WO1999028438A1 - Dispositif d'amplification de cellules hematopoietiques et ses applications - Google Patents

Dispositif d'amplification de cellules hematopoietiques et ses applications Download PDF

Info

Publication number
WO1999028438A1
WO1999028438A1 PCT/FR1998/002548 FR9802548W WO9928438A1 WO 1999028438 A1 WO1999028438 A1 WO 1999028438A1 FR 9802548 W FR9802548 W FR 9802548W WO 9928438 A1 WO9928438 A1 WO 9928438A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
medium
culture
culture medium
fresh
Prior art date
Application number
PCT/FR1998/002548
Other languages
English (en)
Inventor
Nicolas Milande
Luc Douay
Original Assignee
Bertin & Cie
Assistance Publique-Hopitaux De Paris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bertin & Cie, Assistance Publique-Hopitaux De Paris filed Critical Bertin & Cie
Publication of WO1999028438A1 publication Critical patent/WO1999028438A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/02Percolation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements

Definitions

  • the present invention relates to a cell culture device or bioreactor adapted to the culture of hematopoietic cells (blood cells, hematopoietic progenitors and stem cells) as well as its applications: hematopoietic cell amplification method, in sterile medium, apparatus and kit of culture.
  • hematopoietic cells blood cells, hematopoietic progenitors and stem cells
  • Circulating morphologically recognized blood cells include erythrocytes, granulocytes (neutrophils, eosinophils and basophils), various lymphocytes and platelets. These mature cells are derived from precursor cells: erythroblasts for erythrocytes, myeloblasts, promyeloocytes, myelocytes and metamyelocytes for the various granulocytes and megakaryocytes for platelets. Precursor cells themselves are derived from more primitive cells: stem cells and progenitors. Stem cells have an extensive capacity for self-renewal and self-maintenance; some of the stem cells differentiate according to need, while others self-renew to maintain a pool of stem cells, able to meet demand.
  • pluripotent stem cells are capable of differentiation into different lines of progenitors which have a more limited capacity for self-renewal. These progenitors are capable of proliferation and differentiation in the form of morphologically recognizable precursor cells.
  • Stem cells and progenitors make up a very small percentage of nucleated cells from bone marrow, spleen, peripheral blood and cord blood.
  • the reconstitution of the hematopoietic system in the pathologies where such a reconstitution is necessary, is generally carried out by transplantation of bone marrow.
  • transplantation of bone marrow In a successful bone marrow transplant, the blood, bone marrow, spleen, thymus and other organs of recipient immunity are renewed with cells from the donor.
  • bone marrow transplantation has the drawbacks of transplants (reaction of the graft against the host, for example), which are sources of mortality and morbidity.
  • stem cell transplantation is limited by several factors: the procedures Obtaining cells from bone marrow is tedious and the number of useful cells obtained is limited. In addition, the kinetics of regeneration of mature blood cells after transfusion is not ideal.
  • Certain conditions must be respected for the production of cells: (1) they must be cells of the subject to be treated or a donor, which are capable of replication and differentiation, when necessary and (2) one must have an ex vivo system, adapted to the growth of the cells concerned (cell adhesion materials, medium exchange, oxygenation, etc.).
  • Hematopoietic cell culture systems have already been proposed, by expansion of stem cells ex vivo, under conditions which have been developed over the years (S.G. Emerson, Blood, 1996, El, 3082-3088).
  • CD34 + cells are incubated with a combination of high dose cytokines (high dose cytokines or HDC); however, these cultures do not correspond to a true expansion of stem cells but rather correspond to an effective differentiation of progenitors.
  • high dose cytokines or HDC high dose cytokines
  • long-term cultures CLT
  • Such systems do not control oxygen tension, pH and metabolites.
  • the limitation in the production of hematopoietic cells in culture is due, in part, to maintenance conditions of the suboptimal culture. Indeed, the hematopoietic progenitors in CLT are in cycle, only during the one to three days which follow the renewal of all or part of the medium, and remain dormant until the next maintenance.
  • the removal of the culture medium particularly affects the function of the stromal cells (production of GM-CSF or granulocyte-macrophage colony stimulating factor, Emerson GS, 1996, cited above), during changes of medium.
  • the accumulation of mature cells in the culture leads to an increase in the production of proliferation inhibitors. Increasing the pace of change of environment considerably improves the productivity and longevity of this type of culture.
  • such cultures have the major drawback of not making it possible to obtain high cell densities.
  • bioreactors which develop stem cells and hematopoietic progenitors, in which the fresh culture medium is supplied in continuous perfusion; such systems thus allow a rapid exchange of the medium, stimulate the function of the stromal cells and stimulate the production of GM-CSF.
  • Such cultures have in particular been described in the publications in the name of M.R. Koller et al. (Blood, 1993, 82, 2, 378-384; Exp. Hematol, 1995, 23, 1275-1283).
  • the bioreactors used come from animal cell culture technologies and are rather designed to recover the molecules synthesized by the cells.
  • the system is positioned on a first control instrument comprising a platform for receiving said culture system, which is subjected to agitation, while for culture. proper (about two weeks), the system, also subjected to sequential agitation, is transferred to a second control instrument (incubator).
  • a first control instrument comprising a platform for receiving said culture system, which is subjected to agitation, while for culture. proper (about two weeks), the system, also subjected to sequential agitation, is transferred to a second control instrument (incubator).
  • the system described in this International Application also includes means for evacuating spent culture medium and means for recovering cells.
  • Such a system is better suited to the culture of hematopoietic cells; however, it nevertheless has a certain number of drawbacks: - the culture medium is supplied under air pressure, which is harmful for the amplification of hematopoietic cells (weak growth of cells);
  • the oxygen, supplied via the upper wall of the culture chamber (membrane), is not distributed homogeneously throughout the culture zone;
  • the system is not suitable for optimizing growing conditions (optimal combination of growth factors, for example).
  • the subject of the present invention is a cell culture device or bioreactor for the amplification in a sterile medium of hematopoietic cells, of the type comprising a cell culture chamber, delimited by an enclosure and in which the cells to be amplified are confined, which device is characterized:
  • said cell culture chamber comprises at least one interior wall constituted by a micron sieve ensuring the confinement of cells in suspension in a liquid culture medium and allowing the exit of the used medium, which micron sieve has a pore diameter of between 0.1 and 2 ⁇ m, and constitutes at least the inner downstream wall of the cell culture chamber,
  • said cell culture chamber further comprises:
  • a culture medium inlet collector which cooperates with means for supplying the fresh culture medium, means for supplying different growth factors and means for regulation (pumps, solenoid valves, etc.) which are dissociated and sequential flow of fresh culture medium and growth factors, the means of regulating the flow of fresh medium making it possible to obtain a variable flow rate of culture medium of between 0 and 50 chamber volumes / day and an outlet collector for the culture medium, which cooperate with means for pressurizing, as well as - means for seeding the cells to be amplified and
  • said fresh medium is brought to the cell culture chamber by frontal filtration.
  • said culture medium is brought to the cell culture chamber by tangential filtration, by means of a sheet of tubes (T) with a wall permeable to fresh, rigid culture medium and of diameter between 1 mm and 20 mm, mounted in parallel between said inlet manifold and said outlet manifold, said tubes (T) being mounted in a closed loop circuit and traversed each end to end by a medium flow of fresh culture several times higher than that crossing its wall, to maintain a pressure causing a pressure drop, when the fresh culture medium crosses the walls of the tubes, greater than 10 mbar.
  • the flow rate of the medium passing through each tube (T) corresponds to a flow speed, of between 0.1 and 1 dm / s, which guarantees the tangential filtration of the fresh medium through the wall of said tubes.
  • the set of capillaries (C) are arranged at substantially equal intervals to form, on one and / or on the other side of the ply of tubes (T), a plurality subsets.
  • culture medium by tangential filtration allows a good distribution of the medium in the culture chamber, without hydrodynamic stress, particularly harmful for these cells and also a good distribution of the cells in suspension throughout the culture chamber.
  • the device according to the present invention can include variants relating to the arrangement of capillaries and micron sieves, as described in European Patent EP 0 474 847.
  • the capillary subsets can be simple and constitute a single layer
  • Said subsets of capillaries can themselves be formed from several superposed layers of capillaries parallel to each other, the capillaries of a layer prevailing at right intervals between capillaries of the two adjacent layers;
  • - Said capillaries are gas permeable pipes with a diameter between 0.5 and 5 millimeters, with hydrophobic wall; - Said micron sieve (M) covers at least each free downstream face of the set of capillaries;
  • the capillaries (C) can be oriented parallel to the plane of the ply of the tubes (T), can be parallel to the tubes (T) or distributed in the free cell space between the tubes (T); -
  • the sheet of tubes (T) and the set or sub-sets of capillaries (C) are separated by a micron sieve (M'i, M'2) similar to the micron sieve (M) forming the third wall of said device; .
  • the device can constitute a unilateral module, comprising a single set of capillaries (C) located on one side of the ply of tubes (T) and at least one downstream micron sieve (or outlet) (M), a bilateral module or symmetrical, comprising at least two subsets of capillaries (C) extending respectively on each side of the ply of tubes (T) and at least one downstream micron sieve (or outlet) (Ml, M2), covering each capillary sub-assembly (C) where it comprises at least two superimposed symmetrical modules, with possible elimination of the outlet spaces and intermediate micron sieves;
  • a bilateral module or symmetrical comprising at least two subsets of capillaries (C) extending respectively on each side of the ply of tubes (T) and at least one downstream micron sieve (or outlet) (Ml, M2), covering each capillary sub-assembly (C) where it comprises at least two superimposed symmetrical modules, with possible elimination of the outlet spaces and intermediate micro
  • the device can also comprise an enclosure (E) crossed by at least two plies of tubes (T) and the space between the tubes (T) of which is filled with capillaries (C) parallel to said tubes, between two micron sieves (M ⁇ , M2) end.
  • E enclosure
  • C capillaries
  • M ⁇ , M2 micron sieves
  • bioreactor also includes a closed loop circuit for recycling the spent medium.
  • a bioreactor also makes it possible to supply the fresh culture medium and to eliminate or recycle the spent medium continuously and to modify the flow and the composition of the culture medium, as required (optimization of the culture conditions).
  • it further comprises an optical measurement system for continuously monitoring the cell density.
  • Such a bioreactor is particularly well suited to the implementation of a method for amplifying hematopoietic cells in a sterile medium which comprises:
  • a suitable culture medium such as an IMDM medium (Iscove Modi ⁇ ed Dulbecco 's Medium), (L Douay et al, Br. J. Haematol, 1994, 86, 475-482), to obtain 10 3 to 10 9 hematopoietic cells / ml, - the injection of said suspension, at a speed not damaging said cells, in a device as defined above, supplied simultaneously with suitable gases (O 2 and CO 2 ), a fresh liquid culture medium and growth factors, so that the flow rate of fresh culture medium is between 0 and 50 volumes-room / day, preferably between 0 and 6 volumes- room / day and that the flow of growth factors is dissociated and sequential with respect to the flow of fresh liquid culture medium,
  • suitable gases O 2 and CO 2
  • the present invention also relates to the use of a bioreactor comprising a cell culture chamber delimited by an enclosure and comprising at least one interior wall in the form of a micron sieve ensuring the confinement of the cells in a liquid medium and allowing the outlet from the used culture medium, which micron sieve has a pore diameter of between 0.1 and 2 ⁇ m and constitutes at least the inner downstream wall of the cell culture chamber, which includes a set of capillaries (C) with permeable walls to gases, arranged at substantially equal intervals to form one / more sub-assemblies with homogeneous distribution for gas exchanges with the cells, a culture medium inlet manifold which cooperates with means for supplying the fresh liquid culture medium , means of supplying different growth factors and means of dissociated and sequential regulation of the flow of culture medium fr ais and growth factors, the means of regulating the flow of fresh medium making it possible to obtain a variable flow rate of culture medium of between 0 and 50 room volumes / day, preferably between 0 and 6
  • the present invention also relates to a disposable culture kit for the amplification of hematopoietic cells in a sterile medium, characterized in that it comprises a device as defined above.
  • the present invention further relates to a culture apparatus for the amplification of hematopoietic cells, characterized in that it comprises:
  • control-command system including means for entering and storing the data necessary for controlling said device and in particular for putting into service and stopping the means of supplying fresh culture medium, means of supplying different growth factors and flow regulation means, according to a predefined sequence and means for regulating the culture conditions (temperature, pH, O2 content, etc.), - a thermostatically controlled enclosure capable of receiving said device, and
  • FIG. 1 and 2 show schematic views of an apparatus using a bioreactor (BR) according to the invention, suitable for the culture and amplification of hematopoietic cells;
  • - Figure 3 illustrates the cellular expansion of thawed cord blood cells cultured in a bioreactor according to the invention;
  • FIG. 4 illustrates the expansion of the different compartments after 14 days of culture.
  • FIG. 1 represents a schematic view of an apparatus implementing a device according to the invention (bioreactor) capable of culturing and amplifying hematopoietic cells; a cell culture chamber (X) is included in a thermostatically controlled enclosure (E); said cell culture chamber X, delimited by an enclosure, comprises:
  • a first inner wall located at one end of said cell culture chamber and consisting of a first micron sieve M ⁇ which ensures the confinement of the cells in the chamber X but allows the passage of the used medium to be recovered, at the level of the outlet manifold 14,
  • a second inner wall located at the opposite end of said cell culture chamber and constituted by a second micron sieve M2 which ensures the confinement of the cells in chamber X, at the other end of said chamber and, optionally a second set of capillaries C (not shown in this figure).
  • the means of supply in fresh medium are dissociated and include several tanks (R ⁇ . R.-,), located in a refrigerated container; they comprise different reagents, the flow rate of entry into the cell culture chamber X of which is adjustable: the various reservoirs are connected together by tubes 10 ′ opening into a pipe 10, and cooperate with means for regulating the flow rate said reagents (reagent pumps P * -P n ); line 10 is connected to an inlet manifold 13 of the reagents.
  • tanks R ⁇ . R.-, located in a refrigerated container; they comprise different reagents, the flow rate of entry into the cell culture chamber X of which is adjustable: the various reservoirs are connected together by tubes 10 ′ opening into a pipe 10, and cooperate with means for regulating the flow rate said reagents (reagent pumps P * -P n ); line 10 is connected to an inlet manifold 13 of the reagents.
  • Said bioreactor further comprises means 2 for sterile injection X 2 of the hematopoietic cells, connected to the cell culture chamber X by the tube X, and means for collecting X 3 of the cells at the end of culture, connected to the culture chamber cell X by the tubing X 4 , possibly associated with a suction pump X 5 .
  • Conduits 12 for the outlet of the used medium, opening downstream of the screen M ⁇ allow said collected used medium to be extracted, at the level of the collector 14.
  • Means of inlet Ge and outlet Gs of the gaseous fluids are respectively connected to a volume supply (R s ) of the capillaries C and an exhaust volume (R of the capillaries.
  • - the capillaries C are, in the same plane; - upstream of the gas inlet Ge, a sterile filter can be found;
  • the cell culture chamber X is associated with a device for regulating the temperature, with means for injecting hematopoietic cells (X 2 , X ⁇ and with means for collecting cells at the end of culture (X 3 , X 4 , X 5 );
  • the fresh medium and the growth factors are introduced by frontal filtration, at the level of the inlet manifold 13;
  • waste medium evacuation conduits (means 12) can be associated with appropriate tanks (R u ) and are recirculated (closed loop Bl).
  • the cells are supplied with oxygen and carbon dioxide via the capillaries C, distributed uniformly in the cell culture chamber (space delimited by the internal walls formed micron end sieves, from a gas inlet Ge).
  • the capillaries diffuse the gas from the interior of each capillary towards the cells but oppose the diffusion of liquid inside said capillaries.
  • the Gs outlet of the gases also allows the evacuation of the CO2 produced by the cells in culture.
  • the gas outlet Gs allows to evacuate the oxygen and the carbon dioxide not used.
  • the capillaries C for supplying gaseous fluids are in the form of a plurality of pipes permeable to gases spaced regularly in the cell chamber X, with a diameter of 2.6 mm in the embodiment shown, and are located in the of the cell culture chamber X.
  • Cord cells (10 cells / ml of medium, at the rate of 0.5 ml / min.) are inoculated into the sterile device, for example and without limitation.
  • the fresh medium with modular composition is then introduced through the inlet tubing 10 to the manifold 13, with a variable supply flow rate between 1 and 6 volume-chamber / d.
  • Cells produced are recovered preferably between 8 th and 21 th day.
  • the cells obtained can advantageously be used in all the applications of these cells (grafts, production of particular cell types).
  • the bioreactor When the bioreactor provides that the fresh medium is introduced by tangential filtration (FIG. 2), it comprises, in addition to the means as defined in FIG. 1, tubes T for supplying fresh medium, for example with a diameter of 1 cm. , which are rigid; these tubes are in the embodiment shown in Figure 2, and without limitation, compacted graphite covered with a sensitive layer for controlling the diameter of the pores and have been previously sterilized; in that case : .
  • a first subset of capillaries C ensure the passage of gaseous fluids and are arranged between the screen Mi and a sheet of tubes T, parallel to each other and which ensure the passage of the fresh nutritive medium towards the cells,
  • a second micron sieve M2 which confines the cells in the chamber X, at the other end of said chamber is associated with a second subset of capillaries C, disposed between the sieve M2 and the sheet of tubes T.
  • the tubes T can optionally be mounted in parallel between two collectors supplied in a closed loop circuit including an inlet tube for supplying the fresh nutritional medium and an outlet tube for said fresh medium to be recycled, which tubes are connected together by a pipeline ( Figure 2, B2).
  • the capillaries C are, in the same plane, perpendicular to the tubes T and are arranged in two sub-assemblies, on either side of the sheet of tubes T; - upstream of the gas inlet Ge, a sterile filter can be found;
  • the cell culture chamber X is associated with a device for regulating the temperature, with means for injecting hematopoietic cells (X 2 , X-) and with means for collecting cells at the end of culture (X 3 , X 4 , X 5 );
  • waste medium evacuation conduits (means 12) can be associated with appropriate tanks.
  • cord blood 40 ml of cord blood are collected at the maternity hospital in bags provided for this purpose (Macopharma bags ref. MSA 1200 A). The bag is handled within 2 hours of collection.
  • the blood is diluted volume by volume in PBS without Ca " " " or Mg 4" * (Gibco), centrifuged in a 15 ml tube at 1300 g for 10 min.
  • the buffy coat (“wafer” of total leukocytes) is aspirated with a pasteur pipette, then resuspended in Iscove medium modified by Dulbecco (IMDM, Gibco). The viability of the cells is determined by exclusion with trypan blue (Gibco).
  • the cells are adjusted to 2.10 cells / ml in IMDM and kept at + 4 ° C. until freezing.
  • the freezing medium containing 80% fetal calf serum (SVF) and 20% DMSO (dimethyl sulfoxide, Sigma D2650), is also refrigerated at + 4 ° C before use. This mixture is deposited dropwise on the cells of the buffy coat. The cells are then transferred to cryotubes and kept at -80 ° C until use.
  • the cells are thawed quickly by immersing the cryotube in a water bath at 39 ° C.
  • the thawed cells are immediately diluted 1/20 in a mixture of IMDM + 10% FCS and washed once at + 4 ° C.
  • the cells are resuspended in IMDM + 0.5% BSA (bovine serum albumin, Sigma A4503) and the viability of the cells is determined.
  • BSA bovine serum albumin
  • the cells are suspended at 10 cells / ml in a defined basic medium without serum (SF) containing 10 mg / ml of folic acid (F7876, Sigma), 2.6 mM L-glutamine (Gibco), 1.5 U / ml heparin (Supply), 10 "6 M hydrocortisone hemisuccinate (H4881, Sigma), 40 U / ml penicillin and 40 mg / ml streptomycin (Gibco).
  • SF defined basic medium without serum
  • the medium is supplemented with 5 mg / ml BSA, 150 mg / ml iron-saturated human transferrin (T7786, Sigma), 100 mg / ml recombinant human insulin (10259, Sigma), 30 mg / ml soy lecithin (P3782, Sigma) and 7.5 mg / ml of cholesterol (C3045, Sigma).
  • the defined medium without serum is supplemented with 100 ng / ml of Stem
  • the assembled BRs (tubing circuit, incubation chambers and collection flask) are autoclaves 30 min at 1 bar and then left for a few hours at room temperature to ensure their descent in temperature. In order to eliminate the air residing in the assembly, the BR tubing circuit is then purged with the complete SF medium containing the cytokines.
  • the cells are ventilated using a compressor that directly draws in the atmosphere from the oven.
  • Means for supplying the fresh culture medium, means for supplying the various growth factors, as well as means for dissociated and sequential regulation of the flows of fresh culture medium and growth factors (Pl-Pn pumps) allow to provide cells with modulated nutrition in the environment.
  • 2 BR are sown, one (BRI) whose flow will be constant during the 14 days of the culture, that is to say: 3.6 ml / d, ie 1 volume-chamber / d , the other (BR2) whose flow rate will vary from 1 to 4 vol-hp / d.
  • a BR cell count is carried out on an aliquot daily; the BR2 flow rate being adjusted as a function of cell expansion up to 4 vol-hp / d.
  • a culture control in static condition is initiated in a 6-well plate at the rate of 1.8 ⁇ 10 cells / 1.8 ml. Maintenance of the control is carried out on D6 by adding 1.8 ml of freshly prepared complete medium containing the cytokines.
  • CFU-GM granulo-macrophagic
  • BFU-E erythroid progenitors
  • CFU-GM and BFU-E are planted in methyl cellulose (Sigma) stimulated by 50 ng / ml of SCF, 10 ng / ml of IL3, 3 U / ml of Epo, 20 ng / ml of GM-CSF and G-CSF.
  • the colonies are read after 14 days of incubation at 37 ° C under 5% CO 2 .
  • 2,500 cells / dish are planted on D0 of the culture and of 2,000 to 3.10 cells on D14 depending on the number of cells obtained on D14.
  • the results are expressed in "times of expansion relative to the J0 of the culture". For this, the number of cells or progenitors obtained on the 14th day of the liquid culture is divided by the number of cells or pro-genitors generated at the start of the experiment.
  • FIG. 4B shows that the expansion of granulopropropic progenitors (CFU-GM) varies from 4 to 5 times compared to D0, therefore, the amplification of the mature cells obtained in BR2 (FIG. 4A) was not carried out to the detriment of the more immature hematopoietic compartment, namely the CFU-GM.
  • CFU-GM granulopropropic progenitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Dispositif de culture cellulaire ou bioréacteur adapté à la culture de cellules hématopoïétiques ainsi que ses applications. Ce dispositif comprend une chambre de culture cellulaire (X), délimitée par une enceinte et dans laquelle les cellules à amplifier sont confinées; ce dispositif est caractérisé: en ce que ladite chambre de culture comprend une paroi intérieure constituée par un tamis micronique (M1) qui présente un diamètre de pores compris entre 0,1 et 2 νm, et constitue au moins la paroi intérieure aval de la chambre de culture cellulaire, en ce qu'elle inclut un ensemble de capillaires (C) à paroi perméable aux gaz, et en ce que ladite chambre de culture comporte, en outre: un collecteur d'entrée (13) de milieu de culture qui coopère avec des moyens d'apport du milieu de culture frais (R1...Rn; 10, 10'), des moyens d'apport de différents facteurs de croissance et des moyens de régulation (P1...Pn) dissociés et séquentiels des flux de milieu de culture frais et de facteurs de croissance, ledit moyen de régulation permettant d'obtenir un débit variable de milieu de culture compris entre 0 et 50 volumes-chambre/jour et un collecteur de sortie (14) du milieu de culture, qui coopèrent avec des moyens de mise sous pression, ainsi que des moyens d'ensemencement (X1, X2) des cellules à amplifier et des moyens de collecte (X3) des cellules amplifiées.

