WO1999023161A2 - Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation - Google Patents

Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation Download PDF

Info

Publication number
WO1999023161A2
WO1999023161A2 PCT/US1998/022723 US9822723W WO9923161A2 WO 1999023161 A2 WO1999023161 A2 WO 1999023161A2 US 9822723 W US9822723 W US 9822723W WO 9923161 A2 WO9923161 A2 WO 9923161A2
Authority
WO
WIPO (PCT)
Prior art keywords
poly
adipic acid
terminated
composition
ethylhexanol
Prior art date
Application number
PCT/US1998/022723
Other languages
English (en)
French (fr)
Other versions
WO1999023161A3 (en
Inventor
Jawed Asrar
Jean R. Pierre
Original Assignee
Monsanto Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Company filed Critical Monsanto Company
Priority to DE69831009T priority Critical patent/DE69831009T2/de
Priority to EP98954005A priority patent/EP1027384B1/en
Priority to AU11230/99A priority patent/AU1123099A/en
Priority to AT98954005T priority patent/ATE300582T1/de
Publication of WO1999023161A2 publication Critical patent/WO1999023161A2/en
Publication of WO1999023161A3 publication Critical patent/WO1999023161A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates generally to biodegradable polymers. More particularly, it concerns biodegradable polymer blends containing oligomeric esters and use of such blends in the production of shaped polymeric objects having improved properties which do not diminish over time.
  • biodegradable polymers There has been considerable interest in recent years in the use of biodegradable polymers to address concerns over plastic waste accumulation.
  • the potential worldwide market for biodegradable polymers is enormous (> 10B lbs/yr).
  • Some of the markets and applications most amenable to the use of such biopolymers range from single use applications, which can include packaging, personal hygiene, garbage bags, and others where the biopolymers become soiled and are ideally suited for biodegradation through composting, to markets and applications in which the biopolymers can be recovered as clean materials, such as garment bags, shopping bags, grocery bags, etc. and are suitable for recycling, as well as composting, or biodegradation in landfills.
  • PHA Polyhydroxyalkanoate
  • thermoplastic polyesters many of which can be produced by microorganisms in response to nutrient limitation.
  • the commercial potential for PHA's spans many industries, and is derived primarily from certain advantageous properties which distinguish PHA polymers from petrochemical- derived polymers, namely excellent biodegradability and natural renewability.
  • PHA's are among the most thermosensitive of all commercially available polymers.
  • the rate of polymer degradation increases sharply with increasing temperatures in the range typically required for conventional melt- processing of PHA's into end-products such as films, coatings, fibers etc.
  • An additional limitation of the potential utility of PHA polymers relates to the observation that some polymer characteristics, for example ductility, elongation, impact resistance, and flexibility, diminish over time. This rapid "aging" of certain PHA-derived products is unacceptable for most commercial applications.
  • the success of PHA as a viable alternative to both petrochemical-derived polymers and to non-PHA biodegradable polymers will depend upon novel approaches to overcome the unique difficulties associated with PHA polymers and with products derived therefrom.
  • blending has become an increasingly important approach for improving the cost performance of commercial plastics.
  • blending may be used to reduce the cost of an expensive engineering thermoplastic, to improve the processability of a high-temperature or heat sensitive thermoplastic, to improve impact resistance, etc. Therefore, blending is one approach which has the potential to provide new classes of biodegradable PHA-containing polymers having unique and improved properties. In this way, it may be possible to overcome the limitations of PHA compositions that have limited their widespread industrial utilization while retaining their desirable features.
  • many polymers are immiscible when blended, and result in undesirable phase separation during processing. Generally, such blends of incompatible or thermodynamically immiscible polymers exhibit poor mechanical properties and processing difficulties.
  • Compatibilizing compounds have been identified and developed for numerous polymer systems. These compounds can reduce interfacial tension and thereby promote miscibility of otherwise poorly miscible polymers.
  • the availability of compatibilizers provides an effective means by which polymeric compositions can be produced.
  • PHAs very little has been achieved in this regard, and there is a need for the identification of compounds providing effective compatibilization of blends containing different PHA polymers or blends containing PHA and non-PHA polymers.
  • polymer compositions comprising a first biodegradable polymer comprising a polyhydroxyalkanoate (PHA), a second biodegradable polymer different from said first polymer, and one or more oligomeric esters.
  • PHA polyhydroxyalkanoate
  • oligomeric esters as described herein provide advantageous properties to blends of two or more biodegradable polymers.
  • blends containing the oligomeric esters exhibit ductility, impact strength and aging characteristics improved to an unexpected and unpredictable extent.
  • Most oligomeric esters useful in the blend compositions of this invention can be represented by following structural formula:
  • X is C 6 H 4 or (CH 2 )f a and b are independently 0 or an integer from 1 to 200; c and fare independently integers from 1 to 30;
  • R is H or C1 -C12 alkyl or branched alkyl
  • Rd and Rg are H, or Ci -C12 alkyl or branched alkyl and can vary independently with each (C) c .
  • f is 2 to 10.
  • the compounds are oligomeric adipic esters, i.e., f is 4.
  • the oligomeric ester generally will be present in the blend at a level from 1 to 20 wt.%, preferably 2 to 15 wt.% of the blend.
  • the molecular weights of the oligomeric esters are typically in the range of 200 to 20,000, preferably 500 to 15,000, and most preferably from about 1500 to 7500.
  • At least one of the polymers in the blend is a PHA, preferably having the structural formula:
  • one of the polymers in the blend is polyhydroxybutyrate (PHB) or polyhydroxybutyrate-co- valerate (PHBV).
  • a second polymer in the blend can be a PHA structurally distinct from the first PHA, or can be a non-PHA biodegradable polymer.
  • the non-PHAs can be, for example, aliphatic polyesters or copolyesters derived from aliphatic dicarboxylic acids or anhydrides, aliphatic dicarboxylic acid chlorides, aliphatic dicarboxylic acid esters, and aliphatic diols or epoxides; polyurethanes made from said polyesters and copolyesters by reaction with a diisocyanate; aliphatic polycarbonates; polyanhydrides; polyester amides; polyester carbonates; polyester ethers; or polyether carbonates.
  • Preferred non-PHA polymers for use in the invention include aliphatic polyesters and copolyesters, and polyester urethanes. More preferred non-PHA polymers include polycaprolactone (PCL, e.g. Tone 187P PCL, Union Carbide) and polybutylenesuccinate-adipate (PBSUA, e.g. Bionolle 3001 PBSUA, Showa High Polymer Co.). In a most preferred composition of this invention, blends are provided which comprise a PHA, polycaprolactone, and an oligomeric ester.
  • PCL polycaprolactone
  • PBSUA polybutylenesuccinate-adipate
  • a method of producing a shaped polymeric object comprising melting a composition comprising a polyhydroxyalkanoate (PHA), a second biodegradable polymer different from the first polymer, and one or more oligomeric esters, and producing a shaped object therefrom, for example by extrusion, molding, coating, spinning or calendaring operations.
  • PHA polyhydroxyalkanoate
  • compositions comprising a first biodegradable polymer comprising a poly-3- hydroxybutyrate-co-4-hydroxybutyrate (P3HB4HB) and a nucleant. It has been found that such compositions exhibit ductility, impact strength and aging characteristics improved to an unexpected and unpredictable extent.
  • P3HB4HB poly-3- hydroxybutyrate-co-4-hydroxybutyrate
  • P3HB4HB is a copolymer of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate
  • the nucleant can be any nucleant known to be effective in nucleating PHAs.
  • a preferred nucleant is boron nitride.
  • a method of producing a shaped polymeric object comprising melting a composition comprising poly-
  • 3-hydroxybutyrate-co-4-hydroxybutyrate P3HB4HB
  • a nucleant for example by extrusion, molding, coating, spinning or calendaring operations.
  • compositions for use in the production of PHA-containing materials having wide-ranging properties that can serve to increase the versatility and performance of PHAs for various processing techniques without sacrificing biodegradability.
  • Polymer blend refers to a composition which comprises two or more structurally distinct biodegradable polymers.
  • a first polymer in the blend is preferably a PHA.
  • a second polymer in the blend can also be a PHA provided it is structurally distinct from the first polymer.
  • the second polymer can be a biodegradable non-PHA polymer.
  • the blends will comprise two polymer types, however additional polymers can also be present.
  • Biodegradable refers to polymers which can be ultimately degraded by a microbial process under environmental exposures to CO 2 , H 2 0 and biomass.
  • polymers such as polylactic acid are degraded by hydrolysis to individual monomer molecules which are then enzymatically decomposed to CO 2 and H 2 O by microorganisms.
  • biodegradation processes include enzyme mediated hydrolytic and oxidative reactions that occur during composting.
  • Compatibilizer refers to a compound effective to provide a resin composition which exhibits improved compatibility compared to the same composition without the compatibilizer.
  • Indicators of improved compatibility as described herein include, for example, increased impact strength and/or increased elongation at break.
  • PHAs are biodegradable polymers or copolymers having the following general structure for one or more of the repeating units:
  • Y is H, F, Cl, Br, CN, OH, CO 2 H, CO 2 R (where R is alkyl, benzyl etc.), methyl, cyclohexyl, phenyl, p-nitrophenoxy, p-cyanophenoxy, phenoxy, acetoxy, vinyl, 2-propyl, 2-butyl, 2-pentyl, 2-hexyl, etc., and n is an integer typically between about 10 and 25,000.
  • the pendant groups of the repeating units may contain additional functionalization such as double bonds, epoxidized double bonds, hydroxyl groups, alkyl groups, alkenyl groups etc. or combinations thereof.
  • the polymer main chain can contain up to 8 carbons in the repeating units and there may be additional functionalization in or on the main chain such as double bonds, alkyl groups, alkenyl groups, hydroxyl groups etc. or combinations thereof.
  • the PHAs can be produced synthetically, or in plant or microbial organisms. Most typically, it is a fermentation product, particularly of a microbiological process, whereby a microorganism lays down polyhydroxyalkanoate during normal or manipulated growth. Manipulation may be achieved by removing or failing to produce one or more nutrients necessary for cell multiplication. Numerous microbiological species are known in the art to be suitable for the production of polyhydroxyalkanoate polymers (see for example, Anderson and Dawes, Micro. Rev. 54 (4): 450-472, 1990). The microorganisms may be wild type or mutated or may have the necessary genetic material introduced into it, for example by any of the methods or recombinant DNA technology. It is to be emphasized that it is not necessary for the PHA-producing organism to be a microorganism, but at present such organisms are preferred.
  • the PHAs will typically have as constituents hydroxyalkanoates (HA) monomers which are substrates for PHA synthase enzymes.
  • HA hydroxyalkanoates
  • Biologically-produced PHA polymers are the product of PHA synthase microbial enzymes, and are produced in either a bacterial cell which naturally contains a PHA synthase, or in a bacterial or other cell type, for example a plant cell, which has been genetically engineered to express such an enzyme.
  • the microbial PHA synthase enzymes have broad substrate ranges and are capable of incorporating a large number of HA monomers as constituents of biosynthetic PHA depending upon growth conditions, precursor substrate availability, and the source of the PHA synthase enzyme.
  • Suitable HA monomers can include those having the following formula:
  • a is 0 to 6
  • b is 0 to 15 and Y is H, F, Cl, Br, CN, OH, CO 2 H, CO 2 R (where R is alkyl, benzyl etc.), methyl, cyclohexyl, phenyl, p-nitrophenoxy, p-cyanophenoxy, phenoxy, acetoxy, vinyl, 2-propyl, 2-butyl, 2-pentyl, 2-hexyl, etc.
  • R is alkyl, benzyl etc.
  • methyl cyclohexyl
  • phenyl p-nitrophenoxy
  • p-cyanophenoxy phenoxy
  • acetoxy vinyl, 2-propyl, 2-butyl, 2-pentyl, 2-hexyl, etc.
  • the monomers or the lactones of the monomers can be homopolymerized or copolymerized either biochemically or synthetically to produce the polymer.
  • PHAs for use in the invention can be synthetically formed by approaches well known in the art, such as by lactone, lactide or glycolide ring-opening polymerization.
  • Suitable lactones, lactides and glycolides include those that form biodegradable polylactones, polylactides and polyglycolides, respectively.
  • the polymer produced by ring-opening polymerization is polycaprolactone, formed from the ring opening polymerization of ⁇ -caprolactone (6-hexanolactone).
  • the polymer blend compositions of the invention can comprise two or more structurally distinct PHAs as defined above, or can comprise non-PHA polymers in addition to PHAs.
  • Non-PHA polymers suitable for the use in the blends of the present invention can include those which are to some extent biodegradable. In this way, when blended with a PHA, the resulting blend is capable of biodegradation.
  • the selection of non-PHA polymer wall depend upon the property or combination of properties sought to be optimized.
  • non-PHA polymers in the blends will include polyesters and copolyesters derived from various combinations of aliphatic dicarboxylic acids, aliphatic dicarboxylic acid chlorides, aliphatic dicarboxylic acid esters, and aliphatic diols or epoxides; polyurethanes made from such polyesters and copolyesters by reaction with a diisocyanate; aliphatic polycarbonates; polyanhydrides; polyester amides; polyester carbonates; polyester ethers; polyether carbonates; etc.
  • Preferred non-PHA polymers for use in the invention include aliphatic polyesters and copolyesters, and polyester urethanes.
  • PCL polycaprolactone
  • PBSUA polybutylenesuccinate-adipate
  • the molecular weights of the polymers present in a blend will be in the range of 1000 to 2,000,000.
  • the polymers can be blended in any manner and at any levels desired or suited for a particular application, and may vary depending upon the particular polymers selected.
  • the relative ratio of polymers in a blend comprising two polymers can be, for example, from 99:1 to 1 :99. For some applications, ratios of 90:10 to 10:90, or 80:20 to 20:80 may provide the most desired results.
  • oligomeric/polymeric ester compounds (sometimes referred to herein as oligoesters), which can most typically be represented by the following formula:
  • X is C 6 H4 or (CH )f a and b are independently 0 or an integer from 1 to 200; c and fare independently integers from 1 to 30; R is H or C ⁇ -Cj 2 alkyl or branched alkyl; and
  • Rd and RQ are H, or Ci -Cj2 alkyl or branched alkyl and can vary independently with each (C) c .
  • the oligoesters are added to a blend in an amount effective to provide a resin composition which exhibits improved compatibility, as indicated by increased elongational and/or impact strengths, compared to the same composition without the oligoester.
  • the oligomeric ester compounds of the invention will be present in a polymer blend at levels from 1 to 20, preferably from 2 to 15 wt.% of blend.
  • the Mw of the oligomeric esters is generally in the range of 500 to 20,000, preferably 1000 to 10,000, most preferably 1500 to 7500.
  • the compound is an oligomeric ester where f is 2 to 10.
  • f is 2 to 10.
  • the blend composition comprises a PHA, polycaprolactone (PCL) and one or more oligomeric esters.
  • the PCL in the blend is preferably present at a level of 10 to 40, more preferably 20 to 30 wt% in the blend, since age-related embrittlement is minimized at such levels.
  • other additives, particularly plasticizers could vary the relative levels of PHA and PCL required in the blend to achieve the desired results.
  • the blend composition comprises a PHA, polybutylenesuccinate-adipate (PBSUA), and one or more oligomeric esters.
  • PBSUA in the blend is preferably present at a level of 10 to 40, more preferably 20 to 30 wt% in the blend, since age-related embrittlement is minimized at such levels.
  • other additives, particularly plasticizers could vary the relative levels of PHA and PBSUA required in the blend to achieve the desired results.
  • compositions of the invention can be present in the compositions of the invention, including the many polymer additives well known in the art. These can include, for example, nucleating agents, anti-blocking agents, lubricants, fillers, plasticizers, and other additives desired to optimize processing and/or product properties.
  • PHA-derived products Prior to the present invention, it has been difficult to produce PHA shaped objects/articles that retain sufficient mechanical properties over their intended useful life. Instead, PHA-derived products rapidly embrittle within short periods of time, as indicated by their characteristic decline in elongational and impact properties. For example, elongation of molded PHBV bars containing 10 phr Santicizer S430 oligoester/polyester adipate (Solutia Inc.) dropped from 258% 3 hour after molding to 27% one day after molding to 10% sixty days after molding (see Example 5; Table 2). The situation was slightly improved by blending the PHBV with a structurally distinct PHA polymer, for example polycaprolactone (PCL).
  • PCL polycaprolactone
  • the present invention provides compositions having exceptional elongational properties which can be sustained for lengths of time required in many commercial plastics applications.
  • compositions of this invention possess properties that would be desirable in numerous applications such as extrusion, molding, coating, spinning, blowing, thermoforming and calendaring processes or combinations of such processes.
  • increased melt strength of the blends compared with PHA alone is advantageous in the production of cast and blown films (both oriented and unoriented) for food packaging, grocery, lawn and trash bags, diaper backsheets and agricultural films having improved elongation to break sustainable over extended periods of time.
  • the compositions are also suitable for use in extrusion and injection stretch blow molding operations, for example to prepare oriented bottles having improved impact strength over extended periods of time.
  • Disposable food packaging articles such as tubs and containers, medical goods such as syringes, labware, and patient kits, as well as disposable plates, cups, knives and forks with improved tensile properties can also be made by injection molding operations using the compositions of the invention.
  • the compositions can also be extruded into sheets and thermoformed into food packaging, plates, bowls etc.
  • the blends can be melt spun into fibers for threads, ropes, nets as well as disposable nonwovens for medical applications.
  • the skilled individual would recognize that the compositions of the invention are not limited by the above description, rather they are useful in essentially any application where increased melt strength, elongation, impact and/or aging characteristics are desired.
  • Preparation of the blend for use in melt extrusion of a shaped article can be performed using techniques known in the art.
  • the blend is prepared as a melt blend by melting of the first polymer, the second polymer, the oligoester, and optionally other additives, followed by pelletizing of the melt. The pellets of the blend are then used conventionally in melt extrusion techniques of forming shaped articles.
  • the blend is prepared as a physical blend, by combining pellets, powders, or other formulations of the first polymer, the second polymer, the oligoester, and optionally other additives, in conventional melt extrusion techniques to produce shaped articles comprising the desired composition.
  • the use of physical blends is preferred, in that the number of melt steps required to prepare a shaped article comprising a composition of the present invention is reduced.
  • molecular weight refers to the weight average molecular weight (Mw) as opposed to the number average molecular weight (Mn).
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • n-, the number of molecules of molecular weight Mj.
  • Mw and Mn the number of molecules of molecular weight Mj.
  • GPC gel permeation chromatography
  • values of Mw and Mn are obtained by calibration using monodisperse polystyrene fractions of known molecular weights. This method is capable of determining the entire molecular weight distribution of a polymer sample from which molecular weight averages can be determined.
  • Other methods known in the art for determining Mw and Mn include osmometry, scattering and sedimentation (See for example, W. R. Sorensen & T. W. Campbell: Preparative Methods of Polymer Chemistry, Interscience Publishers, NY, 1961).
  • polymer compositions comprising or consisting of a first biodegradable polymer comprising a poly-3-hydroxybutyrate-co-4-hydroxybutyrate (P3HB4HB) and a nucleant. It has been found that such compositions exhibit ductility, impact strength and aging characteristics improved to an unexpected and unpredictable extent.
  • P3HB4HB poly-3-hydroxybutyrate-co-4-hydroxybutyrate
  • the percentage of 4HB units in the P3HB4HB copolymer is preferably 1-99%, more preferably 5-50%, most preferably 8-20%. Especially preferred percentages are 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, and 20%.
  • the nucleant can be any nucleant known to be effective in nucleating PHAs.
  • a preferred nucleant is boron nitride.
  • the concentration of nucleant can be any concentration known to be effective for the nucleation of PHAs using the nucleant.
  • nucleant typically 0.1 to 20 wt%, more preferably 1 to 10 wt%.
  • concentration typically 1 phr.
  • composition of P3HB4HB and nucleant has favorable and unexpected elongation properties, and can be used in the applications described above for the blends.
  • ATC Acetyl tributyl citrate
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • the granules obtained had a Mw around 53 OK and a MFI(170°C/5 Kg)-4.2 g/10 min.
  • Test bars were obtained by feeding the granules into 15 T Boy injection molding equipment using a temperature profile from 130 to 150°C and a mold temperature around 55°C.
  • Tensile testing on molded bars (5X2mm section, 42 mm gauge length, 10 mm:min crosshead speed) gave elongation at break of 340% as molded, 335% after one day and 60% after 100 days. The results are presented in Table 1.
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • Test bars were obtained by feeding the granules into 15 T Boy injection molding equipment using a temperature profile from 130 to 150°C and a mold temperature around 55°C.
  • Tensile testing on molded bars (5X2mm section, 42 mm gauge length, 10 mm:min crosshead speed) gave elongation at break of 333% as molded, 290% after one day and 245% after 100 days. Results are presented in Table 1.
  • the powder/granule mixture was then fed into a Betol single screw extruder (25 mm; L/D-20), operated at 40 rpm using a temperature profile from 140 to 170°C and a screw speed of 40 rpm, and fitted with a 4 mm single strand die.
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • Test bars were obtained by feeding the granules into 15 T Boy injection molding equipment using a temperature profile from 130 to 150°C and a mold temperature around 55°C.
  • Tensile testing on molded bars (5X2mm section, 42 mm gauge length, 10 mm:min crosshead speed) gave elongation at break of 417%) as molded, 379%) after one day and 348%> after 60 days. Results are presented in Table 1.
  • %EB % elongation at break
  • ATC Acetyl tributyl citrate
  • S409A 1,3 butylene glycol- 1,2 propylene glycol-adipic acid copolyester terminated with 2 ethylhexanol.
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • Test bars were obtained by feeding the granules into 15 T Boy injection molding equipment using a temperature profile from 140 to 160°C and a mold temperature around 55°C.
  • Tensile testing on molded bars (5X2mm section, 42 mm gauge length, 10 mm:min crosshead speed) gave elongation at break of 258%) as molded, 27%> after one day and 10% after 60 days. Results are provided in Table 2.
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • the granules were fed into 15 T Boy injection molding equipment using a temperature profile from 140 to 160°C and a mold temperature around 55°C.
  • Tensile testing on molded bars (5X2mm section, 42 mm gauge length, 10 mm:min crosshead speed) gave elongation at break of 515%> as molded, 454%) after one day and 27%> after 60 days. Results are presented in Table 2.
  • PCL Tone 787P Union Carbide
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • the granules were fed into 15 T Boy injection molding equipment using a temperature profile from 130 to 150°C and a mold temperature around 55°C.
  • Tensile testing on molded bars (5X2mm section, 42 mm gauge length, 10 mm:min crosshead speed) gave elongation at break of 411%) as molded, 384%) after one day and 335%) after 60 days. Results are presented in Table 2.
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • the granules were fed into 15 T Boy injection molding equipment using a temperature profile from 130 to 150°C and a mold temperature around 55°C.
  • Tensile testing on molded bars (5X2mm section, 42 mm gauge length, 10 mm:min crosshead speed) gave elongation at break of 417% as molded, 379%) after one day and 348%) after 60 days. Results are presented in Table 2.
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • the granules were fed into 15 T Boy injection molding equipment using a temperature profile from 130 to 140°C and a mold temperature around 40°C.
  • Tensile testing on molded bars (5X2mm section, 42 mm gauge length, 10 mm:min crosshead speed) gave elongation at break of 284%> as molded, 279%> after one day and 270% after 60 days. Results are presented in Table 2.
  • PCL Tone 787P variable Boron nitride nucleant: 1 phr
  • EXAMPLES 10-13 EFFECT OF PCL LEVEL ON ELONGATION OF PHBV/S430/PCL BLOWN FILMS
  • the extruded tubular film which cooled and blown with air to a 70 mm diameter bubble produced after collapsing between nip rolls a film with an average thickness of 70 microns characterized by a tensile strength after one day around 26 MPa and an elongation at break of 13%>. After 21 days, the tensile strength was 27 MPa and the elongation was 6%. Results are presented in Table 3.
  • All cast films were obtained on a Dr Collin cast film line consisting in a 45mm diameter, 25 L/D single screw extruder fitted with a 500mm wide flat die with 1mm die gap.
  • the temperature profile of the barrel was set from 145°C to 155°C.
  • the adaptor temperature was set at 156°C while the die temperatures were set at 170°C.
  • the line was followed by a series of small "free” rolls up to a pulling/winder roll arrangement. Different film thickness were obtained by varying the screw speed (output) of the extruder and the chill roll speed.
  • Example 14 Granules obtained as described in example 6 based on 100 phr PHBV, 1 phr BN, 10 phr S430, 0.15 phr anti-blocking agent and 30 phr PCL were fed into the Dr Collin cast film line described here above. Using a screw speed of 20 ⁇ m and a pulling speed of 2.5 m/min, a 70 ⁇ m thick, 300 mm wide cast film was obtained. . Tensile testing was carried out on stamped dog-bone bars (4 mm wide, 20 mm gauge length and 10 mm/min crosshead speed). The film was characterized by a tensile strength at break (in machine direction) after one week around 26 MPa and an elongation at break of 480%. After 100 days, the elongation was 32%>. Results are presented in Table 4.
  • Example 15 Granules obtained as described in example 6 based on 100 phr PHBV, 1 phr BN, 10 phr S430, 0.15 phr anti-blocking agent and 30 phr PCL were fed into the Dr Collin cast film line described here above. Using a screw speed of 25 ⁇ m and a pulling speed of 2.0 m/min, a 120 ⁇ m thick, 360 mm wide cast film was obtained. Tensile testing was carried out on stamped dog-bone bars (4 mm wide, 20 mm gauge length and 10 mm min crosshead speed). The film was characterized by a tensile strength at break (in machine direction) after one week around 25 MPa and an elongation at break of 570%>. After 100 days, the elongation was 40%. Results are presented in Table 4.
  • Example 16 Granules obtained as described in example 7 based on 100 phr PHBV, 1 phr BN, 10 phr S430, 0.15 phr anti-blocking agent and 40 phr PCL were fed into the Dr Collin cast film line described here above. Using a screw speed of 20 ⁇ m and a pulling speed of 2.1 m/min, a 110 ⁇ m thick, 300 mm wide cast film was obtained. Tensile testing was carried out on stamped dog-bone bars (4 mm wide, 20 mm gauge length and 10 mm min crosshead speed). The film was characterized by a tensile strength at break (in machine direction) after one week around 35 MPa and an elongation at break of 780%>. After 100 days, the elongation was 700%. Results are presented in Table 4.
  • Example 17 Granules obtained as described in example 7 based on 100 phr PHBV, 1 phr BN, 10 phr S430, 0.15 phr anti-blocking agent and 40 phr PCL were fed into the Dr Collin cast film line described here above. Using a screw speed of 30 ⁇ m and a pulling speed of 2.0 m/min, a 145 ⁇ m thick, 360 mm wide cast film was obtained. Tensile testing was carried out on stamped dog-bone bars (4 mm wide, 20 mm gauge length and 10 mm/min crosshead speed). The film was characterized by a tensile strength at break (in machine direction) after one week around 31 MPa and an elongation at break of 800%). After 100 days, the elongation was 620%. Results are presented in Table 4.
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • the output was 3.4 Kg/hr.
  • Test bars were obtained by feeding the granules into a 15 T Boy injection molding equipment using a temperature profile from 130 to 150°C and a mold temperature around
  • the extrudate was cooled in a water bath maintained at 60°C+/-5°C using a thermoregulator and then cut into granules in a pelletizer.
  • the output was 3.3 Kg/hr.
  • Test bars were obtained by feeding the granules into a 15 T Boy injection molding equipment using a temperature profile from 130 to 150°C and a mold temperature around
  • All blown films were obtained on a 20 mm diameter Brabender/Haake single screw extruder fitted with a circular die and a 1 meter high blowing tower equipped with two 80 mm diameter nip rolls.
  • the film width and thickness was adjusted by varying the screw speed of the extruder, the pulling rate of the tubular film and the diameter of the bubble.
  • Example 20 Granules obtained as described in example 18 based on 100 phr PHBV, 1 phr BN, 10 phr S430, and 40 phr Bionolle 3001 PBSUA were extruded through a 20 mm single screw extruder fitted with a 25 mm circular die using a temperature profile from 160 to 170°C. At a screw speed of 15 ⁇ m and a pulling rate of 1.5 m/min., the extruded tubular preform, which was cooled and blown with air to a 25 mm diameter bubble, produced after collapsing between two nip rolls a film with a width of 80 mm and a thickness of 65 ⁇ m. Tensile testing stamped dog-bone bars (4 mm wide, 20 mm gauge length and 10 mm min crosshead speed) gave an elongation at break of 670%> after 5 days and 720%) after 90 days. Results are presented in Table 6.
  • Example 21 Granules obtained as described in example 18 based on 100 phr PHBV, 1 phr BN, 10 phr S430, and 40 phr Bionolle 3001 PBSUA were extruded through a 20 mm single screw extruder fitted with a 25 mm circular die using a temperature profile from 160 to 170°C. At a screw speed of 15 ⁇ m and a pulling rate of 1.5 m/min, the extruded tubular preform, which was cooled and blown with air to a 20 mm diameter bubble, produced after collapsing between two nip rolls a film with a width of 65 mm and a thickness of 130 ⁇ m. Tensile testing stamped dog-bone bars (4 mm wide, 20 mm gauge length and 10 mm/min crosshead speed) gave an elongation at break of 590% after 5 days and 620%> after 90 days. Results are presented in Table 6.
  • Example 22 Granules obtained as described in example 19 based on 100 phr PHBV, 1 phr BN, 10 phr S430, and 50 phr Bionolle 3001 PBSUA were extruded through a 20 mm single screw extruder fitted with a 25 mm circular die using a temperature profile from 165 to 170°C. At a screw speed of 20 ⁇ m and a pulling rate of 2 m/min, the extruded tubular preform, which was cooled and blown with air to a 25 mm diameter bubble, produced after collapsing between two nip rolls a film with a width of 85 mm and a thickness of 80 ⁇ m. Tensile testing stamped dog-bone bars (4 mm wide, 20 mm gauge length and 10 mm/min crosshead speed) gave an elongation at break of 610% after 5 days and 805%) after 90 days. Results are presented in Table 6.
  • Example 23 Granules obtained as described in example 19 based on 100 phr PHBV, 1 phr BN, 10 phr S430, and 50 phr Bionolle 3001 PBSUA were extruded through a 20 mm single screw extruder fitted with a 25 mm circular die using a temperature profile from 165 to 170°C. At a screw speed of 15 ⁇ m and a pulling rate of 1 m/min, the extruded tubular preform, which was cooled and blown with air to a 18 mm diameter bubble, produced after collapsing between two nip rolls a film with a width of 55 mm and a thickness of 180 ⁇ m.
  • All blown films were obtained on a 20 mm diameter Brabender/Haake single screw extruder fitted with a circular die and a 1 meter high blowing tower equipped with two 80 mm diameter nip rolls.
  • the film width and thickness was adjusted by varying the screw speed of the extruder, the pulling rate of the tubular film and the diameter of the bubble.
  • Example 25 Granules obtained as described in example 24 based on 100 phr P3HB-4HB and 1 phr BN were extruded through a 20 mm single screw extruder fitted with a 25 mm circular die using a temperature profile from 170 to 180°C. At a screw speed of 15 ⁇ m and a pulling rate of 1 m/min, the extruded tubular preform, which was cooled and blown with air to a 22 mm diameter bubble, produced after collapsing between two nip rolls a film with a width of 70 mm and a thickness of 85 ⁇ m. Tensile testing on dog-bone samples stamped from the film in the machine direction (4mm wide, 20 mm gauge length) gave an elongation at break of 710% after 5 days and 560% after 90 days. Results are presented in Table 9.
  • Example 26 Granules obtained as described in example 24 based on 100 phr P3HB- 4HB and 1 phr BN were extruded through a 20mm single screw extruder fitted with a 25 mm circular die using a temperature profile from 170 to 180°C. At a screw speed of 15 ⁇ m and a pulling rate of 1 m/min, the extruded tubular preform, which was cooled and blown with air to a 18 mm diameter bubble, produced after collapsing between two nip rolls a film with a width of 55 mm and a thickness of 130 ⁇ m. Tensile testing on dog- bone samples stamped from the film in the machine direction (4mm wide, 20 mm gauge length) gave an elongation at break of 710% after 5 days and 560% after 90 days. Results are presented in Table 9.
  • composition P3HB-4HB: 100 phr
PCT/US1998/022723 1997-10-31 1998-10-27 Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation WO1999023161A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69831009T DE69831009T2 (de) 1997-10-31 1998-10-27 Polyhydroxyalkanoate enthaltende polymermischungen und zusammensetzungen mit guter beständigkeit der dehnung
EP98954005A EP1027384B1 (en) 1997-10-31 1998-10-27 Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
AU11230/99A AU1123099A (en) 1997-10-31 1998-10-27 Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
AT98954005T ATE300582T1 (de) 1997-10-31 1998-10-27 Polyhydroxyalkanoate enthaltende polymermischungen und zusammensetzungen mit guter beständigkeit der dehnung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6385297P 1997-10-31 1997-10-31
US60/063,852 1997-10-31

Publications (2)

Publication Number Publication Date
WO1999023161A2 true WO1999023161A2 (en) 1999-05-14
WO1999023161A3 WO1999023161A3 (en) 1999-08-19

Family

ID=22051946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/022723 WO1999023161A2 (en) 1997-10-31 1998-10-27 Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation

Country Status (7)

Country Link
US (2) US6191203B1 (US06841603-20050111-C00004.png)
EP (1) EP1027384B1 (US06841603-20050111-C00004.png)
AT (1) ATE300582T1 (US06841603-20050111-C00004.png)
AU (1) AU1123099A (US06841603-20050111-C00004.png)
DE (1) DE69831009T2 (US06841603-20050111-C00004.png)
ES (1) ES2247724T3 (US06841603-20050111-C00004.png)
WO (1) WO1999023161A2 (US06841603-20050111-C00004.png)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002028968A2 (en) * 2000-10-06 2002-04-11 The Procter & Gamble Company Biodegradable polyester blend compositions and methods of making the same
WO2002028444A2 (en) * 2000-10-06 2002-04-11 The Procter & Gamble Company Absorbent articles comprising biodegradable polyester blend compositions
WO2002028969A2 (en) * 2000-10-06 2002-04-11 The Procter & Gamble Company Plastic products comprising biodegradable polyester blend compositions
WO2002085983A1 (en) * 2001-04-20 2002-10-31 E.I. Du Pont De Nemours And Company Processing of polyhydroxyalkanoates using a nucleant and a plasticizer
WO2004041905A1 (en) * 2002-10-24 2004-05-21 Canon Kabushiki Kaisha New polyhydroxyalkanoate copolymer, resin composition, molded product, toner, image forming method and image forming apparatus
WO2004101683A1 (en) * 2003-05-08 2004-11-25 The Procter & Gamble Company Molded or extruded articles comprising polyhydroxyalkanoate copolymer and an environmentally degradable thermoplastic polymer
WO2005063883A1 (en) * 2003-12-22 2005-07-14 Eastman Chemical Company Polymer blends with improved rheology and improved unnotched impact strength
US7160977B2 (en) 2003-12-22 2007-01-09 Eastman Chemical Company Polymer blends with improved notched impact strength
WO2007095708A1 (en) * 2006-02-24 2007-08-30 Phb Industrial S.A. Environmentally degradable polymeric blend and process for obtaining an environmentally degradable polymeric blend
WO2007095709A1 (en) * 2006-02-24 2007-08-30 Phb Industrial S.A. Environmentally degradable polymeric composition and process for obtaining an environmentally degradable polymeric composition
US7265188B2 (en) 2000-10-06 2007-09-04 The Procter & Gamble Company Biodegradable polyester blend compositions and methods of making the same
US7368503B2 (en) 2003-12-22 2008-05-06 Eastman Chemical Company Compatibilized blends of biodegradable polymers with improved rheology
US7368511B2 (en) 2003-12-22 2008-05-06 Eastman Chemical Company Polymer blends with improved rheology and improved unnotched impact strength
WO2009137058A1 (en) * 2008-05-06 2009-11-12 Metabolix, Inc. Biodegradable polyester blends
JP2011140656A (ja) * 2003-02-21 2011-07-21 Metabolix Inc Phaブレンド
CN103224697A (zh) * 2013-05-21 2013-07-31 上海交通大学 一种可完全生物降解的pha/pcl共混物及其制备方法
US10030135B2 (en) 2012-08-17 2018-07-24 Cj Cheiljedang Corporation Biobased rubber modifiers for polymer blends
EP3360927A1 (en) * 2009-06-26 2018-08-15 CJ CheilJedang Corporation Pha compositions comprising pbs and pbsa and method for producing the compositions
US20180334564A1 (en) * 2015-11-17 2018-11-22 Cj Cheiljedang Corporation Polymer blends with controllable biodegradation rates
CN110305302A (zh) * 2019-06-27 2019-10-08 福建工程学院 一种原位增容聚酯/氮化硼复合材料的制备方法
US10611903B2 (en) 2014-03-27 2020-04-07 Cj Cheiljedang Corporation Highly filled polymer systems
US10669417B2 (en) 2013-05-30 2020-06-02 Cj Cheiljedang Corporation Recyclate blends
WO2022026362A1 (en) * 2020-07-30 2022-02-03 Danimer Bioplastics, Inc. Biobased material for consumer goods packaging

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19753766A1 (de) * 1997-12-04 1999-06-17 Schott Glas Länglicher Kunststoff-Hohlkörper und Verfahren zu seiner Herstellung
US8283435B2 (en) 2003-02-21 2012-10-09 Metabolix, Inc. PHA adhesive compositions
US20070123611A1 (en) * 2003-12-02 2007-05-31 Kaneka Corporation Poly(3-hydroxyalkanoate) composition and molded product thereof
BRPI0418339A (pt) * 2003-12-30 2007-05-02 Metabolix Inc agentes de nucleação
CN101460302A (zh) * 2006-04-14 2009-06-17 生物技术天然包装两合公司 多层膜和其制造方法
DE102007057768A1 (de) * 2007-11-30 2009-06-04 Universität Ulm Biodegradables Verbundsystem und dessen Verwendung
US7678444B2 (en) * 2007-12-17 2010-03-16 International Paper Company Thermoformed article made from renewable polymer and heat-resistant polymer
CA2725222A1 (en) * 2008-05-05 2009-11-12 Wei Li Thermoformed article made from bio-based biodegradable polymer composition
CN102051707B (zh) * 2009-11-11 2013-07-17 深圳市意可曼生物科技有限公司 全生物降解高弹性纤维材料、高弹性纤维及其应用
CA2781963C (en) * 2009-12-08 2014-01-07 International Paper Company Thermoformed articles made from reactive extrusion products of biobased materials
CN101974136B (zh) * 2010-10-18 2012-07-18 东华大学 一种采用熔融接枝共混法制备高韧性可降解材料的方法
US20120219790A1 (en) * 2011-02-25 2012-08-30 Frito-Lay North America, Inc. Compostable film with paper-like, writable surface
EP3424990B1 (en) 2012-06-05 2021-05-05 CJ CheilJedang Corporation Biodegradable polymer blends
DE102017003341A1 (de) * 2017-04-05 2018-10-11 Bio-Tec Biologische Naturverpackungen Gmbh & Co. Kg Biologisch abbaubare Folie
DE102017003340A1 (de) * 2017-04-05 2018-10-11 Bio-Tec Biologische Naturverpackungen Gmbh & Co. Kg Biologisch abbaubare Folie
CN114479042A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种封端改性的聚羟基脂肪酸酯及其制备方法和其薄膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011445A1 (en) * 1992-11-06 1994-05-26 Zeneca Limited Polyester composition
EP0606923A2 (en) * 1993-01-15 1994-07-20 McNEIL-PPC, INC. Melt processable biodegradable compositions and articles made therefrom
WO1994016000A1 (en) * 1993-01-13 1994-07-21 Zeneca Limited Polyhydroxyalkanoates and film formation therefrom
WO1994028070A1 (en) * 1993-05-24 1994-12-08 Zeneca Limited Polyester composition
EP0628586A1 (en) * 1993-06-10 1994-12-14 Terumo Kabushiki Kaisha Hydroxyalkanoate-polymer composition
WO1996009402A1 (en) * 1994-09-22 1996-03-28 Monsanto Company Copolyesters
WO1997032929A1 (en) * 1996-03-05 1997-09-12 Neste Oy Polylactide films
WO1997046381A1 (en) * 1996-06-04 1997-12-11 Neste Oy Paper coated with polylactide and a method for making it

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502158A (en) * 1988-08-08 1996-03-26 Ecopol, Llc Degradable polymer composition
JPH0662839B2 (ja) 1989-11-14 1994-08-17 工業技術院長 微生物分解性プラスチック成形物及びその製造方法
JPH04326932A (ja) * 1991-04-24 1992-11-16 Nippon Zeon Co Ltd ポリエステル多孔質フィルム
US5401778A (en) 1992-04-14 1995-03-28 Director-General Of Agency Of Industrial Science And Technology Biodegradable plastic composition and biodegradable plastic shaped body
JPH06157878A (ja) * 1992-11-25 1994-06-07 Mitsubishi Kasei Corp ポリエステル共重合体組成物
JPH06264305A (ja) 1993-03-09 1994-09-20 Unitika Ltd 微生物分解性繊維とその製造法
JPH06336523A (ja) * 1993-03-31 1994-12-06 Nippon Zeon Co Ltd ポリエステル成形品
GB9311399D0 (en) * 1993-06-02 1993-07-21 Zeneca Ltd Polyester composition
US5439985A (en) 1993-07-28 1995-08-08 University Of Massachusetts Lowell Biodegradable and hydrodegradable diblock copolymers composed of poly(.beta.
JPH07285197A (ja) 1994-04-15 1995-10-31 Dainippon Printing Co Ltd 分解性積層体
US5508338A (en) 1994-09-20 1996-04-16 Akzo Nobel Nv Compatibilized blend of polycarbonate, polyester and liquid crystalline additive
JPH08158158A (ja) 1994-12-05 1996-06-18 Mitsubishi Gas Chem Co Inc 生分解性樹脂繊維およびその製造法
JPH08165414A (ja) 1994-12-14 1996-06-25 Mitsubishi Gas Chem Co Inc 生分解性樹脂組成物
US5618881A (en) 1995-01-09 1997-04-08 Du Pont Canada Inc. Compatibilizer composition
EP0723983B1 (en) 1995-01-26 2001-08-08 Takasago International Corporation Biodegradable composition
US5506083A (en) 1995-01-27 1996-04-09 Xerox Corporation Conductive developer compositions with wax and compatibilizer
JPH08218246A (ja) 1995-02-09 1996-08-27 Gunze Ltd 生分解性ネット部材
TW293049B (US06841603-20050111-C00004.png) * 1995-03-08 1996-12-11 Unitika Ltd
SG74539A1 (en) 1995-03-17 2000-08-22 Gen Electric Compositions of poly (phenylene ether) poly (arylene sulfide) polyester resins and a comptibilizer compound
US5708556A (en) 1995-07-10 1998-01-13 Watkins Johnson Company Electrostatic chuck assembly
WO1997034953A1 (en) 1996-03-19 1997-09-25 The Procter & Gamble Company Biodegradable polymeric compositions and products thereof
FR2749663B1 (fr) 1996-06-07 1998-07-31 Bio Merieux Carte d'analyse a usage unique comprenant un conduit d'ecoul ement de liquides
ES2395057T3 (es) * 1999-03-25 2013-02-07 Metabolix, Inc. Dispositivos y aplicaciones médicas de polímeros polihidroxialcanoato

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011445A1 (en) * 1992-11-06 1994-05-26 Zeneca Limited Polyester composition
US5550173A (en) * 1992-11-06 1996-08-27 Zeneca Limited Polyester composition
WO1994016000A1 (en) * 1993-01-13 1994-07-21 Zeneca Limited Polyhydroxyalkanoates and film formation therefrom
EP0606923A2 (en) * 1993-01-15 1994-07-20 McNEIL-PPC, INC. Melt processable biodegradable compositions and articles made therefrom
WO1994028070A1 (en) * 1993-05-24 1994-12-08 Zeneca Limited Polyester composition
EP0628586A1 (en) * 1993-06-10 1994-12-14 Terumo Kabushiki Kaisha Hydroxyalkanoate-polymer composition
WO1996009402A1 (en) * 1994-09-22 1996-03-28 Monsanto Company Copolyesters
WO1997032929A1 (en) * 1996-03-05 1997-09-12 Neste Oy Polylactide films
WO1997046381A1 (en) * 1996-06-04 1997-12-11 Neste Oy Paper coated with polylactide and a method for making it

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 121, no. 14, 3 October 1994 Columbus, Ohio, US; abstract no. 158800, XP002106506 & JP 06 157878 A (MITSUBISHI CHEM.) 7 June 1994 *
See also references of EP1027384A2 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265188B2 (en) 2000-10-06 2007-09-04 The Procter & Gamble Company Biodegradable polyester blend compositions and methods of making the same
WO2002028444A2 (en) * 2000-10-06 2002-04-11 The Procter & Gamble Company Absorbent articles comprising biodegradable polyester blend compositions
WO2002028969A2 (en) * 2000-10-06 2002-04-11 The Procter & Gamble Company Plastic products comprising biodegradable polyester blend compositions
WO2002028969A3 (en) * 2000-10-06 2002-07-04 Procter & Gamble Plastic products comprising biodegradable polyester blend compositions
WO2002028444A3 (en) * 2000-10-06 2002-09-19 Procter & Gamble Absorbent articles comprising biodegradable polyester blend compositions
WO2002028968A3 (en) * 2000-10-06 2003-08-28 Procter & Gamble Biodegradable polyester blend compositions and methods of making the same
WO2002028968A2 (en) * 2000-10-06 2002-04-11 The Procter & Gamble Company Biodegradable polyester blend compositions and methods of making the same
CN1476467B (zh) * 2000-10-06 2012-07-04 宝洁公司 可生物降解的聚酯共混组合物及其制备方法
WO2002085983A1 (en) * 2001-04-20 2002-10-31 E.I. Du Pont De Nemours And Company Processing of polyhydroxyalkanoates using a nucleant and a plasticizer
WO2004041905A1 (en) * 2002-10-24 2004-05-21 Canon Kabushiki Kaisha New polyhydroxyalkanoate copolymer, resin composition, molded product, toner, image forming method and image forming apparatus
US7452960B2 (en) 2002-10-24 2008-11-18 Canon Kabushiki Kaisha Polyhydroxyalkanoate copolymer, resin composition, molded product, toner, image forming method and image forming apparatus
JP2011140656A (ja) * 2003-02-21 2011-07-21 Metabolix Inc Phaブレンド
WO2004101683A1 (en) * 2003-05-08 2004-11-25 The Procter & Gamble Company Molded or extruded articles comprising polyhydroxyalkanoate copolymer and an environmentally degradable thermoplastic polymer
KR100887198B1 (ko) * 2003-05-08 2009-03-06 메레디언, 인크. 폴리하이드록시알카노에이트 공중합체 및 환경적으로분해가능한 열가소성 중합체를 포함하는 성형품 또는압출품
US7368503B2 (en) 2003-12-22 2008-05-06 Eastman Chemical Company Compatibilized blends of biodegradable polymers with improved rheology
US7368511B2 (en) 2003-12-22 2008-05-06 Eastman Chemical Company Polymer blends with improved rheology and improved unnotched impact strength
CN1898324B (zh) * 2003-12-22 2010-11-03 伊士曼化工公司 具有改进的流变性和改进的无缺口冲击强度的聚合物共混物
US7160977B2 (en) 2003-12-22 2007-01-09 Eastman Chemical Company Polymer blends with improved notched impact strength
WO2005063883A1 (en) * 2003-12-22 2005-07-14 Eastman Chemical Company Polymer blends with improved rheology and improved unnotched impact strength
WO2007095708A1 (en) * 2006-02-24 2007-08-30 Phb Industrial S.A. Environmentally degradable polymeric blend and process for obtaining an environmentally degradable polymeric blend
WO2007095709A1 (en) * 2006-02-24 2007-08-30 Phb Industrial S.A. Environmentally degradable polymeric composition and process for obtaining an environmentally degradable polymeric composition
WO2009137058A1 (en) * 2008-05-06 2009-11-12 Metabolix, Inc. Biodegradable polyester blends
EP3360927A1 (en) * 2009-06-26 2018-08-15 CJ CheilJedang Corporation Pha compositions comprising pbs and pbsa and method for producing the compositions
US10030135B2 (en) 2012-08-17 2018-07-24 Cj Cheiljedang Corporation Biobased rubber modifiers for polymer blends
CN103224697B (zh) * 2013-05-21 2015-12-02 上海交通大学 一种可完全生物降解的pha/pcl共混物及其制备方法
CN103224697A (zh) * 2013-05-21 2013-07-31 上海交通大学 一种可完全生物降解的pha/pcl共混物及其制备方法
US10669417B2 (en) 2013-05-30 2020-06-02 Cj Cheiljedang Corporation Recyclate blends
US10611903B2 (en) 2014-03-27 2020-04-07 Cj Cheiljedang Corporation Highly filled polymer systems
US20180334564A1 (en) * 2015-11-17 2018-11-22 Cj Cheiljedang Corporation Polymer blends with controllable biodegradation rates
US11091632B2 (en) 2015-11-17 2021-08-17 Cj Cheiljedang Corporation Polymer blends with controllable biodegradation rates
CN110305302A (zh) * 2019-06-27 2019-10-08 福建工程学院 一种原位增容聚酯/氮化硼复合材料的制备方法
CN110305302B (zh) * 2019-06-27 2021-09-21 福建工程学院 一种原位增容聚酯/氮化硼复合材料的制备方法
WO2022026362A1 (en) * 2020-07-30 2022-02-03 Danimer Bioplastics, Inc. Biobased material for consumer goods packaging

Also Published As

Publication number Publication date
ES2247724T3 (es) 2006-03-01
US6841603B1 (en) 2005-01-11
WO1999023161A3 (en) 1999-08-19
AU1123099A (en) 1999-05-24
ATE300582T1 (de) 2005-08-15
EP1027384B1 (en) 2005-07-27
DE69831009D1 (de) 2005-09-01
DE69831009T2 (de) 2006-04-20
US6191203B1 (en) 2001-02-20
EP1027384A2 (en) 2000-08-16

Similar Documents

Publication Publication Date Title
US6841603B1 (en) Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
Södergård et al. Properties of lactic acid based polymers and their correlation with composition
EP0711326B1 (en) Biodegradable moldable products and films comprising blends of starch esters and polyesters
EP1593705B1 (en) Use of organic phosphonic or phosphinic acids, or of oxides, hydroxides or carboxylic acid salts of metals as thermal stabilizers for polyhydroxyalcanoates
AU2009295910B2 (en) Aliphatic polyester
EP1725614B1 (en) Biodegradable compositions comprising polylactic polymers, adipat copolymers and magnesium silicate
JP6803347B2 (ja) 生分解性ポリエステル樹脂組成物、および、生分解性ポリエステル樹脂成形体の製造方法
EP1789488B1 (en) Nucleating agents for polyhydroxyalkanoates
JP2009527594A (ja) 環境分解性ポリマー組成物及び環境分解性ポリマー組成物を得る方法
Bohlmann General characteristics, processability, industrial applications and market evolution of biodegradable polymers
EP0996670A1 (en) Pha compositions and methods for their use in the production of pha films
CA1339026C (en) Degradable thermoplastics from lactides
WO1990001521A1 (en) Degradable thermoplastic from lactides
CN115803381A (zh) 脂肪族聚酯系树脂组合物及其应用
JP2010229407A (ja) 樹脂組成物
WO2009006236A1 (en) Toughened polyester and articles therefrom
JP4200340B2 (ja) 樹脂組成物および成形体
WO2009110171A1 (ja) 生分解性ポリエステル樹脂組成物及びそれからなる成形体
Shen et al. Polylactide (PLA) and its blends with poly (butylene succinate)(PBS): a brief review
JP6650414B2 (ja) ポリエステル樹脂組成物およびポリエステル樹脂成形体
JP2011518246A (ja) エチレンアクリル酸アルキルにより強化されたポリ(ヒドロキシアルカン酸)組成物
JP2003171544A (ja) 乳酸系樹脂組成物、過酸化物変性乳酸系樹脂組成物、並びに、それらの成形体
AU2010200315A1 (en) Biodegradable resin composition, method for production thereof and biodegradable film therefrom
JP4289841B2 (ja) 生分解速度の制御されたポリ乳酸系樹脂組成物およびその成形体
JP2005041980A (ja) 樹脂用可塑剤及び該可塑剤を含む樹脂組成物、並びに、該樹脂組成物を成形してなる成形体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1998954005

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998954005

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1998954005

Country of ref document: EP