24,317.
  • the hydroxypyrazoles of the formula II # are obtained particularly advantageously by first converting a nitrobenzene derivative III # , for example by hydrogenation, into the corresponding aniline IV #, then diazotizing IV # and reducing the resulting diazo compound into the hydrazine V # and converting it V # with an alkoxymethylene malonic acid alkyl ester of the formula Via, in which R "stands for C 1 -C 4 -alkyl, is converted to the dicarboxylic acid ester VII *, which is cyclized under basic conditions via the ester VIII # and the acid VIIIb # to II #.
  • the reduction of the nitro group of III * can be carried out under generally customary conditions, preferably by catalytic hydrogenation, by reduction with iron, tin or zinc in the presence of an acid, by reduction with alkali metals in the presence of a base or by enzyme-catalyzed reduction [cf. Houben-Weyl, Vol. IV / lc, 4th ed., Pp. 506ff., Thieme Verlag Stuttgart and New York (1980); ibid. Vol. IV / ld, 4th ed., p. 473ff. (1981); Heterocycles, vol. 31, p.
  • Suitable solvents are water, in the case of enzyme-catalyzed reduction also aqueous buffer solutions, aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as Diethyl ether, diisopropyl ether, tert.
  • aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether
  • aromatic hydrocarbons such as toluene, o-, m- and p-xylene
  • halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene
  • ethers such as Diethyl ether, diisopropyl ether, tert.
  • catalysts which, for example, contain platinum, platinum oxide or palladium on a support, or also Raney nickel or Raney cobalt, are used as catalysts in the catalytic hydrogenation.
  • platinum or palladium catalysts are preferred.
  • the platinum or palladium content of the catalyst is not critical and can be varied within wide limits.
  • the amount of platinum or palladium used is between 0.001 and 10% by weight, preferably between 0.01 and 0.1% by weight, based on the nitro compound.
  • coal is used as the carrier material.
  • Other non-amphoteric supports such as graphite, BaS0 4 or they are also suitable.
  • the temperature range for the hydrogenation is between -20 ° C and + 180 ° C, preferably between -5 and + 40 ° C.
  • the minimum temperature is only determined by the freezing point of the solvent used.
  • Hydrogenation is usually carried out at a hydrogen pressure which is between normal pressure and 30 bar gauge pressure.
  • the hydrogen is normally gassed in at normal pressure or slightly elevated pressure.
  • Inorganic acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid and perchloric acid, and organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, citric acid and trifluoroacetic acid are used as acids.
  • the acids are generally used in catalytic amounts, but they can also be used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • the reduction with alkali metals, for example with sodium, is generally carried out in the presence of a base.
  • Bases generally include alkali metal amides such as lithium amide, sodium amide and potassium amide, and alkali metal and alkaline earth metal alcoholates such as sodium methoxide, sodium ethoxide, potassium ethoxide and
  • Potassium tert. Butanolate also organic bases, e.g. tertiary amines such as trimethylamine, triethylamine, tri-isopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylaminopyridine and bicyclic amines. Ammonia and primary amines are particularly preferred.
  • the bases are generally used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • Nitrobenzene derivatives of the formula III # are z. T. known from the literature [cf. EP-A 498 396; WO-A 93 / 15,046; WO-A 95 / 14,009] or can be prepared according to the literature cited.
  • Suitable solvents are water, aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert. Butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles such as acetonitrile and propionitrile, ketones such as acetone, methyl ethyl ketone,
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol as well as dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably water and acetic acid. Mixtures of the solvents mentioned can also be used.
  • Inorganic acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid and perchloric acid, Lewis acids such as boron trifluoride, aluminum trichloride, iron-III-chloride, tin-IV-chloride, titanium-IV-chloride and zinc are found as acids and acidic catalysts II chloride, as well as organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, citric acid and trifluoroacetic acid.
  • the acids are generally used in catalytic amounts, but they can also be used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • Alkali or alkaline earth metal nitrites are usually used as nitrosating agents, in particular sodium or potassium nitrite.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use the nitrifying agent in an excess based on IV #.
  • the reduction of the diazo compound can be carried out under generally customary conditions, preferably by reduction with iron, tin or zinc or their salts in the presence of an acid or by reduction with alkali metals in the presence of a base [cf. Houben-Weyl, Vol. IV / lc, 4th ed., Pp. 506ff., Thieme Verlag Stuttgart and New York (1980); ibid. Vol. IV / ld, 4th ed., p. 473ff. (1981); Heterocycles, vol. 31, p. 2201 (1990)].
  • the reduction of the diazonium salts with sulfite or disulfite is also preferred [cf.
  • Suitable solvents are water or aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert.
  • Inorganic acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid and perchloric acid, Lewis acids such as boron trifluoride, aluminum trichloride, iron-III-chloride, tin-IV-chloride, titanium-IV-chloride are found as acids and acidic catalysts and zinc-II-chloride, as well as organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, citric acid and trifluoroacetic acid.
  • the acids are generally used in catalytic amounts, but they can also be used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • Bases generally include inorganic compounds such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides such as lithium hydride, calcium hydride, sodium hydride, sodium hydride, sodium hydride, Sodium amide and potassium amide, alkali metal and alkaline earth metal carbonates such as lithium carbonate, potassium carbonate and calcium carbonate as well as alkali metal hydrogen carbonates such as sodium hydrogen carbonate, organometallic compounds, in particular alkali metal alkyls such as methyl lithium, butyl lithium and phenyl lithium, alkyl magnesium halide and sodium alkali metal methoxide, such as methyl alkali metal such as methyl alcoholate, Potassium ethanolate, potassium tert-butanolate and dimethoxymagnesium, also
  • the bases are generally used in catalytic amounts, but they can also be used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • Particularly suitable reducing agents are NaHS0 3 , Na 2 S 2 0s or SnCl 2 .
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use the reducing agent in an excess based on the nitroso compound.
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert-butyl methyl ether , Dioxane, anisole and tetrahydrofuran, nitriles such as acetonitrile and propionitrile, as well as dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably petroleum ether, toluene, tert. Butyl methyl ether, diethyl ether and dimethylformamide. Mixtures of the solvents mentioned can also be used.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use Via in an excess based on V **.
  • Alkoxymethylene malonic acid alkyl esters Via are either commercially available or can be prepared by methods known from the literature.
  • Suitable solvents are water, aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert. Butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles such as acetonitrile and propionitrile, ketones such as acetone, methyl ethyl ketone,
  • Diethyl ketone and tert. butyl methyl ketone, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert.
  • Bases generally include inorganic compounds such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides such as lithium hydride and alkali metal hydride, sodium hydride, sodium hydride, sodium hydride, sodium hydride, sodium hydride, sodium hydride, sodium hydride, sodium hydride, calcium hydride , Sodium amide and potassium amide, alkali metal and alkaline earth metal carbonates such as lithium carbonate, potassium carbonate and calcium carbonate as well as alkali metal hydrogen carbonates such as sodium hydrogen carbonate, organometallic compounds, in particular alkali metal alkyls such as methyl lithium, butyl lithium and phenyllithium, alkyl magnesium halide and sodium alkali metal chloride such as methyl alkali metal chlor
  • the bases are generally used in catalytic amounts, but they can also be used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use the base in an excess based on VII #.
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert. Butyl methyl ether,
  • nitriles such as acetonitrile and propionitrile
  • ketones such as acetone, methyl ethyl ketone, diethyl ketone and tert.
  • -Butyl methyl ketone alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert.
  • Bases generally include inorganic compounds such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides such as lithium hydride, sodium hydride and calcium hydride, calcium hydride, calcium hydride, sodium hydride, calcium hydride, calcium hydride, calcium hydride, calcium hydride, calcium hydride, calcium hydride, calcium hydride, calcium hydride, calcium hydride Lithium amide, sodium amide and potassium amide, alkali metal and alkaline earth metal carbonates such as lithium carbonate, potassium carbonate and calcium carbonate as well as alkali metal hydrogen carbonates such as sodium hydrogen carbonate, organometallic compounds, in particular alkali metal alkyls such as methyl lithium, butyl lithium and phenyl lithium, alkyl magnesium magnesium
  • the bases are generally used in catalytic amounts, but they can also be used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use the base in an excess based on VIII *.
  • the halogenation of II ** is usually carried out at temperatures from -30 ° C to 50 ° C, preferably 0 ° C to 30 ° C, in an inert organic solvent.
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert.
  • -Butanol as well as dirthylsulfoxide, dimethylformamide and dimethylacetamide, particularly preferably methylene chloride, methanol and dimethylformamide. Mixtures of the solvents mentioned can also be used.
  • Suitable halogenating agents are chlorine, bromine, iodine, dibromodimethylhydrantoin, N-bromosuccinimide or N-chlorosuccinimide, in particular N-bromosuccinimide or N-chlorosuccinimide.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use II ** in excess, based on the halogenating agent.
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert.
  • ketones such as acetone, butanone or esters such as ethyl acetate, as well as dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably dimethylformamide, tetrahydrofuran, dimethyl sulfoxide, diethyl ether, acetone, methanol, ethyl acetate and toluene.
  • ketones such as acetone, butanone or esters such as ethyl acetate
  • Bases generally include inorganic compounds such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides such as lithium hydride, calcium hydride, sodium hydride, sodium hydride, sodium hydride, Alkali metal amides such as lithium amide, sodium amide and potassium amide, alkali metal and alkaline earth metal carbonates such as lithium carbonate, potassium carbonate and calcium carbonate as well as alkali metal hydrogen carbonates such as sodium bicarbonate, organometallic compounds, in particular alkali metal alkyls such as methyl lithium, butyl lithium and phenes lithium aluminum such as methyl lithium alkali metal chloride, and methyl lithium alkali metal halide such as methyl lithium alkali metal chloride and methyl aluminum halide such as methyl lithium al
  • the bases are generally used in equimolar amounts or in excess, but can also be used in catalytic amounts or, if appropriate, as a solvent.
  • alkylating agents examples include alkyl halides, alkyl sulfonates, alkyl p-toluenesulfonates, alkyl trifluoromethanesulfonates, alcohols, ethers or alkyl p-bromophenyl sulfonates, in particular methyl or ethyl iodide or dimethyl or diethyl sulfate.
  • the nitrile group is preferably introduced with cyanogen halides, such as cyanogen bromide.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use the alkylation agent in an excess based on IX **.
  • # denotes the bond to the phenyl ring and R 'is hydrogen or -CC 4 alkyl, are new.
  • R A is C 1 -C 4 -alkyl
  • Compounds I in which R A is C 1 -C 4 -alkyl are preferably prepared by reacting hydrazone V ** with ⁇ -C 1 -C 4 -alkyl-ß-keto-esters via 'to VII' ** and VII '** cyclized under basic conditions to pyrazolones VIII' **, which are alkylated under alkaline conditions to give compounds I in which R A is C 1 -C 4 -alkyl.
  • Phenylpyrazolones of the formula I '** are preferably obtained from the compounds of the formula XI' **.
  • L' represents a leaving group which is customary for nucleophilic aromatic substitution, such as, for example, fluorine, chlorine, bromine, nitro or 5 alkyl or aryl sulfonates, such as mesylate, tosylate or triflate.
  • Preferred leaving group is fluorine.
  • This reaction is usually carried out at temperatures of 5 -20 ° C to 170 ° C, preferably 0 ° C to 100 ° C, in an inert organic solvent in the presence of a base [cf. WO-A 97 / 24,317; J. Chem. Soc. Perkin Trans., Vol. 1, p. 1727 (1989); Chem. Ber., Vol. 121, p. 2035 (1988)].
  • Suitable solvents are aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert.
  • aromatic hydrocarbons such as toluene, o-, m- and p-xylene
  • halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene
  • ethers such as diethyl ether, diisopropyl ether, tert.
  • Bases generally include inorganic compounds, such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide 5 and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, sodium hydride, sodium hydride Alkali metal and alkaline earth metal carbonates such as lithium carbonate, potassium carbonate and calcium carbonate, and alkali metal hydrogen carbonates such as sodium hydrogen carbonate, organometallic compounds, in particular alkali metal alkyls such as methyl lithium, butyllithium and phenyllithium, alkyl magnesium halides such as methyl magnesium chloride, and alkali metal methoxide, and alkali metal methoxide, and alkali metal methoxide, tert.
  • inorganic compounds such as alkali metal and alkaline earth metal hydroxides
  • -Butanolat and Dimethoxymagnesium also organic bases, for example tertiary amines such as trimethylamine, triethylamine, tri-isopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylaminopyridine and bicyclic amines. Sodium hydride and potassium tert are particularly preferred. Butanolate and potassium carbonate.
  • the bases are generally used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use Z-OH in an excess based on XI '**.
  • Phenylpyrazoles of the formula I '**, in which Z represents a group X, can alternatively also be obtained from phenols of the formula XIa' **.
  • XIa '** is converted with a halide Z-Hal to I' **.
  • Suitable solvents are aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert.
  • aromatic hydrocarbons such as toluene, o-, m- and p-xylene
  • halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene
  • ethers such as diethyl ether, diisopropyl ether, tert.
  • Bases generally include inorganic compounds, such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides and lithium hydride, calcium hydride, sodium hydride, sodium hydride, and sodium hydride Alkaline earth metal carbonates such as lithium carbonate, potassium carbonate and calcium carbonate, and alkali metal bicarbonates such as sodium bicarbonate, organometallic compounds, in particular alkali metal alkyls such as methyl lithium, butyl lithium and phenyllithium, alkyl magnesium halides such as methyl magnesium chloride and alkali metal and alkali metal, sodium methoxide, sodium methoxide, sodium alkali metal, alkali metal methoxide, sodium methoxide, alkali metal methoxide, sodium methoxide,
  • -Butanolat and Dimethoxymagnesium also see organic bases, for example tertiary amines such as trimethylamine, triethylamine, tri-isopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylaminopyridine and bicyclic amines. Sodium hydride, potassium ed. Butanolate and potassium carbonate are particularly preferred.
  • the bases are generally used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use X-Hal in an excess based on XIa '#.
  • Phenylpyrazoles of the formula I "** are preferably obtained from the benzyl compounds of the formula XI" **.
  • L stands for a nucleofugic leaving group, such as halogen or alkyl or aryl sulfonate, preferably bromine, chlorine, iodine, mesylate, tosylate or triflate, and E # for a group A or a precursor therefor.
  • This reaction usually takes place at temperatures from 0 ° C. to 180 ° C., preferably 20 ° C. to 60 ° C., in an inert organic solvent in the presence of a base [cf. EP-A 254 426; EP-A 463 488; WO-A 95 / 18,789; WO-A 95 / 29,896].
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbons such as methylene chloride, chloroform and chlorobenzene, ether such as diethyl ether, diisopropyl ether, tert. -Butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles such as acetonitrile and propionitrile, ketones such as acetone, methyl ethyl ketone, diethyl ketone and tert.
  • aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether
  • aromatic hydrocarbons such as toluene, o-, m- and p-xylene
  • -Butyl methyl ketone alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert.
  • -Butanol as well as dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably dimethylformamide, tetrahydrofuran and acetone. Mixtures of the solvents mentioned can also be used.
  • Bases generally include inorganic compounds, such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides and lithium hydride, calcium hydride, sodium hydride, sodium hydride, and sodium hydride Alkaline earth metal carbonates such as lithium carbonate, potassium carbonate and calcium carbonate, and alkali metal bicarbonates such as sodium bicarbonate, organometallic compounds, in particular alkali metal alkyls such as methyl lithium, butyl lithium and phenyllithium, alkyl magnesium halides such as methyl magnesium chloride, and alkali metal and alkaline earth metal methanolate, potassium alcoholate, potassium alkali metal alcoholate, potassium alkali metal alcoholate, sodium alkali metal alcoholate, potassium alkali metal alcoholate, sodium alkali metal alcohol
  • Butanolate and dimethoxy magnesium also organic bases, e.g. tertiary amines such as trimethylamine, triethylamine, tri-isopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylaminopyridine and bicyclic amines.
  • tertiary amines such as trimethylamine, triethylamine, tri-isopropylethylamine and N-methylpiperidine
  • pyridine substituted pyridines such as collidine, lutidine and 4-dimethylaminopyridine and bicyclic amines.
  • Sodium hydride, potassium carbonate, potassium tert-butoxide and sodium methoxide are particularly preferred.
  • the bases are generally used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use Z-OH in an excess based on XI "**.
  • Phenylpyrazoles of the formula I "** can alternatively be obtained from the benzyl alcohols of the formula Xld" **.
  • L stands for a nucleofugic leaving group, such as halogen or alkyl or aryl sulfonate, preferably bromine, chlorine, iodine, mesylate, tosylate or triflate, and E ** for a group A or a precursor therefor.
  • Suitable solvents are aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as toluene, o-, m- and p-xylene, halogenated hydrocarbon substances such as methylene chloride, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert.
  • Bases generally include inorganic compounds, such as alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides and lithium hydride, calcium hydride, sodium hydride, sodium hydride, and sodium hydride Alkaline earth metal carbonates such as lithium carbonate, potassium carbonate and calcium carbonate, as well as alkali metal hydrogen carbonates such as sodium hydrogen carbonate, organometallic compounds, in particular alkali metal alkyls such as methyl lithium, butyllithium and alkyl magnesium halides such as methyl magnesium alkali metal, as well as sodium alkali metal, potassium alkali metal, potassium alkali metal.
  • alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide
  • Butanolate and dirnethoxymagnesium also organic bases, e.g. Tertiary amines such as trimethylamine, triethylamine, tri-isopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylaminopyridine and bicyclic amines.
  • Sodium hydride, potassium carbonate and potassium tert are particularly preferred.
  • the bases are generally used in equimolar amounts, in excess or, if appropriate, as a solvent.
  • the starting materials are generally reacted with one another in equimolar amounts. It may be advantageous for the yield to use Z-L in an excess based on Xld "**.
  • Suitable solvents are dimethyl sulfoxide, dimethylformamide 15 and dimethylacetamide. Mixtures of the solvents mentioned can also be used.
  • the aminolysis is usually carried out at from 10 ° C. to 60 ° C. in water or an inert organic solvent in the presence of amines HN-R "[cf. EP-A 781 764].
  • Suitable solvents are ethers such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane and tetrahydrofuran. Mixtures of the solvents mentioned can also be used.
  • the compounds of the formula Xld " can also be prepared from the halides Xlb" via the aldehydes Xlf ".
  • reaction is usually carried out at temperatures from 10 ° C. to 40 ° to 80 ° C., in an inert organic solvent in the presence of N-methylmorpholine-N-oxide [cf. Ref. EP-A 422 597].
  • Suitable solvents are halogenated hydrocarbons such as 45 methylene chloride, chloroform and chlorobenzene, nitriles such as acetonitrile and propionitrile as well as dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably acetonitrile, dimethyl sulfoxide and carbon tetrachloride. Mixtures of the solvents mentioned can also be used.
  • the reduction is usually carried out at temperatures from 10 ° C. to 50 ° C., in water or an inert organic solvent in the presence of reducing agents, for example hydride-transferring agents, such as alkali or alkaline earth metal hydrides, in particular sodium borohydride [cf. Ref. EP-A 534 216].
  • reducing agents for example hydride-transferring agents, such as alkali or alkaline earth metal hydrides, in particular sodium borohydride [cf. Ref. EP-A 534 216].
  • Suitable solvents are water or alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert. -Butanol, water is particularly preferred. Mixtures of the solvents mentioned can also be used.
  • L denotes hydroxy, CH 2 OH, CHL 'or a group L', where L 'stands for a nucleophilically cleavable group, and R A , R B , R c , Y and n have the meanings as in formula I are new.
  • the reaction mixtures are worked up in a customary manner, for example by mixing with water, separating the phases and, if appropriate, purifying the crude products by chromatography.
  • isomer mixtures are obtained in the synthesis, however, a separation is generally not absolutely necessary, since the individual isomers can partially convert into one another during preparation for use or during use (e.g. under the action of light, acid or 10 bases). Corresponding conversions can also take place after use, for example in the treatment of plants in the treated plant or in the harmful fungus or animal pest to be controlled.
  • halogen fluorine, chlorine, bromine and iodine
  • Alkyl saturated, straight-chain or branched hydrocarbon radicals having 1 to 4, 6 or 10 carbon atoms, for example C 1 -C 6 -alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-Me-
  • Haloalkyl straight-chain or branched alkyl groups with 1 to 40 10 carbon atoms (as mentioned above), in which case the hydrogen atoms in these groups can be partially or completely replaced by halogen atoms as mentioned above, for example C 1 -C 2 -haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, Trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 45 chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl,
  • 1-chloroethyl 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-di-fluoroethyl, 2, 2, 2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro 2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl and pentafluoroethyl;
  • Alkoxy straight-chain or branched alkyl groups with 1 to 10 carbon atoms (as mentioned above) which are bonded to the skeleton via an oxygen atom (-0-);
  • Haloalkoxy straight-chain or branched haloalkyl groups with 1 to 10 carbon atoms (as mentioned above) which are bonded to the skeleton via an oxygen atom (-0-);
  • Alkylthio straight-chain or branched alkyl groups with 1 to 10 or 1 to 4 carbon atoms (as mentioned above) which are bonded to the skeleton via a sulfur atom (-S-);
  • Alkylamino a straight-chain or branched alkyl group with 1 to 10 carbon atoms (as mentioned above) which is bonded to the skeleton via an amino group (-NH-);
  • Dialkylamino two independent, straight-chain or branched alkyl groups each having 1 to 10 carbon atoms (as mentioned above) which are bonded to the skeleton via a nitrogen atom;
  • Alkylcarbonyl a straight-chain or branched alkyl group having 1 to 10 carbon atoms (as mentioned above) which is bonded to the skeleton via a carbonyl group (-C0-);
  • Alkoxycarbonyl an alkoxy group with 1 to 10 carbon atoms (as mentioned above) which is bonded to the skeleton via a carbonyl group (-CO-);
  • Alkylthiocarbonyl an alkylthio group with 1 to 10 carbon atoms (as mentioned above) which is bonded to the skeleton via a carbonyl group (-CO-);
  • Alkylaminocarbonyl an alkylamino group having 1 to 10 carbon atoms (as mentioned above) which is bonded to the skeleton via a carbonyl group (-CO-);
  • Dialkylaminocarbonyl a dialkylamino group (as mentioned above) which is bonded to the skeleton via a carbonyl group (-CO-);
  • Alkylcarbonyloxy a straight-chain or branched alkyl group having 1 to 10 carbon atoms (as mentioned above) which is bonded to the skeleton via a carbonyloxy group (-C0-);
  • Alkylsulfonyl a straight-chain or branched alkyl group having 1 to 10 carbon atoms (as mentioned above) which is bonded to the skeleton via a sulfonyl group (-S0 2 -);
  • Alkoxysulfonyl an alkoxy group with 1 to 10 carbon atoms (as mentioned above) which is bonded to the skeleton via a sulfonyl group (-S0 2 -);
  • Alkenyl unsaturated, straight-chain or branched hydrocarbon residues with 2 to 4, 6, 8 or 10 carbon atoms and a double bond in any position, e.g. C 2 -Cg alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1 -Butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl , 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3 -Methyl-2-butenyl, l-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,
  • Haloalkenyl unsaturated, straight-chain or branched hydrocarbon radicals with 2 to 10 carbon atoms and a double bond in any position (as mentioned above), the hydrogen atoms in these groups being partially or completely against halogen atoms as mentioned above, in particular fluorine, chlorine and bromine, can be replaced;
  • Alkenyloxy unsaturated, straight-chain or branched hydrocarbon radicals having 3 to 10 carbon atoms and a double bond in any position (as mentioned above) which is not adjacent to the hetero atom and which are bonded to the structure via an oxygen atom (-0-);
  • Haloalkenyloxy unsaturated, straight-chain or branched alkenyloxy groups with 3 to 10 carbon atoms (as mentioned above), in which the hydrogen atoms in these groups can be partially or completely replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine;
  • Alkenylthio unsaturated, straight-chain or branched hydrocarbon radicals having 3 to 10 carbon atoms and a double bond in any position (as mentioned above) which is not adjacent to the hetero atom and which are bonded to the skeleton via a sulfur atom (-S-);
  • Alkenylamino unsaturated, straight-chain or branched hydrocarbon radicals with 3 to 10 carbon atoms and a double bond in any position (as mentioned above) which is not adjacent to the heteroatom and which are bonded to the skeleton via an amino group (-NH-);
  • Alkenylcarbonyl unsaturated, straight-chain or branched hydrocarbon radicals having 2 to 10 carbon atoms and a double bond in any position (as mentioned above) which are bonded to the skeleton via a carbonyl group (-C0-);