Description

DISPOSITIF D'AMPLIFICATION DE CELLULES HEMATOPOÏETIQUES ET SES APPLICATIONS
La présente invention est relative à un dispositif de culture cellulaire ou bioréacteur adapté à la culture de cellules hématopoïétiques (cellules sanguines, progéniteurs hématopoïétiques et cellules souches) ainsi que ses applications : procédé d'amplification de cellules hématopoïétiques, en milieu stérile, appareil et kit de culture.
Les cellules sanguines circulantes morphologiquement reconnais- sablés incluent les érythrocytes, les granulocytes (neutrophiles, éosinophiles et baso- philes), les différents lymphocytes et les plaquettes. Ces cellules matures dérivent de cellules précurseurs : érythroblastes pour les érythrocytes, myéloblastes, promyélo- cytes, myélocytes et métamyélocytes pour les différents granulocytes et mégakaryo- cytes pour les plaquettes. Les cellules précurseurs dérivent elles-mêmes de cellules plus primitives : les cellules souches et les progéniteurs. Les cellules souches ont une capacité d'auto-renouvellement et d'auto-maintien étendue ; certaines des cellules souches se différencient selon les besoins, alors que d'autres s'auto-renouvellent pour maintenir un pool de cellules souches, apte à répondre à la demande. Ainsi, outre la possibilité d'assurer leur renouvellement, les cellules souches pluripotentes sont capables de différenciation en diffé- rentes lignées de progéniteurs qui présentent une capacité d'auto-renouvellement plus limitée. Ces progéniteurs, sont capables de prolifération et de différenciation sous la forme de cellules précurseurs reconnaissables morphologiquement.
Les cellules souches et les progéniteurs constituent un très faible pourcentage des cellules nucléées de la moelle osseuse, de la rate, du sang périphérique et du sang de cordon.
La reconstitution du système hématopoïétique, dans les pathologies où une telle reconstitution est nécessaire, est généralement réalisée par transplantation de moelle osseuse. Dans une transplantation de moelle osseuse réussie, le sang, la moelle osseuse, la rate, le thymus et les autres organes de l'immunité du receveur sont renouvelées avec les cellules issues du donneur.
Toutefois, la greffe de moelle osseuse présente les inconvénients des transplantations (réaction du greffon contre l'hôte, par exemple), qui sont sources de mortalité et de morbidité.
C'est pourquoi d'autre sources de cellules hématopoïétiques et notamment de cellules souches ont été recherchées. Toutefois, l'utilisation directe aussi bien du sang périphérique que des cellules d'autres origines (cellules de foie foetal, sang de cordon), qui ont été testés comme source de cellules souches, en vue d'une reconstitution hématopoïétique, fournissent des résultats variables. En effet, la transplantation de cellules souches est limitée par plusieurs facteurs : les procédures d'obtention de cellules à partir de moelle osseuse sont fastidieuses et le nombre de cellules utiles obtenues est limité. En outre, la cinétique de régénération des cellules sanguines matures après transfusion n'est pas idéale.
Afin de pallier les inconvénients, induits par l'utilisation de cellules de diverses origines, des méthodes de manipulation ex vivo des cellules hématopoïétiques ont été proposées, qui s'inspirent des travaux réalisés dans le domaine des manipulations génétiques.
Certaines conditions doivent être respectées pour la production de cellules : (1) il doit s'agir de cellules du sujet à traiter ou d'un donneur, qui sont capables de réplication et de différenciation, quand nécessaire et (2) l'on doit disposer d'un système ex vivo, adapté à la croissance des cellules concernées (matériaux d'adhésion des cellules, échange de milieu, oxygénation...).
Des systèmes de culture de cellules hématopoïétiques ont déjà été proposés, par expansion des cellules souches ex vivo, dans des conditions qui ont été élaborées au fil des ans (S.G. Emerson, Blood, 1996, El, 3082-3088).
A l'heure actuelle, il existe essentiellement deux grandes techniques :
- les cultures à long terme conventionnelles de cellules sélectionnées : on incube, par exemple, des cellules CD34+ avec une combinaison de cytokines à hautes doses (high dose cytokines ou HDC) ; toutefois ces cultures ne correspondent pas à une vraie expansion des cellules souches mais correspondent plutôt à une différenciation efficace de progéniteurs. En effet, les cultures à long terme (CLT) doivent être entretenues par une demi-dépopulation du milieu et des cellules, une à deux fois par semaine ; une telle procédure limite la persistance des cellules souches hématopoïétiques. De tels systèmes ne permettent pas de contrôler la tension d'oxygène, le pH et les métabolites. Lorsque les cytokines sont ajoutées régulièrement, les problèmes de déplétion en facteurs nutritifs sont exacerbés, en raison notamment de l'augmentation importante de la prolifération cellulaire. La limitation de la production des cellules hématopoïétiques en culture est due, en partie, à des conditions d'entretien de la culture suboptimales. En effet, les progéniteurs hématopoïétiques en CLT sont en cycle, uniquement pendant les un à trois jours qui suivent le renouvellement de tout ou partie du milieu, et restent dormants jusqu'au prochain entretien. Le retrait du milieu de culture affecte particulièrement la fonction des cellules stromales (production de GM-CSF ou granulocyte-macrophage colony stimulating factor, Emerson G.S, 1996, précité), lors des changements de milieu. En outre, l'accumulation de cellules matures dans la culture entraîne une augmentation de la production des inhibiteurs de prolifération. L'augmentation du rythme de changement de milieu améliore considérablement la productivité et la longévité de ce type de culture. Toutefois, de telles cultures ont l'inconvénient majeur de ne pas permettre d'obtenir des densités cellulaires élevées.
- les cultures en perfusion continue : il s'agit de systèmes (bioréacteurs) qui développent les cellules souches et les progéniteurs hématopoïétiques, dans lesquels le milieu de culture frais est apporté en perfusion continue ; de tels systèmes permettent ainsi un échange rapide du milieu, stimulent la fonction des cellules stromales et stimulent la production de GM-CSF. De telles cultures ont notamment été décrites dans les publications au nom de M.R. Koller et al. (Blood, 1993, 82, 2, 378-384 ; Exp. Hematol, 1995, 23, 1275-1283). Les bioréacteurs utilisés sont issus des technologies de culture de cellules animales et sont plutôt conçus pour récupérer les molécules synthétisées par les cellules. C'est le cas pour les systèmes dits à fibres creuses tels que décrits dans les Demandes de Brevets européens EP 0 220 650, EP 0 480 400 et EP 0 537 551. De tels systèmes sont peu adaptés à la culture des cellules elles-mêmes ; en effet, dans ces systèmes, le milieu nutritif, dans lequel l'oxygène est dissous, passe au travers de fibres creuses et perfuse à travers elles vers la zone de culture (espace entre les fibres), ce qui entraîne un épuisement rapide de l'oxygène par rapport aux autres nutriments, lorsque les concentrations cellulaires sont élevées. En vue d'adapter les bioréacteurs à la culture des cellules, et notamment de rendre les cultures de cellules biologiques, et plus particulièrement de cellules hématopoïétiques, reproductibles, la Demande Internationale WO 96/40858 décrit un système de culture de cellules hématopoïétiques qui comprend une chambre de culture cellulaire délimitée par une paroi inférieure en plastique sur laquelle sont distribuées les cellules à cultiver et une paroi supérieure qui se présente sous la forme d'une membrane perméable aux gaz et imperméable aux liquides. Le milieu de culture frais est introduit dans cette chambre de culture, sous pression d'air et à débit déterminé (formation de bulles dans le milieu) ; l'oxygène et les autres gaz sont introduits dans la chambre par l'intermédiaire de la paroi supérieure (membrane), à partir d'une chambre de réception des gaz.
Tant pour l'inoculation des cellules que pour l'introduction du milieu frais, le système est positionné sur un premier instrument de contrôle comportant une plate-forme de réception dudit système de culture, qui est soumis à une agitation, alors que pour la culture proprement dite (environ pendant deux semaines), le système, également soumis à une agitation séquentielle, est transféré sur un deuxième instrument de contrôle (incubateur). Le système décrit dans cette Demande Internationale comprend en outre des moyens d'évacuation du milieu de culture usé et des moyens de récupération des cellules.
Un tel système est mieux adapté à la culture de cellules hématopoïétiques ; toutefois, il présente néanmoins un certain nombre d'inconvénients : - le milieu de culture est apporté sous pression d'air, qui est néfaste pour l'amplification des cellules hématopoïétiques (croissance faible des cellules) ;
- la répartition des cellules par agitation n'est pas homogène et peut également nuire à la croissance ;
- le transfert du système du premier instrument de contrôle vers le deuxième instrument de contrôle (incubateur) alourdit la procédure ;
- l'oxygène, fourni par l'intermédiaire de la paroi supérieure de la chambre de culture (membrane), n'est pas réparti de manière homogène dans toute la zone de culture ; et
- le système n'est pas adapté à une optimisation des conditions de culture (combinaison optimale en facteurs de croissances, par exemple).
D'autres systèmes ont également été décrits pour l'expansion de cellules thérapeutiques ; en particulier, le Brevet US 5 622 857 décrit un bioréacteur comprenant une chambre de culture de cellules qui contient un faisceau central de fibres creuses poreuses pour le passage du milieu frais, disposé selon l'axe longitudinal de la chambre et entouré d'un faisceau annulaire de fibres creuses perméables aux gaz ; ils ne permettent pas une répartition homogène des gaz et des réactifs dans l'ensemble de la chambre de culture et peuvent entraîner un colmatage.
En conséquence, les Inventeurs se sont donné pour but de pallier ces inconvénients en proposant un système, dans lequel : - l'apport d'oxygène est contrôlé de manière indépendante de l'apport de milieu nutritif, en continu et avec une répartition homogène sur toute la zone de culture et ce, en évitant tout contact avec l'air et toute formation de bulles dans la zone de culture ; et
- il est possible de modifier les conditions de culture à tout moment, afin de maintenir des conditions optimales de croissance des cellules hématopoïétiques.
La présente invention a pour objet un dispositif de culture cellulaire ou bioréacteur pour l'amplification en milieu stérile de cellules hématopoïétiques, du type comprenant une chambre de culture cellulaire, délimitée par une enceinte et dans laquelle les cellules à amplifier sont confinées, lequel dispositif est caractérisé :
* en ce que ladite chambre de culture cellulaire comprend au moins une paroi intérieure constituée par un tamis micronique assurant le confinement des cellules en suspension dans un milieu de culture liquide et permettant la sortie du milieu usé, lequel tamis micronique présente un diamètre de pores compris entre 0,1 et 2 μm, et constitue au moins la paroi intérieure aval de la chambre de culture cellulaire,
- en ce qu'elle inclut un ensemble de capillaires (C) à paroi perméable aux gaz, disposés à intervalle sensiblement égaux pour former un/plusieurs sous-ensembles à distribution homogène pour les échanges gazeux avec les cellules, et * en ce que ladite chambre de culture cellulaire comporte, en outre :
- un collecteur d'entrée de milieu de culture qui coopère avec des moyens d'apport du milieu de culture frais, des moyens d'apport de différents facteurs de croissance et des moyens de régulation (pompes, électrovannes, ...) dissociés et séquentiels des flux de milieu de culture frais et de facteurs de croissance, le moyen de régulation du flux de milieu frais permettant d'obtenir un débit variable de milieu de culture compris entre 0 et 50 volumes-chambre/jour et un collecteur de sortie du milieu de culture, qui coopèrent avec des moyens de mise sous pression, ainsi que - des moyens d'ensemencement des cellules à amplifier et
- des moyens de collecte des cellules amplifiées.
Selon un mode de réalisation avantageux dudit dispositif, le dit milieu frais est apporté à la chambre de culture cellulaire par filtration frontale.
Selon un autre mode de réalisation avantageux dudit dispositif, le dit milieu de culture est apporté à la chambre de culture cellulaire par filtration tangentielle, au moyen d'une nappe de tubes (T) à paroi perméable au milieu de culture frais, rigides et de diamètre compris entre 1 mm et 20 mm, montés en parallèle entre ledit collecteur d'entrée et ledit collecteur de sortie, lesdits tubes (T) étant montés dans un circuit en boucle fermée et parcourus chacun de bout en bout par un débit de milieu de culture frais plusieurs fois supérieur à celui traversant sa paroi, pour maintenir une pression entraînant une perte de charge, lorsque le milieu de culture frais traverse les parois des tubes, supérieur à 10 mbars.
Selon une disposition avantageuse de ce mode de réalisation, le débit du milieu parcourant chaque tube (T) correspond à une vitesse d'écoulement, comprise entre 0,1 et 1 dm/s, qui garantit la filtration tangentielle du milieu frais à travers la paroi desdits tubes.
Selon une modalité avantageuse de ce mode de réalisation, l'ensemble des capillaires (C) sont disposés à intervalle sensiblement égaux pour former, de l'un et/ou de l'autre côté de la nappe de tubes (T), un plusieurs sous- ensembles.
L'apport de milieu de culture par filtration tangentielle permet une bonne répartition du milieu dans la chambre de culture, sans stress hydrodynamique, particulièrement néfaste pour ces cellules et également une bonne répartition des cellules en suspension dans l'ensemble de la chambre de culture.
Le dispositif selon la présente invention peut inclure des variantes relatives à la disposition des capillaires et des tamis microniques, telles que décrites dans le Brevet européen EP 0 474 847.
En particulier :
- les sous-ensembles de capillaires peuvent être simples et constituer une seule couche ;
- lesdits sous-ensembles de capillaires peuvent être eux-mêmes formés de plusieurs couches superposées de capillaires parallèles entre eux, les capillaires d'une couche régnant au droit des intervalles entre capillaires des deux couches adjacentes ;
- lesdits capillaires sont des tuyaux perméables aux gaz de diamètre compris entre 0,5 et 5 millimètres, à paroi hydrophobe ; - ledit tamis micronique (M) recouvre au moins chaque face libre aval de l'ensemble des capillaires ;
- les capillaires (C) peuvent être orientés parallèlement au plan de la nappe des tubes (T), peuvent être parallèles aux tubes (T) ou répartis dans l'espace cellulaire libre entre les tubes (T) ; - la nappe de tubes (T) et l'ensemble ou sous-ensembles de capillaires (C) sont séparés par un tamis micronique (M'i , M'2) semblable au tamis micronique (M) formant la troisième paroi dudit dispositif ;.
- le dispositif peut constituer un module unilatéral, comprenant un seul ensemble de capillaires (C) situé d'un côté de la nappe de tubes (T) et au moins un tamis micronique aval (ou de sortie) (M), un module bilatéral ou symétrique, comprenant au moins deux sous-ensembles de capillaires (C) s'étendant respectivement de chaque côté de la nappe de tubes (T) et au moins un tamis micronique aval (ou de sortie) (Ml, M2), recouvrant chaque sous-ensemble de capillaires (C) ou il comprend au moins deux modules symétriques superposés, avec suppression éventuelle des es- paces de sortie et tamis microniques intermédiaires ;
- le dispositif peut aussi comprendre une enceinte (E) traversée par au moins deux nappes de tubes (T) et dont l'espace entre les tubes (T) est empli de capillaires (C) parallèles auxdits tubes, entre deux tamis microniques (M\, M2) d'extrémité. Un tel bioréacteur permet de contrôler l'apport d'oxygène de façon indépendante de l'apport de milieu de culture frais, en continu, avec une répartition homogène sur toute la zone de culture, grâce au réseau de capillaires qui la parcourt. Une telle structure est particulièrement bien adaptée à la culture de cellules hématopoïétiques, car elle se rapproche de la situation in vivo des capillaires sanguins.
Selon un autre mode de réalisation avantageux dudit bioréacteur, il inclut en outre un circuit en boucle fermée de recyclage du milieu usé. Un tel bioréacteur permet en outre d'apporter le milieu de culture frais et d'éliminer ou de recycler le milieu usé en continu et de modifier le flux et la composition du milieu de culture, selon les besoins (optimisation des conditions de culture).
Selon un autre mode de réalisation dudit dispositif, il comprend en outre un système de mesure optique pour suivre en continu la densité cellulaire.
Un tel bioréacteur est particulièrement bien adapté à la mise en oeuvre d'un procédé d'amplification de cellules hématopoïétiques en milieu stérile qui comprend :
- la séparation des cellules hématopoïétiques, notamment à partir de sang de cordon, de moelle osseuse ou de sang périphérique,
- la mise en suspension desdites cellules dans un milieu de culture convenable, tel qu'un milieu IMDM (Iscove Modiβed Dulbecco 's Médium), (L Douay et al, Br. J. Haematol, 1994, 86, 475-482), pour obtenir 103 à 109 cellules hémato- poïétiques/ml, - l'injection de ladite suspension, à une vitesse n'endommageant pas lesdites cellules, dans un dispositif tel que défini ci-dessus, alimenté simultanément avec des gaz convenables (O2 et CO2), un milieu de culture liquide frais et des facteurs de croissance, de manière à ce que le débit de milieu de culture frais soit compris entre 0 et 50 volumes-chambre/jour, de préférence entre 0 et 6 volumes-chambre/jour et à ce que le flux de facteurs de croissance soit dissocié et séquentiel par rapport au flux de milieu de culture liquide frais,
- la culture desdites cellules pendant 6 à 28 jours à 37°C en atmosphère enrichie en CO2 (enrichissement en CO2 compris entre 3,5 et 7,5 %) et appauvrie en O2 (appauvrissement de l'ordre de 5 à 20 %) et - la collecte (par exemple par chasse, par sédimentation ou par basculement du bioréacteur) des cellules en fin de culture.
Des conditions de culture optimales des cellules hématopoïétiques sont étudiées depuis plusieurs années et ont fait l'objet de publications (X. Drouet et al., Br. J. Haematol, 1989, 73, 143-147 ; L Douay et al., Br. J. Haematol, 1991, 79, 27-32 ; L. Douay et al., Br. J. Haematol, 1994, 86, 475-482 ; A. Poloni et al, Nouv. Rev. Fr. Hématol., 1995, 37, 367-373) ; toutefois, il n'était pas possible, jusqu'à présent de les mettre en oeuvre dans un procédé reproductible et permettant d'obtenir des densités cellulaires importantes, alors qu'une telle source de cellules hématopoïétiques présente un intérêt dans toutes les applications de ces cellules, notamment les greffes, la production de types cellulaires particuliers...etc.
La présente invention a également pour objet l'utilisation d'un bioréacteur comprenant une chambre de culture cellulaire délimitée par une enceinte et comprenant au moins une paroi intérieure sous la forme d'un tamis micronique assurant le confinement des cellules en milieu liquide et permettant la sortie du milieu de culture usé, lequel tamis micronique présente un diamètre de pores compris entre 0,1 et 2 μm et constitue au moins la paroi intérieure aval de la chambre de culture cellulaire, qui inclut un ensemble de capillaires (C) à paroi perméables aux gaz, disposés à intervalle sensiblement égaux pour former un/plusieurs sous-ensembles à distribution homogène pour les échanges gazeux avec les cellules, un collecteur d'entrée de milieu de culture qui coopère avec des moyens d'apport du milieu de culture liquide frais, des moyens d'apport de différents facteurs de croissance et des moyens de régulation dissociés et séquentiels des flux de milieu de culture frais et de facteurs de croissance, le moyen de régulation du flux de milieu frais permettant d'obtenir un débit variable de milieu de culture compris entre 0 et 50 volumes- chambres/jour, de préférence entre 0 et 6 volumes-chambre/jour et un collecteur de sortie du milieu de culture, qui coopèrent avec des moyens de mise sous pression, ainsi que des moyens d'ensemencement et des moyens de collecte des cellules, pour l'amplification en milieu stérile de cellules hématopoïétiques.
La présente invention a également pour objet un kit de culture à usage unique pour l'amplification de cellules hématopoïétiques en milieu stérile, caractérisé en ce qu'il comprend un dispositif tel que défini ci-dessus. La présente invention a, en outre, pour objet un appareil de culture pour l'amplification de cellules hématopoïétiques, caractérisé en ce qu'il comprend :
- un dispositif, tel que défini ci-dessus, associé à des moyens de régulation des conditions de culture,
- un système de contrôle-commande incluant des moyens de saisie et de stockage des données nécessaires au contrôle dudit dispositif et notamment à la mise en service et à l'arrêt des moyens d'apport de milieu de culture frais, des moyens d'apport des différents facteurs de croissance et des moyens de régulation des flux, suivant une séquence prédéfinie et des moyens de régulation des conditions de culture (température, pH, teneur en O2, ...), - une enceinte thermostatée apte à recevoir ledit dispositif, et
- des réservoirs de réactifs disposés, dans des conteneurs réfrigérés (réservoir de milieu de culture frais et réservoirs de facteurs de croissance) ou non (réservoir de milieu de culture usé et réservoir de collecte des cellules en fin de culture).
Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions, qui ressortiront de la description qui va suivre, qui se réfère à des exemples de mise en oeuvre du procédé objet de la présente invention ainsi qu'aux dessins annexés, dans lesquels :
- les figures 1 et 2 représentent des vues schématiques d'un appareil mettant en oeuvre un bioréacteur (BR) selon l'invention, apte à la culture et à l'amplification de cellules hématopoïétiques ; - la figure 3 illustre l'expansion cellulaire des cellules de sang de cordon décongelées mises en culture dans un bioréacteur selon l'invention ;
- la figure 4 illustre l'expansion des différents compartiments après 14 jours de culture.
Il doit être bien entendu, toutefois, que ces exemples sont donnés uniquement à titre d'illustration de l'objet de l'invention, dont ils ne constituent en aucune manière une limitation.
La figure 1 représente une vue schématique d'un appareil mettant en oeuvre un dispositif selon l'invention (bioréacteur) apte à la culture et à l'amplification de cellules hématopoïétiques ; une chambre de culture cellulaire (X) est incluse dans une enceinte thermostatée (E) ; ladite chambre de culture cellulaire X, délimitée par une enceinte, comprend :
. une première paroi intérieure, située à l'une des extrémités de ladite chambre de culture cellulaire et constituée d'un premier tamis micronique M\ qui assure le confinement des cellules dans la chambre X mais permet le passage du milieu usé à récupérer, au niveau du collecteur de sortie 14,
. un ensemble de capillaires C qui assurent le passage des fluides gazeux,
. une deuxième paroi intérieure, située à l'extrémité opposée de ladite chambre de culture cellulaire et constituée d'un second tamis micronique M2 qui assure le confinement des cellules dans la chambre X, à l'autre extrémité de ladite chambre et, éventuellement un deuxième ensemble de capillaires C (non représenté sur cette figure).
Les moyens d'apport en milieu frais sont dissociés et comprennent plusieurs réservoirs (R^. R.-,), situés dans un conteneur réfrigéré ; ils comprennent des réactifs différents, dont le débit d'entrée dans la chambre de culture cellulaire X est modulable : les différents réservoirs sont reliés entre eux par des tubulures 10' débouchant dans une canalisation 10, et coopèrent avec des moyens de régulation du débit desdits réactifs (pompes d'appoint en réactifs P*-Pn) ; la canalisation 10 est reliée à un collecteur d'entrée 13 des réactifs.
Ledit bioréacteur comprend en outre des moyens d'injection X2 stériles des cellules hématopoïétiques, reliés à la chambre de culture cellulaire X par la tubulure X, et des moyens de collecte X3 des cellules en fin de culture, reliés à la chambre de culture cellulaire X par la tubulure X4, éventuellement associée à une pompe d'aspiration X5.
Des conduits 12 de sortie du milieu usé, débouchant en aval du tamis M\ permettent d'extraire ledit milieu usé collecté, au niveau du collecteur 14. Des moyens d'entrée Ge et de sortie Gs des fluides gazeux sont reliés respectivement à un volume d'alimentation (Rs) des capillaires C et un volume d'échappement (R des capillaires.
Dans la réalisation illustrée à la figure 1 :
- les capillaires C sont, dans le même plan ; - en amont de l'entrée gazeuse Ge, on peut trouver un filtre stérile ;
- la chambre de culture cellulaire X est associée à un dispositif de régulation de la température, à des moyens d'injection des cellules hématopoïétiques (X2, X^ et à des moyens de collecte des cellules en fin de culture (X3, X4, X5) ;
- le milieu frais et les facteurs de croissance sont introduits par filtra- tion frontale, au niveau du collecteur d'entrée 13 ;
- les conduits d'évacuation de milieu usé (moyens 12) peuvent être associés à des réservoirs appropriés (Ru) et sont remis en circulation (boucle fermée Bl).
Le fonctionnement de tels bioréacteurs est le suivant : Après programmation de la température, du pH, et du débit des gaz et des réactifs, on inocule une quantité appropriée de cellules dans la chambre de culture cellulaire X et l'on régule le débit des réactifs provenant des différents réservoirs (R- ...R-,) par les moyens d'apport (10', 10) vers le collecteur 13. On surveille :
- le débit de milieu frais, de manière à ce qu'il soit modulé, en fonc- tion des cellules à cultiver et du stade d'avancement de la culture (variation de la vitesse de renouvellement du flux de milieu, dont la composition varie en fonction du temps) ainsi que
- les paramètres précisés ci-dessus (température, pH, densité cellulaire et concentrations en O2 et en CO2). Simultanément, les cellules sont alimentées en oxygène et en gaz carbonique par l'intermédiaire des capillaires C, répartis uniformément dans la chambre de culture cellulaire (espace délimité par les parois intérieures constituées les tamis microniques d'extrémité, à partir d'une arrivée gazeuse Ge). Les capillaires diffusent le gaz de l'intérieur de chaque capillaire vers les cellules mais s'opposent à la diffusion de liquide à l'intérieur desdits capillaires. La sortie Gs des gaz permet également l'évacuation du CO2 produit par les cellules en culture. La sortie de gaz Gs permet d'évacuer l'oxygène et le gaz carbonique non utilisés.
Un tel bioréacteur d'un volume qui peut varier de 1 cm^ à 10 1, permet de réaliser des cultures en continu.
Dans une réalisation préférée mais non limitative dudit bioréacteur :
. les capillaires C d'alimentation en fluides gazeux, sont sous la forme d'une pluralité de tuyaux perméables aux gaz espacés régulièrement dans la chambre cellulaire X, d'un diamètre de 2,6 mm dans la réalisation représentée, et sont situés dans l'ensemble de la chambre de culture cellulaire X.
On inocule dans le dispositif stérile, par exemple et ce de manière non limitative, des cellules de cordon (10 cellules/ml de milieu, à la vitesse de 0,5 ml/min.).
Le milieu frais à composition modulable est ensuite introduit par la tubulure d'entrée 10 vers le collecteur 13, avec un débit variable d'alimentation compris entre 1 et 6 volume-chambre/j.
Les cellules produites sont récupérées de préférence entre le 8eme et le 21èmejour.
Les cellules obtenues peuvent avantageusement être utilisées dans toutes les applications de ces cellules (greffes, production de types cellulaires particuliers).
Lorsque le bioréacteur prévoit que le milieu frais est introduit par filtration tangentielle (figure 2), il comprend outre les moyens tels que définis à la figure 1, des tubes T d'alimentation en milieu frais, par exemple d'un diamètre de 1 cm, qui sont rigides ; ces tubes sont dans la réalisation représentée à la figure 2, et de manière non limitative, en graphite compacté recouvert d'une couche sensible permettant le contrôle du diamètre des pores et ont été préalablement stérilisés ; dans ce cas : . un premier sous-ensemble de capillaires C assurent le passage des fluides gazeux et sont disposés entre le tamis Mi et une nappe de tubes T, parallèles entre eux et qui assurent le passage du milieu nutritif frais vers les cellules,
. un second tamis micronique M2 qui assure le confinement des cellules dans la chambre X, à l'autre extrémité de ladite chambre est associé à un deuxième sous-ensemble de capillaires C, disposé entre le tamis M2 et la nappe de tubes T. Les tubes T peuvent éventuellement être montés en parallèle entre deux collecteurs alimentés suivant un circuit en boucle fermée incluant une tubulure d'entrée d'apport du milieu nutritionnel frais et une tubulure de sortie dudit milieu frais à recycler, lesquelles tubulures sont reliées entre elles par une canalisation (figure 2, B2).
Dans la réalisation illustrée à la figure 2 :
- les capillaires C sont, dans le même plan, perpendiculaires aux tubes T et sont disposés en deux sous-ensembles, de part et d'autre de la nappe de tubes T ; - en amont de l'entrée gazeuse Ge, on peut trouver un filtre stérile ;
- la chambre de culture cellulaire X est associée à un dispositif de régulation de la température, à des moyens d'injection des cellules hématopoïétiques (X2, X-) et à des moyens de collecte des cellules en fin de culture (X3, X4, X5) ;
- les conduits d'évacuation de milieu usé (moyens 12) peuvent être associés à des réservoirs appropriés.
EXEMPLE 1 :
* Matériel et méthodes.
- Séparation des cellules issues du sang de cordon : 40 ml de sang de cordon sont recueillis à la maternité dans des poches prévues à cet effet (poches Macopharma réf. MSA 1200 A). La poche est manipulée dans les 2 heures suivant le recueil. Le sang est dilué volume à volume dans du PBS sans Ca""" ni Mg4"* (Gibco), centrifugé en tube de 15 ml à 1 300 g pendant 10 min. Le buffy coat (« galette » de leucocytes totaux) est aspiré à la pipette pasteur, puis resuspendu dans du milieu d'Iscove modifié par Dulbecco (IMDM, Gibco). La viabilité des cellules est déterminée par exclusion au bleu trypan (Gibco). Les cellules sont ajustées à 2.10 cellules/ml en IMDM et maintenues à +4°C jusqu'à la congélation. Le milieu de congélation, contenant 80 % de sérum de veau foetal (SVF) et 20 % de DMSO (diméthylsulfoxyde, Sigma D2650), est lui aussi réfrigéré à +4°C avant son utilisation. Ce mélange est déposé goutte à goutte sur les cellules du buffy coat. Les cellules sont alors transvasées dans des cryotubes et maintenues à -80°C jusqu'à utilisation.
La décongélation des cellules s'opère rapidement par immersion du cryotube dans un bain-marie à 39°C. Les cellules décongelées sont immédiatement diluées au 1/20 dans un mélange d'IMDM + 10 % SVF et lavées une fois à +4°C. Les cellules sont resuspendues en IMDM + 0,5 % BSA (sérum albumine bovine, Sigma A4503) et la viabilité des cellules est déterminée. - Cultures liquides :
Les cellules sont suspendues à 10 cellules/ml dans un milieu de base défini sans sérum (SF) contenant 10 mg/ml d'acide folique (F7876, Sigma), 2,6 mM de L-glutamine (Gibco), 1,5 U/ml d'héparine (Fourni er), 10"6 M d'hémisuccinate d'hydrocortisone (H4881, Sigma), 40 U/ml de pénicilline et 40 mg/ml de streptomycine (Gibco). Le milieu est supplémenté par 5 mg/ml de BSA, 150 mg/ml de transferrine humaine saturée en fer (T7786, Sigma), 100 mg/ml d'insuline recombinante humaine (10259, Sigma), 30 mg/ml de lécithine de soja (P3782, Sigma) et 7,5 mg/ml de cholestérol (C3045, Sigma). Le milieu défini sans sérum est supplémenté par 100 ng/ml de Stem
Cell Factor (SCF, Immunex), 100 ng/ml de ligand de FLT3 (ligand pour le récepteur de la thyrosine kinase Flat-/flak2) (FLT3-I, Immunex), 5 ng/ml d'IL3 (Sandoz), 10 ng/ml d'IL6 (Sandoz), 10 ng/ml de G-CSF (Shugai Rhône Poulenc) et 0,5 U/ml d'érythropoïétine (Epo, Behring). - Ensemencement des Bio-Réacteurs (BR) : a) Préparation des BR :
Avant utilisation, les BR montés (circuit de tubulures, chambres d'incubation et flacon de recueil) sont autoclaves 30 min à 1 bar puis laissés quelques heures à température ambiante pour assurer leur descente en température. Afin d'éliminer l'air résidant dans le montage, le circuit de tubulures des BR est alors purgé avec le milieu SF complet contenant les cytokines. b) Ensemencement :
3,6 10 cellules de buffy coat décongelé du sang de cordon sont ajustées à 10 cellules/ml. Les cellules sont injectées dans la chambre d'incubation des BR (volume de la chambre 3,6 ml) à l'aide d'un moyen d'ensemencement, à la vitesse de 0,5 ml/min. Les BR ensemencés sont ensuite installés dans une étuve à 37°C alimentée en CO2 à 5 %.
La ventilation des cellules est assurée à l'aide d'un compresseur aspirant directement l'atmosphère de l'étuve. Des moyens d'apport du milieu de culture frais, des moyens d'apport des différents facteurs de croissance, ainsi que des moyens de régulation dissociés et séquentiels des flux de milieu de culture frais et de facteurs de croissance (pompes Pl-Pn) permettent d'assurer aux cellules, une alimentation modulée en milieu. Pour l'expérience, 2 BR sont ensemencés, l'un (BRI) dont le débit sera constant pendant les 14 jours de la culture, c'est-à-dire : 3,6 ml/j soit 1 volume-chambre/j, l'autre (BR2) dont le débit variera de 1 à 4 vol-ch/j. A partir du 5ème jour de la culture une numération cellulaire des BR est effectuée sur un aliquot quotidiennement ; le débit du BR2 étant ajusté en fonction de l'expansion cellulaire à concurrence de 4 vol-ch/j.
Parallèlement, un témoin de culture en condition statique est initié en plaque 6-puits à raison de 1,8 10 cellules/1,8 ml. L'entretien du témoin est assuré à J6 par adjonction de 1,8 ml de milieu complet fraîchement préparé contenant les cytokines.
Au jour 14 de la culture, les cellules des BR et du témoin sont recueillies en totalité et lavées en PB S. La viabilité des cellules est déterminée. Sur chaque échantillon, la morphologie des cellules est évaluée par une cytologie sur lame colorée au May Grunwald Giemsa. Les progéniteurs granulo-macrophagiques (CFU- GM) et érythroïdes (BFU-E) sont plantés à partir des différents échantillons. Les CFU-GM et BFU-E sont plantés en méthyl-cellulose (Sigma) stimulée par 50 ng/ml de SCF, 10 ng/ml d'IL3, 3 U/ml d'Epo, 20 ng/ml de GM-CSF et de G-CSF. La lecture des colonies s'effectue après 14 jours d'incubation à 37°C sous 5 % CO2. 2 500 cellules/boîte sont plantées à J0 de la culture et de 2 000 à 3.10 cellules à J14 en fonction du nombre de cellules obtenues à J14.
- Expression des résultats :
Les résultats sont exprimés en « fois d'expansion par rapport au J0 de la culture ». Pour cela, le nombre de cellules ou de progéniteurs obtenus au 14ème jour de la culture liquide est divisé par le nombre de cellules ou pro géniteurs générés au départ de l'expérience.
* Résultats :
La numération journalière sur des aliquots à partir du J5 des BRI et BR2 permet de suivre la cinétique d'expansion cellulaire sans qu'il soit nécessaire de
« condamner » un BR uniquement à cet effet. A J14, la numération de l'aliquot est doublée par une numération effectuée sur la totalité des cellules récupérées. Après la chute drastique des cellules au cours de la première semaine dans les BR
(comportement similaire dans le témoin), la production cellulaire réaugmente peu à peu à partir du J9 de la culture. L'augmentation du débit dans le BR2 accentue la production cellulaire (figure 3). Celle-ci est 2,7 fois plus importante dans le BR à débit variable (BR2) comparativement au BR à débit constant (BRI). Il est intéressant de constater que la production cellulaire du sang de cordon décongelé puis mis en culture en condition statique aboutit, elle, à une perte de 75 % des cellules par rapport au niveau initial, contrairement au BR2 (figure 4A).
La figure 4B montre que l'expansion des progéniteurs granulo- macrophagiques (CFU-GM) varie de 4 à 5 fois par comparaison à J0, par conséquent, l'amplification des cellules matures obtenues dans le BR2 (figure 4A) ne s'est pas opérée au détriment du compartiment hématopoïétique plus immature à savoir les CFU-GM.
Cette expérience illustre le fait que des cellules du sang de cordon non purifiées (puisqu'il s'agit de globules blancs totaux), congelées à -80°C pendant 3 mois et mises en culture 14 jours en présence d'un substitut de sérum supplémenté en cytokines dans un BR à débit constant sont capables d'assurer une production cellulaire 2,4 fois plus importante qu'en condition statique. Comparativement au témoin, cette production cellulaire peut-être amplifiée de plus de 6 fois lorsque le débit du BR augmente. De plus, l'expansion de cellules matures permet parallèlement une production réelle des progéniteurs CFU-GM (4 fois, comparativement au niveau initial).
Ainsi que cela ressort de ce qui précède, l'invention ne se limite nullement à ceux de ses modes de mise en oeuvre, de réalisation et d'application qui viennent d'être décrits de façon plus explicite ; elle en embrasse au contraire toutes les variantes qui peuvent venir à l'esprit du technicien en la matière, sans s'écarter du cadre, ni de la portée, de la présente invention.

Claims

REVENDICATIONS
1°) Dispositif de culture cellulaire ou bioréacteur pour l'amplification en milieu stérile de cellules hématopoïétiques, du type comprenant une chambre de culture cellulaire (X), délimitée par une enceinte et dans laquelle les cellules à amplifier sont confinées, lequel dispositif est caractérisé :
* en ce que ladite chambre de culture cellulaire comprend au moins une paroi intérieure constituée par un tamis micronique (M*) assurant le confinement des cellules en suspension dans un milieu de culture liquide et permettant la sortie du milieu usé, lequel tamis micronique (M-) présente un diamètre de pores compris entre 0,1 et 2 μm, et constitue au moins la paroi intérieure aval de la chambre de culture cellulaire,
- en ce qu'elle inclut un ensemble de capillaires (C) à paroi perméable aux gaz, disposés à intervalle sensiblement égaux pour former un/plusieurs sous-ensembles à distribution homogène pour les échanges gazeux avec les cellules, et * en ce que ladite chambre de culture cellulaire comporte, en outre :
- un collecteur d'entrée (13) de milieu de culture qui coopère avec des moyens d'apport du milieu de culture frais (Rj...Rn ; 10, 10'), des moyens d'apport de différents facteurs de croissance et des moyens de régulation (Pt...Pn) dissociés et séquentiels des flux de milieu de culture frais et de facteurs de croissance, le moyen de régulation du flux de milieu frais permettant d'obtenir un débit variable de milieu de culture compris entre 0 et 50 volumes-chambre/jour et un collecteur de sortie (14) du milieu de culture, qui coopèrent avec des moyens de mise sous pression, ainsi que
- des moyens d'ensemencement (XI, X2) des cellules à amplifier et
- des moyens de collecte (X3) des cellules amplifiées. 2°) Dispositif selon la revendication 1, caractérisé en ce que ledit milieu de culture frais est apporté à la chambre de culture cellulaire par filtration frontale.
3°) Dispositif selon la revendication 1, caractérisé en ce que ledit milieu de culture est apporté à la chambre de culture cellulaire par filtration tangen- tielle, au moyen d'une nappe de tubes (T) à paroi perméable au milieu nutritionnel frais, rigides et de diamètre compris entre 1 mm et 20 mm, montés en parallèle entre ledit collecteur d'entrée (13) et ledit collecteur de sortie (14), lesdits tubes (T) étant montés dans un circuit en boucle fermée et parcourus chacun de bout en bout par un débit de milieu nutritionnel frais plusieurs fois supérieur à celui traversant sa paroi, pour maintenir une pression entraînant une perte de charge, lorsque le milieu frais traverse les parois des tubes, supérieur à 10 mbars. 4°) Dispositif selon la revendication 3, caractérisé en ce que le débit du milieu parcourant chaque tube (T) correspond à une vitesse d'écoulement comprise entre 0,1 et 1 dm/s, qui garantit la filtration tangentielle du milieu frais à travers la paroi desdits tubes. 5°) Dispositif selon la revendication 3 ou la revendication 4, caractérisé en ce que l'ensemble de capillaires (C) sont disposés à intervalle sensiblement égaux pour former, de l'un et/ou de l'autre côté de la nappe de tubes (T), un/plusieurs sous-ensembles.
6°) Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre un système de mesure optique (15) pour suivre en continu la densité cellulaire.
7°) Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il inclut en outre un circuit en boucle fermée (Bl) de recyclage du milieu usé. 8°) Procédé d'amplification de cellules hématopoïétiques en milieu stérile, caractérisé en ce qu'il comprend :
- la séparation des cellules hématopoïétiques, notamment à partir de sang de cordon, de moelle osseuse ou de sang périphérique,
- la mise en suspension desdites cellules dans un milieu de culture convenable, pour obtenir 10 à 10 cellules hématopoïétiques/ml,
- l'injection de ladite suspension, à une vitesse n'endommageant pas lesdites cellules, dans un dispositif selon l'une quelconque des revendications 1 à 7, alimenté simultanément avec des gaz convenables (O2 et CO2), un milieu de culture liquide frais et des facteurs de croissance, de manière à ce que le débit de milieu de culture frais soit compris entre 0 et 50 volumes-chambre/jour, de préférence entre 0 et 6 volumes-chambre/jour et à ce que le flux de facteurs de croissance soit dissocié et séquentiel par rapport au flux de milieu de culture liquide frais,
- la culture desdites cellules pendant 6 à 28 jours à 37°C en atmosphère enrichie en CO2 et appauvrie en O2 et - la collecte des cellules en fin de culture.
9°) Utilisation d'un bioréacteur comprenant une chambre de culture cellulaire (X) délimitée par une enceinte et comprenant au moins une paroi intérieure sous la forme d'un tamis micronique (M-) assurant le confinement des cellules en milieu liquide et permettant la sortie du milieu de culture usé, lequel tamis micronique (M-J présente un diamètre de pores compris entre 0,1 et 2 μm et constitue au moins la paroi intérieure aval de la chambre de culture cellulaire, qui inclut un ensemble de capillaires (C) à paroi perméables aux gaz, disposés à intervalle sensiblement égaux pour former un/plusieurs sous-ensembles à distribution homogène pour les échanges gazeux avec les cellules, un collecteur d'entrée (13) de milieu de culture qui coopère avec des moyens d'apport du milieu de culture liquide frais, des moyens d'apport de différents facteurs de croissance et des moyens de régulation dissociés et séquentiels des flux de milieu de culture frais et de facteurs de croissance (R^-.R-, ; P-....P-, ; 10 ; 10'), le moyen de régulation du flux de milieu frais permettant d'obtenir un débit variable de milieu de culture compris entre 0 et 50 volumes-chambres/jour, de préférence entre 0 et 6 volumes-chambre/jour et un collecteur de sortie (14) du milieu de culture, qui coopèrent avec des moyens de mise sous pression, ainsi que des moyens d'ensemencement (XI ; X2) et des moyens de collecte (X3) des cellules, pour l'amplification en milieu stérile de cellules hématopoïétiques
10°) Kit de culture à usage unique pour l'amplification de cellules hématopoïétiques, caractérisé en ce qu'il comprend un dispositif selon l'une quelconque des revendications 1 à 7. 11°) Appareil de culture pour l'amplification de cellules hématopoïétiques, caractérisé en ce qu'il comprend :
- un dispositif selon l'une quelconque des revendications 1 à 7, associé à des moyens de régulation des conditions de culture,
- un système de contrôle-commande incluant des moyens de saisie et de stockage des données nécessaires au contrôle dudit dispositif et notamment à la mise en service et à l'arrêt des moyens d'apport de milieu de culture frais, des moyens d'apport des différents facteurs de croissance et des moyens de régulation des flux, suivant une séquence prédéfinie et des moyens de régulation des conditions de culture,
- une enceinte (E) thermostatée apte à recevoir ledit dispositif, et - des réservoirs de réactifs (R-^-R,,) disposés, dans des conteneurs réfrigérés (réservoir de milieu de culture frais et réservoirs de facteurs de croissance) ou non (réservoir de milieu de culture usé et réservoir de collecte des cellules en fin de culture).
PCT/FR1998/002548 1997-11-27 1998-11-26 Dispositif d'amplification de cellules hematopoietiques et ses applications WO1999028438A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/14920 1997-11-27
FR9714920A FR2771421B1 (fr) 1997-11-27 1997-11-27 Dispositif d'amplification de cellules hematopoietiques et ses applications

Publications (1)

Publication Number Publication Date
WO1999028438A1 true WO1999028438A1 (fr) 1999-06-10

Family

ID=9513868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/002548 WO1999028438A1 (fr) 1997-11-27 1998-11-26 Dispositif d'amplification de cellules hematopoietiques et ses applications

Country Status (2)

Country Link
FR (1) FR2771421B1 (fr)
WO (1) WO1999028438A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053797A1 (fr) * 1999-03-09 2000-09-14 Acordis Industrial Fibers Gmbh Procede pour tester des principes actifs in vitro, dispositif approprie et son utilisation
WO2000053796A1 (fr) * 1999-03-09 2000-09-14 Acordis Industrial Fibers Gmbh Module a membranes destine a tester des principes actifs sur des cellules
FR2794130A1 (fr) * 1999-05-26 2000-12-01 Bertin Technologies Sa Procede et dispositif de culture de cellules a applications multiples
CN100390264C (zh) * 2000-05-10 2008-05-28 特里施泰姆贸易(塞浦路斯)有限公司 一种设备
US8163536B2 (en) * 2000-05-10 2012-04-24 Tristem Trading (Cyprus) Limited Device for preparing an undifferentiated cell from a more committed cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1201746A1 (fr) * 2000-10-31 2002-05-02 Roche Vitamins AG Optimisation de procédés de fermentation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015570A1 (fr) * 1990-03-30 1991-10-17 Bertin & Cie Dispositif de culture cellulaire
WO1993018132A1 (fr) * 1992-03-04 1993-09-16 The Regents Of The University Of Michigan Methodes, compositions et dispositifs pour conserver et developper les cellules souches et/ou hematopoietiques humaines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015570A1 (fr) * 1990-03-30 1991-10-17 Bertin & Cie Dispositif de culture cellulaire
EP0474847A1 (fr) * 1990-03-30 1992-03-18 Bertin & Cie Dispositif de culture cellulaire.
WO1993018132A1 (fr) * 1992-03-04 1993-09-16 The Regents Of The University Of Michigan Methodes, compositions et dispositifs pour conserver et developper les cellules souches et/ou hematopoietiques humaines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053797A1 (fr) * 1999-03-09 2000-09-14 Acordis Industrial Fibers Gmbh Procede pour tester des principes actifs in vitro, dispositif approprie et son utilisation
WO2000053796A1 (fr) * 1999-03-09 2000-09-14 Acordis Industrial Fibers Gmbh Module a membranes destine a tester des principes actifs sur des cellules
US6410307B1 (en) 1999-03-09 2002-06-25 Acordis Industrial Fibers Gmbh Membrane module for testing active substances at cells
FR2794130A1 (fr) * 1999-05-26 2000-12-01 Bertin Technologies Sa Procede et dispositif de culture de cellules a applications multiples
WO2000073411A1 (fr) * 1999-05-26 2000-12-07 Bertin Technologies Procede et dispositif de culture de cellules a applications multiples
CN100390264C (zh) * 2000-05-10 2008-05-28 特里施泰姆贸易(塞浦路斯)有限公司 一种设备
US8163536B2 (en) * 2000-05-10 2012-04-24 Tristem Trading (Cyprus) Limited Device for preparing an undifferentiated cell from a more committed cell

Also Published As

Publication number Publication date
FR2771421A1 (fr) 1999-05-28
FR2771421B1 (fr) 2001-05-04

Similar Documents

Publication Publication Date Title
EP0474847B1 (fr) Dispositif de culture cellulaire
US5728581A (en) Method of expanding hematopoietic stem cells, reagents and bioreactors for use therein
US6468792B1 (en) Process and device for culturing and/or treating cells
Tharakan et al. A radial flow hollow fiber bioreactor for the large‐scale culture of mammalian cells
US20070122904A1 (en) Method and apparatus for culturing cells
CA2678893C (fr) Procede de commande de deplacement de cellules dans des bioreacteurs a fibres creuses
AU687059B2 (en) High performance cell culture bioreactor and method
US8841122B2 (en) Systems and methods for expanding high density non-adherent cells
JPS61108373A (ja) 細胞培養装置および方法
ES2865950T3 (es) Biorreactor de meandro y procedimiento para el aislamiento y la multiplicación de células de partes de tejido de tumores, metástasis y otros tejidos
JP2003503022A5 (fr)
JP2003510068A (ja) 細胞を培養するための方法および装置
JP2009533041A (ja) 高性能バイオプロセス装置
WO1999028438A1 (fr) Dispositif d'amplification de cellules hematopoietiques et ses applications
EP1180134B1 (fr) Procede et dispositif de culture de cellules a applications multiples
AU2009201912B2 (en) Process for preserving insulin-secreting cells intended to be transplanted in a patient
JP2019033682A (ja) 微生物培養システム及び微生物の培養方法
JP2019037182A (ja) 微生物培養システム
FR2786783A1 (fr) Poche comportant un textile poreux biocompatible pour l'expansion tridimensionnelle in vitro de cellules notamment a usage therapeutique
JPH0352954B2 (fr)
JP2006518185A5 (fr)
JPH05336961A (ja) 株化した哺乳動物細胞による物質の生産方法
Bond et al. An Automated System for Hollow Fiber Cell Culture
JPS63296686A (ja) 植物細胞用培養装置
WO2009123657A1 (fr) Ensemble bioréacteur et procédés associés

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA