WO1999023384A1 - Verstellungsantrieb für rotorblätter von windkraftanlagen - Google Patents

Verstellungsantrieb für rotorblätter von windkraftanlagen Download PDF

Info

Publication number
WO1999023384A1
WO1999023384A1 PCT/AT1998/000268 AT9800268W WO9923384A1 WO 1999023384 A1 WO1999023384 A1 WO 1999023384A1 AT 9800268 W AT9800268 W AT 9800268W WO 9923384 A1 WO9923384 A1 WO 9923384A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor blade
rotor blades
lock
blade
Prior art date
Application number
PCT/AT1998/000268
Other languages
English (en)
French (fr)
Inventor
Gerald Hehenberger
Original Assignee
Gerald Hehenberger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerald Hehenberger filed Critical Gerald Hehenberger
Priority to EP98954052A priority Critical patent/EP1029176B1/de
Priority to DE59810927T priority patent/DE59810927D1/de
Priority to AU11351/99A priority patent/AU1135199A/en
Priority to AT98954052T priority patent/ATE261062T1/de
Priority to US09/530,751 priority patent/US6428274B1/en
Priority to DK98954052T priority patent/DK1029176T3/da
Publication of WO1999023384A1 publication Critical patent/WO1999023384A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/75Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism not using auxiliary power sources, e.g. servos
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/77Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/78Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by aerodynamic forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • F05B2260/901Braking using aerodynamic forces, i.e. lift or drag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a device for adjusting rotor blades rotatably mounted on a rotor hub of a wind turbine with a drive for rotating the rotor blades.
  • Wind turbines are systems that are exposed to high loads.
  • One method of reducing the forces acting on the system is to use a rotor blade adjustment.
  • the rotor blade adjustment can also be used as a braking system in that the rotor blades are turned in the direction of the sail position to switch off the wind turbine, and the system loses power or speed.
  • the rotor blades if they are not held in place, the rotor blades have a tendency to twist due to inertial or gravitational forces (the center of gravity of the rotor blades lies outside their axis of rotation) and external wind forces.
  • the wind forces cause the rotor blades to twist in the direction of the sail position and the mass forces twist in both directions according to the respective position of the rotor blades during a rotor revolution, the mass forces usually predominating. Rotation of the rotor blades beyond the feathering position is usually limited by a mechanical stop.
  • the rotor blades are therefore not held firmly, they execute an oscillating rotary movement about their axis of rotation over the course of a rotor revolution, as a result of which the wind power plant cannot be brought to a standstill by the wind forces.
  • the rotor blade adjustment is usually carried out by a central linear drive in combination with a mechanical linkage.
  • Newer systems use a mechanical / electrical or mechanical / hydraulic single sheet adjustment.
  • each rotor blade is adjusted individually and the synchronism of the rotor blade adjustment is realized by means of a control unit.
  • the advantage of a single blade adjustment is that if one drive unit fails, the remaining drive units are still operational, in order to turn these rotor blades in the feathered position, in order to safely stop the system bring.
  • the invention has for its object to provide a rotor blade adjustment in which the rotation of the rotor blades is possible with less technical effort if the power supply fails in the feathering position.
  • the lock is deactivated in normal operation and is activated when the power supply fails, which means that the rotor blades can only turn to the feathering position and are held there until the system has come to a standstill.
  • FIG. 5 shows another embodiment of the backstop of FIG. 3 and
  • FIG. 6 shows an embodiment of a rotor blade bearing and a rotor blade in order to achieve an increased restoring torque of the rotor blades.
  • a rotor blade 1 shows the embodiment of a rotor blade adjustment most frequently used in wind turbines.
  • a rotor blade 1 is attached to an inner ring of a pivot bearing 2. For reasons of clarity, only one rotor blade 1 is shown. Usually, however, more than one rotor blade 1, usually three rotor blades 1, are provided.
  • the outer ring of this rotary bearing 2 is screwed to a rotating rotor hub 3.
  • the linear movement of a push rod 5 is converted into a rotary movement of the rotor blades 1 by means of a mechanical linkage 4.
  • the push rod 5, which also rotates with the rotor is mounted in a rotor shaft 6 and a gear 7.
  • a non-rotating hydraulic cylinder 8 initiates the linear movement against the force of a spring 9 in the push rod 5, a thrust bearing 10 decoupling the rotating push rod 5 from the non-rotating components such as spring 9 and hydraulic cylinder 8 in the direction of rotation. If the power supply to the system fails, the rotor blades 1 are moved by the spring 9 via the linkage
  • Fig. 2 shows a further embodiment of a rotor blade adjustment of the prior art.
  • the rotor blade 1 is fastened to rotary bearings 11 with an internal toothing.
  • a geared motor 12 with a pinion 13, which rotates the rotor blade 1, is assigned to each rotor blade 1.
  • Each geared motor 12 is controlled via a converter 14. Power is supplied in normal operation for all drive units via a line 15 and a slip ring 16.
  • a control unit 18 ensures the synchronism of the rotor blades 1. In the event of a failure of this power supply, each converter 14 is supplied separately from a battery emergency power supply 17, as a result of which the rotor blades 1 can also be brought into a feathered state in this case.
  • FIG. 3 shows a first embodiment of a rotor blade adjustment according to the present invention.
  • the rotor blade 1 is fastened to a rotary bearing 2 with an internal toothing 11.
  • the outer ring of this rotary bearing 2 is screwed to the rotating rotor hub 3.
  • Each rotor blade 1 (usually three rotor blades 1) is rotated separately by means of the geared motor 12 and the pinion 13.
  • Each geared motor 12 is controlled via a converter 14. Power is supplied to all drive units via line 15 and slip ring 16. If this power supply fails, a lock 19 connected to geared motor 12 means that the rotor blades can only rotate in the direction of the feathering position.
  • FIG. 4 shows a first embodiment according to the invention of the lock 19 from FIG. 3, which is designed as a backstop.
  • the geared motor 12 has a gear 20, a stator 21 and a rotor with an extended rotor shaft 22.
  • the backstop 19 has a housing 23 which is fixedly connected to the stator 21 and a lower part 24 of a freewheel which is likewise permanently connected to the stator 21.
  • An upper part 41 of the freewheel has a clutch part 25 with a brake lining 26 on the side facing away from the lower part 24.
  • the coupling part 25 is freely rotating and axially displaceable on the rotor shaft 22.
  • the coupling part 25 and the lower part 24 have a sawtooth-like profile 38 on the mutually facing sides, which allows mutual rotation only in one direction.
  • the upper part 41 also has a brake disc 27, which is also axially displaceable but connected to the rotor shaft 22 in a rotational test.
  • the rotor shaft 22 has a plate-shaped end 28.
  • a spring 29 is prestressed under pressure between the plate-shaped end 28 and the brake disc 27.
  • the brake disc 27 is lifted from the brake lining 26 by an electromagnet 30 against the force of the spring 29, as a result of which the geared motor 12 can be freely rotated in both directions.
  • the brake disc 27 and the brake pad 26 is omitted and the spring 29 presses on the coupling part 25, and that the coupling part 25 is attracted directly by the electromagnet 30.
  • the coupling part 25 must then of course be non-rotatably connected to the shaft 22.
  • the electromagnet 30 is automatically deactivated, as a result of which the brake disc 27 is pressed against the brake lining 26 by the force of the spring 29, so that the clutch part 25 of the freewheel is connected to the rotor shaft 22 in a rotationally fixed manner. Due to the sawtooth-like profile 38 of the coupling part 25 and the lower part 24 of the freewheel as well as due to the axially displaceability of the coupling part 25 against the force of the spring 29, the rotor shaft 22 of the motor 12 and in the sequence of the rotor blade 1 is only in the sail position up to one mechanical stop rotatable.
  • the geared motor 12 in turn has a gear 20, a stator 21 and a rotor with an extended rotor shaft 22.
  • the lock 19 has the housing 23 which is fixedly connected to the stator 21 and a lower part 24 which is likewise fixedly connected to the stator 21 and to which a brake lining 31 is fastened.
  • the brake disc 27, which forms the upper part 41 of the lock, is here also axially displaceable and non-rotatably connected to the rotor shaft 22.
  • the rotor shaft 22 has a plate-shaped end 28, and the spring 29 is biased between the plate-shaped end 28 and the brake disc 27 under pressure.
  • the electromagnet 30 lifts the brake disc 27 against the force of the spring 29 from the brake lining 31, as a result of which the geared motor 12 can be freely rotated in both directions. If the electromagnet 30 is deactivated, the brake disc 27 is pressed against the brake lining 31 by the force of the spring 29, whereby the brake lining 31 is connected in a rotationally fixed manner to the rotor shaft 22, thereby preventing the rotor shaft 22 from rotating.
  • the electromagnet 30 of the lock of each individual geared motor 12 is supplied with power separately and also operated individually by means of a control unit.
  • the electromagnet 30 is activated only in the area during the rotation of the rotor, and the brake disc 27 is thereby lifted off the brake pad 31 in which the rotor blades - due to the combination raised, in which the rotor blades - due to the combination of external wind forces and mass forces - move towards the feathering position.
  • the result of this is that the rotor blades only move in the direction of the feathering position, and the rotor is braked continuously.
  • an emergency power supply in the form of a battery 17 is provided for the power supply of the electromagnets 30 and the control, which, however, can be smaller than the battery 17 in the prior art, in which the battery 17 consumes the energy, due to the relatively low power requirement for the active turning of the rotor blades 1 to the feathering position and the holding of the rotor blades 1 in this position until the system has come to a complete standstill.
  • a battery 17 (which is provided anyway in the embodiment of FIG. 5) is used to at least partially, e.g. by 10 ° to 20 ° from the operating position in the direction of the sail position in order to prevent the rotor from braking as quickly as possible or to accelerate further in strong wind gusts.
  • the backstop 19 is activated in the embodiment of FIG. 4, which prevents the rotor blades 1 from subsequently turning back into the operating position.
  • the embodiment of FIG. 5 after this rotation of the rotor blades 1 by preferably 10 ° to 20 °, depending on whether the inertial forces are causing rotation in the sail position or not, the
  • Lock 19 kept open or activated.
  • Fig. 6 shows embodiments of rotor blade bearing and rotor blade in the feathered position, with which an increased restoring moment of the rotor blades 1 can be achieved.
  • the rotor blade 1 is fastened to a rotary bearing 32.
  • the outer ring of this rotary bearing 32 is screwed to the rotating rotor hub 3.
  • the rotary bearing 32 has a screw-on surface for the rotor blades 1 that is slightly inclined (approximately 1 ° to 2 °) with respect to the screw-on surface to the rotor hub 3
  • Rotary bearing 32 also inclined by this angle ⁇ . It is thereby achieved that the force vector 35 resulting from the external wind forces acts outside the axis of rotation 34, whereby an additional torque 36 acts about the axis of rotation 34 in the direction of the sail position.
  • an additional weight 37 can be attached to the end edge of the rotor blades 1, which also causes an additional torque about the axis of rotation 34 which, depending on the position of the rotor blade 1, causes a rotation in the direction of the working position or sail position during a rotor revolution. Since, in the event of a power supply failure, the lock only allows the rotor blades 1 to rotate in the direction of the feathering position and blocks the opposite direction, these measures result in an accelerated turning of the rotor blades 1 in the direction of the feathering position and thus accelerate the braking of the rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Wind Motors (AREA)
  • Air-Flow Control Members (AREA)
  • Electroluminescent Light Sources (AREA)
  • Saccharide Compounds (AREA)

Abstract

Eine Vorrichtung zum Verstellen von an einer Rotornabe einer Windkraftanlage drehbar gelagerten Rotorblättern (1) weist einen Antrieb (12) zum Verdrehen der Rotorblätter auf. Die Rotorblattverstellung kann auch als Bremssystem eingesetzt werden, indem die Rotorblätter (1) zur Abschaltung der Windkraftanlage in Richtung Segelstellung verdreht werden, und so die Anlage an Leistung bzw. Drehzahl verliert. Um das Abbremsen der Anlage mittels Rotorblattverstellung auch bei Ausfall der Leistungsversorgung sicherzustellen, ist mit den Rotorblättern (1) eine aktivierbare Rücklaufsperre (19) verbunden, welche ein Verdrehen der Rotorblätter (1) aus der Segelstellung in die Betriebsstellung verhindert. Die Sperre (19) ist im Normalbetrieb deaktiviert und wird bei Ausfall der Leistungsversorgung automatisch aktiviert, wodurch sich die Rotorblätter (1) nur mehr in die Segelstellung drehen können und dort gehalten werden, bis die Anlage zum Stillstand gekommen ist.

Description

VERSTELLUNGSANTRIEB FÜR ROTORBLÄTTER VON WINDKRAFTANLAGEN
Die Erfindung betrifft eine Vorrichtung zum Verstellen von an einer Rotornabe einer Windkraftanlage drehbar gelagerten Rotorblättern mit einem Antrieb zum Verdrehen der Rotorblätter.
Windkraftanlagen sind Anlagen, die hohen Beanspruchungen ausgesetzt sind. Eine Methode, die auf die Anlage wirkenden Kräfte zu reduzieren, ist der Einsatz einer Rotorblattverstellung. Neben dem Effekt der Lastreduktion kann die Rotorblattverstellung auch als Bremssystem eingesetzt werden, indem die Rotorblätter zur Abschaltung der Windkraftanlage in Richtung Segelstellung verdreht werden, und so die Anlage an Leistung bzw. Drehzahl verliert.
Grundsätzlich haben die Rotorblätter, soferne sie nicht festgehalten werden, die Tendenz, sich bedingt durch Massenkräfte bzw. Schwerkräfte (der Massenschwerpunkt der Rotorblätter liegt außerhalb ihrer Drehachse) und äußere Windkräfte zu verdrehen. Die Windkräfte bewirken hierbei eine Verdrehung der Rotorblätter in Richtung Segel - Stellung und die Massenkräfte eine Verdrehung in beide Richtungen entsprechend der jeweiligen Position der Rotorblätter während einer Rotorumdrehung, wobei die Massenkrafte meist überwiegen. Eine Verdrehung der Rotorblätter über die Segelstellung hinaus wird üblicherweise durch einen mechanischen Anschlag begrenzt. Werden daher die Rotorblätter nicht festgehalten, so führen sie über den Verlauf einer Rotorumdrehung eine pendelnde Drehbewegung um ihre Drehachse aus, wodurch die Windkraftanlage bedingt durch die Windkräfte nicht zum Stillstand gebracht werden kann.
Bei Anlagen entsprechend dem Stand der Technik, welche großteils drei Rotorblätter haben, wird die Rotorblattverstellung meist durch einen zentralen Linearantrieb in Kombination mit einem mechanischen Gestänge ausgeführt. Neuere Systeme bedienen sich einer mechanisch/elektrischen bzw. mechanisch/hydraulischen Einzelblattver- Stellung. Bei diesen Systemen wird jedes Rotorblatt einzeln verstellt und mittels einer Steuerungseinheit der Gleichlauf der Rotorblattverstellung realisiert. Der Vorteil einer Einzelblattverstellung ist, daß bei Ausfall einer Antriebseinheit die restlichen Antriebseinheiten noch einsatzfähig sind, um diese Rotorblätter in Segelstellung zu verdrehen, um die Anlage sicher zum Stillstand bringen .
Um das Abbremsen der Anlage mittels Rotorblattverstellung auch bei Ausfall der Leistungsversorgung sicherzustellen, ist diese bei Anlagen des Standes der Technik zB. mit einer Batterie-Notstrom- versorgung ausgestattet oder die Rotorblätter werden gegen Federkraft oder Hydraulikdruck in die Arbeitsposition gebracht, womit eine Rückstellung der Rotorblätter in die Segelstellung in jedem Fall gewährleistet ist.
Die Ausstattung einer Rotorblattverstellung mit einer Batterie- Notstromversorgung ist mit relativ hohen Kosten verbunden, da die für das Verdrehen in die bzw. das Halten der Rotorblätter in der Segelstellung bis zum Stillstand der Anlage erforderlichen Batterien eine nicht unbeträchtliche Leistung bzw. Kapazität aufweisen müssen.
Im Falle einer Verstellung der Rotorblätter gegen Federkraft oder Hydraulikdruck sind entsprechend aufwendige mechanische und hydraulische Vorrichtungen notwendig, wobei die Rotorblattverstellung auch für höhere Lasten auszulegen ist, da auch die Federkraft oder die Kraft der Hydraulik überwunden werden muß.
Der Erfindung liegt die Aufgabe zugrunde, eine Rotorblattverstellung zur Verfügung zu stellen, bei der das Verdrehen der Rotorblätter bei Ausfall der Leistungsversorgung in die Segelstellung mit geringerem technischem Aufwand möglich ist.
Gelöst wird diese Aufgabe mit einer Vorrichtung mit den Merkmalen des Anspruches 1.
Die Sperre ist im Normalbetrieb deaktiviert und wird bei Ausfall der LeistungsVersorgung aktiviert, wodurch sich die Rotorblätter nur mehr in die Segelstellung drehen können und dort gehalten werden, bis die Anlage zum Stillstand gekommen ist.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung von Ausführungs- beispielen der Erfindung unter Bezugnahme auf die Zeichnungen.
Es zeigen: Fig. 1 und 2 zwei Ausführungsformen von Rotorblattverstelleinrich- tungen gemäß dem Stand der Technik,
Fig. 3 eine Ausführungsform der Rotorblattverstellung gemäß vorlie- gender Erfindung,
Fig. 4 eine Ausführungsform der Rücklaufsperre von Fig. 3,
Fig.5 eine weitere Ausführungsform der Rücklaufsperre von Fig. 3 und
Fig. 6 eine Ausführungsform einer Rotorblattlagerung und eines Rotorblattes, um ein erhöhtes Rückstellmoment der Rotorblätter zu erzielen.
Fig. 1 zeigt die bei Windkraftanlagen am häufigsten verwendete Ausführungsform einer Rotorblattverstellung. Ein Rotorblatt 1 ist an einem Innenring eines Drehlagers 2 befestigt. Aus Gründen der Übersichtlichkeit ist nur ein Rotorblatt 1 eingezeichnet. Üblicherweise sind aber mehr als ein Rotorblatt 1, meist drei Rotorblätter 1, vorgesehen. Der Außenring dieses Drehlagers 2 ist mit einer rotierenden Rotornabe 3 verschraubt. Mittels eines mechanischen Gestänges 4 wird die Linearbewegung einer Schubstange 5 in eine Drehbewegung der Rotorblätter 1 umgewandelt. Die mit dem Rotor mitrotierende Schubstange 5 ist in einer Rotorwelle 6 und einem Getriebe 7 gela- gert . Ein sich nicht drehender Hydraulikzylinder 8 leitet die Linearbewegung gegen die Kraft einer Feder 9 in die Schubstange 5 ein, wobei ein Drucklager 10 die rotierende Schubstange 5 von den nicht rotierenden Bauteilen wie Feder 9 und Hydraulikzylinder 8 in Drehrichtung entkoppelt. Bei einem Ausfall der Leistungsversorgung der Anlage werden die Rotorblätter 1 von der Feder 9 über das Gestänge
4, 5 in die Segelstellung gedreht.
Fig. 2 zeigt eine weitere Ausführungsform einer Rotorblattverstellung des Standes der Technik. Das Rotorblatt 1 ist an Drehlagern 11 mit einer Innenverzahnung befestigt. Der Außenring dieses Drehlagers
11 ist mit der rotierenden Rotornabe 3 verschraubt. Jedem Rotorblatt 1 ist ein Getriebemotor 12 mit einem Ritzel 13 zugeordnet, der das Rotorblatt 1 verdreht. Jeder Getriebemotor 12 wird über jeweils einen Umrichter 14 angesteuert. Die Leistungsversorgung erfolgt im Normalbetrieb für alle Antriebseinheiten über eine Leitung 15 und einen Schleifring 16. Eine Steuereinheit 18 gewährleistet den Gleichlauf der Rotorblätter 1. Im Falle eines Ausfalles dieser Leistungsversorgung wird jeder Umrichter 14 getrennt von einer Batterie-Notstromversorgung 17 versorgt, wodurch die Rotorblätter 1 auch in diesem Fall in Segelstellung gebracht werden können.
Fig. 3 zeigt eine erste Ausführungsform einer Rotorblattverstellung gemäß vorliegender Erfindung. Das Rotorblatt 1 ist, wie an sich bekannt, an einem Drehlager 2 mit einer Innenverzahnung 11 be- festigt. Der Außenring dieses Drehlagers 2 ist mit der rotierenden Rotornabe 3 verschraubt . Mittels des Getriebemotors 12 und des Ritzels 13 wird jedes Rotorblatt 1 (üblicherweise drei Rotorblätter 1) separat verdreht. Jeder Getriebemotor 12 wird über jeweils einen Umrichter 14 angesteuert. Die Leistungsversorgung erfolgt für alle Antriebseinheiten über die Leitung 15 und den Schleifring 16. Bei einem Ausfall dieser Leistungsversorgung bewirkt eine mit dem Getriebemotor 12 verbundene Sperre 19, daß sich die Rotorblätter nur in Richtung Segelstellung verdrehen können.
Fig. 4 zeigt eine erste, erfindungsgemäße Ausführungsform der Sperre 19 von Fig. 3, die als Rücklaufsperre ausgeführt ist. Der Getriebemotor 12 weist ein Getriebe 20, einen Stator 21 und einen Rotor mit verlängerter Rotorwelle 22 auf. Die Rücklaufsperre 19 weist ein mit dem Stator 21 fest verbundenes Gehäuse 23 und einen ebenfalls mit dem Stator 21 fest verbundenen Unterteil 24 eines Freilaufes auf. Ein Oberteil 41 des Freilaufes weist einen Kupplungsteil 25 mit einem Bremsbelag 26 auf der vom Unterteil 24 abgewandten Seite auf. Der Kupplungsteil 25 ist frei drehend und achsial verschiebbar auf der Rotorwelle 22 gelagert. Der Kupplungsteil 25 und der Unterteil 24 weisen auf den einander zugewandten Seiten ein sägezahnartiges Profil 38 auf, das eine gegenseitigte Verdrehung nur in eine Richtung erlaubt. Der Oberteil 41 weist weiters eine Bremsscheibe 27 auf, die ebenfalls achsial verschiebbar jedoch drehtest mit der Rotorwelle 22 verbunden ist. Die Rotorwelle 22 hat ein plattenförmi- ges Ende 28. Eine Feder 29 ist zwischen dem plattenförmigen Ende 28 und der Bremsscheibe 27 auf Druck vorgespannt. Zur Rotorblattverstellung im Normalbetrieb wird die Bremsscheibe 27 von einem Elektromagnet 30 gegen die Kraft der Feder 29 vom Bremsbelag 26 abgehoben, wodurch der Getriebemotor 12 in beide Richtungen frei drehbar ist. Grundsätzlich ist es auch denkbar, daß die Bremsscheibe 27 und der Bremsbelag 26 entfallen und die Feder 29 auf den Kupplungsteil 25 drückt, sowie daß der Kupplungsteil 25 direkt vom Elektromagnet 30 angezogen wird. Der Kupplungsteil 25 muß dann natürlich drehfest mit der Welle 22 verbunden sein.
Bei Ausfall der Leistungsversorgung wird der Elektromagnet 30 automatisch deaktiviert, wodurch die Bremsscheibe 27 durch die Kraft der Feder 29 gegen den Bremsbelag 26 gedrückt wird, sodaß der Kupplungsteil 25 des Freilaufes drehfest mit der Rotorwelle 22 verbunden ist. Durch das sagezahnartige Profil 38 des Kupplungsteiles 25 und des Unterteiles 24 des Freilaufes sowie durch die gegen die Kraft der Feder 29 achsiale Verschiebbarkeit des Kupplungsteiles 25 ist die Rotorwelle 22 des Motors 12 und in der Folge des Rotorblattes 1 nur mehr in Richtung Segelstellung bis zu einem mechanischen Anschlag verdrehbar.
Fig. 5 zeigt eine weitere erfindungsgemäße Ausführungsform der Rücklaufsperre von Fig. 3. Der Getriebemotor 12 weist wiederum ein Getriebe 20, einen Stator 21 und einen Rotor mit verlängerter Rotor- welle 22 auf. Die Sperre 19 weist das mit dem Stator 21 fest verbundene Gehäuse 23 und einen ebenfalls mit dem Stator 21 fest verbundenen Unterteil 24, an dem ein Bremsbelag 31 befestigt ist, auf. Die Bremsscheibe 27, die den Oberteil 41 der Sperre bildet, ist hier ebenfalls achsial verschiebbar und drehfest mit der Rotorwelle 22 verbunden. Die Rotorwelle 22 hat ein plattenförmiges Ende 28, und die Feder 29 ist zwischen dem plattenförmigen Ende 28 und der Bremsscheibe 27 auf Druck vorgespannt. Der Elektromagnet 30 hebt die Bremsscheibe 27 im Normalbetrieb gegen die Kraft der Feder 29 vom Bremsbelag 31 ab, wodurch der Getriebemotor 12 in beide Richtungen frei drehbar ist. Im Falle einer Deaktivierung des Elektromagneten 30 wird die Bremsscheibe 27 durch die Kraft der Feder 29 gegen den Bremsbelag 31 gedrückt, womit dieser bzw. der Stator 21 drehfest mit der Rotorwelle 22 verbunden ist, wodurch eine Verdrehung der Rotorwelle 22 verhindert wird. Der Elektromagnet 30 der Sperre jedes einzelnen Getriebemotors 12 wird getrennt mit Strom versorgt und mittels einer Steuerungseinheit auch individuell betätigt. Bei Ausfall der Leistungsversorgung für die Getriebemotore wird während des Umlaufes des Rotors der Elektromagnet 30 nur in dem Bereich aktiviert und dadurch die Bremsscheibe 27 vom Bremsbelag 31 abge- hoben, in dem sich die Rotorblätter - bedingt durch die Kombination hoben, in dem sich die Rotorblätter - bedingt durch die Kombination aus äußeren Windkräften und Massenkräften - in Richtung Segelstellung bewegen. Damit wird erreicht, daß sich die Rotorblätter nur in Richtung Segelstellung bewegen, und so eine kontinuierliche Ab- bremsung des Rotors erfolgt. Für die Leistungsversorgung der Elek- tromagnete 30 und der Steuerung ist in diesem Fall eine Notstromversorgung in Form einer Batterie 17 vorgesehen, die allerdings aufgrund des relativ kleinen Leistungsbedarfs kleiner als die Batterie 17 beim Stand der Technik ausfallen kann, bei dem die Batterie 17 die Energie für das aktive Verdrehen der Rotorblätter 1 bis in die Segelstellung und das Halten der Rotorblätter 1 in dieser Stellung bis zum vollständigen Stillstand der Anlage liefern muß.
In einer Ausführungsform der Erfindung kann auch vorgesehen sein, daß eine (bei der Ausführungsform von Fig. 5 ohnedies vorgesehene) Batterie 17 dafür verwendet wird, die Rotorblätter 1 wenigstens teilweise, z.B. um 10° bis 20°, aus der Betriebsstellung in Richtung Segelstellung zu verdrehen, um ein möglichst rasches Abbremsen bzw. bei starken Windböen ein weiteres Beschleunigen des Rotors zu ver- hindern. Gleichzeitig wird bei der Ausführungsform von Fig. 4 die Rücklaufsperre 19 aktiviert, die ein anschließendes Zurückdrehen der Rotorblätter 1 in die Betriebsstellung verhindert. Bei der Ausführungsform von Fig. 5 wird nach diesem Verdrehen der Rotorblätter 1 um vorzugsweise 10° bis 20°, je nachdem, ob die Massenkräfte gerade ein Verdrehen in die Segelstellung bewirken oder nicht, die
Sperre 19 offen gehalten oder aktiviert.
Anstatt der dargestellten und beschriebenen Bremsbeläge 26, 31, die mit einer Bremsscheibe 27 zusammenwirken, können natürlich auch formschlüssige Verbindungsmittel, wie z.B. Klauenkupplungen, vorgesehen sein, wodurch die Feder 29 und entsprechend auch der Elektromagnet 30 schwächer ausgeführt werden können.
Fig. 6 zeigt Ausführungsformen von Rotorblattlagerung und Rotorblatt in Segelstellung, mit denen ein erhöhtes Rückstellmoment der Rotorblätter 1 erzielt werden kann. Das Rotorblatt 1 ist an einem Drehlager 32 befestigt. Der Außenring dieses Drehlagers 32 ist mit der drehenden Rotornabe 3 verschraubt. Das Drehlager 32 hat eine gegenüber der Anschraubtl che zur Rotornabe 3 geringfügig (ca. 1° bis 2°) geneigte Anschraubtlache für die Rotorblätter 1. Damit ist die Drehlager 32 ebenfalls um diesen Winkel α geneigt. Man erreicht dadurch, daß der durch die äußeren Windkräfte resultierende Kraftvektor 35 außerhalb der Drehachse 34 angreift, wodurch ein zusätzliches Drehmoment 36 um die Drehachse 34 in Richtung SegelStellung wirkt.
Alternativ oder zusätzlich kann man an der Endkante der Rotorblätter 1 ein Zusatzgewicht 37 befestigen, das auch ein zusätzliches Drehmoment um die Drehachse 34 bewirkt, welches in Abhängigkeit von der Position des Rotorblattes 1 während einer Rotorumdrehung ein Verdrehen in Richtung Arbeitsposition oder Segelstellung bewirkt. Da bei Ausfall der Leistungsversorgung die Sperre nur ein Verdrehen der Rotorblätter 1 in Richtung Segelstellung zuläßt und die Gegenrichtung sperrt, bewirken diese Maßnahmen ein beschleunigtes Verdrehen der Rotorblätter 1 in Richtung Segelstellung und somit ein beschleunigtes Abbremsen des Rotors .

Claims

Patentansprüche :
1. Vorrichtung zum Verstellen von an einer Rotornabe einer Windkraftanlage drehbar gelagerten Rotorblättern mit einem Antrieb zum Verdrehen der Rotorblätter, dadurch gekennzeichnet, daß mit den Rotorblättern (1) eine aktivierbare Sperre (19) verbunden ist, welche ein Verdrehen der Rotorblätter (1) in die Betriebsstellung verhindert.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß jedem Rotorblatt (1) eine Sperre (19) zugeordnet ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sperre (19) eine Rücklaufsperre ist, welche ein Verdrehen des Rotorblattes (1) in die Betriebsstellung verhindert .
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekenn- zeichnet, daß die Sperre (19) dem Antrieb (12) für das Rotorblatt (1) zugeordnet ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Sperre (19) einen mit dem Rotor verbundenen Teil (24) und einen mit dem Rotorblatt (1) verbundenen Teil (41) aufweist, die zum Verhindern des Verdrehens des Rotorblattes (1) miteinander verbindbar sind.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der mit dem Rotorblatt (1) verbundene Teil (41) der Sperre (19) mit der Rotorwelle (22) des Antriebes (12) drehfest verbunden ist .
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß der mit dem Rotor verbundene Teil (24) der Sperre (19) vorzugsweise mit dem Stator- (21) oder Getriebegehäuse (20) des Antriebes (12) fest verbunden ist, und daß der mit dem Rotorblatt (1) verbundene Teil (41) axial verschiebbar auf der Rotorwelle (22) gelagert ist.
8. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß der mit dem Rotorblatt (1) verbundene Teil (41) und der mit dem Rotor verbundene Teil (24) formschlüssig miteinander verbindbar sind.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß auf den einander zugeordneten Seiten des mit dem Rotorblatt (1) verbundenen Teils (41) und des mit dem Rotor verbundenen Teils
(24) ein miteinander in Eingriff bringbares, etwa sägezahn- artiges Profil (38) vorgesehen ist.
10. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß der mit dem Rotorblatt (1) verbundene Teil (41) und der mit dem Rotor verbundene Teil (24) reibschlüssig mit- einander verbindbar sind.
11. Vorrichtung nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, daß eine Einrichtung (30) vorgesehen ist, um den mit dem Rotorblatt (1) verbundenen Teil (41) und den mit dem Rotor verbundenen Teil (24, 31) voneinander zu lösen und daß der mit dem Rotorblatt (1) verbundene Teil (41) durch die Kraft einer Feder (29) ständig in Richtung zum mit dem Rotor verbundenen Teil (24) hin gedrückt wird.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Einrichtung (30) ein Elektromagnet ist.
13. Vorrichtung nach einem der Ansprüche 5 bis 12 , dadurch gekennzeichnet, daß der mit dem Rotorblatt (1) verbundene Teil (41) eine Bremsscheibe (27) aufweist.
14. Vorrichtung nach einem der Ansprüche 8, 9 oder 11 bis 13, dadurch gekennzeichnet, daß der mit dem Rotorblatt (1) verbundene Teil (41) eine drehfest mit der Rotorwelle (22) verbunde- ne Bremsscheibe (27) sowie einen Kupplungsteil (25) aufweist, der auf der dem mit dem Rotor verbundenen Teil (24) zugewandten Seite z.B. das im wesentlichen sägezahnartigen Profil (38) aufweist und der auf der der Bremsscheibe (27) zugewandten Seite einen Bremsbelag (26) aufweist, und daß der Kupplungs- teil (25) verdrehbar und axial verschiebbar auf der Rotorwelle ( 22 ) gelagert ist .
15. Vorrichtung nach Anspruch 10 und 13, dadurch gekennzeichnet, daß am mit dem Rotor verbundenen Teil (24) auf der der Brems- scheibe zugewandten Seite ein Bremsbelag (31) vorgesehen ist.
16. Vorrichtung nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß sich die Feder (29) einerseits am mit dem Rotorblatt (1) verbundenen Teil (41) und andererseits an einem Ansatz (28) an der Rotorwelle (22) abstützt.
17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß eine NotStromversorgung (17) in Form einer Batterie oder eines Akkumulators vorgesehen ist, die zum Ver- drehen der Rotorblätter (1) in die Segelstellung und ggf. zum Aktivieren des Elektromagneten (30) vorgesehen ist.
18. Vorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Längsachse (33) des Rotorblattes (1) zur Drehachse (34) des Rotorblattes (1) geneigt ist.
19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß das Rotorblatt (1) über ein Drehlager (32) mit dem Rotor (3) verbunden ist, wobei die Stirnfläche (39) des Außenringes des Drehlagers (32) , der mit dem Rotor (3) verbunden ist, im Winkel (α) zur Stirnfläche (40) des Innenringes des Drehlagerε (32), der mit dem Rotorblatt (1) verbunden ist, geneigt ist.
20. Vorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekenn- zeichnet, daß am Rotorblatt (1), vorzugsweise an der Endkante des Rotorblattes (1), ein Zusatzgewicht (37) befestigt ist.
PCT/AT1998/000268 1997-11-04 1998-11-03 Verstellungsantrieb für rotorblätter von windkraftanlagen WO1999023384A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP98954052A EP1029176B1 (de) 1997-11-04 1998-11-03 Windkraftanlage
DE59810927T DE59810927D1 (de) 1997-11-04 1998-11-03 Windkraftanlage
AU11351/99A AU1135199A (en) 1997-11-04 1998-11-03 Drive mechanism for adjusting the rotor blades of wind power installations
AT98954052T ATE261062T1 (de) 1997-11-04 1998-11-03 Windkraftanlage
US09/530,751 US6428274B1 (en) 1997-11-04 1998-11-03 Drive mechanism for adjusting the rotor blades of wind power installations
DK98954052T DK1029176T3 (da) 1997-11-04 1998-11-03 Vindkraftanlæg

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1860/97 1997-11-04
AT186097 1997-11-04

Publications (1)

Publication Number Publication Date
WO1999023384A1 true WO1999023384A1 (de) 1999-05-14

Family

ID=3522570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1998/000268 WO1999023384A1 (de) 1997-11-04 1998-11-03 Verstellungsantrieb für rotorblätter von windkraftanlagen

Country Status (8)

Country Link
US (1) US6428274B1 (de)
EP (1) EP1029176B1 (de)
AT (1) ATE261062T1 (de)
AU (1) AU1135199A (de)
DE (1) DE59810927D1 (de)
DK (1) DK1029176T3 (de)
ES (1) ES2214745T3 (de)
WO (1) WO1999023384A1 (de)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009885A1 (en) * 1998-08-13 2000-02-24 Neg Micon A/S A method and a device for adjusting the pitch and stopping the rotation of the blades of a wind turbine
WO2000061942A1 (en) * 1999-04-14 2000-10-19 Neg Micon A/S Device for adjusting the pitch of the blades of a wind turbine and a method for stopping the rotation of the main shaft
DE19941630C1 (de) * 1999-09-01 2001-03-08 Pvo Engineering Ltd Windenergieanlage mit verstellbaren Blättern
WO2001027471A1 (de) * 1999-10-11 2001-04-19 Aerodyn Engineering Gmbh Einzelblattverstellung für windenergieanlagen
WO2001029413A1 (es) * 1999-10-18 2001-04-26 Torres Martinez M Aerogenerador multipolar
DE10141098A1 (de) * 2001-08-22 2003-03-06 Gen Electric Windkraftanlage
WO2003091570A1 (en) * 2002-04-26 2003-11-06 General Electric Company Device for adjusting a rotor blade of a wind energy turbine
US6939103B2 (en) * 2000-11-14 2005-09-06 Aloys Wobben Wind power installation with multiple blade adjusting devices
EP1596064A2 (de) * 2004-05-11 2005-11-16 REpower Systems AG Blattverstellsystem für Windenergieanlage
AT500843B1 (de) * 2005-03-18 2006-04-15 Hehenberger Gerald Dipl Ing Verfahren und vorrichtung zum abbremsen des rotors einer windkraftanlage
DE102004051054A1 (de) * 2004-10-19 2006-04-20 Repower Systems Ag Vorrichtung für eine Windenergieanlage
EP1742325A1 (de) * 2000-07-07 2007-01-10 Aloys Wobben Notstromversorgungseinrichtung
DE202006012314U1 (de) * 2006-08-10 2007-12-13 Liebherr-Werk Biberach Gmbh Windkraftanlage sowie Rotorblattverstellantrieb hierfür
EP1903213A2 (de) 2006-09-20 2008-03-26 Hitachi, Ltd. Windkraftanlage und Verfahren zur Steuerung des Rotoreinstellwinkels
WO2009064264A1 (en) * 2007-11-09 2009-05-22 Moog Inc. Electro-hydraulic actuator for controlling the pitch of a blade of a wind turbine
EP2149700A2 (de) * 2008-07-29 2010-02-03 Nordex Energy GmbH Rotorwelle für eine Windenergieanlage
DE102010010639A1 (de) 2010-03-09 2011-09-15 Schaeffler Technologies Gmbh & Co. Kg Drehverbindung eines Rotorblattes mit der Rotornabe einer Windkraftanlage
EP2431606A1 (de) * 2010-09-20 2012-03-21 Alstom Wind, S.L.U. Windturbinenrotor mit Rotorblattverstellungsbremse
EP2458200A1 (de) * 2010-11-30 2012-05-30 Alstom Wind, S.L.U. Windturbinenrotor mit Blattverstellmechanismus und eine Reparaturmethode dafür
EP2489873A1 (de) * 2011-02-16 2012-08-22 Areva Wind GmbH Schaufelwinkeleinstellvorrichtung für eine Windturbine
ITBO20110490A1 (it) * 2011-08-05 2013-02-06 Bonfiglioli Riduttori Spa Generatore eolico
EP2631469A2 (de) 2012-02-24 2013-08-28 SETEC GmbH Verfahren und Einrichtung zur Abbremsung einer Windenergieanlage in einem Notfall
CN103527409A (zh) * 2013-08-23 2014-01-22 上海乐普能源科技发展有限公司 一种用于在紧急情况下制动风力机的方法和装置
EP1930584B1 (de) 2006-11-22 2016-06-29 Hitachi, Ltd. Nabe für eine Windenergieanlage mit horizontaler Achse
EP2232062B1 (de) 2007-11-30 2017-06-14 Vestas Wind Systems A/S Windturbine und verfahren zum steuern einer windturbine sowie verwendung davon
EP2232063B1 (de) 2007-11-30 2017-09-27 Vestas Wind Systems A/S Windturbine, verfahren zum steuern einer windturbine und verwendung davon
CZ307224B6 (cs) * 2003-01-24 2018-04-11 General Electric Company Elektrický systém větrné turbíny s nízkonapěťovým vyrovnávacím regulátorem

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119428A1 (de) * 2001-04-20 2002-10-24 Enron Wind Gmbh Grundrahmen zur Anordnung der Welle des Rotors einer Windkraftanlage an deren Turm
DE10317422A1 (de) * 2003-04-15 2004-10-28 Abb Patent Gmbh Energieversorgungseinrichtung für ein Windkraftwerk
DE10338127C5 (de) * 2003-08-15 2015-08-06 Senvion Se Windenergieanlage mit einem Rotor
US8007227B2 (en) * 2004-07-28 2011-08-30 General Electric Company Mechanical emergency brake for wind turbines and method for operating same
ES2321252B1 (es) * 2006-06-21 2011-02-14 GAMESA INNOVATION & TECHNOLOGY, S.L. Union rotativa para aerogeneradores.
US7602075B2 (en) * 2006-07-06 2009-10-13 Acciona Windpower, S.A. Systems, methods and apparatuses for a wind turbine controller
CN101205874B (zh) * 2006-12-21 2011-06-15 财团法人工业技术研究院 具有自供电系统的发电装置
US7956482B2 (en) * 2008-01-18 2011-06-07 General Electric Company Speed controlled pitch system
KR100965601B1 (ko) 2008-02-12 2010-06-23 주식회사 효성 풍력발전기의 허브측 전원공급장치
DE102009008607A1 (de) 2009-02-12 2010-08-19 Nordex Energy Gmbh Vorrichtung zur Arretierung eines Rotorblatts einer Windenergieanlage
SE534292C2 (sv) * 2009-08-18 2011-06-28 Ge Wind Energy Norway As Låsanordning för bladpitch och metod för att låsa ett turbinblad
CN102232144B (zh) * 2009-11-11 2013-12-11 美国超导奥地利有限公司 风轮叶片调节装置、风能转换器和调节风轮叶片的方法
DE102009044570A1 (de) * 2009-11-17 2011-05-19 Ssb Wind Systems Gmbh & Co. Kg Windkraftanlage
ES2379618B1 (es) * 2009-12-16 2013-03-26 Acciona Windpower, S.A. Rodamiento de pala de aerogenerador y aerogenerador que hace uso del mismo.
CN102434390B (zh) * 2011-12-12 2013-09-25 济南轨道交通装备有限责任公司 叶片制动装置
DE102013210722A1 (de) 2013-06-10 2014-12-11 Schaeffler Technologies Gmbh & Co. Kg Lageranordnung für eine Windkraftanlage
US10598159B2 (en) 2016-05-06 2020-03-24 General Electric Company Wind turbine bearings
DE102016208051A1 (de) * 2016-05-10 2017-11-16 Wobben Properties Gmbh Windenergieanlagen-Rotorblatt, und Windenergieanlage mit selbigem

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2432626A1 (fr) * 1978-06-19 1980-02-29 Franque Xavier Eolienne
DE3150715A1 (de) * 1981-12-22 1983-06-30 Erno-Raumfahrttechnik Gmbh, 2800 Bremen "rotorblattausbildung"
DE3413191A1 (de) * 1984-04-07 1985-10-17 Rolf 2200 Neuendorf Maderthoner Rotor fuer windkraftwerke
FR2574490A2 (fr) * 1982-10-28 1986-06-13 Lepoix Louis Turbine de captation de l'energie de fluides en mouvement, en particulier de l'energie eolienne
US4653982A (en) * 1983-04-01 1987-03-31 Yamaha Hatsudoki Kabushiki Kaisha Windmill with controller for controlling rotor RPM
US4701104A (en) * 1986-06-18 1987-10-20 Sundstrand Corporation Ram air turbine
GB2263886A (en) * 1991-04-12 1993-08-11 Citizen Watch Co Ltd Manual-to-power selection for a printer paper feed.
US5452988A (en) * 1994-04-28 1995-09-26 Sundstrand Corporation Blade pitch change mechanism
DE19634059C1 (de) * 1996-08-23 1997-10-23 Aerodyn Energiesysteme Gmbh Rotorblatt für eine Windkraftanlage

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280374A (en) * 1938-02-10 1942-04-21 Wright Aeronautical Corp Controllable pitch propeller
DE743890C (de) 1941-01-12 1944-01-05 Wilhelm Teubert Dr Ing Fluegelverstelleinrichtung
US3187819A (en) * 1963-04-29 1965-06-08 United Aircraft Corp Combined pitch lock and feather latch
US4366386A (en) 1981-05-11 1982-12-28 Hanson Thomas F Magnus air turbine system
SE8203721L (sv) 1982-06-15 1983-12-16 Nils Eric Staffan Engstrom Regleranordning for en vindturbins blad
US4462753A (en) * 1982-06-22 1984-07-31 United Technologies Corporation Blade feathering system for wind turbines
US4483657A (en) 1982-09-29 1984-11-20 Kaiser Heinz W Wind turbine rotor assembly
FR2542818B1 (fr) 1983-03-15 1985-07-12 Procedes Tech Const Dispositif a force centrifuge limiteur de la vitesse de rotation de l'arbre du capteur d'une eolienne, et moyens d'arret et de blocage dudit capteur associes a un tel dispositif
FR2566466A1 (fr) 1984-06-21 1985-12-27 Kafcsak Joseph Eolienne a deux rotors coaxiaux avec regulation de la position des pales
US4649284A (en) 1985-02-07 1987-03-10 Hsech Pen Leu Windmill
US4757211A (en) 1987-07-10 1988-07-12 Danregn Vidraft A/S Machine for generating electricity
DE4221783C2 (de) 1992-07-03 1994-06-16 Klinger Friedrich Prof Dr Ing Vorrichtung zur Verstellung von Rotorblättern
DE4232516C2 (de) 1992-09-22 2001-09-27 Hans Peter Beck Autonomes modulares Energieversorgungssystem für Inselnetze
US5907192A (en) * 1997-06-09 1999-05-25 General Electric Company Method and system for wind turbine braking

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2432626A1 (fr) * 1978-06-19 1980-02-29 Franque Xavier Eolienne
DE3150715A1 (de) * 1981-12-22 1983-06-30 Erno-Raumfahrttechnik Gmbh, 2800 Bremen "rotorblattausbildung"
FR2574490A2 (fr) * 1982-10-28 1986-06-13 Lepoix Louis Turbine de captation de l'energie de fluides en mouvement, en particulier de l'energie eolienne
US4653982A (en) * 1983-04-01 1987-03-31 Yamaha Hatsudoki Kabushiki Kaisha Windmill with controller for controlling rotor RPM
DE3413191A1 (de) * 1984-04-07 1985-10-17 Rolf 2200 Neuendorf Maderthoner Rotor fuer windkraftwerke
US4701104A (en) * 1986-06-18 1987-10-20 Sundstrand Corporation Ram air turbine
GB2263886A (en) * 1991-04-12 1993-08-11 Citizen Watch Co Ltd Manual-to-power selection for a printer paper feed.
US5452988A (en) * 1994-04-28 1995-09-26 Sundstrand Corporation Blade pitch change mechanism
DE19634059C1 (de) * 1996-08-23 1997-10-23 Aerodyn Energiesysteme Gmbh Rotorblatt für eine Windkraftanlage

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009885A1 (en) * 1998-08-13 2000-02-24 Neg Micon A/S A method and a device for adjusting the pitch and stopping the rotation of the blades of a wind turbine
WO2000061942A1 (en) * 1999-04-14 2000-10-19 Neg Micon A/S Device for adjusting the pitch of the blades of a wind turbine and a method for stopping the rotation of the main shaft
DE19941630C1 (de) * 1999-09-01 2001-03-08 Pvo Engineering Ltd Windenergieanlage mit verstellbaren Blättern
WO2001027471A1 (de) * 1999-10-11 2001-04-19 Aerodyn Engineering Gmbh Einzelblattverstellung für windenergieanlagen
US6604907B1 (en) * 1999-10-11 2003-08-12 Aerodyn Engineering Gmbh Individual blade adjustment for wind turbines
WO2001029413A1 (es) * 1999-10-18 2001-04-26 Torres Martinez M Aerogenerador multipolar
ES2157836A1 (es) * 1999-10-18 2001-08-16 Torres Martinez M Aerogenerador multipolar.
EP1742325A1 (de) * 2000-07-07 2007-01-10 Aloys Wobben Notstromversorgungseinrichtung
US6939103B2 (en) * 2000-11-14 2005-09-06 Aloys Wobben Wind power installation with multiple blade adjusting devices
DE10141098A1 (de) * 2001-08-22 2003-03-06 Gen Electric Windkraftanlage
US6870281B2 (en) 2001-08-22 2005-03-22 General Electric Company Wind power plant stabilization
CN1325791C (zh) * 2002-04-26 2007-07-11 通用电气公司 调节风能涡轮转子叶片的装置
WO2003091570A1 (en) * 2002-04-26 2003-11-06 General Electric Company Device for adjusting a rotor blade of a wind energy turbine
CZ307224B6 (cs) * 2003-01-24 2018-04-11 General Electric Company Elektrický systém větrné turbíny s nízkonapěťovým vyrovnávacím regulátorem
EP1596064A3 (de) * 2004-05-11 2011-08-31 REpower Systems AG Blattverstellsystem für Windenergieanlage
EP1596064A2 (de) * 2004-05-11 2005-11-16 REpower Systems AG Blattverstellsystem für Windenergieanlage
DE102004051054A1 (de) * 2004-10-19 2006-04-20 Repower Systems Ag Vorrichtung für eine Windenergieanlage
WO2006096895A1 (de) 2005-03-18 2006-09-21 Windtec Consulting Gmbh Verfahren und vorrichtung zum abbremsen des rotors einer windkraftanlage
AU2006225057B2 (en) * 2005-03-18 2011-12-01 Amsc Windtec Gmbh Method and device for braking the rotor of a wind energy plant
AT500843B1 (de) * 2005-03-18 2006-04-15 Hehenberger Gerald Dipl Ing Verfahren und vorrichtung zum abbremsen des rotors einer windkraftanlage
EP1990538A2 (de) 2005-03-18 2008-11-12 Windtec Consulting GmbH Vorrichtung zum Abbremsen eines Rotors einer Windkraftanlage
EP1990538A3 (de) * 2005-03-18 2009-11-11 AMSC Windtec GmbH Vorrichtung zum Abbremsen eines Rotors einer Windkraftanlage
DE202006012314U1 (de) * 2006-08-10 2007-12-13 Liebherr-Werk Biberach Gmbh Windkraftanlage sowie Rotorblattverstellantrieb hierfür
EP1903213A3 (de) * 2006-09-20 2011-05-25 Hitachi, Ltd. Windkraftanlage und Verfahren zur Steuerung des Rotoreinstellwinkels
EP1903213A2 (de) 2006-09-20 2008-03-26 Hitachi, Ltd. Windkraftanlage und Verfahren zur Steuerung des Rotoreinstellwinkels
US8116914B2 (en) 2006-09-20 2012-02-14 Hitachi, Ltd. Wind turbine and operating method thereof
EP1930584B1 (de) 2006-11-22 2016-06-29 Hitachi, Ltd. Nabe für eine Windenergieanlage mit horizontaler Achse
WO2009064264A1 (en) * 2007-11-09 2009-05-22 Moog Inc. Electro-hydraulic actuator for controlling the pitch of a blade of a wind turbine
EP2232063B1 (de) 2007-11-30 2017-09-27 Vestas Wind Systems A/S Windturbine, verfahren zum steuern einer windturbine und verwendung davon
EP2232062B1 (de) 2007-11-30 2017-06-14 Vestas Wind Systems A/S Windturbine und verfahren zum steuern einer windturbine sowie verwendung davon
DE102008035339A1 (de) * 2008-07-29 2010-05-06 Nordex Energy Gmbh Rotorwelle für eine Windenenergieanlage und Windenergieanlage
DE102008035339B4 (de) * 2008-07-29 2011-04-07 Nordex Energy Gmbh Rotorwelle für eine Windenenergieanlage und Windenergieanlage
EP2149700A2 (de) * 2008-07-29 2010-02-03 Nordex Energy GmbH Rotorwelle für eine Windenergieanlage
US8313297B2 (en) 2008-07-29 2012-11-20 Nordex Energy Gmbh Rotor shaft for a wind energy plant and wind energy plant
EP2149700A3 (de) * 2008-07-29 2013-11-27 Nordex Energy GmbH Rotorwelle für eine Windenergieanlage
DE102010010639A1 (de) 2010-03-09 2011-09-15 Schaeffler Technologies Gmbh & Co. Kg Drehverbindung eines Rotorblattes mit der Rotornabe einer Windkraftanlage
WO2011110453A2 (de) 2010-03-09 2011-09-15 Schaeffler Technologies Gmbh & Co. Kg Drehverbindung eines rotorblattes mit der rotornabe einer windkraftanlage
EP2431606A1 (de) * 2010-09-20 2012-03-21 Alstom Wind, S.L.U. Windturbinenrotor mit Rotorblattverstellungsbremse
EP2623775A1 (de) * 2010-09-20 2013-08-07 Alstom Wind, S.L.U. Windturbinenrotor mit Rotorblattverstellungsbremse
WO2012038395A1 (en) * 2010-09-20 2012-03-29 Alstom Wind, S.L.U. Wind turbine rotor with pitch brake
US9562514B2 (en) 2010-09-20 2017-02-07 Alstom Wind S.L.U. Wind turbine rotor with pitch brake
CN103270293B (zh) * 2010-11-30 2015-11-25 阿尔斯通可再生能源西班牙有限公司 风力涡轮机转子
CN103270293A (zh) * 2010-11-30 2013-08-28 阿尔斯通可再生能源西班牙有限公司 风力涡轮机转子
US9759197B2 (en) 2010-11-30 2017-09-12 Alstom Renewable Technologies Wind turbine rotor
WO2012072627A1 (en) * 2010-11-30 2012-06-07 Alstom Wind, S.L.U. Wind turbine rotor
EP2458200A1 (de) * 2010-11-30 2012-05-30 Alstom Wind, S.L.U. Windturbinenrotor mit Blattverstellmechanismus und eine Reparaturmethode dafür
US9644607B2 (en) 2011-02-16 2017-05-09 Areva Wind Gmbh Blade pitch angle adjusting apparatus for a wind turbine
JP2014508879A (ja) * 2011-02-16 2014-04-10 アレバ・ヴィント・ゲーエムベーハー 風力タービンのためのブレードピッチ角調整装置
CN103415699A (zh) * 2011-02-16 2013-11-27 阿雷瓦风力公司 用于风力涡轮机叶片的桨距角调节装置
WO2012110278A1 (en) * 2011-02-16 2012-08-23 Areva Wind Gmbh Blade pitch angle adjusting apparatus for a wind turbine
EP2489873A1 (de) * 2011-02-16 2012-08-22 Areva Wind GmbH Schaufelwinkeleinstellvorrichtung für eine Windturbine
ITBO20110490A1 (it) * 2011-08-05 2013-02-06 Bonfiglioli Riduttori Spa Generatore eolico
EP2631469A3 (de) * 2012-02-24 2014-08-27 SETEC GmbH Verfahren und Einrichtung zur Abbremsung einer Windenergieanlage in einem Notfall
DE102012101484A1 (de) 2012-02-24 2013-08-29 Setec Gmbh Verfahren und Einrichtung zur Abbremsung einer Windenergieanlage in einem Notfall
EP2631469A2 (de) 2012-02-24 2013-08-28 SETEC GmbH Verfahren und Einrichtung zur Abbremsung einer Windenergieanlage in einem Notfall
CN103527409A (zh) * 2013-08-23 2014-01-22 上海乐普能源科技发展有限公司 一种用于在紧急情况下制动风力机的方法和装置

Also Published As

Publication number Publication date
DK1029176T3 (da) 2004-07-05
ATE261062T1 (de) 2004-03-15
EP1029176B1 (de) 2004-03-03
DE59810927D1 (de) 2004-04-08
EP1029176A1 (de) 2000-08-23
ES2214745T3 (es) 2004-09-16
AU1135199A (en) 1999-05-24
US6428274B1 (en) 2002-08-06

Similar Documents

Publication Publication Date Title
EP1029176B1 (de) Windkraftanlage
EP1650431B1 (de) Vorrichtung für eine Windenergieanlage
DE102009009017B4 (de) Bremssystem für eine Windturbine
DE102005001344B4 (de) Windenergieanlage
DE4221783C2 (de) Vorrichtung zur Verstellung von Rotorblättern
EP2631469B1 (de) Verfahren und Einrichtung zur Abbremsung einer Windenergieanlage in einem Notfall
EP2951432B1 (de) Steuervorrichtung für ein giersystem einer windkraftanlage
EP1483515B1 (de) Bremse, insbesondere für windkraftanlagen
DE19644705A1 (de) Vorrichtung zur Verstellung von Rotorblättern
WO2011103971A2 (de) Positioniervorrichtung für eine windkraftanlage und windkraftanlage
DE60305478T2 (de) Vorrichtung zur einstellung einer rotorschaufel einer windenergieturbine
WO2005038286A1 (de) Azimutbremse für windkraftanlagen
DE102012222637A1 (de) Turnantrieb für eine Windenergieanlage und Verfahren zum Drehen der Rotorwelle einer Windenergieanlage
DE102013203678A1 (de) System zum Sperren der Blattverstellung
DE102005038243B4 (de) Bremsanlage für eine Windkraftanlage
EP2558717A2 (de) Windenergieanlagen-azimut- oder pitchantrieb
DE10153798C2 (de) Verfahren und Vorrichtung zur Verzögerung eines Rotors einer Windkraftanlage
EP1866543B1 (de) Verfahren und vorrichtung zum abbremsen des rotors einer windkraftanlage
EP0250923A2 (de) Verstelleinrichtung
DE102004027992B4 (de) Windenergieanlage mit einem Azimutsystem
DE10307929A1 (de) Anordnung zur Drehung einer Maschinengondel
DE3516821A1 (de) Windkraftmaschine
EP3589858B1 (de) Bremse einer grosswindkraftanlage
EP3404256B1 (de) Vorrichtung zur verstellung der rotorblätter einer strömungskraftanlage
DE102005016156A1 (de) Windenergieanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09530751

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998954052

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998954052

Country of ref document: EP

ENP Entry into the national phase

Ref country code: AT

Ref document number: 1998 9198

Date of ref document: 19990514

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: AT

Ref document number: 1999 9060

Date of ref document: 19990514

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 19989198

Country of ref document: AT

Ref document number: 19999060

Country of ref document: AT

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1998954052

Country of ref document: EP