  • Alkenyloxycarbonyl straight-chain or branched alkenyloxy groups with 3 to 10 carbon atoms (as mentioned above) which are bonded to the skeleton via a carbonyl group (-C0-);
  • Alkenylthiocarbonyl straight-chain or branched alkenylthio groups with 3 to 10 carbon atoms (as mentioned above), which are bonded to the skeleton via a carbonyl group (-C0-);
  • Alkenylaminocarbonyl straight-chain or branched alkenylamino groups with 3 to 10 carbon atoms (as mentioned above), which are bonded to the skeleton via a carbonyl group (-C0-);
  • Alkenylcarbonyloxy unsaturated, straight-chain or branched hydrocarbon radicals having 2 to 10 carbon atoms and a double bond in any position (as above called), which is bonded to the skeleton via a carbonyloxy group (-C0 2 -);
  • Alkynyl straight-chain or branched hydrocarbon groups with 2 to 4, 6, 8 or 10 carbon atoms and a triple bond in any position, for example C 2 -C 6 -alkynyl such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2- Butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl 3-butynyl, 3-methyl-l-butynyl, 1, l-dimethyl-2-propynyl, l-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, l-methyl-2-
  • Haloalkynyl unsaturated, straight-chain or branched hydrocarbon radicals with 2 to 10 carbon atoms and a triple bond in any position (as mentioned above), the hydrogen atoms in these groups being partially or completely against halogen atoms as mentioned above, in particular fluorine, chlorine and bromine, can be replaced;
  • Alkynyloxy unsaturated, straight-chain or branched hydrocarbon radicals having 3 to 10 carbon atoms and a triple bond in any position (as mentioned above) which is not adjacent to the hetero atom and which are bonded to the structure via an oxygen atom (-0-);
  • Haloalkynyloxy unsaturated, straight-chain or branched alkynyloxy groups having 3 to 10 carbon atoms (as mentioned above), in which the hydrogen atoms in these groups can be partially or completely replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine;
  • Cycloalkyl monocyclic, saturated hydrocarbon groups with 3 to 6, 8, 10 or 12 carbon ring members, e.g.
  • C 3 -C 8 cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl;
  • Cycloalkoxy monocyclic, saturated hydrocarbon groups with 3 to 12 carbon ring members (as mentioned above) which are bonded to the skeleton via an oxygen atom (-0-); Cycloalkylthio: monocyclic, saturated hydrocarbon groups with 3 to 12 carbon ring members (as mentioned above) which are bonded to the skeleton via a sulfur atom (-S-);
  • Cycloalkylamino monocyclic, saturated hydrocarbon groups with 3 to 12 carbon ring members (as mentioned above) which are bonded to the skeleton via an amino group (-NH-);
  • Cycloalkylcarbonyl monocyclic, saturated hydrocarbon groups with 3 to 12 carbon ring members (as mentioned above) which are bonded to the skeleton via a carbonyl group (-C0-);
  • Cycloalkoxycarbonyl a monocyclic cycloalkoxy group with 3 to 12 carbon ring members (as mentioned above) which is bonded to the skeleton via a carbonyl group (-C0-);
  • Cycloalkylthiocarbonyl a monocyclic cycloalkylthio group with 3 to 12 carbon ring members (as mentioned above) which is bonded to the skeleton via a carbonyl group (-C0-);
  • saturated or partially unsaturated cyclic radical which, in addition to carbon atoms, may contain heteroatoms from the group consisting of oxygen, sulfur or nitrogen as ring members: cycloalkyl having 3 to 12 carbon ring members as mentioned above or 5- or 6-membered heterocycles (heterocyclyl) containing one to three in addition to carbon ring members Nitrogen atoms and / or an oxygen or sulfur atom or one or two oxygen and / or sulfur atoms, for example 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl , 4-isoxazolidinyl, 5-isoxazolidinyl, 3-isothiazolidinyl, 4-isothiazolidinyl, 5-isothiazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl,
  • Aryl a mono- to trinuclear aromatic ring system containing 6 to 14 carbon ring members, e.g. Phenyl, naphthyl and anthracenyl;
  • Aryloxy a mono- to trinuclear aromatic ring system (as mentioned above) which is bonded to the skeleton via an oxygen atom (-0-);
  • Arylthio a mono- to trinuclear aromatic ring system (as mentioned above) which is bonded to the skeleton via a sulfur atom (-S-);
  • Arylamino a mono- to trinuclear aromatic ring system (as mentioned above) which is bonded to the skeleton via an amino group (-NH-);
  • Arylcarbonyl a mono- to trinuclear aromatic ring system (as mentioned above) which is bonded to the skeleton via a carbonyl group (-C0-);
  • Aryloxycarbonyl a mono- to trinuclear aryloxy group (as mentioned above) which is bonded to the skeleton via a carbonyl group (-C0-);
  • Arylthiocarbonyl a mono- to trinuclear arylthio group (as mentioned above) which is bonded to the skeleton via a carbonyl group (-C0-);
  • Arylaminocarbonyl a mono- to trinuclear arylamino group (as mentioned above) which is bonded to the skeleton via a carbonyl group (-C0-);
  • Arylcarbonyloxy a mono- to trinuclear aromatic ring system (as mentioned above) which is bonded to the skeleton via a carbonyloxy group (-C0-);
  • Arylcarbonylthio a mono- to trinuclear aromatic ring system (as mentioned above) which is bonded to the skeleton via a carbonylthio group (-C0S-);
  • Arylcarbonylamino a mono- to trinuclear aromatic ring system (as mentioned above) which is bonded to the skeleton via a carbonylamino group (-C0NH-);
  • Arylsulfonyl a mono- to trinuclear aromatic ring system (as mentioned above) which is bonded to the skeleton via a sulfonyl group (-S0 2 -);
  • Aryloxysulfonyl a mono- to trinuclear aryloxy group (as mentioned above) which is bonded to the skeleton via a sulfonyl group (-S0 2 -);
  • 5-ring heteroaryl groups which, in addition to carbon atoms, have one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom as ring members may contain, for example 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 3-isothiazolyl, 4-isothiazolyl, 5- Isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-0xazolyl, 4-0xazolyl, 5-0xazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, l, 2,4-oxadiazol-3-yl, 1, 2,4
  • 6-membered heteroaryl containing one to three or one to four nitrogen atoms 6-ring heteroaryl groups which, in addition to carbon atoms, can contain one to three or one to four nitrogen atoms as ring members, e.g. 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, 1,3,5-triazin-2-yl and 1, 2, 4-triazin-3-yl;
  • R 2 represents a group W which is bonded via oxygen.
  • compounds I are particularly preferred in which X for optionally subst. Aryl or optionally subst. Hetaryl stands.
  • R 1 is methyl or ethyl.
  • R 3 is C 1 -C 3 -alkyl, C 3 -Cs-alkenyl or C 3 -C 5 -alkynyl.
  • R 3 represents methyl, allyl or propargyl.
  • X heterocyclyl which can be completely or partially halogenated and / or can carry 1 to 3 of the following radicals:
  • R d is hydrogen or Ci-C ⁇ alkyl
  • T represents oxygen, sulfur or NR d ;
  • the cyclic groups in turn can be partially or completely halogenated and / or can carry 1 to 3 of the following substituents: cyano, nitro, hydroxy,
  • Ci-C ⁇ alkyl C 2 -C 6 alkenyl or C 2 -C 6 alkynyl
  • the cyclic groups in turn can be partially or completely halogenated and / or can carry 1 to 3 of the following radicals:
  • residues can be partially or completely halogenated and / or can carry one to three of the following groups:
  • T represents oxygen, sulfur or NR d ;
  • the cyclic groups in turn can be partially or completely halogenated and / or can carry 1 to 3 of the following substituents:
  • R c is hydrogen, Ci-Ce alkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl;
  • R d is hydrogen or -C ⁇ C 4 alkyl
  • R 3 is hydrogen, Ci-C ⁇ -alkyl, Ci-C ⁇ - cyanoalkyl, C 2 -C 6 "alkenyl,
  • these groups can be partially or completely halogenated and the cycloalkyl groups can additionally carry 1 to 3 C 1 -C 4 -alkyl radicals; mean.
  • R A represents chlorine or bromine
  • R c is alkyl or haloalkyl.
  • Z represents optionally substituted phenyl, pyridinyl, pyrimidinyl, quinazolinyl, furanyl, thienyl, pyrrolyl, benzofranyl, benzothiophenyl, indolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, imidazolyl, triazolyl , Tetrazolyl, thiadiazolyl, benzoxazolyl, benzisoxazolyl, benzthiazolyl, benzisothiazolyl or indazolyl.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • Z is optionally substituted phenyl, pyridinyl, pyrimidineyl, quinazolinyl, furanyl, thienyl, pyrrolyl, benzofuranyl, Benzothiophenyl, indolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, thiadiazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl, benzisothiazolyl or indazolyl.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • Z is optionally substituted phenyl, naphthyl, pyridinyl, pyri- midinyl, quinolyl, triazolyl, pyrazinyl, thienyl, quinoxalinyl, benzoxazolyl, benzthiazolyl or pyrazolyl.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • Z is optionally substituted phenyl, naphthyl, pyridinyl, pyrimidinyl, quinolyl, pyrazinyl, thienyl, quinoxalinyl, benzoxazolyl, Benzthiazolyl or pyrazolyl stands.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • W is optionally subst.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • W is optionally substituted phenyl, naphthyl, anthryl, benzyl, phenylethyl, phenylpropyl, pyridinyl, pyrimidinyl, Thienyl, furyl, thiazolyl, benzothiazolyl, dioxanyl, C 3 -C 6 cycloalkyl, and -CC 4 alkyl, allyl, propargyl or trifluoromethyl and R 1 represents methyl or methoxy.
  • -C-C 4 alkyl is.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • R 1 is methyl or methoxy
  • R 2 is halogen, cyano
  • C ( NOR d )
  • -C-C 4 alkylamino C 2 -C 4 alkenyl or phenyl and R 3 for hydrogen, propargyl or allyl or optionally subst.
  • -C-C 4 alkyl is.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • W is optionally subst.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • W is optionally substituted phenyl, naphthyl, anthryl, benzyl, phenylethyl, phenylpropyl, pyridinyl, pyrimidinyl, Thienyl, furyl, thiazolyl, benzothiazolyl, dioxanyl, C 3 -C 6 _ cycloalkyl, and -CC 4 alkyl, allyl, propargyl or trifluoromethyl.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • W is optionally subst.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • W is optionally substituted phenyl, naphthyl, anthryl, benzyl, phenylethyl, phenylpropyl, pyridinyl, pyrimidinyl, Thienyl, furyl, thiazolyl, benzothiazolyl, dioxanyl, C 3 -C 6 cycloalkyl, and C 1 -C 4 alkyl, allyl, propargyl or trifluoromethyl.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • W is optionally subst.
  • Phenylpropyl, pyridinyl, pyrimidinyl, thienyl, furyl, thiazolyl, benzothiazolyl, dioxanyl, C 3 -C 6 cycloalkyl, and -C-C 4 ⁇ alkyl, allyl, propargyl or trifluoromethyl is.
  • R A is chlorine or bromine
  • R B is hydrogen
  • R c is methyl or ethyl
  • T is nitrogen or carbon
  • W is optionally subst.
  • R B is hydrogen
  • R c is methyl
  • R 1 is methyl
  • W for each compound corresponds to one row of Table C.
  • R B is hydrogen
  • R c is ethyl
  • Z for each compound corresponds to one row of Table B.
  • R B is hydrogen
  • R c is ethyl
  • W for each compound corresponds to one row of Table C.
  • Table 50 20 compounds of the general formula 1.6 ', in which R A is bromine, R B is hydrogen, R c is ethyl and W for each compound corresponds to one row of Table C.
  • the compounds I are suitable as fungicides. They are characterized by excellent activity against a broad spectrum of phytopathogenic fungi, in particular from the class of the Ascomycetes, Deuteromycetes, Phycomycetes and Basidiomycetes. Some of them are systemically effective and can be used in plant protection as leaf and soil fungicides.
  • Botrytis cinerea (gray mold) on strawberries, vegetables, ornamental plants and vines
  • Erysiphe graminis (powdery mildew) on cereals, Fusarium and Verticillium species on various plants, Helminthosporium species on cereals, Mycosphaerella species on bananas and peanuts, Phytophthora infestans on potatoes and tomatoes, Plasmopara viticola on vines, Podosphaera leucelnicha on
  • Rhizoctonia species on cotton, rice and lawn Septoria nodorum on wheat, Uncinula necator on vines,
  • the compounds I are also suitable for combating harmful fungi such as Paecilomyces variotii in the protection of materials (for example wood, paper, dispersions for painting, fibers or fabrics) and in the protection of stored products.
  • the compounds I are used by treating the fungi or the plants, seeds, materials or the soil to be protected against fungal attack with a fungicidally active amount of the active compounds.
  • the application can take place both before and after the infection of the materials, plants or seeds by the fungi.
  • the fungicidal compositions generally contain between 0.1 and 95, preferably between 0.5 and 90% by weight of active ingredient.
  • the application rates in crop protection are between 0.01 and 2.0 kg of active ingredient per ha.
  • active ingredient 0.001 to 0.1 g, preferably 0.01 to 0.05 g, per kg of seed are generally required.
  • the amount of active ingredient applied depends on the type of application and the desired effect. Usual application rates in material protection are, for example, 0.001 g to 2 kg, preferably 0.005 g to 1 kg of active ingredient per cubic meter of treated material.
  • the compounds of the formula I are also suitable for effectively combating animal pests from the class of the insects, arachnids and nematodes. They can be used in crop protection as well as in the hygiene, storage protection and veterinary sectors to control animal pests. They are particularly suitable for controlling the following animal pests:
  • Beetles (Coleoptera), e.g. Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruechus pisorum, Bruchus lentisu- losa, Byiscus , Cerotoma trifurcata, Ceuthorrhynchus assimilis, Ceuthorr- hynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Diabrotica longicornis, Diabrotica 12-punc- tata, Diabrotica virgiferisisobutisis, histobis, histobellisis, epilachnis, varilobinisis, epilach
  • Two-winged e.g. Aedes aegypti, Aedes vexans, Anas- trepha ludens, Anopheles maculipennis, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya acella- ria, Contarinia sorghicola, Cordylobia anthropophaga, Culex pi piens, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, fan- nia canicularis, Gasterophilus intestinalis, Glossina morsitans, Haematobia irritans, Haplodiplosis equestris, Hylemyia platura, Hypoderma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia cuprina, Luc
  • Phorbia antiqua Phorbia brassicae, Phorbia coarctata, Rhagoletis cerasi, Rhagoletis pomonella, Tabanus bovinus, Tipula ole-racea and Tipula paludosa, Thrips (Thysanoptera), for example Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
  • Dermatoptera e.g. Athalia rosae, Atta cephalotes, Atta sexdens, Atta texana, Hoplocampa minuta, Hoplocampa testudinea, Monomorium pharaonis, Solenopsis geminata and Solenopsis invicta,
  • Heteroptera e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara quadrantulais, Pyanma viridula, Pies
  • Plant suckers e.g. Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, fabae Aphis, Aphis pomi, Aphis sambuci, brassicae Brachycaudus cardui, Brevicoryne, Cerosipha gossypii, Dreyfusia nordmannianae, Dreyfusia piceae, pseudosolani Dysaphis radicola, Dysaulacorthum, Empoasca fabae, Macrosiphum avenae, euphorbiae Macrosiphum, macrosiphon rosae , Megoura viciae, Metopolophium dirhodum, Myzodes persicae, Myzus cerasi, Nilaparvata lugens, pemphigus bursarius, Perkinsiella saccharicida, Phoro
  • Termites e.g. Calotermes flavicollis, Leucotermes flavipes, Reticulitermes lucifugus and Termes natalensis,
  • Straight wing aircraft e.g. Acheta domestica, Blatta orien- talis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melano- plus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguini- pes, Melanoplus spretus, Nomadascocata americanana, Pericascacerana america, Schistocerca peregrina, Stauronotus maroccanus and Tachycines asynamorus,
  • Orthoptera e.g. Acheta domestica, Blatta orien- talis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melano- plus femur-rubrum, Melanoplus mexi
  • Arachnoidea such as arachnids (Acarina), for example Amblyomma america- num, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Brevipalpus phoenicis, Bryobia praetiosa, Dermacentor silvarus triophelium, Eotetranychum, Eotetranychum ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini, Paratetranychus pilosus, Dermanyssus gallinae, Phyllo- coptruta oleivora, Polyphagotarsonemus latus, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, Tetranychus cinnabarinus,
  • Nematodes such as root gall nematodes, e.g. Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, cyst-forming nematodes, e.g. Globodera rostochiensis, Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, stick and leaf wholes, e.g.
  • Belonolaimus longicaudatus Ditylenchus destructor, Ditylenchus dipsaci, Heliocotylenchus multi- ticinctus, Longidorus elongatus, Radopholus similis, Rotylen- chus robustus, Trichodorus primitivus, Tylenchorhynchus clay- toni, Tylenchorhynchus dubius, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus and Pratylenchus goodeyi.
  • the application rate of active ingredient for controlling animal pests is 0.1 to 2.0, preferably 0.2 to 1.0 kg / ha under field conditions.
  • the compounds I can be converted into the usual formulations, e.g. Solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the form of application depends on the respective purpose; in any case, it should ensure a fine and uniform distribution of the compound according to the invention.
  • the formulations are prepared in a known manner, for example by stretching the active ingredient with solvents and / or carriers, if desired using emulsifiers and dispersants, and in the case of water as a diluent, other organic solvents can also be used as auxiliary solvents.
  • auxiliaries solvents such as aromatics (e.g. xylene), chlorinated aromatics (e.g. chlorobenzenes), paraffins (e.g. petroleum fractions), alcohols (e.g. methanol, butanol), ketones (e.g. cyclohexanone), amines (e.g.
  • Carriers such as natural stone powder (eg kaolins, clays, talc, chalk) and synthetic stone powder (eg highly disperse silica, silicates); Emulsifiers such as nonionic and anionic emulsifiers (eg polyoxyethylene fatty alcohol ethers, alkyl sulfonates and aryl sulfonates) and dispersants such as lignin sulfite waste liquors and methyl cellulose.
  • Carriers such as natural stone powder (eg kaolins, clays, talc, chalk) and synthetic stone powder (eg highly disperse silica, silicates)
  • Emulsifiers such as nonionic and anionic emulsifiers (eg polyoxyethylene fatty alcohol ethers, alkyl sulfonates and aryl sulfonates) and dispersants such as lignin sulfite waste liquors and methyl cellulose.
  • Suitable surfactants are alkali metal, alkaline earth metal and ammonium salts of lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalenesulfonic acid, alkylarylsulfonates, alkyl sulfates, alkylsulfonates, fatty alcohol sulfates and fatty acids and their alkali and alkaline earth metal salts, salts of sulfated fatty alcohol glycol ethers, condensates of sulfonated naphthalene and naphthalene derivatives with Formaldehyde, condensation products of naphthalene or naphthalene sulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenol polyglycol ether
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules for example coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active ingredients to solid carriers.
  • Solid carriers are, for example, mineral earths, such as silica gel, silicas, silica gels, silicates, talc, kaolin, attack clay, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers, such as For example, ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and vegetable products such as cereal flour, tree bark, wood and nutshell flour, cellulose powder and other solid carriers.
  • the formulations generally contain between 0.01 and 95% by weight, preferably between 0.1 and 90% by weight, of the active ingredient.
  • the active ingredients are used in a purity of 90% to 100%, preferably 95% to 100% (according to the
  • V. 80 parts by weight of a compound according to the invention are mixed with 3 parts by weight of the sodium salt of diisobutylnaphthalene-alpha-sulfonic acid, 10 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 7 parts by weight of powdered silica gel well mixed and ground in a hammer mill (active ingredient content 80% by weight).
  • VI. 90 parts by weight of a compound according to the invention are mixed with 10 parts by weight of N-methyl- ⁇ -pyrrolidone and a solution is obtained which is suitable for use in the form of very small drops (active substance content 90% by weight).
  • 20 parts by weight of a compound according to the invention are dissolved in a mixture consisting of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 7 moles of ethylene oxide and 1 mole of isooctylphenol and 10 parts by weight .
  • VIII.20 parts by weight of a compound according to the invention are mixed with 3 parts by weight of the sodium salt of diisobutylnaphthalene- ⁇ -sulfonic acid, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of powdered silica gel well mixed and ground in a hammer mill.
  • a spray liquor is obtained which contains 0.1% by weight of the active ingredient.
  • the active ingredients as such in the form of their formulations or the use forms prepared therefrom, e.g. in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, sprinkling agents, granules by spraying, atomizing, dusting, scattering or pouring.
  • the application forms depend entirely on the purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (wettable powders, oil dispersions) by adding water.
  • emulsions, pastes or oil dispersions the substances as such or dissolved in an oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or emulsifiers.
  • concentrates composed of an active substance, wetting agents, adhesives, dispersants or emulsifiers and possibly solvents or oil, which are suitable for dilution with water.
  • the active substance concentrations in the ready-to-use preparations can be varied over a wide range. In general, they are between 0.0001 and 10%, preferably between 0.01 and 1%.
  • the active ingredients can also be used with great success in the ultra-low-volume process (ÜLV), it being possible to apply formulations with more than 95% by weight of active ingredient or even the active ingredient without additives.
  • ÜLV ultra-low-volume process
  • Oils of various types, herbicides, fungicides, other pesticides, bactericides can be added to the active compounds, if appropriate also only immediately before use (tank mix). These agents can be added to the agents according to the invention in a weight ratio of 1:10 to 10: 1.
  • the agents according to the invention can also be present in the use form as fungicides together with other active ingredients, which e.g. with herbicides, insecticides, growth regulators, fungicides or even with fertilizers. Mixing the compounds I or the compositions containing them in the use form as fungicides with other fungicides results in an enlargement of the fungicidal spectrum of action in many cases.
  • Sulfur, dithiocarbamates and their derivatives such as ferridimethyldithiocarbamate, zinc dimethyldithiocarbamate, zinc ethylene bisdithiocarbamate, manganese ethylene bisdithiocarbamate, manganese zinc ethylenediamine bis dithiocarbamate, tetramethylthiurondarbamethyne damidulfide, , Ammonia complex of zinc (N, N '-propylene-bis-dithiocarbamate), zinc (N, N' -propylene-bis-dithiocarbamate), N, N '-polypropylene-bis- (thiocarbamoyl) disulfide;
  • Nitroderivate such as dinitro- (1-methylheptyl) phenylcrotonate, 2-sec-butyl-4, 6-dinitrophenyl-3, 3-dimethylacrylate, 2-sec-butyl-4, 6-dinitrophenyl-isopropyl carbonate, 5- Nitro-isophthalic acid-di-isopropyl ester;
  • Heterocyclic substances such as 2-heptadecyl-2-imidazoline acetate, 2,4-dichloro-6- (o-chloroanilino) -s-triazine, 0.0-diethyl-phthalimidophosphonothioate, 5-amino-l- [ bis- (dimethylamino) phosphinyl] -3-phenyl-1, 2, 4-triazole, 2, 3-dicyano-l, 4-di-thioanthraquinone, 2-thio-l, 3-dithiolo [4, 5-b ] quinoxaline, methyl 1- (butylcarbamoyl) -2-benzimidazole-carbamate, 2-methoxycarbonylamino-benzimidazole, 2- (furyl- (2)) -benzimidazole, 2- (thiazolyl- (4)) -benzimidazole, N- ( 1, 1, 2, 2-tetrachloroethylthio
  • Strobilurins such as methyl-E-methoxyimino- [ ⁇ - (o-tolyloxy) -o-tolyl] acetate, methyl-E-2- ⁇ 2- [6- (2-cyanophenoxy) pyrimidin-4-yl- oxy] -phenyl ⁇ -3-methoxyacrylate, methyl-E-methoxyimino- [ ⁇ - (2-phenoxyphenyl)] acetamide, methyl-E-methoxyimino- [ ⁇ - (2, 5-dimethylphenoxy) -o-tolyl ] acetamide,
  • Anilinopyrimidines such as N- (4, 6-dimethylpyrimidin-2-yl) aniline, N- [4-methyl-6- (1-propynyl) pyrimidin-2-yl] aniline, N- [4-Me- thyl-6-cyclopropyl-pyrimidin-2-yl] aniline,
  • Phenylpyrroles such as 4- (2,2-difluoro-1,3-benzodioxol-4-yl) pyrrole-3-carbonitrile, Cinnamic acid amides such as 3- (4-chlorophenyl) -3- (3, 4-dimethoxyphenyl) acrylic acid morpholide,
  • fungicides such as dodecylguanidine acetate, 3- [3- (3, 5-dimethyl-2-oxycyclohexyl) -2-hydroxyethyl] glutarimide,
  • N-chlorosuccinimide N-chlorosuccinimide
  • the active ingredients were separated or together as a 10% emulsion in a mixture of 70% by weight cyclohexanone, 20% by weight Nekanil® LN (Lutensol® AP6, wetting agent with emulsifying and dispersing Effect based on ethoxylated alkylphenols) and 10% by weight Wettol® EM (non-ionic emulsifier based on ethoxylated castor oil) prepared and diluted with water according to the desired concentration.
  • Nekanil® LN Litensol® AP6, wetting agent with emulsifying and dispersing Effect based on ethoxylated alkylphenols
  • Wettol® EM non-ionic emulsifier based on ethoxylated castor oil
  • Leaves of potted vines of the "Müller-Thurgau" variety were sprayed to runoff point with aqueous preparation of active compound, which was prepared with a stock solution of 10% active compound, 63% cyclohexanone and 27% emulsifier.
  • the plants were placed in the greenhouse for 7 days after the spray coating had dried on. Only then were the leaves inoculated with an aqueous suspension of zoospore from Plasmopara viticola.
  • the vines were then placed for 48 hours in a steam-saturated chamber at 24 ° C and then for 5 days in a greenhouse at temperatures between 20 and 30 ° C. After this time, the plants were again placed in a moist chamber for 16 hours in order to accelerate the sporangium carrier outbreak. The extent of the development of the infestation on the undersides of the leaves was then determined visually.
  • Leaves of "Tai-Nong 67" rice seedlings grown in pots were sprayed to runoff point with aqueous active compound preparation which was prepared with a stock solution of 10% active compound, 63% cyclohexanone and 27% emulsifier. The following day, the plants were inoculated with an aqueous spore suspension of Pyricularia oryzae. The test plants were then placed in climatic chambers at 22-24 ° C and 95-99% relative humidity for 6 days. The extent of the development of the infestation on the leaves was then determined visually.
  • the active ingredients were:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Substituierte Phenylpyrazolone der Formel (I), in der die Substituenten folgende Bedeutung haben: Y Halogen, Alkyl, Halogenalkyl oder Alkoxy; n 0, 1 oder 2, wobei die Reste Y verschieden sein können, wenn n = 2 ist; E eine Gruppe der Formel (A), wobei # die Bindung mit dem Phenylring kennzeichnet; RA Halogen, Cyano, Alkyl oder Halogenalkyl; RB Wasserstoff oder Alkyl; RC Alkyl oder Halogenalkyl; T eine direkte Bindung, Sauerstoff oder CH¿2?O; Z a) wenn T Sauerstoff oder Oxymethylen bedeutet, eine Gruppe X, N=CWR?1¿ oder N=C(R?1)-C(R2)=NOR3¿, wobei X ggf. subst. Heterocyclyl, ggf. subst. Aryl, ggf. subst. Hetaryl, ggf. subst. Arylmethylen oder ggf. subst. Hetarylmethylen; W ggf. subst. Alkyl, ggf. subst. Alkenyl, ggf. subst. Alkinyl, ggf. subst. Cycloalkyl, ggf. subst. Cycloalkenyl, ggf. subst. Heterocyclyl, ggf. subst. Aryl oder ggf. subst. Hetaryl; R1 Wasserstoff, Cyano, Alkyl, Halogenalkyl, Alkoxy, Alkoxyalkyl, Cycloalkyl; R2 Wasserstoff, Cyano, Halogen, C(Rd)=NOR3 oder W, OW, SW oder NRcW, wobei Rc Wasserstoff, Alkyl, Alkenyl oder Alkinyl; Rd Wasserstoff oder Alkyl; R3 Wasserstoff, ggf. subst. Alkyl, ggf. subst. Alkenyl oder ggf. subst. Alkinyl bedeuten und b) wenn T für eine direkte Bindung steht, eine Gruppe W, CH¿2?-CH2-W, CH=CH-W, C C-W, S-W, CH2-S-W, CH=N-O-CH2-W, CH2-O-C(=O)-W oder CH2-O-C(CH3)=N-N=C(CH3)-W bedeutet, Verfahren und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schadpilzen und tierischen Schädlingen.

Description

Substituierte Phenylpyrazolone, Verfahren und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schad - pilzen und tierischen Schädlingen
Beschreibung
Die vorliegende Erfindung betrifft substituierte Phenylpyrazolone der Formel I,
Figure imgf000003_0001
E
in der die Substituenten folgende Bedeutung haben:
Y Halogen, Cχ-C4-Alkyl, Cι-C -Halogenalkyl oder Cι-C4-Alkoxy;
n 0, 1 oder 2, wobei die Reste Y verschieden sein können, wenn n = 2 ist;
E eine Gruppe A,
Figure imgf000003_0002
wobei # die Bindung mit dem Phenylring kennzeichnet;
RA Halogen, Cyano, C1-C4-Alkyl oder Cι-C4-Halogenalkyl;
RB Wasserstoff oder C1-C4-Alkyl;
Rc Cyano, Cι-C6-Alkyl oder Cι-C4-Halogenalkyl;
T eine direkte Bindung, Sauerstoff oder CH 0;
Z a) wenn T Sauerstoff oder CH20 bedeutet, eine Gruppe X, N=CWR1 oder N=C (R1) -C (R2) =NOR3 , wobei X Heterocyclyl, Aryl, Hetaryl, Arylmethylen oder Hetarylme- thylen, wobei die cyclischen Systeme partiell oder vollständig halogeniert oder eine bis drei Gruppen R4 tragen können:
R4 Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Aminocarbonyl , Aminothiocarbonyl , Alkyl, Haloalkyl, Alkenyl, Alkenyloxy, Alkinyloxy, Alkoxy, Halogenalkoxy, Alkylthio, Alkylamino, Dialkylamino, Formyl, Alkylcarbonyl , Alkylsulfonyl, Alkylsulfoxyl,
Alkoxycarbonyl , Alkylcarbonyloxy, Alkylaminocarbonyl , Dialkylaminocarbonyl , Alkylaminothiocarbonyl, Dialky- laminothiocarbonyl, wobei die Alkylgruppen in diesen Resten 1 bis 6 Kohlenstoffatome enthalten und die ge- nannten Alkenyl- oder Alkinylgruppen in diesen Resten
2 bis 8 Kohlenstoffatome enthalten;
und/oder einen bis drei der folgenden Reste:
Cycloalkyl, Cycloalkoxy, Heterocyclyl, Hetero- cyclyloxy, wobei die cyclischen Systeme 3 bis 10 Ringglieder enthalten; Aryl, Aryloxy, Arylthio, Aryl -Cχ-C6 -alkoxy, Aryl-Cι-C6-alkyl , Hetaryl, Hetaryloxy, Hetarylthio, wobei die Arylreste Vorzugs - weise 6 bis 10 Ringglieder, die Hetarylreste 5 oder 6
Ringglieder enthalten, wobei die cyclischen Systeme partiell oder vollständig halogeniert sein können oder durch eine bis drei Gruppen R5 oder durch eine oder zwei Gruppen R6 substituiert sein können:
R5 Halogen, Cyano, Nitro, Hydroxy, Ci-Cß-Alkyl, Ci-Cß-Halogenalkyl , Ci-Cε-Alkylcarbonyl, C3-C6-Cycloalkyl, Ci-Cß-Alkoxy, Ci-Cg-Halogenal- koxy, Cι-C6-Alkoxycarbonyl , Cι-C6-Alkyl hio, Ci-Cß-Alkylamino, Di-Ci-Cδ-alkylamino, C -C6~A1- kenyl, C2-C6-Alkenyloxy, C3-c6-Alkinyloxy und Cι-C4-Alkylendioxy, welches halogeniert sein kann; und
R6 C(=NORd)- ι-Rd', wobei Rd für Wasserstoff oder
Ci-Cß-Alkyl, T für Sauerstoff, Schwefel oder NRd steht und 1 gleich 0 oder 1 ist;
W Cι-C6-Alkyl, C -Cδ-Alkenyl, C -C6- lkinyl, Cycloalkyl, Cy- cloalkenyl, Heterocyclyl, Aryl oder Hetaryl, wobei die cyclischen Systeme 3 - 10 Ringglieder enthalten und die Substituenten partiell oder vollständig halogeniert sein können oder eine bis drei Gruppen R5 tragen können;
R1 Wasserstoff, Cyano, Cι-C4~Alkyl, Cι-C4-Halogenalkyl, Cι-C4-Alkoxy, Cι-C4-Alkoxy-Cι-C4-alkyl, C3-C6-Cycloalkyl;
R2 Wasserstoff, Cyano, Halogen, C (Rd) =NOR3 oder W, OW, SW oder NRCW, wobei
Rc Wasserstoff, Cχ-C6-Alkyl, C2-C6-Alkenyl oder C2-C6-Al- kinyl ; Rd Wasserstoff oder Ci -C6-Alkyl;
R3 Wasserstoff, Ci-Cβ -Alkyl, ggf. C -C6 -Alkenyl oder C2-C6 -Alkinyl bedeuten, diese Substituenten partiell oder vollständig halogeniert sein können oder eine bis drei Gruppen R5 tragen können und
b) wenn T für eine direkte Bindung steht,
eine Gruppe W, CH2-CH2-W, CH=CH-W, C≡≡C-W, S-W, CH2-S-W, CH=N-0-CH2-W, CH2-0-C(=0)-W oder CH2-0-C (CH3) =N-N=C (CH3) -W bedeutet .
Zusätzlich betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung der Verbindungen I und die Verwendung der Verbindungen I zur Bekämpfung von Schadpilzen und tierischen Schädlingen.
Cyclische Amide, die in ortho-Stellung zu der Amid-Carbonylgruppe einen orthoständig substituierten Phenylring tragen, sind aus WO-A 95/14,009, WO-A 96/26,191, WO-A 96/36,229, WO-A 96/36,615, WO-A 96/36,616, WO-A 96/38,425, WO-A 97/00,612 und WO-A 97/05,120 bekannt. Cyclische Amide, die in ortho-Stellung zu der Amid-Car- bonylgruppe einen substituierten Heterocyclus tragen, sind in WO-A 96/36,633 offenbart.
Die in den vorstehend genannten Schriften beschriebenen Verbindungen sind als Pflanzenschutzmittel gegen Schadpilze und z. T. gegen tierische Schädlinge geeignet.
Ihre Wirkung ist jedoch in vielen Fällen nicht zufriedenstellend. Daher lag als Aufgabe zugrunde, Verbindungen mit verbesserter Wirksamkeit zu finden. Demgemäß wurden die substituierten Phenylpyrazolone der Formel I gefunden. Weiterhin wurden Zwischenprodukte und Verfahren zur Herstellung der Verbindungen I, sowie die Verwendung der Verbindungen I und diese enthaltene Mittel zur Bekämpfung von Schadpil- zen und tierischen Schädlingen gefunden. Die fungizide Wirkung ist bevorzugt.
Die Verbindungen der Formel I unterscheiden sich von den aus den oben genannten Schriften bekannten Verbindungen durch die Ausge- staltung des Cyclus' E: In den Verbindungen der Formel I ist die Gruppe E ein Pyrazolon.
Die Verbindungen der Formel I weisen eine gegenüber den bekannten Verbindungen erhöhte Wirksamkeit gegen Schadpilze und tierische Schädlinge auf.
Die Verbindungen I können auf verschiedenen Wegen erhalten werden, wobei es für die Synthese unerheblich ist, ob zunächst das Pyrazolon oder die Gruppierung T-Z aufgebaut wird. Zur besseren Übersichtlichkeit wird in den nachfolgenden Reaktionsbeschreibungen daher die Bezeichnung
E# für die Gruppe A oder eine geeignete Vorstufe dafür und Z# für die Gruppierung T-Z, bzw. eine geeignete Vorstufe dafür
verwendet.
Die Einführung der Gruppierung T-Z wird auf der Stufe, in der E# für Nitro steht, bevorzugt.
Die Gruppierung T-Z in den Verbindungen der Formel I kann an sich analog der in WO-A 93/15,046, WO-A 96/07,633, bzw. WO-A 97/24,317 beschriebenen Methoden erhalten werden.
Verbindungen I, in denen RA für Halogen steht, sind vorteilhaft aus den entsprechenden Hydroxypyrazolen der Formel II# zugänglich.
Figure imgf000006_0001
Die Hydroxypyrazole der Formel II# erhält man besonders vorteilhaft dadurch, daß man ein Nitrobenzolderivat III# zunächst, beispielsweise durch Hydrierung, in das entsprechende Anilin IV# überführt, IV# anschließend diazotiert und die entstehende Diazo- verbindung reduziert in das Hydrazin V# umsetzt und V# mit einem Alkoxymethylenmalonsäurealkylester der Formel Via, in der R" für Cι-C4-Alkyl steht, zu dem Dicarbonsäureester VII* umsetzt, der unter basischen Bedingungen über den Ester VIII# und die Säure VIIIb# zu II# cyclisiert wird.
Figure imgf000007_0001
1) Die Reduktion der Nitrogruppe von III* kann unter allgemein üblichen Bedingungen durchgeführt werden, bevorzugt durch katalytische Hydrierung, durch Reduktion mit Eisen, Zinn oder Zink in Gegenwart einer Säure, durch Reduktion mit Alkalimetallen in Gegenwart einer Base oder durch enzymkatalysierte Reduktion [vgl. Houben-Weyl, Bd. IV/lc, 4. Aufl., S. 506ff., Thieme Verlag Stuttgart und New York (1980); ebd. Bd. IV/ld, 4. Aufl., S. 473ff. (1981); Heterocycles , Bd. 31, S. 2201 (1990)] Geeignete Lösungsmittel sind Wasser, im Fall enzymkatalysierter Reduktion auch wäßrige Pufferlösungen, aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert . -Butylmethyl- ether, Dioxan, Anisol und Tetrahydrofuran, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert . -Butanol, sowie Dimethylsulfoxid, Dimethylformamid, Dimethylacetamid oder Ester wie Essigsäureethylester, besonders bevorzugt Methanol,
Ethanol, Essigsäureethylester und Wasser. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Katalysatoren bei der katalytischen Hydrierung werden han- delsubliche Katalysatoren, die beispielsweise Platin, Platinoxid oder Palladium auf einem Träger enthalten, oder auch Raney-Nickel oder Raney-Cobalt, eingesetzt.
Die Verwendung von Platin- oder Palladiumkatalysatoren ist bevor- zugt. Der Platin- bzw. Palladiumgehalt des Katalysators ist nicht kritisch und kann in weiten Grenzen variiert werden. Zweckmäßig ist ein Gehalt von 0,1 bis 15 Gew. -%, vorzugsweise von 0,5 bis 10 Gew. -%, bezogen auf das Trägermaterial. Die Menge des eingesetzten Platins oder Palladiums beträgt zwischen 0,001 und 10 Gew. -%, bevorzugt zwischen 0,01 und 0,1 Gew.-%, bezogen auf die Nitro- verbindung. In der bevorzugten Ausführungsform wird als Trägermaterial Kohle verwendet. Andere nicht amphotere Träger, wie Graphit, BaS04 oder Sie sind ebenfalls geeignet.
Der Temperaturbereich für die Hydrierung liegt zwischen -20°C und + 180°C, vorzugsweise zwischen -5 und +40°C. Die Mindesttemperatur ist nur durch den Gefrierpunkt des verwendeten Lösungsmittels bestimmt. Üblicherweise wird bei einem Wasserstoffdruck hydriert, der zwischen Normaldruck und 30 bar Überdruck liegt. Normalerweise wird der Wasserstoff bei Normaldruck bzw. leicht erhöhtem Druck eingegast.
Als Säuren finden anorganische Säuren wie Fluorwasserstoffsäure, Salzsäure, Bromwasserstoffsäure, Schwefelsäure und Perchlorsäure, sowie organische Säuren wie Ameisensäure, Essigsäure, Propion- säure, Oxalsäure, Zitronensäure und Trifluoressigsäure Verwendung.
Die Säuren werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden. Die Reduktion mit Alkalimetallen, beispielsweise mit Natrium, erfolgt im allgemeinen in Gegenwart einer Base. Als Basen kommen allgemein Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, sowie Alkalimetall- und Erdalkalimetallalkoholate, wie Natriummethanolat, Natriumethanolat, Kaliumethanolat und
Kalium- tert. -Butanolat, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Ammoniak und primäre Amine. Die Basen werden im allgemeinen äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet.
Nitrobenzolderivate der Formel III# sind z. T. aus der Literatur bekannt [vgl. EP-A 498 396; WO-A 93/15,046; WO-A 95/14,009] oder können gemäß der zitierten Literatur hergestellt werden.
2a) Die Umsetzung von IV# mit Nitrit, erfolgt bei Temperaturen von -10°C bis 25°C, vorzugsweise -5°C bis 10°C, in Wasser oder einem inerten organischen Lösungsmittel in Gegenwart einer
Säure [vgl. Organikum, 15. Auflage 1976, S. 654ff., VEB Verlag der Wissenschaften, Berlin] .
Geeignete Lösungsmittel sind Wasser, aliphatische Kohlenwasser- Stoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethy- lether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetoni- tril und Propionitril, Ketone wie Aceton, Methylethylketon,
Diethylketon und tert .-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Wasser und Essigsäure. Es können auch Gemi- sehe der genannten Lösungsmittel verwendet werden.
Als Säuren und saure Katalysatoren finden anorganische Säuren wie Fluorwasserstoffsäure, Salzsäure, Bromwasserstoffsäure, Schwefelsäure und Perchlorsäure, Lewis-Säuren wie Bortrifluorid, Alumini - umtrichlorid, Eisen-III-chlorid, Zinn-IV-chlorid, Titan-IV-chlo- rid und Zink-II-chlorid, sowie organische Säuren wie Ameisensäure, Essigsäure, Propionsäure, Oxalsäure, Zitronensäure und Trifluoressigsäure Verwendung. Die Säuren werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.
Als nitrosierende Agentien werden üblicherweise Alkali- oder Erdalkalinitrite verwendet, insbesondere Natrium- oder Kaliumnitrit.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, das ni- trosierende Agenz in einem Überschuß bezogen auf IV# einzusetzen.
2b) Die Reduktion der Diazoverbindung kann unter allgemein üblichen Bedingungen durchgeführt werden, bevorzugt durch Reduktion mit Eisen, Zinn oder Zink oder deren Salzen in Gegenwart einer Säure oder durch Reduktion mit Alkalimetallen in Gegenwart einer Base [vgl. Houben-Weyl, Bd. IV/lc, 4. Aufl., S. 506ff., Thieme Verlag Stuttgart und New York (1980); ebd. Bd. IV/ld, 4. Aufl., S. 473ff. (1981); Heterocycles, Bd. 31, S. 2201 (1990)]. Weiterhin bevorzugt ist die Reduktion der Diazoniumsalze mit Sulfit oder Disulfit [vgl: Organikum, 15. Aufl., VEB, S. 662, 1976; J. Chem. Soc, 1927, S. 1325ff.; Chem. Ber., Bd. 55, S. 1827, 1922; Houben-Weyl, Bd. 10/2, S. 182, Thieme Verlag, Stuttgart] .
Geeignete Lösungsmittel sind Wasser oder aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, haloge- nierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Bu- tylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylke- ton, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Buta- nol sowie Dimethylsulfoxid, Dirnethylformamid und Dimethylaceta- mid,besonders bevorzugt Wasser. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Säuren und saure Katalysatoren finden anorganische Säuren wie Fluorwasserstoffsäure, Salzsäure, Bromwasserstoffsäure, Schwefel - säure und Perchlorsäure, Lewis-Säuren wie Bortrifluorid, Alumini - umtrichlorid, Eisen-III-chlorid, Zinn-IV-chlorid, Titan-IV-chlo- rid und Zink-II-chlorid, sowie organische Säuren wie Ameisensäure, Essigsäure, Propionsäure, Oxalsäure, Zitronensäure und Trifluoressigsäure Verwendung. Die Säuren werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.
Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogencar- bonate wie Natriumhydrogencarbonat, metallorganische Verbindun- gen, insbesondere Alkalimetallalkyle wie Methyllithium, Butylli- thium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert .-Butanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri- isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Kalium- und Natriumhydroxid, Kalium- und Natriumcarbonat
Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.
Als Reduktionsmittel kommen insbesondere NaHS03, Na2S20s oder SnCl2 in Betracht.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, das Reduktionsmittel in einem Überschuß bezogen auf die Nitrosover- bindung einzusetzen.
3) Die Umsetzung des Hydrazins V# mit dem Alkoxymethylenmalon- säurealkylester Via erfolgt üblicherweise bei Temperaturen von -10°C bis 80°C, vorzugsweiseO°C bis 30°C, in einem inerten organischen Lösungsmittel.
Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwas- serstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, sowie Dimethylsulfoxid, Dimethylformamid und Dime- thylacetamid, besonders bevorzugt Petrolether, Toluol, tert. Butylmethylether, Diethylether und Dimethylformamid. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, Via in einem Überschuß bezogen auf V** einzusetzen.
Alkoxymethylenmalonsäurealkylester Via sind entweder käuflich oder können nach literaturbekannten Methoden hergestellt werden.
4) Die Cyclisierung von VII# zu dem Hydroxypyrazol VIII** erfolgt üblicherweise bei Temperaturen von -10°C bis50°C, vorzugsweise 0°C bis 30°C, in Wasser oder einem inerten organischen Lösungsmittel in Gegenwart einer Base.
Geeignete Lösungsmittel sind Wasser, aliphatische Kohlenwasser- Stoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert .-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetoni- tril und Propionitril, Ketone wie Aceton, Methylethylketon,
Diethylketon und tert . -Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert. -Butanol sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Methanol, Ethanol und Wasser. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiuma id, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogencar- bonate wie Natriumhydrogencarbonat, metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methyllithium, Butylli - thium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert .-Butanolat und Dimethoxymagnesiu , außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri- isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natri - ummethanolat, Natriumethanolat, Kaliumethanolat, Kaliumhydroxid und Natriumhydroxid.
Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, die Base in einem Überschuß bezogen auf VII# einzusetzen.
5) Die Verseifung der Estergruppe von VIII* und die anschließende Decarboxylierung der entstehenden Säure Vlllb* zu den Hydroxypyrazolen II* erfolgt üblicherweise bei Temperaturen von 0°C bis 150°C, vorzugsweise 50°C bis 110°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base.
Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert. -Butylmethylether,
Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert. -Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert. -Butanol sowie Dime- thylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Wasser, Dioxan und Dimethylacetamid. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Basen kommen allgemein anorganische Verbindungen wie Alkali - metall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogencar- bonate wie Natriumhydrogencarbonat, metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methyllithium, Butylli - thium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert.-Butanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri- isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Kaliumcarbonat, Kaliumhydroxid, Natriumcarbonat, Natriumhydroxid.
Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebe- nenfalls als Lösungsmittel verwendet werden.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, die Base in einem Überschuß bezogen auf VIII* einzusetzen.
Es ist auch möglich, die Schritte 4) und 5) unter den bei 5) geschilderten Reaktionsbedingungen als Eintopfreaktion ablaufen zu lassen.
Verbindungen der Formel I, in der RA für Halogen steht, erhält man vorteilhaft aus Hydroxypyrazolen der Formel II durch eine Reaktionsfolge aus Halogenierung und Alkylierung. Dabei ist die Reihenfolge der Umsetzungen unerheblich.
Figure imgf000014_0001
6) Die Halogenierung von II** erfolgt üblicherweise bei Temperaturen von -30°C bis 50°C, vorzugsweise 0°C bis 30°C, in einem inerten organischen Lösungsmittel. Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert . -Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert . -Butanol sowie Dirne- thylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Methylenchlorid, Methanol und Dimethylformamid. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Halogenierungsmittel kommen Chlor, Brom, Jod, Dibromdimethyl - hydrantoin, N-Bromsuccinimid oder N-Chlorsuccinimid in Betracht, insbesondere N-Bromsuccinimid oder N-Chlorsuccinimid.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, II** in einem Überschuß bezogen auf das Halogenierungsmittel einzusetzen.
7) Die Substitution des Hydroxypyrazols IX** erfolgt üblicherweise bei Temperaturen von -20°C bis 180°C, vorzugsweise 20°C bis 120°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. Synth. Commun. , Bd. 18, S. 2011 (1988); J. Chem. Soc. Chem. Commun., S. 735 (1987)].
Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwas- serstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert. -Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Alkohole wie Methanol, Ethanol, n-Propanol, Isopro- panol, n-Butanol und tert. -Butanol, Ketone wie Aceton, Butanon oder Ester wie Essigsäureethylester, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Dirne- thylformamid, Tetrahydrofuran, Dimethylsulfoxid, Diethylether, Aceton, Methanol, Essigsäureethylester und Toluol. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat sowie Alkalimetallhydrogencar- bonate wie Natriumhydrogencarbonat, metallorganische Verbindun- gen, insbesondere Alkalimetallalkyle wie Methyllithium, Butylli- thium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert.-Butanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri- isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natri - umhydrid, Natriumhydrogencarbonat, Natriumcarbonat und Natrium- und Kaliumhydroxid.
Die Basen werden im allgemeinen äquimolar oder im Überschuß eingesetzt, können aber auch in katalytischen Mengen oder gegebenenfalls als Lösungsmittel verwendet werden.
Als Alkylierungsagenz kommen beispielsweise Alkylhalogenide, Alkylsulfonate, Alkyl-p-toluolsulfonate, Alkyl-trifluormethansul - fonate, Alkohole, Ether oder Alkyl-p-bromphenylsulfonate, insbesondere Methyl- oder Ethyljodid oder Dimethyl- oder Diethylsulfat in Betracht. Die Einführung der Nitril-Gruppe erfolgt bevorzugt mit Halogencyanen, wie beispielsweise Bromcyan.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, das Alkylierungsagenz in einem Überschuß bezogen auf IX** einzusetzen.
8) Unter den in Abschnitt 7) beschriebenen Bedingungen kann auch die Alkylierung des Hydroxypyrazols II** erfolgen. Die Halogenierung von X** verläuft analog der in Abschnitt 6) beschrie- benen Halogenierung von II** zu IX**.
Figure imgf000016_0001
Zwischenprodukte der Formel 1, in der
Figure imgf000017_0001
Q NH-NH-C (RB) =C (COOR' ) 2 oder eine Gruppe Θ l oder Θ 2 ,
Figure imgf000017_0002
wobei # die Bindung zu dem Phenylring kennzeichnet und R' für Wasserstoff oder Cι-C4-Alkyl steht, sind neu.
Verbindungen I, in denen RA Cι-C4-Alkyl bedeutet, werden bevorzugt hergestellt, in dem man Hydrazone V** mit α-Cι-C4-Alkyl-ß-keto- estern Via' zu VII'** umsetzt und VII'** unter basischen Bedingungen zu Pyrazolonen VIII'** cyclisiert, die unter alkalischen Bedingungen zu Verbindungen I, in denen RA Cι-C4-Alkyl bedeutet, alkyliert werden.
Figure imgf000017_0003
Die Umsetzungen von V# über VII'** und VIII'** zu I# erfolgen unter den in den Abschnitten 3), 4), bzw. 7) beschriebenen Bedingungen. Verbindungen der Formel I, in denen RA Cyano, Alkyl oder Halogenalkyl bedeutet, können analog literaturbekannter Synthesen erhalten werden [RA=Cyano: J. Heterocycl. Chem., Bd. 23, 1035ff., 1986; Gazz. Chim. Ital., Bd. 69, S. 639ff, 1939; ebd., Bd. 77, S, 3ff, 5 1947; Chem. Ber. , Bd. 75, S. 1214ff, 1942; RA=Alkyl, Halogenalkyl: J. Am. Chem. Soc, Bd. 58, S. 1152ff, 1936; Chem. Ber., Bd. 38, S. 3275, 1905; ebd., Bd.34, S. 1301, 1901; J. Prakt. Chem., Bd. 54, S. 210ff, 1986; J. Chem. Soc. Perkin. Trans., Bd.2, S. 969ff, 1987] . 0
Phenylpyrazolone der Formel I'** werden bevorzugt aus den Verbindungen der Formel XI'** erhalten. In der Formel XI'** steht L' für eine für die nucleophile aromatische Substitution übliche Abgangsgruppe, wie beispielsweise Fluor, Chlor, Brom, Nitro oder 5 Alkyl- oder Arylsulfonate, wie Mesylat, Tosylat oder Triflat. Bevorzugte Abgangsgruppe ist Fluor.
Figure imgf000018_0001
9) Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 5 -20°C bis 170°C, vorzugsweise 0°C bis 100°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. WO-A 97/24,317; J. Chem. Soc. Perkin Trans., Bd. 1, S. 1727 (1989); Chem. Ber., Bd. 121, S. 2035 (1988)].
0 Geeignete Lösungsmittel sind aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert. -Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, 5 Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Bu- tylmethylketon, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Dimethylformamid, Dimethylsulfoxid und Tetrahydrofuran. Es können auch Gemische der genannten Lösungsmittel verwendet werden. 0
Als Basen kommen allgemein anorganische Verbindungen, wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid 5 und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat, sowie Alkalimetallhydrogen- carbonate wie Natriumhydrogencarbonat, metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methyllithium, Butyl- lithium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid, sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert. -Butanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri- isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydrid, Kalium-tert. Butanolat und Kaliumcarbonat. Die Basen werden im allgemeinen äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, Z-OH in einem Überschuß bezogen auf XI'** einzusetzen.
Phenylpyrazole der Formel I'**, in denen Z für eine Gruppe X steht, können alternativ auch aus Phenolen der Formel XIa'** erhalten werden. XIa'** wird mit einem Halogenid Z-Hal zu I'** umgesetzt.
Figure imgf000019_0001
10) Diese Umsetzung erfolgt üblicherweise bei Temperaturen von
-20°C bis 180°C, vorzugsweise 20°C bis 160°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. EP-A 203 608; EP-A 242 081] .
Geeignete Lösungsmittel sind aromatische Kohlenwasserstoffe, wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert. -Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Bu- tylmethylketon, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Dimethylformamid und Dimethylsulfoxid. Es können auch Gemische der genannten Lösungsmittel verwendet werden. Als Basen kommen allgemein anorganische Verbindungen, wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat, sowie Alkalimetallhydrogen- carbonate wie Natriumhydrogencarbonat, metallorganische Verbin- düngen, insbesondere Alkalimetallalkyle wie Methyllithium, Butyl - lithium und Phenyllithium, Alkylmagnesiumhalogenide, wie Methyl - magnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert. -Butanolat und Dimethoxymagnesium, außerdem organi- sehe Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydrid, Kalium- ert. Butanolat und Kaliumcarbonat. Die Basen werden im allgemeinen äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, X-Hal in einem Überschuß bezogen auf XIa'# einzusetzen.
Phenylpyrazole der Formel I"** werden bevorzugt aus den Benzylver- bindungen der Formel XI"** erhalten. In der Formel XI"** steht L für eine nucleofuge Abgangsgruppe, wie Halogen oder Alkyl- oder Aryl- sulfonat, vorzugsweise Brom, Chlor, Jod, Mesylat, Tosylat oder Triflat und E# für eine Gruppe A oder eine Vorstufe dafür.
Figure imgf000020_0001
11) Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 0°C bis 180°C, vorzugsweise 20°C bis 60°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. EP-A 254 426; EP-A 463 488; WO-A 95/18,789; WO-A 95/29,896].
Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert . -Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert. -Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert. -Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Dimethylformamid, Tetrahydrofuran und Aceton. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Basen kommen allgemein anorganische Verbindungen, wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat, sowie Alkalimetallhydrogen- carbonate wie Natriumhydrogencarbonat, metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methyllithium, Butyl - lithium und Phenyllithium, Alkylmagnesiumhalogenide wie Methyl - magnesiumchlorid, sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert. -Butanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydrid, Kaliumcarbonat, Kalium-tert .-butanolat und Natriummethanolat. Die Basen werden im allgemeinen äquimolar, im Über- schuß oder gegebenenfalls als Lösungsmittel verwendet.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, Z-OH in einem Überschuß bezogen auf XI"** einzusetzen.
Die für die Herstellung der Verbindungen I' benötigten Ausgangs- Stoffe Z-OH sind bekannt oder können gemäß der zitierten Literatur hergestellt werden.
12) Die BenzylVerbindungen XI"** sind unter allgemein üblichen Bedingungen aus den entsprechenden TolylVerbindungen XIa"** zugänglich [vgl. J. Amer. Chem. Soc, Bd. 71, S. 2137ff. (1949); ebd., Bd. 90, S. 1797ff. (1968)].
Figure imgf000022_0001
13) Verbindungen Xlb" , in denen Hai für Halogen steht, sind vorteilhaft aus Verbindungen XIc" , in denen IT für ggf. subst. Phenyl oder eine andere unter sauren Bedingungen abspaltbare Schutzgruppe steht, durch Umsetzung mit Halogenwasserstoff - säuren oder anorganischen Säurehalogeniden, beispielsweise BBr3, unter literaturbekannten Bedingungen zugänglich [vgl. T. W. Greene, Protective Groups in Organic Chemistry, J. Wiley & Sons, 1981, S. 89-92].
)
Figure imgf000022_0002
Phenylpyrazole der Formel I"** können alternativ aus den Benzylal - koholen der Formel Xld"** erhalten werden. In der Formel XI"** steht L für eine nucleofuge Abgangsgruppe, wie Halogen oder Alkyl- oder Arylsulfonat, vorzugsweise Brom, Chlor, Jod, Mesylat, Tosylat oder Triflat und E** für eine Gruppe A oder eine Vorstufe dafür.
Figure imgf000022_0003
14) Die Umsetzung mit Z-L, wobei L für eine nucleofuge Abgangs - gruppe, wie Halogen oder Alkyl- oder Arylsulfonat, vorzugsweise Brom, Chlor, Jod, Mesylat, Tosylat oder Triflat steht, erfolgt üblicherweise bei Temperaturen von 0°C bis 180°C, vorzugsweise 20°C bis 60°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. EP-A 254 426; EP-A 463 488; WO-A 95/18,789; WO-A 95/29,896].
Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwas- serstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert. -Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert. -Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Dimethylformamid, Tetrahydrofuran und Aceton. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Als Basen kommen allgemein anorganische Verbindungen, wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calziumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calziumhydrid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat, sowie Alkalimetallhydrogen- carbonate wie Natriumhydrogencarbonat, metallorganische Verbin- d ngen, insbesondere Alkalimetallalkyle wie Methyllithium, Butyllithium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid, sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliumethanolat, Kalium- tert. -Butanolat und Dirnethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri- isopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydrid, Kaliumcarbonat, Kalium-tert. -butanolat und Natriumme- thanolat. Die Basen werden im allgemeinen äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet.
Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, Z-L in einem Überschuß bezogen auf Xld"** einzusetzen.
Verbindungen Xld" sind vorteilhaft aus den Halogeniden Xlb" durch Umsetzung mit Carboxylaten R"COOM, wobei R" für einen Alkylrest steht und M für ein Ion aus der Gruppe der Alkali-, Erdalkali- oder Übergangsmetalle steht, und anschließender Aminolyse mit einem Amin HN-R" , wobei R" für einen Alkylrest steht, zugänglich [vgl. EP-A 781 764] .
Figure imgf000024_0001
10 15) Die Umsetzung des Halogenids Xlb" mit dem Carboxylat R"COOM- erfolgt üblicherweise bei Temperaturen von 10°C bis 60°C in einem organischen Lösungsmittel [vgl. EP-A 781 764] .
Geeignete Lösungsmittel sind Dimethylsulfoxid, Dimethylformamid 15 und Dimethylacetamid. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
16) Die Aminolyse erfolgt üblicherweise bei Temperaturen von 10°C bis 60°C in Wasser oder einem inerten organischen Lösungsmit- 20 tel in Gegenwart von Aminen HN-R" [vgl. EP-A 781 764] .
Geeignete Lösungsmittel sind Ether wie Diethylether, Diisopropylether, tert .-Butylmethylether, Dioxan und Tetrahydrofuran. Es können auch Gemische der genannten Lösungsmittel verwendet wer- 25 den.
Alternativ können die Verbindungen der Formel Xld" auch aus den Halogeniden Xlb" über die Aldehyde Xlf" dargestellt werden.
Figure imgf000024_0002
17) Die Umsetzung erfolgt üblicherweise bei Temperaturen von 10°C 40 bis 80°C, in einem inerten organischen Lösungsmittel in Gegenwart von N-Methylmorpholin-N-Oxid [vgl. Lit. EP-A 422 597] .
Geeignete Lösungsmittel sind halogenierte Kohlenwasserstoffe wie 45 Methylenchlorid, Chloroform und Chlorbenzol, Nitrile wie Acetonitril und Propionitril sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Acetonitril, Dimethyl- sulfoxid und Tetrachlorkohlenstoff. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
18) Die Reduktion erfolgt üblicherweise bei Temperaturen von 10°C bis 50°C, in Wasser oder einem inerten organischen Lösungsmittel in Gegenwart von Reduktionsmitteln, beispielsweise hydridübertragenden Agentien, wie Alkali- oder Erdalkalibor- hydriden, insbesondere Natriumborhydrid [vgl. Lit. EP-A 534 216] .
Geeignete Lösungsmittel sind Wasser oder Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert. -Butanol, besonders bevorzugt ist Wasser. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Zwischenprodukte der Formel 2, in der
Figure imgf000025_0001
L Hydroxy, CH2OH, CHL' oder eine Gruppe L' bedeutet, wobei L' für eine nucleophil abspaltbare Gruppe steht, und RA, RB, Rc, Y und n die Bedeutungen wie in Formel I haben, sind neu.
Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisie- rung anderer Verbindungen I hergestellt werden.
Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischen- und Endprodukte fallen z.T. in Form farbloser oder schwach bräunlicher, zäher Öle an, die unter vermindertem Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen. Die Verbindungen I können bei der Herstellung aufgrund ihrer C=C- und C=N-Doppelbindungen als E/Z-Isomerengemische anfallen, die z.B. durch Kristallisation oder Chromatographie in üblicher Weise in die Einzelverbindungen getrennt werden können. 5
Sofern bei der Synthese Isomerengemische anfallen, ist im allgemeinen jedoch eine Trennung nicht unbedingt erforderlich, da sich die einzelnen Isomere teilweise während der Aufbereitung für die Anwendung oder bei der Anwendung (z.B. unter Licht-, Säure- oder 10 Baseneinwirkung) ineinander umwandeln können. Entsprechende Umwandlungen können auch nach der Anwendung, beispielsweise bei der Behandlung von Pflanzen in der behandelten Pflanze oder im zu bekämpfenden Schadpilz oder tierischen Schädling erfolgen.
15 In Bezug auf die -N=C (R1) -C (R2) =N0R3 Doppelbindungen des Substituenten Z werden im allgemeinen hinsichtlich ihrer Wirksamkeit die trans, trans-Isomere der Verbindungen I bevorzugt (Konfiguration bezogen auf den Rest T im Verhältnis zur C (R2) =N0R3-Gruppe, bzw. bezogen auf den Rest OR3 im Verhältnis zur T-N=C (R1) -Gruppe) .
20
Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:
25 Halogen: Fluor, Chlor, Brom und Jod;
Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 6 oder 10 Kohlenstoffatomen, z.B. Cι-C6-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Me-
30 thyl-propyl, 2-Methylpropyl, 1, 1-Dimethylethyl, Pentyl, 1-Methyl - butyl, 2-Methylbutyl, 3-Methylbutyl, 2, 2-Di-methylpropyl, 1-Ethylpropyl , Hexyl , 1, 1-Dimethylpropyl , 1 , 2-Dimethylpropyl , 1-Methylpentyl , 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1, 1-Dimethylbutyl, 1, 2-Dimethylbutyl, 1, 3-Dimethylbutyl,
35 2,2-Dimethylbutyl, 2, 3-Dimethylbutyl, 3, 3-Dimethylbutyl, 1-Ethyl- butyl, 2-Ethylbutyl, 1, 1, 2-Trimethylpropyl, 1,2, 2-Trimethyl- propyl, 1-Ethyl-l-methylpropyl und l-Ethyl-2-methylpropyl;
Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 40 10 Kohlenstoffatomen (wie vorstehend genannt) , wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. Cι-C2-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, 45 Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl,
1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Di- fluorethyl, 2, 2, 2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor- 2, 2-difluorethyl, 2, 2-Dichlor-2-fluorethyl, 2, 2 , 2-Trichlorethyl und Pentafluorethyl;
Alkoxy: geradkettige oder verzweigte Alkylgruppen mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über ein Sauerstoffatom (-0-) an das Gerüst gebunden sind;
Halogenalkoxy: geradkettige oder verzweigte Halogenalkylgruppen mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über ein Sauerstoffatom (-0-) an das Gerüst gebunden sind;
Alkylthio: geradkettige oder verzweigte Alkylgruppen mit 1 bis 10 oder 1 bis 4 Kohlenstoffatomen (wie vorstehend genannt) , welche über ein Schwefelatom (-S-) an das Gerüst gebunden sind;
Alkylamino: eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über eine Aminogruppe (-NH-) an das Gerüst gebunden ist;
Dialkylamino : zwei voneinander unabhängige geradkettige oder verzweigte Alkylgruppen mit jeweils 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über ein Stickstoffatom an das Gerüst gebunden sind;
Alkylcarbonyl: eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden ist;
Alkoxycarbonyl : eine Alkoxygruppe mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden ist;
Alkylthiocarbonyl: eine Alkylthiogruppe mit 1 bis 10 Kohlenstoff - atomen (wie vorstehend genannt) , welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden ist;
Alkylaminocarbonyl : eine Alkylaminogruppe mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden ist;
Dialkylaminocarbonyl : eine Dialkylaminogruppe (wie vorstehend genannt) , welche über eine Carbonylgruppe (-CO-) an das Gerüst gebunden ist; Alkylcarbonyloxy: eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über eine Carbonyloxygruppe (-C0-) an das Gerüst gebunden ist;
Alkylsulfonyl : eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über eine Sulfonylgruppe (-S02-) an das Gerüst gebunden ist;
Alkoxysulfonyl: eine Alkoxygruppe mit 1 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über eine Sulfonylgruppe (-S02-) an das Gerüst gebunden ist;
Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, 6, 8 oder 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-Cg-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-l-propenyl, 2-Methyl-l-propenyl, l-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-l-butenyl, 2-Methyl-l-butenyl, 3-Methyl-l-butenyl, l-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, l-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1, l-Dimethyl-2-propenyl, 1, 2-Dimethyl-l-pro- penyl, l,2-Dimethyl-2-propenyl, 1-Ethyl-lpropenyl, l-Ethyl-2-pro- penyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-l-pentenyl, 2-Methyl-l-pentenyl, 3-Methyl-l-pentenyl, 4-Methyl-l-pentenyl, l-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, l-Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, l-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1, l-Dimethyl-2-butenyl, 1, l-Dimethyl-3-bute- nyl, 1,2-Dimethyl-l-butenyl, 1, 2-Dimethyl-2-butenyl, 1,2-Dime- thyl-3-butenyl, 1, 3-Dimethyl-l-butenyl, 1, 3-Dimethyl-2-butenyl, 1, 3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2, 3-Dimethyl-l- butenyl, 2, 3-Dimethyl-2-butenyl, 2, 3-Dimethyl-3-butenyl, 3,3-Di- methyl-1-butenyl, 3 , 3-Dimethyl-2-butenyl, 1-Ethyl-l-butenyl, l-Ethyl-2-butenyl, l-Ethyl-3-butenyl, 2-Ethyl-l-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1, 1, 2-Trimethyl-2-propenyl, l-Ethyl-l-methyl-2-propenyl, l-Ethyl-2-methyl-lpropenyl und l-Ethyl-2-methyl-2-propenyl;
Halogenalkenyl : ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position (wie vorstehend genannt) , wobei in diesen Gruppen die Wasserstoffatome teilweise oder voll- ständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können; Alkenyloxy: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 3 bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen, nicht zum Heteroatom benachbarten, Position (wie vorstehend genannt) , welche über ein Sauerstoffatom (-0-) an das Gerüst gebunden sind;
Halogenalkenyloxy: ungesättigte, geradkettige oder verzweigte Alkenyloxygruppen mit 3 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können;
Alkenylthio: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 3 bis 10 Kohlenstoffatomen und einer Doppel - bindung in einer beliebigen, nicht zum Heteroatom benachbarten, Position (wie vorstehend genannt) , welche über ein Schwefelatom (-S-) an das Gerüst gebunden sind;
Alkenylamino: ungesättigte, geradkettige oder verzweigte Kohlen- wasserstoffreste mit 3 bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen, nicht zum Heteroatom benachbarten, Position (wie vorstehend genannt) , welche über eine Aminogruppe (-NH-) an das Gerüst gebunden sind;
Alkenylcarbonyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden sind;
Alkenyloxycarbonyl : geradkettige oder verzweigte Alkenyloxygruppen mit 3 bis 10 Kohlenstoffatomen (wie vorstehend genannt), welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden sind;
Alkenylthiocarbonyl: geradkettige oder verzweigte Alkenylthio- gruppen mit 3 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden sind;
Alkenylaminocarbonyl: geradkettige oder verzweigte Alkenylamino- gruppen mit 3 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden sind;
Alkenylcarbonyloxy: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position (wie vorstehend genannt) , welche über eine Carbonyloxygruppe (-C02-) an das Gerüst gebunden ist;
Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4, 6, 8 oder 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2-C6-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, l-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butiny1 , l-Methyl-3-butinyl, 2-Methyl-3- butinyl, 3-Methyl-l-butinyl, 1, l-Dimethyl-2-propinyl, l-Ethyl-2- propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, l-Methyl-2-pentinyl, l-Methyl-3-pentinyl, l-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-l-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-l-pentinyl, 4-Methyl-2-pentinyl, l,l-Dimethyl-2-butinyl, 1, l-Dimethyl-3-butinyl, 1, 2-Dimethyl-3- butinyl, 2, 2-Dimethyl-3-butinyl, 3 , 3-Dimethyl-l-butinyl, l-Ethyl-2-butinyl, l-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und l-Ethyl-l-methyl-2-propinyl ;
Halogenalkinyl : ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position (wie vorstehend genannt) , wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, ins- besondere Fluor, Chlor und Brom, ersetzt sein können;
Alkinyloxy: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 3 bis 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen, nicht zum Heteroatom benachbarten, Position (wie vorstehend genannt) , welche über ein Sauerstoffatom (-0-) an das Gerüst gebunden sind;
Halogenalkinyloxy: ungesättigte, geradkettige oder verzweigte Alkinyloxygruppen mit 3 bis 10 Kohlenstoffatomen (wie vorstehend genannt) , wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können;
Cycloalkyl: monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 6, 8, 10 oder 12 Kohlenstoffringgliedern, z.B.
C3-C8-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclo- hexyl, Cycloheptyl und Cyclooctyl;
Cycloalkoxy: monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 12 Kohlenstoffringgliedern (wie vorstehend genannt) , welche über ein Sauerstoffatom (-0-) an das Gerüst gebunden sind; Cycloalkylthio: monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 12 Kohlenstoffringgliedern (wie vorstehend genannt) , welche über ein Schwefelatom (-S-) an das Gerüst gebunden sind;
Cycloalkylamino: monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 12 Kohlenstoffringgliedern (wie vorstehend genannt) , welche über eine Aminogruppe (-NH-) an das Gerüst gebunden sind;
Cycloalkylcarbonyl: monocyclische, gesättigte Kohlenwasserstoff - gruppen mit 3 bis 12 Kohlenstoffringgliedern (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden sind;
Cycloalkoxycarbonyl : eine monocyclische Cycloalkoxygruppe mit 3 bis 12 Kohlenstoffringgliedern (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden ist;
Cycloalkylthiocarbonyl: eine monocyclische Cycloalkylthiogruppe mit 3 bis 12 Kohlenstoffringgliedern (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden ist;
gesättigter oder partiell ungesättigter cyclischer Rest, welcher neben Kohlenstoffatomen als Ringglieder Heteroatome aus der Gruppe Sauerstoff, Schwefel oder Stickstoff enthalten kann: Cycloalkyl mit 3 bis 12 Kohlenstoffringgliedern wie vorstehend genannt oder 5- oder 6-gliedrige Heterocyclen (Heterocyclyl) enthaltend neben Kohlenstoffringgliedern ein bis drei Stickstoffatome und/ oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome, z.B. 2-Tetrahydrofuranyl, 3-Tetra- hydrofuranyl , 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidi- nyl, 5-Isoxazolidinyl, 3-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazoli- dinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazo- lidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1, 2, 4-Oxadiazolidin-3-yl, 1, 2, 4-Oxadiazoli- din-5-yl, 1, 2 ,4-Thiadiazolidin-3-yl, 1, 2, 4-Thiadiazolidin-5- yl, l,2,4-Triazolidin-3-yl, 1, 3 ,4-Oxadiazolidin-2-yl, 1,3,4-Thia- diazolidin-2-yl, 1, 3, 4-Triazolidin-2-yl, 2, 3-Dihydrofur-2-yl, 2,3-Dihydrofur-3-yl, 2, 4-Dihydrofur-2-yl, 2, 4-Dihydrofur-3-yl, 2, 3-Dihydrothien-2-yl, 2, 3-Dihydrothien-3-yl, 2, 4-Dihydrothien- 2-yl, 2,4-Dihydrothien-3-yl, 2, 3-Pyrrolin-2-yl, 2, 3-Pyrrolin- 3-yl, 2,4-Pyrrolin-2-yl, 2 , 4-Pyrrolin-3-yl, 2, 3-Isoxazolin-3-yl, 3, 4-Isoxazolin-3-yl, 4, 5-Isoxazolin-3-yl, 2, 3-Isoxazolin-4-yl, 3, 4-Isoxazolin-4-yl, 4 , 5-Isoxazolin-4-yl, 2 , 3-Isoxazolin-5-yl, 3 , 4-Isoxazolin-5-yl , 4 , 5-Isoxazolin-5-yl , 2 , 3-Isothiazolin-3-yl , 3 ,4-Isothiazolin-3-yl, 4 , 5-Isothiazolin-3-yl , 2, 3-Isothiazo- lin-4-yl, 3 , 4-Isothiazolin-4-yl, 4 , 5-Isothiazolin-4-yl , 2,3-Iso- thiazolin-5-yl, 3 , 4-Isothiazolin-5-yl, 4, 5-Isothiazolin-5-yl, 2, 3-Dihydropyrazol-l-yl, 2, 3-Dihydropyrazol-2-yl, 2, 3-Dihydropy- razol-3-yl, 2, 3-Dihydropyrazol-4-yl, 2 , 3-Dihydropyrazol-5-yl, 3 , 4-Dihydropyrazol-l-yl , 3 , 4-Dihydropyrazol-3-yl , 3 , 4-Dihydropy- razol-4-yl, 3 , 4-Dihydropyrazol-5-yl, 4, 5-Dihydropyrazol-l-yl, 4,5-Dihydropyrazol-3-yl, 4, 5-Dihydropyrazol-4-yl, 4, 5-Dihydropy- razol-5-yl, 2, 3-Dihydrooxazol-2-yl, 2, 3-Dihydrooxazol-3-yl, 2, 3-Dihydrooxazol-4-yl, 2 , 3-Dihydrooxazol-5-yl, 3, 4-Dihydrooxa- zol-2-yl, 3 , 4-Dihydrooxazol-3-yl, 3, 4-Dihydrooxazol-4-yl, 3,4-Di- hydrooxazol-5-yl, 3 , 4-Dihydrooxazol-2-yl, 3, 4-Dihydrooxazol-3-yl, 3 , 4-Dihydrooxazol-4-yl, 2-Piperidinyl, 3-Piperidinyl,
4-Piperidinyl, 1, 3 -Dioxan-5 -yl , 2 -Tetrahydropyranyl, 4-Tetrahy- dropyranyl, 2 -Tetrahydrothienyl, 3-Tetrahydropyridazinyl, 4-Te- trahydropyridazinyl, 2-Tetrahydropyrimidinyl, 4-Tetrahydropyrimi- dinyl, 5-Tetrahydropyrimidinyl, 2-Tetrahydropyrazinyl, 1,3,5-Te- trahydro-triazin-2-yl und 1,2, 4-Tetrahydrotriazin-3-yl ;
Aryl: ein ein- bis dreikerniges aromatisches Ringsystem enthaltend 6 bis 14 Kohlenstoffringglieder, z.B. Phenyl, Naphthyl und Anthracenyl ;
Aryloxy: ein ein- bis dreikerniges aromatisches Ringsystem (wie vorstehend genannt) , welches über ein Sauerstoffatom (-0-) an das Gerüst gebunden ist;
Arylthio: ein ein- bis dreikerniges aromatisches Ringsystem (wie vorstehend genannt) , welches über ein Schwefelatom (-S-) an das Gerüst gebunden ist;
Arylamino: ein ein- bis dreikerniges aromatisches Ringsystem (wie vorstehend genannt) , welches über eine Aminogruppe (-NH-) an das Gerüst gebunden ist;
Arylcarbonyl : ein ein- bis dreikerniges aromatisches Ringsystem (wie vorstehend genannt) , welches über eine Carbonylgruppe (-C0-) an das Gerüst gebunden ist;
Aryloxycarbonyl : eine ein- bis dreikernige Aryloxygruppe (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden ist; Arylthiocarbonyl: eine ein- bis dreikernige Arylthiogruppe (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden ist;
Arylaminocarbonyl: eine ein- bis dreikernige Arylaminogruppe (wie vorstehend genannt) , welche über eine Carbonylgruppe (-C0-) an das Gerüst gebunden ist;
Arylcarbonyloxy: ein ein- bis dreikerniges aromatisches Ring- System (wie vorstehend genannt) , welches über eine Carbonyloxygruppe (-C0-) an das Gerüst gebunden ist;
Arylcarbonylthio: ein ein- bis dreikerniges aromatisches Ringsystem (wie vorstehend genannt) , welches über eine Carbonylthio- gruppe (-C0S-) an das Gerüst gebunden ist;
Arylcarbonylamino: ein ein- bis dreikerniges aromatisches Ring- system (wie vorstehend genannt) , welches über eine Carbonylamino- gruppe (-C0NH-) an das Gerüst gebunden ist;
Arylsulfonyl: ein ein- bis dreikerniges aromatisches Ringsystem (wie vorstehend genannt) , welches über eine Sulfonylgruppe (-S02-) an das Gerüst gebunden ist;
Aryloxysulfonyl: eine ein- bis dreikernige Aryloxygruppe (wie vorstehend genannt) , welche über eine Sulfonylgruppe (-S02-) an das Gerüst gebunden ist;
Heteroaryl :
- 5-gliedriges Heteroaryl, enthaltend ein bis vier Stickstoff- atome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-0xazolyl, 4-0xazolyl, 5-0xazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imida- zolyl, 4-Imidazolyl, l,2,4-Oxadiazol-3-yl, 1, 2,4-Oxadiazol-5- yl, l,2,4-Thiadiazol-3-yl, l,2,4-Thiadiazol-5-yl, 1,2,4-Tria- zol-3-yl, 1,3, 4-Oxadiazol-2-yl, 1, 3, 4-Thiadiazol-2-yl und 1,3, 4-Triazol-2-yl; - benzokondensiertes 5-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoffatome oder ein Stickstoffatom und ein Sauerstoff- oder Schwefelatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, und in welchen zwei benachbarte Kohlenstoffringglieder oder ein Stickstoff- und ein benachbartes Kohlenstoffringglied durch eine Buta-1, 3-dien-l, 4- diylgruppe verbrückt sein können;
- 6-gliedriges Heteroaryl, enthaltend ein bis drei bzw. ein bis vier Stickstoffatome: 6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein bis vier Stickstoff - atome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyri- midinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5- Triazin-2-yl und 1, 2, 4-Triazin-3-yl;
Im Hinblick auf ihre bestimmungsgemäße Verwendung der Phenylpyra- zole der Formel I sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein oder in Kombination, besonders bevorzugt:
Verbindungen der Formel I, in denen T Oxymethylen bedeutet, sind besonders bevorzugt.
Daneben besonders bevorzugt sind Verbindungen der Formel I, in denen n = null (0) ist.
Gleichermaßen besonders bevorzugt sind Verbindungen I, in denen Z für N=C(R1)-C(R2)=NOR3 steht.
Daneben werden Verbindungen I besonders bevorzugt, in denen Z für N^WR1 steht.
Außerdem werden Verbindungen I besonders bevorzugt, in denen W für gegebenenfalls substituiertes Phenyl steht.
Insbesondere werden auch Verbindungen I bevorzugt, in denen Z für eine Gruppe X steht.
Außerdem werden Verbindungen I besonders bevorzugt, in denen R2 für eine Gruppe W steht.
Gleichermaßen besonders bevorzugt sind Verbindungen I, in denen R2 für eine Gruppe W, die über Sauerstoff gebunden ist, steht. Daneben werden Verbindungen I besonders bevorzugt, in denen X für ggf. subst. Aryl oder ggf. subst. Hetaryl steht.
Desweiteren werden Verbindungen I besonders bevorzugt, in denen R1 für Methyl oder Ethyl steht.
Außerdem werden Verbindungen I besonders bevorzugt, in denen R3 für Cι-C3-Alkyl, C3-Cs-Alkenyl oder C3-C5-Alkinyl steht.
Daneben werden Verbindungen I besonders bevorzugt, in denen R3 für Methyl, Allyl oder Propargyl steht.
Weiterhin besonders bevorzugt sind Verbindungen der Formel I, in denen T Sauerstoff oder CH20, Z eine Gruppe X, N=CWR1 oder N=C(R1)-C(R2)=NOR3 bedeutet, wobei
X Heterocyclyl, welches vollständig oder partiell halogeniert sein und/oder 1 bis 3 der folgenden Reste tragen kann:
Cyano, Cι-C4-Alkyl, Cι-C4-Halogenalkyl oder Cι~C4-Alkoxy;
Aryl, Hetaryl, Arylmethylen oder Hetarylmethylen, wobei die cyclischen Reste partiell oder vollständig halogeniert sein und/oder eine bis drei der folgenden Gruppen tragen können:
Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Amino- carbonyl, Aminothiocarbonyl, Ci-Cß-Alkyl, Ci-Cδ-Halogen- alkyl, Ci-Cβ-Alkylcarbonyl, Ci-Cδ-Alkylsulfonyl, Ci-Cδ-Alkylsulfoxyl, C3-C6-Cycloalkyl , Ci-Cß-Alkoxy, Ci-Cε-Halogenalkoxy, Ci-Cg-Alkoxycarbonyl, Ci-Cδ-Alkyl- thio, Ci-Cg-Alkylamino, Di-Cι-C6-alkylamino, Ci-Cg-Alkyl- aminocarbonyl , Di-Ci-Cδ-alkylaminocarbonyl, Ci-Cß-Alkyl- aminothiocarbonyl , Di-Ci-Cg-alkylaminothiocarbonyl , C2-C6-Alkenyl, C-C6-Alkenyloxy, Benzyl, Benzyloxy, Aryl, Aryloxy, Arylthio, Heteroaryl, Heteroaryloxy, Heteroarylthio, C3-C6~Alkinyloxy, Cι-C4-Alkylendioxy, welches halogeniert sein kann, oder C (=NORd) -Ti-R"3' , wobei
Rd für Wasserstoff oder Ci-Cδ-Alkyl; T für Sauerstoff, Schwefel oder NRd steht;
1 gleich 0 oder 1 ist und
die cyclischen Gruppen ihrerseits partiell oder vollständig halogeniert sein und/oder 1 bis 3 der folgenden Substituenten tragen können: Cyano, Nitro, Hydroxy,
Ci-Cß-Alkyl, Ci-Cδ-Halogenalkyl, Ci-Cβ-Alkylcarbonyl, C3-C6-Cycloalkyl, Ci-Cg-Alkoxy, Ci-Cδ-Halogenalkoxy, Ci-Cg-Alkoxycarbonyl, Ci-Cδ-Alkylthio, Ci-Cg-Alkylamino, Di-Cι-C6-alkylamino, C2-C6-Alkenyl, C -C6-Alkenyloxy, C3-C6-Alkinyloxy und Cχ-C4-Alkylendioxy, welches halogeniert sein kann, steht,
für Ci-Cδ-Alkyl, C2-C6-Alkenyl oder C2-C6-Alkinyl,
wobei diese Gruppen vollständig oder partiell halogeniert sein und/oder 1 bis 3 der folgenden Reste tragen können:
Cyano, Ci-Cg-Alkoxy, Ci-Ce-Halogenalkoxy, Ci-Cg-Alkoxycar- bonyl, C3-C6~Cycloalkyl, Heterocyclyl, Aryl oder Hetaryl, wobei
die cyclischen Gruppen ihrerseits partiell oder vollständig halogeniert sein und/oder 1 bis 3 der folgenden Reste tragen können:
Cyano, Nitro, Cι-C4-Alkyl, Cι-C4-Halogenalkyl, Cι~C4-Alkoxy, Cχ-C4-Halogenalkoxy; oder
für C3-C6~Cycloalkyl, C3-C6-Cycloalkenyl oder Heterocyclyl,
wobei diese Gruppen vollständig oder partiell halogeniert sein und/oder 1 bis 3 der folgenden Reste tragen können:
Cyano, Cι-C4-Alkyl, Cι-C4-Halogenalkyl oder C1-C -Alkoxy; oder
für Aryl oder Heteroaryl,
wobei diese Reste partiell oder vollständig halogeniert sein und/oder eine bis drei der folgenden Gruppen tragen können:
Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Amino- carbonyl, Aminothiocarbonyl, Cι-C6-Alkyl, Cj-Cg-Halogen- alkyl, Ci-Ce-Alkylcarbonyl, Ci-Cg-Alkylsulfonyl, Ci-Cδ-Alkylsulfoxyl, C3-C6-Cycloalkyl, Cι-C6-Alkoxy, Ci-Cg-Halogenalkoxy, Ci-Cg-Alkoxycarbonyl , Ci-Ce-Alkyl- thio, Ci-Cö-Alkylamino, Di-Ci-Cε-alkylamino, Cχ-C6-Alkyl- aminocarbonyl, Di-Cι-C6-alkylaminocarbonyl, Cι-C6-Alkyl- aminothiocarbonyl, Di-Ci-Cδ-alkylaminothiocarbonyl , C2-C6~Alkenyl, C2-C6-Alkenyloxy, Benzyl, Benzyloxy, Aryl, Aryloxy, Arylthio, Heteroaryl, Heteroaryloxy, Heteroa- rylthio, C3-C6-Alkinyloxy, Cι-C4-Alkylendioxy, welches halogeniert sein kann, oder C (=NORd) -Ti-R3' , wobei Rd für Wasserstoff oder Cι-C6-Alkyl;
T für Sauerstoff, Schwefel oder NRd steht;
1 gleich 0 oder 1 ist und
die cyclischen Gruppen ihrerseits partiell oder vollständig halogeniert sein und/oder 1 bis 3 der folgenden Substituenten tragen können:
Cyano, Nitro, Hydroxy, Cι-C6-Alkyl, Ci-Cδ-Halogen- alkyl, Ci-Cδ-Alkylcarbonyl, C3-C6-Cycloalkyl,
Ci-Cδ-Alkoxy, Ci-Cδ-Halogenalkoxy, Ci-Cδ-Alkoxy- carbonyl, Ci-Cß-Alkylthio, Ci-Cβ-Alkylamino, Di-Cι-C6-alkylamino, C2-C6-Alkenyl, C2-C6-Alkenyloxy, C3-C6-Alkinyloxy und Cι-C4-Alkylendioxy, welches halogeniert sein kann, steht;
R2 Wasserstoff, Cyano, Halogen, C(Rd)=N0R3 oder W, OW, SW oder NRCW, wobei
Rc Wasserstoff, Ci-Ce-Alkyl, C2-C6-Alkenyl oder C2-C6-Alki- nyl;
Rd Wasserstoff oder Cι~C4-Alkyl; und
R3 Wasserstoff, Ci-Cε-Alkyl, Ci-Cδ-Cyanoalkyl , C2-C6"Alkenyl,
C-Cδ-Alkinyl, Cι-C4-Alkoxy-Cι-C6-alkyl oder C3-C6-Cycloalkyl- Cι-C4-alkyl, wobei
diese Gruppen partiell oder vollständig halogeniert sein kön- nen und die Cycloalkylgruppen zusätzlich 1 bis 3 Cι~C4-Alkyl- reste tragen können; bedeuten.
Insbesondere werden Verbindungen I bevorzugt, in denen RA für Halogen steht.
Daneben sind auch Verbindungen I besonders bevorzugt, in denen RA für Chlor oder Brom steht.
Gleichermaßen besonders bevorzugt sind Verbindungen I, in denen RB für Wasserstoff steht.
Weiterhin bevorzugt sind Verbindungen der Formel I, in denen Rc für Alkyl oder Halogenalkyl steht.
Darüber hinaus sind Verbindungen der Formel I besonders bevorzugt, in denen Rc Methyl oder Ethyl bedeutet. Besonders bevorzugt sind Verbindungen der Formel I, in denen der Substituent X eine oder zwei Gruppen R4 tragen.
Ebenfalls besonders bevorzugt sind Verbindungen der Formel I, in denen der Substituent W eine oder zwei Gruppen R5 tragen.
Gleichfalls besonders bevorzugt sind Verbindungen der Formel I, in denen der Substituent R3 unsubstituiert ist oder eine Gruppe R5 trägt.
Darüber hinaus sind Verbindungen der Formel I besonders bevorzugt, in denen die Gruppen R4 eine Gruppe R5 oder R6 tragen.
Insbesondere werden Verbindungen I bevorzugt, in denen Z für gegebenenfalls substituiertes Phenyl, Pyridinyl, Pyrimidinyl, Chinazolinyl, Furanyl, Thienyl, Pyrrolyl, Benzof ranyl , Benzo- thiophenyl, Indolyl, Pyrazolyl, Isoxazolyl, Isothiazolyl, Oxazo- lyl, Thiazolyl, Imidazolyl, Triazolyl, Tetrazolyl, Thiadiazolyl, Benzoxazolyl, Benzisoxazolyl, Benzthiazolyl, Benzisothiazolyl oder Indazolyl steht.
Insbesondere werden Verbindungen I.l' bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl und Z für gegebenenfalls substituiertes Phenyl, Pyridinyl, Pyrimidi- nyl, Chinazolinyl, Furanyl, Thienyl, Pyrrolyl, Benzofuranyl, Ben- zothiophenyl, Indolyl, Pyrazolyl, Isoxazolyl, Isothiazolyl, Oxa- zolyl, Thiazolyl, Imidazolyl, Triazolyl, Tetrazolyl, Thiadiazolyl, Benzoxazolyl, Benzisoxazolyl, Benzthiazolyl, Benzisothiazolyl oder Indazolyl steht.
Figure imgf000038_0001
Daneben werden Verbindungen I.l' besonders bevorzugt, in denen Z für durch Halogen, Methyl, Trifluormethyl oder Methoxy substituiertes Phenyl steht.
Außerdem werden Verbindungen I.l" bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl und Z für gegebenenfalls substituiertes Phenyl, Naphthyl, Pyridinyl, Pyri- midinyl, Chinolyl, Triazolyl, Pyrazinyl, Thienyl, Chinoxalinyl, Benzoxazolyl, Benzthiazolyl oder Pyrazolyl steht.
Figure imgf000039_0001
Weiterhin werden Verbindungen I.l" besonders bevorzugt, in denen Z für durch Halogen, Methyl, Trifluormethyl oder C(=NORd)Rd' sub- stituiertes Phenyl steht.
Gleichermaßen bevorzugt sind Verbindungen 1.2', in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl und Z für gegebenenfalls substituiertes Phenyl, Naphthyl, Pyridinyl, Pyrimidinyl, Chinolyl, Pyrazinyl, Thienyl, Chinoxalinyl, Benzoxazolyl, Benzthiazolyl oder Pyrazolyl steht.
Figure imgf000039_0002
Darüber hinaus werden Verbindungen 1.2' besonders bevorzugt, in denen Z für durch Halogen, Methyl, Trifluormethyl oder C(=NORd)Rd' substituiertes Phenyl steht.
Gleichermaßen besonders bevorzugt sind Verbindungen 1.3', in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, W für ggf. subst. Phenyl, Naphthyl, Anthryl, Benzyl, Phenylethyl, Phenylpropyl, Pyridinyl, Pyrimidinyl, Thienyl, Furyl, Thiazolyl, Benzothiazolyl, Dioxanyl, C3-C6-Cycloalkyl, sowie Cι-C4-Alkyl, Allyl, Propargyl oder Trifluormethyl und R1 für Methyl oder Methoxy steht.
Figure imgf000040_0001
Daneben werden Verbindungen 1.3" bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, W für ggf. subst. Phenyl, Naphthyl, Anthryl, Benzyl, Phenylethyl, Phenylpropyl , Pyridinyl, Pyrimidinyl, Thienyl, Furyl, Thiazolyl, Benzothiazolyl, Dioxanyl, C3-C6-Cycloalkyl, sowie Cι-C4-Alkyl, Allyl, Propargyl oder Trifluormethyl und R1 für Methyl oder Methoxy steht.
Figure imgf000040_0002
Desweiteren werden Verbindungen 1.4' bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, R1 für Methyl oder Methoxy, R2 für Halogen, Cyano, C(=N0Rd)Rd'- ggf. subst. Cι-C4-Alkyl, Cι-C4-Cycloalkyl, Cι-C4-Halogenalkyl, C1-C4-AI- koxy, Cι-C4-Alkylthio, Cι-C4-Cycloalkoxy, Cι-C4-Alkylamino,
C2-C4-Alkenyl oder Phenyl und R3 für Wasserstoff, Propargyl oder Allyl oder ggf. subst. Cι-C4-Alkyl steht.
Figure imgf000040_0003
Außerdem werden Verbindungen 1.4" bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, R1 für Methyl oder Methoxy, R2 für Halogen, Cyano, C(=NORd)Rd'- ggf. subst. Cι-C4~Alkyl, Cι-C4-Cycloalkyl, Cι-C4-Halogenalkyl, C1-C4-AI- koxy, Cχ-C4-Alkylthio, Cι-C4-Cycloalkoxy, Cι-C4-Alkylamino, C2-C4-Alkenyl oder Phenyl und R3 für Wasserstoff, Propargyl oder Allyl oder ggf. subst. Cι-C4-Alkyl steht.
Figure imgf000041_0001
Desweiteren werden Verbindungen 1.5' bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, W für ggf. subst. Phenyl, Naphthyl, Anthryl, Benzyl, Phenylethyl, Phenylpropyl, Pyridinyl, Pyrimidinyl, Thienyl, Furyl, Thiazolyl, Benzothiazolyl, Dioxanyl, C3-C6-Cycloalkyl, sowie Cι~C4-Alkyl, Allyl, Propargyl oder Trifluormethyl steht.
Figure imgf000041_0002
Insbesondere werden Verbindungen 1.5" bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, W für ggf. subst. Phenyl, Naphthyl, Anthryl, Benzyl, Phenylethyl, Phenylpropyl, Pyridinyl, Pyrimidinyl, Thienyl, Furyl, Thiazolyl, Benzothiazolyl, Dioxanyl, C3-C6 _Cycloalkyl, sowie Cι-C4-Alkyl, Allyl, Propargyl oder Trifluormethyl steht.
Figure imgf000041_0003
Außerdem werden Verbindungen 1.6' bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, W für ggf. subst. Phenyl, Naphthyl, Anthryl, Benzyl, Phenylethyl, Phenylpropyl, Pyridinyl, Pyrimidinyl, Thienyl, Furyl, Thiazolyl, Benzothiazolyl , Dioxanyl , C3-C6-Cycloalkyl , sowie Cι~C4-Alkyl , Allyl , Propargyl oder Trif luormethyl steht .
Figure imgf000042_0001
Gleichermaßen bevorzugt sind Verbindungen 1.6", in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, W für ggf. subst. Phenyl, Naphthyl, Anthryl, Benzyl, Phenylethyl, Phenylpropyl, Pyridinyl, Pyrimidinyl, Thienyl, Furyl, Thiazolyl, Benzothiazolyl, Dioxanyl, C3-C6-Cycloalkyl, sowie Cι-C4-Alkyl, Allyl, Propargyl oder Trifluormethyl steht.
Figure imgf000042_0002
Daneben werden Verbindungen 1.7' bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, W für ggf. subst. Phenyl, Naphthyl, Anthryl, Benzyl, Phenylethyl,
Phenylpropyl, Pyridinyl, Pyrimidinyl, Thienyl, Furyl, Thiazolyl, Benzothiazolyl, Dioxanyl, C3-C6-Cycloalkyl, sowie Cι-C4~Alkyl, Allyl, Propargyl oder Trifluormethyl steht.
Figure imgf000042_0003
Außerdem werden auch Verbindungen 1.8' bevorzugt, in denen RA für Chlor oder Brom, RB für Wasserstoff, Rc für Methyl oder Ethyl, T für Stickstoff oder Kohlenstoff und W für ggf. subst. Phenyl, Naphthyl, Anthryl, Benzyl, Phenylethyl, Phenylpropyl, Pyridinyl, Pyrimidinyl, Thienyl, Furyl, Thiazolyl, Benzothiazolyl, Dioxanyl, C3-C6-Cycloalkyl, sowie Cι~C4-Alkyl, Allyl, Propargyl oder Trifluormethyl steht.
Figure imgf000043_0001
Insbesondere sind im Hinblick auf ihre Verwendung die in den folgenden Tabellen zusammengestellten Verbindungen I bevorzugt. Die in den Tabellen für einen Substituenten genannten Gruppen stellen außerdem für sich betrachtet, unabhängig von der Kombination, in der sie genannt sind, eine besonders bevorzugte Ausgestaltung des betreffenden Substituenten dar.
Tabelle 1
Verbindungen der allgemeinen Formel I.l', in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl steht und Z für eine Verbindung jeweils einer Zeile der Tabelle A entspricht.
Tabelle 2
Verbindungen der allgemeinen Formel I.l", in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl steht und Z für eine Verbindung jeweils einer Zeile der Tabelle B entspricht.
Tabelle 3
Verbindungen der allgemeinen Formel 1.2', in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl, und Z für eine Verbindung jeweils einer Zeile der Tabelle B entspricht.
Tabelle 4
Verbindungen der allgemeinen Formel 1.3', in denen RA für Chlor,
RB für Wasserstoff, Rc für Methyl steht, R1 Methyl bedeutet und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 5
Verbindungen der allgemeinen Formel 1.3", in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl steht, R1 Methyl bedeutet und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht. Tabelle 6
Verbindungen der allgemeinen Formel 1.4', in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl, R1 für Methyl steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 7
Verbindungen der allgemeinen Formel 1.4', in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl, R1 für Methoxy steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 8 Verbindungen der allgemeinen Formel 1.4", in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl, R1 für Methyl steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 9
Verbindungen der allgemeinen Formel 1.4", in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl, R1 für Methoxy steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 10
Verbindungen der allgemeinen Formel 1.5", in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 11
Verbindungen der allgemeinen Formel 1.6', in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 12
Verbindungen der allgemeinen Formel 1.6", in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 13
Verbindungen der allgemeinen Formel 1.7', in denen RA für Chlor, RB für Wasserstoff, Rc für Methyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht. Tabelle 14
Verbindungen der allgemeinen Formel I.l', in denen RA für Brom, RB für Wasserstoff, Rc für Methyl steht und Z für eine Verbindung jeweils einer Zeile der Tabelle A entspricht.
Tabelle 15
Verbindungen der allgemeinen Formel I.l", in denen RA für Brom, RB für Wasserstoff, Rc für Methyl steht und Z für eine Verbindung jeweils einer Zeile der Tabelle B entspricht.
Tabelle 16
Verbindungen der allgemeinen Formel 1.2', in denen RA für Brom, RB für Wasserstoff, Rc für Methyl steht, und Z für eine Verbindung jeweils einer Zeile der Tabelle B entspricht.
Tabelle 17
Verbindungen der allgemeinen Formel 1.3', in denen RA für Brom, RB für Wasserstoff, Rc für Methyl steht, R1 Methyl bedeutet und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 18
Verbindungen der allgemeinen Formel 1.3", in denen RA für Brom, RB für Wasserstoff, Rc für Methyl steht, R1 Methyl bedeutet und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 19
Verbindungen der allgemeinen Formel 1.4', in denen RA für Brom, RB für Wasserstoff, Rc für Methyl, R1 für Methyl steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 20
Verbindungen der allgemeinen Formel 1.4', in denen RA für Brom, RB für Wasserstoff, Rc für Methyl, R1 für Methoxy steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 21
Verbindungen der allgemeinen Formel 1.4", in denen RA für Brom, RB für Wasserstoff, Rc für Methyl, R1 für Methyl steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht. Tabelle 22
Verbindungen der allgemeinen Formel 1.4", in denen RA für Brom, RB für Wasserstoff, Rc für Methyl, R1 für Methoxy steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 23
Verbindungen der allgemeinen Formel 1.5", in denen RA für Brom, RB für Wasserstoff, Rc für Methyl steht und W für eine Verbindung 0 jeweils einer Zeile der Tabelle C entspricht.
Tabelle 24
Verbindungen der allgemeinen Formel 1.6', in denen RA für Brom, RB 5 für Wasserstoff, Rc für Methyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 25
Verbindungen der allgemeinen Formel 1.6", in denen RA für Brom, RB 0 für Wasserstoff, Rc für Methyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 26
Verbindungen der allgemeinen Formel 1.7', in denen RA für Brom, RB 5 für Wasserstoff, Rc für Methyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 27 0 Verbindungen der allgemeinen Formel I.l', in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl steht und Z für eine Verbindung jeweils einer Zeile der Tabelle A entspricht.
Tabelle 28 5 Verbindungen der allgemeinen Formel I.l", in denen RA für Chlor,
RB für Wasserstoff, Rc für Ethyl steht und Z für eine Verbindung jeweils einer Zeile der Tabelle B entspricht.
Q Tabelle 29
Verbindungen der allgemeinen Formel 1.2', in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl steht, und Z für eine Verbindung jeweils einer Zeile der Tabelle B entspricht.
5 Tabelle 30
Verbindungen der allgemeinen Formel 1.3', in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl steht, R1 Methyl bedeutet und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht,
Tabelle 31
Verbindungen der allgemeinen Formel 1.3", in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl steht, R1 Methyl bedeutet und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 32 Verbindungen der allgemeinen Formel 1.4', in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl, R1 für Methyl steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 33
Verbindungen der allgemeinen Formel 1.4', in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl, R1 für Methoxy steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 34
Verbindungen der allgemeinen Formel 1.4", in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl, R1 für Methyl steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 35
Verbindungen der allgemeinen Formel 1.4", in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl, R1 für Methoxy steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 36
Verbindungen der allgemeinen Formel 1.5", in denen RA für Chlor,
RB für Wasserstoff, Rc für Ethyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 37
Verbindungen der allgemeinen Formel 1.6', in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 38
Verbindungen der allgemeinen Formel 1.6", in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl steht und W für eine Verbindung j eweils einer Zeile der Tabelle C entspricht .
Tabelle 39
Verbindungen der allgemeinen Formel 1.7', in denen RA für Chlor, RB für Wasserstoff, Rc für Ethyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 40 Verbindungen der allgemeinen Formel I.l', in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl steht und Z für eine Verbindung jeweils einer Zeile der Tabelle A entspricht.
Tabelle 41 Verbindungen der allgemeinen Formel I.l", in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl steht und Z für eine Verbindung jeweils einer Zeile der Tabelle B entspricht.
Tabelle 42
Verbindungen der allgemeinen Formel 1.2', in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl steht, und Z für eine Verbindung jeweils einer Zeile der Tabelle B entspricht.
Tabelle 43
Verbindungen der allgemeinen Formel 1.3', in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl steht, R1 Methyl bedeutet und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 44
Verbindungen der allgemeinen Formel 1.3", in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl steht, R1 Methyl bedeutet und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 45
Verbindungen der allgemeinen Formel 1.4', in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl, R1 für Methyl steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 46
Verbindungen der allgemeinen Formel 1.4', in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl, R1 für Methoxy steht und die Kombi- nation der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht. Tabelle 47
Verbindungen der allgemeinen Formel 1.4", in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl, R1 für Methyl steht und die Kombination der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 48
Verbindungen der allgemeinen Formel 1.4", in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl, R1 für Methoxy steht und die Kombi¬
10 nation der Reste R2 und R3 für eine Verbindung jeweils einer Zeile der Tabelle D entspricht.
Tabelle 49 15 Verbindungen der allgemeinen Formel 1.5", in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
Tabelle 50 20 Verbindungen der allgemeinen Formel 1.6', in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
„_. Tabelle 51 25
Verbindungen der allgemeinen Formel 1.6", in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
30 Tabelle 52
Verbindungen der allgemeinen Formel 1.7', in denen RA für Brom, RB für Wasserstoff, Rc für Ethyl steht und W für eine Verbindung jeweils einer Zeile der Tabelle C entspricht.
35
40
45 Tabelle A
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Tabelle B
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Tabelle C
Figure imgf000066_0002
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Tabelle D
Figure imgf000071_0002
Figure imgf000072_0001
Figure imgf000073_0001
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
Figure imgf000083_0001
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0001
Figure imgf000091_0001
Figure imgf000092_0001
Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Phycomyceten und Basidiomyceten, aus. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.
Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.
Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:
Alternaria-Arten an Gemüse und Obst,
Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
Cercospora arachidicola an Erdnüssen,
Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,
Erysiphe graminis (echter Mehltau) an Getreide, Fusarium- und Verticillium-Arten an verschiedenen Pflanzen, Helminthosporium-Arten an Getreide, Mycosphaerella-Arten an Bananen und Erdnüssen, Phytophthora infestans an Kartoffeln und Tomaten, Plasmopara viticola an Reben, Podosphaera leucotricha an Äpfeln,
Pseudocercosporella herpotrichoides an Weizen und Gerste, Pseudoperonospora-Arten an Hopfen und Gurken, Puccinia-Arten an Getreide, Pyricularia oryzae an Reis,
Rhizoctonia-Arten an Baumwolle, Reis und Rasen, Septoria nodorum an Weizen, Uncinula necator an Reben,
Ustilago-Arten an Getreide und Zuckerrohr, sowie Venturia-Arten (Schorf) an Äpfeln und Birnen.
Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie Paecilomyces variotii im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschütz. Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.
Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.
Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.
Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 0,1 g, vorzugsweise 0,01 bis 0,05 g je Kilogramm Saatgut benötigt.
Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Qubikmeter behandelten Materials.
Die Verbindungen der Formel I sind außerdem geeignet, tierische Schädlinge aus der Klasse der Insekten, Spinnentiere und Nemato- den wirksam zu bekämpfen. Sie können im Pflanzenschutz sowie auf dem Hygiene-, Vorratsschutz- und Veterinärsektor zur Bekämpfung tierischer Schädlinge eingesetzt werden. Insbesondere eignen sie sich zur Bekämpfung der folgenden tierischen Schädlinge:
• Insekten aus der Ordnung der Schmetterlinge (Lepidoptera) beispielsweise Agrotis ypsilon, Agrotis segetum, Alabama argilla- cea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insu- lana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersi- cella, Lambdina fiscellaria, Laphygma exigua, Leucoptera cof- feella, Leucoptera scitella, Lithocolletis blancardella, Lobe- sia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseu- doplusia includens, Rhyacionia frustrana, Scrobipalpula abso- luta, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumato- poea pityocampa, Tortrix viridana, Trichoplusia ni und Zeira- phera canadensis,
• Käfer (Coleoptera) , z.B. Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Atomaria linearis, Bla- stophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bru- chus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebu- losa, Cerotoma trifurcata, Ceuthorrhynchus assimilis, Ceuthorr- hynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Diabrotica longicornis, Diabrotica 12-punc- tata, Diabrotica virgifera, Epilachna varivestis, Epitrix hir- tipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata, Limonius californi- cus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Ortiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllotreta chrysocephala, Phyllophaga sp., Phyl- lopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus und Sitophilus granaria,
• Zweiflügler (Diptera), z.B. Aedes aegypti, Aedes vexans, Anas- trepha ludens, Anopheles maculipennis, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya acella- ria, Contarinia sorghicola, Cordylobia anthropophaga, Culex pi- piens, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Fan- nia canicularis, Gasterophilus intestinalis, Glossina morsi- tans, Haematobia irritans, Haplodiplosis equestris, Hylemyia platura, Hypoderma lineata, Liriomyza sativae, Liriomyza trifo- lii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lyco- ria pectoralis, Mayetiola destructor, Musca domestica, Muscina stabulans, Oestrus ovis, Oscinella frit, Pegomya hysocyami,
Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Rhagole- tis cerasi, Rhagoletis pomonella, Tabanus bovinus, Tipula ole- racea und Tipula paludosa, • Thripse (Thysanoptera) , z.B. Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi und Thrips tabaci,
• Hautflügler (Hymenoptera), z.B. Athalia rosae, Atta cephalotes, Atta sexdens, Atta texana, Hoplocampa minuta, Hoplocampa testu- dinea, Monomorium pharaonis, Solenopsis geminata und Solenopsis invicta,
• Wanzen (Heteroptera), z.B. Acrosternum hilare, Blissus leucop- terus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus in- termedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Ne- zara viridula, Piesma quadrata, Solubea insularis und Thyanta perditor,
• Pflanzensauger (Homoptera) , z.B. Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis pomi, Aphis sambuci, Brachycaudus cardui, Brevicoryne brassicae, Cerosipha gossypii, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Empoasca fabae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Metopolophium dirhodum, Myzodes persicae, Myzus cerasi, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rhopa- lomyzus ascalonicus, Rhopalosiphum maidis, Sappaphis ala, Sap- paphis mali, Schizaphis graminum, Schizoneura lanuginosa, Tria- leurodes vaporariorum und Viteus vitifolii,
• Termiten (Isoptera), z.B. Calotermes flavicollis, Leucotermes flavipes, Reticulitermes lucifugus und Termes natalensis,
• Geradflügler (Orthoptera) , z.B. Acheta domestica, Blatta orien- talis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melano- plus femur-rubrum, Melanoplus mexicanus, Melanoplus sanguini- pes, Melanoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana, Schistocerca peregrina, Stauronotus maroccanus und Tachycines asynamorus,
• Arachnoidea wie Spinnentiere (Acarina) , z.B. Amblyomma america- num, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Brevipalpus phoeni- cis, Bryobia praetiosa, Dermacentor silvarum, Eotetranychus carpini, Eriophyes sheldoni, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini, Paratetranychus pilosus, Dermanyssus gallinae, Phyllo- coptruta oleivora, Polyphagotarsonemus latus, Psoroptes ovis, Rhipicephalus appendiculatus , Rhipicephalus evertsi, Sarcoptes scabiei, Tetranychus cinnabarinus, Tetranychus kanzawai, Tetra- nychus pacificus, Tetranychus telarius und Tetranychus urticae,
• Nematoden wie Wurzelgallennematoden, z.B. Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, Zysten bildende Nematoden, z.B. Globodera rostochiensis, Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, Stock- und Blattälchen, z.B. Belonolaimus longicaudatus, Dity- lenchus destructor, Ditylenchus dipsaci, Heliocotylenchus mul- ticinctus, Longidorus elongatus, Radopholus similis, Rotylen- chus robustus, Trichodorus primitivus, Tylenchorhynchus clay- toni, Tylenchorhynchus dubius, Pratylenchus neglectus, Praty- lenchus penetrans, Pratylenchus curvitatus und Pratylenchus goodeyi .
Die Aufwandmenge an Wirkstoff zur Bekämpfung von tierischen Schädlingen beträgt unter Freilandbedingungen 0,1 bis 2,0, vor- zugsweise 0,2 bis 1,0 kg/ha.
Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.
Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfs- lösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylol) , chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon) , Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen- Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose. Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsul- fonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate und Fettsäuren sowie deren Alkali- und Erdalkalisalze, Salze von sulfatiertem Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxy- liertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenol- polyglykolether, TributyIphenylpolyglykolether, Alkylarylpoly- etheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Konden- sate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxy- liertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sor- bitester, Ligninsulfitablaugen und Methylcellulose in Betracht.
Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol , Cyclo- hexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.
Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe. Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.
Beispiele für Formulierungen sind:
I. 5 Gew. -Teile einer erfindungsgemäßen Verbindung werden mit 95 Gew. -Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 5 Gew.-% des Wirkstoffs enthält.
II. 30 Gew. -Teile einer erfindungsgemäßen Verbindung werden mit einer Mischung aus 92 Gew. -Teilen pulverförmigem Kiesel - säuregel undδ Gew. -Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit (Wirkstoffgehalt 23 Gew.-%).
III. 10 Gew. -Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 90 Gew. -Teilen Xylol, 6 Gew.- Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an lMol Ölsäure-N-monoethanolamid, 2 Gew. -Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 2 Gew. -Teilen des Anlage- rungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 9 Gew.-%).
IV. 20 Gew. -Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 60 Gew. -Teilen Cyclohexanon, 30 Gew. -Teilen Isobutanol, 5 Gew. -Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 5Gew. -Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 16 Gew.-%) .
V. 80 Gew. -Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew. -Teilen des Natriumsalzes der Diisobutylnaphthalin-al- pha-sulfonsäure, 10 Gew. -Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 7 Gew. -Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen (Wirkstoffgehalt 80 Gew.-%).
VI. Man vermischt 90 Gew. -Teile einer erfindungsgemäßen Verbindung mit 10 Gew. -Teilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist (Wirkstoffgehalt 90 Gew.-%) . VII. 20 Gew. -Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 40 Gew. -Teilen Cyclohexanon, 30 Gew. -Teilen Isobutanol, 20 Gew. -Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gew. -Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gew. -Teilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
VIII.20 Gew. -Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew. -Teilen des Natriumsalzes der Diisobutylnaphthalin-α- sulfonsäure, 17 Gew. -Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gew. -Teilen pul- verförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen. Durch feines Verteilen der Mischung in 20000 Gew. -Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Ver- streuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.
Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemei nen liegen sie zwischen 0,0001 und 10 %, vorzugsweise zwischen 0,01 und 1 %. Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume- Verfahren (ÜLV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.
Zu den Wirkstoffen können Öle verschiedenen Typs, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix) , zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mit- teln im GewichtsVerhältnis 1:10 bis 10:1 zugemischt werden.
Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungizi- den oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden WirkungsSpektrums .
Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:
• Schwefel, Dithiocarbamate und deren Derivate, wie Ferridi- methyldithiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylen- bisdithiocarbamat, Manganethylenbisdithiocarbamat, Mangan-Zink- ethylendiamin-bis-dithiocarbamat, Tetramethylthiuramdisulfide, Ammoniak-Komplex von Zink- (N,N-ethylen-bis-dithiocarbamat) , Ammoniak-Komplex von Zink- (N,N' -propylen-bis-dithiocarbamat) , Zink- (N,N' -propylenbis-dithiocarbamat) , N,N' -Polypropylen- bis- (thiocarbamoyl) disulfid;
• Nitroderivate, wie Dinitro- (1-methylheptyl) -phenylcrotonat, 2-sec-Butyl-4, 6-dinitrophenyl-3 , 3-dimethylacrylat, 2-sec-Bu- tyl-4, 6-dinitrophenyl-isopropylcarbonat, 5-Nitro-isophthalsäu- re-di-isopropylester;
• heterocyclische Substanzen, wie 2-Heptadecyl-2-imidazolin-ace- tat, 2, 4-Dichlor-6- (o-chloranilino) -s-triazin, 0,0-Diethyl- phthalimidophosphonothioat, 5-Amino-l- [bis- (dimethylamino) -phosphinyl] -3-phenyl-1, 2, 4- triazol, 2, 3-Dicyano-l, 4-di- thioanthrachinon, 2-Thio-l, 3-dithiolo [4, 5-b] chinoxalin, 1- (Butylcarbamoyl) -2-benzimidazol-carbaminsäuremethylester, 2-Methoxycarbonylamino-benzimidazol, 2- (Furyl- (2) ) -benz- imidazol, 2- (Thiazolyl- (4) ) -benzimidazol, N- (1, 1, 2, 2-Tetra- chlorethylthio) -tetrahydrophthalimid, N-Trichlormethylthio-te- trahydrophthalimid, N-Trichlormethylthio-phthalimid, • N-Dichlorfluormethylthio-N' ,N' -dimethyl-N-phenyl-schwefelsäure- diamid, 5-Ethoxy-3-trichlormethyl-l, 2, 3-thiadiazol, 2-Rhodanme- thylthiobenzthiazol, 1, 4-Dichlor-2 , 5-dimethoxybenzol,
4- (2-Chlorphenylhydrazono) -3-methyl-5-isoxazolon, Pyridin-2-thio-l-oxid, 8-Hydroxychinolin bzw. dessen Kupfer- salz, 2 , 3-Dihydro-5-carboxanilido-6-methyl-l, 4-oxathiin, 2 , 3-Dihydro-5-carboxanilido-6-methyl-l, 4-oxathiin-4 , 4-dioxid, 2-Methyl-5, 6-dihydro-4H-pyran-3-carbonsäure-anilid, 2-Methyl- furan-3-carbonsäureanilid, 2, 5-Dimethyl-furan-3-carbonsäure- anilid, 2 ,4 , 5-Trimethyl-furan-3-carbonsäureanilid, 2,5-Dime- thyl-furan-3-carbonsäurecyclohexylamid, N-Cyclohexyl-N-me- thoxy-2 , 5-dimethyl-furan-3-carbonsäureamid, 2-Methyl-benzoesäu- re-anilid, 2-Iod-benzoesäure-anilid, N-Formyl-N-morpho- lin-2 , 2 , 2-trichlorethylacetal , Piperazin-1 , 4-diylbis-l- (2, 2, 2-trichlorethyl) -formamid, 1- (3, 4-Dichloranilino) -1-formy- lamino-2, 2, 2-trichlorethan, 2, 6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze, 2, 6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze, N- [3- (p-tert .-Butylphenyl) -2-methylpro- pyl] -cis-2, 6-dimethyl-morpholin, N- [3- (p-tert. -Butylphenyl) - 2-methylpropyl] -piperidin, 1- [2- (2, 4-Dichlorphenyl) -4-ethyl- l,3-dioxolan-2-yl-ethyl]-lH-l,2,4-triazol, 1- [2- (2,4-Dichlor- phenyl) -4-n-propyl-l, 3-dioxolan-2-yl-ethyl] -1H-1,2, 4-triazol, N- (n-Propyl) -N- (2,4, 6-trichlorphenoxyethyl) -N' -imidazol-yl- harnstoff , 1- (4-Chlorphenoxy) -3 , 3-dimethyl-l- (1H-1 , 2 , 4-tri - azol-l-yl)-2-butanon, 1- (4-Chlorphenoxy) -3 , 3-dimethyl-l- (1H- 1,2, 4-triazol-l-yl) -2-butanol , (2RS, 3RS) -1- [3- (2-Chlorphe- nyl) -2- (4-fluorphenyl) -oxiran-2-ylmethyl] -1H-1, 2 , 4-triazol, α- (2-Chlorphenyl) -α- (4-chlorphenyl) -5-pyrimidin-methanol, 5-Bu- tyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin, Bis- (p-chlor- phenyl) -3-pyridinmethanol, 1,2-Bis- (3-ethoxycarbonyl-2- thioureido) -benzol, 1,2-Bis- (3-methoxycarbonyl-2-thiou- reido) -benzol,
• Strobilurine wie Methyl-E-methoxyimino- [α- (o-tolyloxy) -o-to- lyl] acetat, Methyl-E-2-{2- [6- (2-cyanophenoxy) -pyrimidin-4-yl- oxy] -phenyl} -3-methoxyacrylat, Methyl-E-methoxyimino- [α- (2- phenoxyphenyl) ] -acetamid, Methyl-E-methoxyimino- [α- (2 , 5-dime- thylphenoxy) -o-tolyl] -acetamid,
• Anilinopyrimidine wie N- (4, 6-Dimethylpyrimidin-2-yl) -anilin, N- [4-Methyl-6- (1-propinyl) -pyrimidin-2-yl] -anilin, N- [4-Me- thyl-6-cyclopropyl-pyrimidin-2-yl] -anilin,
• Phenylpyrrole wie 4- (2,2-Difluor-1, 3-benzodioxol-4-yl) -pyr- rol-3-carbonitril, • Zimtsäureamide wie 3- (4-Chlorphenyl) -3- (3 , 4-dimethoxyphenyl) -acrylsäuremorpholid,
• sowie verschiedene Fungizide, wie Dodecylguanidinacetat, 3- [3- (3 , 5-Dimethyl-2-oxycyclohexyl) -2-hydroxyethyl] -glutarimid,
Hexachlorbenzol , DL-Methyl-N- (2, 6-dimethyl-phenyl) -N-fu- royl (2) -alaninat, DL-N- (2 , 6-Dimethyl-phenyl) -N- (2 ' -methoxyace- tyl) -alanin-methyl- ester, N- (2, 6-Dimethylphenyl) -N-chlorace- tyl-D,L-2-aminobutyrolacton, DL-N- (2, 6-Dimethylphenyl) -N- (phe- nylacetyl) -alaninmethylester, 5-Methyl-5-vinyl-3- (3 , 5-dichlor- phenyl) -2, 4-dioxo-l, 3-oxazolidin, 3- [3 , 5-Dichlorphenyl (-5-me- thyl-5-methoxymethyl] -1, 3-oxazolidin- 2,4-dion, 3- (3 , 5-Dichlor- phenyl) -1-isopropylcarbamoylhydantoin, N- (3, 5-Dichlorphenyl) - 1, 2-dimethylcyclopropan-l , 2-dicarbonsäureimid, 2-Cyano- [N- (ethylaminocarbonyl) -2-methoximino] -acetamid, l-[2-(2,4-
Dichlorphenyl) -pentyl] -1H-1, 2, 4-triazol, 2, 4-Difluor-α- (1H- 1,2, 4-triazolyl-l-methyl) -benzhydrylalkohol, N- (3-Chlor-2, 6- dinitro-4-trifluormethyl-phenyl) -5-trifluormethyl-3-chlor-2- aminopyridin, 1- ( (bis- (4-Fluorphenyl) -methylsilyl) -methyl) - lH-l,2,4-triazol.
Synthesebeispiele
Die in den nachstehenden Synthesebeispielen wiedergegebenen Vor- Schriften wurden unter entsprechender Abwandlung der Ausgangs - Verbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in den anschließenden Tabellen mit physikalischen Angaben aufgeführt.
Beispiel la Herstellung von 2- [1' - (4" -Chlorphenyl) pyrazol -3 -yl - oxymethyl] -anilin
Figure imgf000103_0001
Eine Lösung von 11,8 g (36 mmol) 2- [1' - (4"-Chlorphenyl)pyrazol- 3-yloxymethyl]-nitrobenzol [Lit.: WO-A 93/15,046] in 60 ml Methanol wurde mit 25 mg Eisen-III-chlorid-Hexahydrat und 2 g Aktivkohle versetzt. Dieser Mischung wurden bei Rückflußtemperatur innerhalb einer Stunde 3 ml (60 mmol) Hydrazin-Hydrat zugesetzt. Nach weiteren 5 Std. Rückfluß und Abkühlen wurde die Mischung filtriert und das Filtrat im Vakuum eingeengt. Nach Chromatogra- phie an Kieselgel (Methylenchlorid) erhielt man 6,5 g der Titel- Verbindung in Form farbloser Kristalle (Fp. 75-78°C) .
Beispiel lb Herstellung von 2 [1' - (4" -Chlorphenyl)pyrazol-3-yl - oxymethyl] -phenylphdrazin
Figure imgf000104_0001
Eine Mischung aus 21 g (70 mmol) des Anilins aus Beispiel la in 125 ml Wasser und 20 ml konz. Salzsäure wurde bei 0°C tropfenweise mit einer Lösung von 7 g NaN02 in 25 ml Wasser versetzt. Nach etwa 30 min Rühren bei 0°C wurde sie in eine Suspension von 75 g SnCl2*H20 von etwa -5°C getropft. Nach etwa 14 Std. Rühren bei 20 - 25°C wurde der Niederschlag abfiltriert und mit Wasser gewa- sehen. Er wurde in verd. Natronlauge aufgenommen. Die Lösung wurde mit Methyl-tert. Butylether (MTBE) und mit Essigsäureethylester extrahiert. Nach Trocknen der vereingten organischen Phasen und Abtrennen des Lösungsmittels wurden 22 g der Titelverbindung in Form gelber Kristalle erhalten.
XH-NMR (CDC13, δ in ppm) : 3,6 (s, br, 3H) ; 5,25 (s, 2H) ; 5,9 (d, 1H) ; 6,8 (t, 1H); 7,1 (d, 1H) ; 7,3 (m, 2H) ; 7,4 (d, 2H) ; 7,5 (d, 2H); 7,7 (d, 1H) .
Beispiel lc Herstellung von 2 - (N' -{2- [1- (4 -Chlorphenyl) -pyrazol -3 -yl-oxymethyl] -phenyl}-hydrazinome- thylen) -malonsäurediethylester
Figure imgf000104_0002
Eine Mischung von 21,5 g (68 mmol) des Hydrazins aus Beispiel lb und 14 g (65 mmol) Ethoxymethylenmalonsäurediethylester in 400 ml
Diethylether wurde etwa drei Tage Rühren bei 20 - 25°C gerührt. Der entstandene Niederschlag wurde abfiltriert, in Methylenchlo- rid aufgenommen und über Kieselgel filtriert. Nach Eluieren mit Cyclohexan/Essigsäureethylester-Gemisch (1:1) wurde das Lösungs- mittelgemisch abdestilliert. Der Rückstand wurde in Diisopropylether digeriert. Man erhielt 21,5 g der Titelverbindung lc als farblose Kristalle.
!H-NMR (CDC13, δ in ppm) : 1,2 (t, 3H) ; 1,3 (t,3H); 4,2 (q,2H); 4,3 (q,2H); 5,3 (s,2H); 5,9 (d, IH) ; 6,9 (m, 2H) ; 7,25 (m, 2H) ; 7,3 (d, 2H) ; 7,5 (d, 2H) ; 7,7 (m, 2H) ; 8,2 (d,lH); 10,0 (d, IH) .
Beispiel ld Herstellung von 2-12- [1- (4 -Chlorphenyl) -pyrazol -3 -yl- oxymethyl] -phenyl}-2H-pyrazol-3 -ol
Figure imgf000105_0001
Eine Mischung von 20 g (41 mmol) des Malonesters aus Beispiel lc und 24 g Natriumhydroxid in 200 ml Wasser wurde etwa vier Std. refluxiert. Bei etwa 20 - 25 °C wurde mit verd. Salzsäure neutra- lisiert. Der Niederschlag wurde abfiltriert, dann in Essigsäureethylester aufgenommen. Nach Trocknen und Abdestiliieren des Lösungsmittels wurde der Rückstand an Kieselgel chromatographiert (Cyclohexan/Essigsäureethylester-Gemisch 1:1). Man erhielt 5 g der Titelverbindung als blaßgelbe Kristalle.
iH-NMR (DMSO-d6, δ in ppm): 5,3 (s, 2H) ; 5,7 (s, br, IH) ; 6,2 (d, IH) ; 7,6 (m, 4H) ; 7,7 (d, 2H) ; 7,85 ( , 2H) ; 7,9 (d, 2H) ; 8,5 (d, IH) ; 11,6 (s, br, IH) .
Beispiel le Herstellung von 4 -Brom-2 -12 - [1- (4 -chlorphenyl) - pyrazol -3-yl -oxymethyl] -phenyl}-2H-pyrazol-3-ol
Figure imgf000105_0002
Br Eine Mischung von 1,5 g (4 mmol) des Hydroxypyrazols aus Beispiel ld und 0,75 g (4,2 mmol) N-Bromsuccinimid in 30 ml Methylenchlorid wurde etwa drei Std. bei 20 - 25°C gerührt. Der entstandene Niederschlag wurde abfiltriert, in Essigsäureethylester aufgenom- men. Nach Waschen mit Wasser und Trocknen der organischen Phase wurde das Lösungsmittel abdestilliert. Der Rückstand wurde in Diisopropylether digeriert. Man erhielt 1,75 g der Titelverbindung als blaßgelbe Kristalle.
iH-NMR (DMSO-dg, δ in ppm) : 5,2 (s, 2H) ; 6,0 (d, IH) ; 7,4 (d, IH) ; 7,5 (m, 4H) ; 7,7 (m, 4H) ; 8,3 (d, IH) ; 11,6 (s, br, IH) .
Beispiel lf Herstellung von 4 -Brom-2-{2- [1- (4-chlor- phenyl) -pyrazol -3 -yl-oxymethyl] -phenyl}- 1 -methyl -1, 2 -dihydro-pyrazol -3 -on [1-1]
Figure imgf000106_0001
Eine Mischung von 900 mg (2 mmol) des Hydroxypyrazols aus Beispiel le, 420 mg (3 mmol) K C03 und 310 mg (2,5 mmol) Dimethyl - sulfat in 10 ml Aceton wurde etwa drei Std. bei etwa 20 - 25 °C gerührt. Das Lösungsmittel wurde abdestilliert und der Rückstand m Methylenchlorid gelöst. Di•e organische Phase wurde nach Waschen mit Wasser und Trocknen vom Lösungsmittel befreit. Aus dem Rückstand erhielt man nach Chromatographie an Kieselgel (Cyclohe- xan/Essigsäureethylester-Gemisch 1:1) 15o mg der TitelVerbindung als gelbes Öl.
iH- MR (CDC13, δ in ppm) : 3,1 (s,3H); 5,3 (dd, 2H) ; 6,9 (d, IH) ; 7,1 (d, IH) ; 7,3 (d, 2H) ; 7,4 (m, 5H) ; 7,7 (m, 2H) . Beispiel 2a Herstellung von 4 -Chlor-2 -{2 - [1- (4 -chlorphenyl) - pyrazol -3 -yl-oxymethyl] -phenyl}-2H-pyrazol -3 -ol
Figure imgf000107_0001
Eine Lösung von 500 mg (1,4 mmol) des Hydroxypyrazols aus Beispiel ld in 10 ml Methylenchlorid wurden bei etwa 20 - 25 °C mit
- 11-35 185 mg (1,4 mmol) N-Chlorsuccinimid (NCS) versetzt. Nach etwa zwei Std. Rühren wurden 100 mg NCS nachgesetzt und weitere 14 Std. gerührt. Der Niederschlag wurde abfiltriert, mit Methylenchlorid gewaschen und getrocknet. Man erhielt 100 mg der Titelverbindung als farblose Kristalle vom Fp 156 - 159 °C.
20
!H-NMR (DMSO-dg, δ in ppm) : 5,2 (s, 2H) ; 6,0 (d, IH) ; 7,4 (d, IH) ; 7,5 (m, 4H) ; 7,7 (m, 4H) ; 8,3 (d, IH) ; 11,7 (s, br, IH) .
Beispiel 2b Herstellung von 4 -Chlor-2 -{2- [1- (4 -chlor¬
25 phenyl) -pyrazol-3 -yl-oxymethyl] -phenyl}- 1-methyl -1, 2-dihydro-pyrazol-3-on [1-2]
Figure imgf000107_0002
Eine Mischung von 450 mg (1,1 mmol) des Hydroxypyrazols aus Beispiel 2a, 200 mg K2C03 und 180 mg (1,4 mmol) Dimethylsulfat in
40 10 ml Aceton wurde etwa zwei Std. bei etwa 20 - 25°C gerührt. Das Lösungsmittel wurde abdestilliert und der Rückstand in Methylenchlorid gelöst. Die organische Phase wurde nach Waschen mit Wasser und Trocknen vom Lösungsmittel befreit. Aus dem Rückstand erhielt man nach Chromatographie an Kieselgel (Cyclohexan/Essig-
45 säureethylester-Gemisch) 70 mg der Titelverbindung als gelbe Kristallmasse. iH-NMR (CDC13 , δ in ppm) : 3 , 1 ( s , 3H) ; 5 , 3 (dd, 2H) ; 6 , 9 (d, IH) ; 7 , 15 (d , IH) ; 7 , 3 (d, 2H) ; 7 , 45 (m, 5H) ; 7 , 7 (d, IH) ; 7 , 75 (d , IH) .
Beispiel 3a Herstellung von 3-{ [2- (2, 5-Dimethyl-phenoxymethyl) - phenyl] -hydrazono} -2-methyl-propionsäureethylester
Figure imgf000108_0001
Eine Mischung von 10 g (41 mmol) 2- (2, 5-Dimethylphenoxymethylphe- nylhydrazin (hergestellt analog Bsp. lb) und 4 g (31 mmol) α-For- mylpropionsäureethylester [Chem. Ber., Bd. 38, S. 2096 (1905)] in 150 ml Diethylether wurde etwa 14 Std. bei 20 bis 25°C gerührt. Nach Abtrennen des Lösungsmittels und Chromatographie des Rückstandes an Kieselgel (Cyclohexan-Methylenchlorid-Gemische) erhielt man 7 g der Titelverbindung als gelbes Öl.
iH-NMR (CDC13, δ in ppm) : 8,3 (s, br, IH) ; 7,5 (d, IH) ; 7,3 (t, IH) ; 7,2 (d, IH) ; 7,15 (d, IH) ; 7,05 (d, IH) ; 6,85 (d, IH) ; 6,8 (d, IH) ; 6,7 (d, IH) ; 5,05 (s, 2H) ; 4,15 (q, 2H) ; 3,45 (m, IH) ; 2,35 (s, 3H) ; 2,2 (s, 3H) ; 1,4 (d, 3H) ; 1,25 (t, 3H) .
Beispiel 3b Herstellung von 2- [2- (2, 5-Dimethyl-phenoxymethyl) - phenyl] -4-methyl-l, 2-dihydro-pyrazol-3-on
Figure imgf000108_0002
Eine Mischung von 7 g (19 mmol) des Hydrazons aus Beispiel 3a und 4 g 30 %-iger methanolischer Natriummethanolat-Lösung in 50 ml Methanol wurde etwa 14 Std. bei 20 bis 25°C gerührt. Nach Abtrennen des Lösungsmittels wurde der Rückstand in Methylenchlorid und Wasser aufgenommen. Die wäßrige Phase wurde nach Ansäuern mit Methylenchlorid extrahiert. Aus den vereinigten organischen Phasen erhielt man nach Trocknen, Abdestillieren des Lösungsmit- tels und Digerieren in Diisopropylether 4 g der Titelverbindung als farblose Kristalle vom Fp. 140-142°C
iH-NMR (CDC13, δ in ppm) : 9 - 11 (s, br, IH) ; 7,7 (s, br, IH) ; 7,3 (m, 3H) ; 7,2 (s, IH) ; 7,0 (d, IH) ; 6,6 (m, 2H) ; 5,0 (s, 2H) ; 2,2 (s, 3H) ; 2,15 (s, 3H) ; 1,9 (s, 3H) .
Beispiel 3c Herstellung von 2- [2- (2, 5-Dirnethyl-phenoxymethyl) - phenyl] -1,4-dimethyl-l, 2-dihydro-pyrazol-3-on [1-11]
Figure imgf000109_0001
Eine Mischung von 2 g (6,5 mmol) des Pyrazolons aus Beispiel 3b, 1,9 g (8 mmol) Dimethylsulfat und 1,4 g (10 mmol) Kaliumcarbonat n in 50 ml Methanol wurde 4 Std. bei etwa 40°C gerührt. Nach Abtrennen der flüchtigen Bestandteile wurde der Rückstand in einer Mischung aus Methylenchlorid und Ammoniak-Lösung etwa 30 min bei 20 bis 25°C gerührt. Nach Phasentrennung wurde die organische Phase getrocknet und vom Lösungsmittel befreit. Nach Chromatogra- phie des Rückstandes an Kieselgel (Cyclohexan-Essigsäureethyl- ester-Gemische) erhielt man 1,3 g der Titelverbindung als farblose Kristalle vom Fp. 119-122°C.
^-NMR (CDCI3, δ in ppm) : 7,75 (m, IH) ; 7,4 (m, 2H) ; 7,2 (m, 2H) ; 7,0 (d, IH) ; 6,7 (s,lH); 6,65 (d, IH) ; 5,1 (dd, 2H) ; 3,0 (s, 3H) ; 2,3 (s, 3H) ; 2,2 (s, 3H) ; 1,9 (s, 3H) .
Tabelle I
Figure imgf000110_0001
Figure imgf000110_0002
40 Beispiele für die Wirkung gegen Schadpilze
Die fungizide Wirkung der Verbindungen der allgemeinen Formel I ließ sich durch die folgenden Versuche zeigen:
" Die Wirkstoffe wurden getrennt oder gemeinsam als 10 %ige Emulsion in einem Gemisch aus 70 Gew.-% Cyclohexanon, 20 Gew.-% Neka- nil® LN (Lutensol® AP6, Netzmittel mit Emulgier- und Dispergier- Wirkung auf der Basis ethoxylierter Alkylphenole) und 10 Gew.-% Wettol® EM (nichtionischer Ξmulgator auf der Basis von ethoxy- liertem Ricinusöl) aufbereitet und entsprechend der gewünschten Konzentration mit Wasser verdünnt.
Anwendungsbeispiel 1 - Wirksamkeit gegen Plasmopara viticola
Blätter von Topfreben der Sorte "Müller-Thurgau" wurden mit wäßriger Wirkstoffaufbereitung, die mit einer Stammlösung aus 10 % Wirkstoff, 63 % Cyclohexanon und 27 % Emulgiermittel angesetzt wurde, bis zur Tropfnässe besprüht. Um die Dauerwirkung der Substanzen beurteilen zu können, wurden die Pflanzen nach dem Antrocknen des Spritzbelages für 7 Tage im Gewächshaus aufgestellt. Erst dann wurden die Blätter mit einer wäßrigen Zoospore- naufschwemmung von Plasmopara viticola inokuliert. Danach wurden die Reben zunächst für 48 Stunden in einer wasserdampfgesättigten Kammer bei 24°C und anschließend für 5 Tage im Gewächshaus bei Temperaturen zwischen 20 und 30°C aufgestellt. Nach dieser Zeit wurden die Pflanzen zur Beschleunigung des Sporangienträgeraus - bruchs abermals für 16 Stunden in eine feuchte Kammer gestellt. Dann wurde das Ausmaß der Befallsentwicklung auf den Blattunterseiten visuell ermittelt.
In diesem Test zeigten die mit 250 ppm der Verbindungen 1-1 bis 1-9 behandelten Pflanzen maximal 15 % Befall, während die unbe- handelten zu 100 % befallen waren.
Anwendungsbeispiel 2 - Wirksamkeit gegen Pyricularia oryzae (protektiv)
Blätter von in Töpfen gewachsenen Reiskeimlingen der Sorte "Tai- Nong 67" wurden mit wäßriger Wirkstoffaufbereitung, die mit einer Stammlösung aus 10 % Wirkstoff, 63 % Cyclohexanon und 27 % Emulgiermittel angesetzt wurde, bis zur Tropfnässe besprüht. Am fol- genden Tag wurden die Pflanzen mit einer wäßrigen Sporensuspension von Pyricularia oryzae inokuliert. Anschließend wurden die Versuchspflanzen in Klimakammern bei 22 - 24°C und 95 - 99 % relativer Luftfeuchtigkeit für 6 Tage aufgestellt. Dann wurde das Ausmaß der Befallsentwicklung auf den Blättern visuell ermittelt.
In diesem Test zeigten die mit 250 und mit 63 ppm der Verbindung 1-3 behandelten Pflanzen keinen Befall, während die unbehandelten zu 90 % befallen waren. Beispiele für die Wirkung gegen tierische Schädlinge
Die Wirkung der Verbindungen der allgemeinen Formel I gegen tierische Schädlinge ließ sich durch folgende Versuche zeigen:
Die Wirkstoffe wurden
a. als 0,1%-ige Lösung in Aceton oder
b. als 10%-ige Emulsion in einem Gemisch aus 70 Gew.-% Cyclohexanon, 20 Gew.-% Nekanil® LN (Lutensol® AP6, Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) und 10 Gew.-% Wettol® EM (nichtionischer Emul- gator auf der Basis von ethoxyliertem Ricinusöl)
aufbereitet und entsprechend der gewünschten Konzentration mit Aceton im Fall von a. bzw. mit Wasser im Fall von b. verdünnt.
Nach Abschluß der Versuche wurde die jeweils niedrigste Kon- zentration ermittelt, bei der die Verbindungen im Vergleich zu unbehandelten Kontrollversuchen noch eine 80 bis 100 %-ige Hemmung bzw. Mortalität hervorriefen (Wirkschwelle bzw. Minimalkonzentration) .

Claims

Patentansprüche
1. Substituierte Phenylpyrazolone der Formel I,
Figure imgf000113_0001
in der die Substituenten folgende Bedeutung haben:
Y Halogen, Cι-C4-Alkyl, Cι-C4-Halogenalkyl oder Cι-C4~Alk- oxy;
n 0, 1 oder 2, wobei die Reste Y verschieden sein können, wenn n = 2 ist;
E eine Gruppe A,
Figure imgf000113_0002
wobei # die Bindung mit dem Phenylring kennzeichnet,
RA Halogen, Cyano, C1-C4-Alkyl oder Cι-C4~Halogenalkyl;
RB Wasserstoff oder Cι-C4-Alkyl;
Rc Cyano, Ci-Cg-Alkyl oder C1-C4-Halogenalkyl;
T eine direkte Bindung, Sauerstoff oder CH2O;
a) wenn T Sauerstoff oder CH2O bedeutet, eine Gruppe X, N^ R1 oder N=C (R1)-C (R2) =N0R3, wobei
X Heterocyclyl, Aryl, Hetaryl, Arylmethylen oder Het- arylmethylen, wobei die cyclischen Systeme partiell oder vollständig halogeniert oder eine bis drei Gruppen R4 tragen können: R4 Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Aminocarbonyl, Aminothiocarbonyl, Alkyl, Haloalkyl, Alkenyl, Alkenyloxy, Alkinyloxy, Alkoxy, Halogenalkoxy, Alkylthio, Alkylamino, Dialkylamino, Formyl, Alkylcarbonyl, Alkylsulfonyl, Alkylsulfoxyl,
Alkoxycarbonyl , Alkylcarbonyloxy, Alkylaminocarbonyl , Dialkylaminocarbonyl , Alkylaminothiocarbonyl, Dialky- laminothiocarbonyl , wobei die Alkylgruppen in diesen Resten 1 bis 6 Kohlenstoffatome enthalten und die ge- nannten Alkenyl- oder Alkmylgruppen in diesen Resten
2 bis 8 Kohlenstoffatome enthalten;
und/oder einen bis drei der folgenden Reste:
Cycloalkyl, Cycloalkoxy, Heterocyclyl, Hetero- cyclyloxy, wobei die cyclischen Systeme 3 bis 10 Ringglieder enthalten; Aryl, Aryloxy, Arylthio, Aryl -Ci-Cß-alkoxy, Aryl -Cχ-Cg-alkyl, Hetaryl, Hetaryloxy, Hetarylthio, wobei die Arylreste Vorzugs - weise 6 bis 10 Ringglieder, die Hetarylreste 5 oder 6
Ringglieder enthalten, wobei die cyclischen Systeme partiell oder vollständig halogeniert sein können oder durch eine bis drei Gruppen R5 oder durch eine oder zwei Gruppen R6 substituiert sein können:
R5 Halogen, Cyano, Nitro, Hydroxy, Cχ-Cg-Alkyl, Ci-Cg-Halogenalkyl , Ci-Cg-Alkylcarbonyl, C3-Cg-Cycloalkyl, Ci-Cg-Alkoxy, Ci-Cg-Halogenal- koxy, Ci-Cg-Alkoxycarbonyl , Ci-Cg-Alkylthio, Ci-Cg-Alkylamino, Di-Ci-Cg-alkylamino, C2~Cg-Al- kenyl, C2-Cg-Alkenyloxy, C3-Cg-Alkinyloxy und Cι-C4-Alkylendioxy, welches halogeniert sein kann; und
R6
Figure imgf000114_0001
wobei Rd für Wasserstoff oder
Ci-Cg-Alkyl, r für Sauerstoff, Schwefel oder NRd steht und 1 gleich 0 oder 1 ist;
W Ci-Cg-Alkyl, C2"C -Alkenyl, C -Cg -Alkinyl, Cycloalkyl, Cycloalkenyl , Heterocyclyl, Aryl oder Hetaryl, wobei die cyclischen Systeme 3 - 10 Ringglieder enthalten und die Substituenten partiell oder vollständig halogeniert sein können oder eine bis drei Gruppen R5 tragen können; R1 Wasserstoff, Cyano, Cι~C -Alkyl, Cι-C -Halogenalkyl, Cι-C -Alkoxy, Cι-C4-Alkoxy-Cι-C4-alkyl, C3-Cg-Cycloal- kyl;
R2 Wasserstoff, Cyano, Halogen, C(Rd)=N0R3 oder W, OW,
SW oder NRCW, wobei
Rc Wasserstoff, Ci-Cg-Alkyl, C2-Cg-Alkenyl oder C2 -C6-Alkinyl; Rd Wasserstoff oder Ci-Cg-Alkyl;
R3 Wasserstoff, Ci-Cg -Alkyl, C2"Cg -Alkenyl oder C2-Cg-Alkinyl bedeuten, diese Substituenten partiell oder vollständig halogeniert sein können oder eine bis drei Gruppen R5 tragen können und
b) wenn T für eine direkte Bindung steht,
eine Gruppe W, CH2-CH2-W, CH=CH-W, C≡≡C-W, S-W, CH -S-W, CH=N-0-CH2-W, CH2-0-C (=0) -W oder
CH2-0-C(CH3)=N-N=C(CH3)-W bedeutet.
2. Phenylpyrazolone der Formel I nach Anspruch 1, in denen
W für Ci-Cg-Alkyl, C -C6-Alkenyl oder C2-Cg-Alkinyl,
wobei diese Gruppen vollständig oder partiell halogeniert sein und/oder 1 bis 3 der folgenden Reste tragen können:
Cyano, Ci-Cg-Alkoxy, Ci-Cg-Halogenalkoxy, Ci-Cg-Alk- oxycarbonyl, C3-Cg-Cycloalkyl, Heterocyclyl, Aryl oder Hetaryl, wobei die cyclischen Gruppen ihrerseits durch folgende Gruppen substituiert sein können:
Cyano, Halogen, Nitro, Hydroxy, Cι-C4-Alkyl,
Cι-C4-Halogenalkyl, Cι-C4~Alkoxy und Cι-C4-Halogen- alkoxy;
für C3-Cg-Cycloalkyl, C3-Cg-Cycloalkenyl, Heterocyclyl, Aryl oder Heteroaryl, wobei diese Reste durch folgende Gruppen substituiert sein können:
Cyano, Halogen, Nitro, Hydroxy, Cι-C4~Alkyl, Cι-C4-Halogenalkyl, Cι-C4~Alkoxy und Cι-C4-Halogen- alkoxy; R2 für Wasserstoff, Cyano, Halogen, C(Rd)=NOR3 oder W, OW, SW oder NRCW, wobei
Rc Wasserstoff, Ci-Cg-Alkyl, C2-Cg-Alkenyl oder C2~Cg-Al- kinyl ;
Rd Wasserstoff oder Cι-C4-Alkyl; und
R3 für Wasserstoff, Ci-Cg-Alkyl, Ci-Cg-Cyanoalkyl, C2~Cg-Al- kenyl, C2-Cg-Alkinyl, Cι-C -Alkoxy-Cι-Cg-alkyl oder
C3-Cg-Cycloalkyl-Cι-C4-alkyl , wobei
diese Gruppen partiell oder vollständig halogeniert sein können und die Cycloalkylgruppen zusätzlich 1 bis 3 Cχ-C4-Alkylreste tragen können;
steht.
3. Verfahren zur Herstellung von Verbindungen der Formel la,
Figure imgf000116_0001
in denen
Hai für Halogen und
T für Sauerstoff oder Oxymethylen steht,
RB, Rc, Y, n und Z die in Anspruch 1 gegebene Bedeutung haben,
dadurch gekennzeichnet, daß man Aniline der Formel IVa,
Figure imgf000116_0002
in der
Y, n und Z die in Anspruch 1 gegebene Bedeutung haben, mit Nitrit in die entsprechenden Diazoniumsalze überführt, die durch Reduktion in die Hydrazine der Formel V
Figure imgf000117_0001
überführt werden und mit Alkoxymethylenmalonsäurealkylestern der Formel Via,
R'OOC O-R"
(Via)
>=<
R'OOC
in der R" für Cι~C4-Alkyl steht , zu Dicarbonsäureestern der Formel VII
Figure imgf000117_0002
umgesetzt werden, die in basischem Medium über Hydroxypyrazo- le der Formel VIII
Figure imgf000117_0003
unter Esterspaltung und Decarboxylierung in Hydroxypyrazole der Formel II
Figure imgf000118_0001
überführt werden, die zu Verbindungen der Formel IX
Figure imgf000118_0002
halogeniert und durch Alkylierung in die Pyrazolone der Formel la überführt.
4. Zwischenprodukte der Formel X,
Figure imgf000118_0003
in denen RB, Rc, Y und n die in Anspruch 1 gegebene Bedeutung haben und
T Sauerstoff oder Oxymethylen und
eine Gruppe X, N=CWR1 oder N=C (R1) -C (R2) =NOR3, wobei die Reste die in Anspruch 1 gegebene Bedeutung haben,
bedeuten , Zwischenprodukte der Formel 1 ,
Figure imgf000119_0001
in der
Q NH-NH-C(RB)=C(COOR')2 oder eine Gruppe Θ 1 oder Θ 2 ,
Figure imgf000119_0002
wobei # die Bindung zu dem Phenylring kennzeichnet und R' für Wasserstoff oder Cι-C4-Alkyl steht,
bedeuten und
in denen RB, Rc, Y und n die in Anspruch 1 gegebene Bedeutung haben und
T Sauerstoff oder Oxymethylen und
eine Gruppe X, N=CWR1 oder N=C (R1) -C (R2) =NOR3, wobei die Reste die in Anspruch 1 gegebene Bedeutung haben,
bedeuten.
6. Zwischenprodukte der Formel 2,
Figure imgf000119_0003
Hydroxy, CH2OH, CH2L' oder eine Gruppe L' bedeutet, wobei L' für eine nucleophil abspaltbare Gruppe steht und RA, RB, Rc, Y und n die in Anspruch 1 gegebene Bedeutungen haben.
7. Zur Bekämpfung von tierischen Schädlingen oder Schadpilzen geeignetes Mittel, enthaltend einen festen oder flüssigen
Trägerstoff und eine Verbindung der Formel I gemäß Anspruch
1.
8. Verwendung der Verbindungen I gemäß Anspruch 1 zur Herstel- lung eines zur Bekämpfung von tierischen Schädlingen oder
Schadpilzen geeigneten Mittels.
9. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man die Pilze oder die vor Pilzbefall zu schüt- zenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der Formel I gemäß Anspruch 1 behandelt.
10. Verfahren zur Bekämpfung von tierischen Schädlingen, dadurch gekennzeichnet, daß man die tierischen Schädlinge oder die vor ihnen zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I gemäß Anspruch 1 behandelt.
PCT/EP1998/008179 1997-12-17 1998-12-14 Substituierte phenylpyrazolone, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen und tierischen schädlingen WO1999031070A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU20534/99A AU2053499A (en) 1997-12-17 1998-12-14 Substituted phenylpyrazolones, method and intermediate products for the production thereof, and their utilization for combating parasitic fungi and animal parasites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1997156115 DE19756115A1 (de) 1997-12-17 1997-12-17 Substituierte Phenylpyrazolone, Verfahren und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schadpilzen und tierischen Schädlingen
DE19756115.2 1997-12-17

Publications (1)

Publication Number Publication Date
WO1999031070A1 true WO1999031070A1 (de) 1999-06-24

Family

ID=7852257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/008179 WO1999031070A1 (de) 1997-12-17 1998-12-14 Substituierte phenylpyrazolone, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen und tierischen schädlingen

Country Status (3)

Country Link
AU (1) AU2053499A (de)
DE (1) DE19756115A1 (de)
WO (1) WO1999031070A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051958A1 (en) 2009-10-30 2011-05-05 E.I. Du Pont De Nemours And Company Fungicidal pyrazolones
CN102482225A (zh) * 2009-09-04 2012-05-30 巴斯夫欧洲公司 制备1-苯基吡唑类的方法
CN104211641A (zh) * 2014-08-19 2014-12-17 山东康乔生物科技有限公司 一种吡唑醚菌酯的合成工艺
US10544092B2 (en) 2015-12-25 2020-01-28 Shenyang Sinochem Agrochemicals R&D Co., Ltd. Malononitrile oxime ether compound and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409988B1 (en) 1999-07-01 2002-06-25 3-Dimensional Pharmaceuticals, Inc. Radiolabeled 1-aryl pyrazoles, the synthesis thereof and the use thereof as pest GABA receptor ligands
US6506784B1 (en) 1999-07-01 2003-01-14 3-Dimensional Pharmaceuticals, Inc. Use of 1,3-substituted pyrazol-5-yl sulfonates as pesticides
WO2001007413A1 (en) * 1999-07-22 2001-02-01 3-Dimensional Pharmaceuticals, Inc. 1-aryl-3-thioalkyl pyrazoles, the synthesis thereof and the use thereof as insecticides
WO2001025241A2 (en) 1999-10-06 2001-04-12 3-Dimensional Pharmaceuticals, Inc. Fused 1-(2,6-dichloro-4-trifluoromethylphenyl)-pyrazoles, the synthesis thereof and the use thereof as pesticides

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208874A1 (de) * 1985-05-20 1987-01-21 Mitsubishi Kasei Corporation Prophylaktische und therapeutische Mittel für Kreislaufkrankheiten
WO1995014009A1 (en) * 1993-11-19 1995-05-26 E.I. Du Pont De Nemours And Company Fungicidal cyclic amides
WO1996026191A1 (en) * 1995-02-24 1996-08-29 E.I. Du Pont De Nemours And Company Fungicidal cyclic amides
WO1996036615A1 (en) * 1995-05-16 1996-11-21 E.I. Du Pont De Nemours And Company Fungicidal cyclic amides
WO1996036229A1 (en) * 1995-05-17 1996-11-21 E.I. Du Pont De Nemours And Company Fungicidal cyclic amides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208874A1 (de) * 1985-05-20 1987-01-21 Mitsubishi Kasei Corporation Prophylaktische und therapeutische Mittel für Kreislaufkrankheiten
WO1995014009A1 (en) * 1993-11-19 1995-05-26 E.I. Du Pont De Nemours And Company Fungicidal cyclic amides
WO1996026191A1 (en) * 1995-02-24 1996-08-29 E.I. Du Pont De Nemours And Company Fungicidal cyclic amides
WO1996036615A1 (en) * 1995-05-16 1996-11-21 E.I. Du Pont De Nemours And Company Fungicidal cyclic amides
WO1996036229A1 (en) * 1995-05-17 1996-11-21 E.I. Du Pont De Nemours And Company Fungicidal cyclic amides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. RIED ET AL.: "Über 2-Hydroxy-phenylhydrazine und ihre Verwendung zu Pyrazolon-Synthesen", JUSTUS LIEBIGS ANNALEN DER CHEMIE., vol. 724, 1969, WEINHEIM DE, pages 159 - 165, XP002099970 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482225A (zh) * 2009-09-04 2012-05-30 巴斯夫欧洲公司 制备1-苯基吡唑类的方法
CN102482225B (zh) * 2009-09-04 2016-10-05 巴斯夫欧洲公司 制备1-苯基吡唑类的方法
WO2011051958A1 (en) 2009-10-30 2011-05-05 E.I. Du Pont De Nemours And Company Fungicidal pyrazolones
CN104211641A (zh) * 2014-08-19 2014-12-17 山东康乔生物科技有限公司 一种吡唑醚菌酯的合成工艺
CN104211641B (zh) * 2014-08-19 2016-08-24 山东康乔生物科技有限公司 一种吡唑醚菌酯的合成工艺
US10544092B2 (en) 2015-12-25 2020-01-28 Shenyang Sinochem Agrochemicals R&D Co., Ltd. Malononitrile oxime ether compound and use thereof

Also Published As

Publication number Publication date
AU2053499A (en) 1999-07-05
DE19756115A1 (de) 1999-06-24

Similar Documents

Publication Publication Date Title
WO1996001256A1 (de) 2-[(dihydro)pyrazolyl-3&#39;-oxymethylen]-anilide als schädlingsbekämpfungsmittel und fungizide
WO1996001258A1 (de) 2-(1&#39;,2&#39;,4&#39;-triazol-3&#39;yloxymethylen)-anilide und ihre verwendung als schädlingsbekämpfungsmittel
WO1996007633A1 (de) Phenylessigsäurealkylester
DE19900571A1 (de) Phenyltetrazolinone
DE4441674A1 (de) Iminooxymethylenanilide, Verfahren und Zwischenprodukte zu ihrer Herstellung und sie enthaltende Mittel
WO1997021679A1 (de) Pyridylcarbamate, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung
EP1019366B1 (de) Iminooxyphenylessigsäurederivate, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung
WO1999031070A1 (de) Substituierte phenylpyrazolone, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen und tierischen schädlingen
CZ320596A3 (en) Methyl ester of alpha-phenylbutenic acid
EP0885194A1 (de) Pyridyl-phenyl- und -benzylether, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung als fungizide und zur bekämpfung von tierischen schädlingen
EP0793655A1 (de) Iminooxymethylenanilide, verfahren zu ihrer herstellung und ihre verwendung
US6232339B1 (en) Phenylcarbamates, their preparation, and compositions comprising them
WO1998012179A1 (de) Pyridinderivate, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von tierischen schädlingen und schadpilzen
DE19732846A1 (de) Bisiminosubstituierte Phenylverbindungen
EP0885187B1 (de) Diphenylether, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung
WO1997016415A1 (de) Phenylcarbamate, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung zur bekämpfung von schädlingen und schadpilzen
EP0888311A1 (de) Pyrimidylphenyl- und -benzylether, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung als fungizide
DE19834557A1 (de) (Hetero)Arylverbindungen, Verfahren und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schadpilzen und tierischen Schädlingen
WO1999020615A2 (de) Pestizide substituierte phenylcarbamate, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung
EP1140926A1 (de) Azadioxacycloalkene und ihre verwendung zur bekämpfung von schadpilzen und tierischen schädlingen
WO1997001545A1 (de) Iminooxybenzylverbindungen und ihre verwendung zur bekämpfung von tierischen schädlingen und schadpilzen
WO2002094793A1 (de) Acylierte 4-aminopyrazole
EP0934935A1 (de) Heterocyclylsubstituierte Phenylverbindungen, Verfahren und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schadpilzen und tierischen Schädlingen
WO1997016427A1 (de) Pyridylessigsäurederivate, verfahren und zwischenprodukte zu ihrer herstellung und ihre verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL JP KR KZ LT LV MK MX NO NZ PL RO RU SG SI SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase