CN110305302A - 一种原位增容聚酯/氮化硼复合材料的制备方法 - Google Patents

一种原位增容聚酯/氮化硼复合材料的制备方法 Download PDF

Info

Publication number
CN110305302A
CN110305302A CN201910569484.4A CN201910569484A CN110305302A CN 110305302 A CN110305302 A CN 110305302A CN 201910569484 A CN201910569484 A CN 201910569484A CN 110305302 A CN110305302 A CN 110305302A
Authority
CN
China
Prior art keywords
boron nitride
polyester
preparation
nitride composite
situ compatibilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910569484.4A
Other languages
English (en)
Other versions
CN110305302B (zh
Inventor
吴方娟
田红利
方辉
彭响方
耿立宏
黄岸
聂乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian University of Technology
Original Assignee
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian University of Technology filed Critical Fujian University of Technology
Priority to CN201910569484.4A priority Critical patent/CN110305302B/zh
Publication of CN110305302A publication Critical patent/CN110305302A/zh
Application granted granted Critical
Publication of CN110305302B publication Critical patent/CN110305302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明提供一种原位增容聚酯/氮化硼复合材料的制备方法,属于复合材料领域。按氮化硼与聚酯质量比为0.1%~30%,将改性氮化硼加入到环状聚酯类单体或熔体中,搅拌、超声分散均匀。通过微波辐射辅助,在较短时间内快速合成聚酯/氮化硼复合材料。其中,氮化硼经表面改性接枝活波氢,作为环状聚酯类单体开环聚合的大分子引发剂,反应过程中原位生成接枝物,该接枝物可作为复合材料的原位增容剂,有效提高氮化硼在聚酯基体中的分散及两相的界面结合。制备得到的原位增容聚酯/氮化硼复合材料有望在较低含量的填料下实现高强度、高导热。

Description

一种原位增容聚酯/氮化硼复合材料的制备方法
技术领域
本发明涉及复合材料技术领域,具体涉及一种原位增容聚酯/氮化硼复合材料的制备方法。
背景技术
聚乳酸(PLA)、聚己内酯 (PCL)作为常用的生物高分子材料,因绿色环保,良好的生物相容性,受到大家的广泛关注。但此类生物聚酯高分子材料也存在一些缺点,如PLA脆性较大,PCL材料强度不高、熔点较低,不能直接应用于组织工程、包装行业等领域,一定程度上限制了其广泛应用。因此,对聚酯类生物高分子材料的改性成为当前的研究热点。目前常用的改性方法是在聚酯类高分子材料基体中添加无机填料,如羟基磷灰石、CaCO3纳米粒子、有机黏土、石墨烯等,氮化硼。其中,六方氮化硼(h-BN)又被称为白色石墨烯,是由硼、氮原子交替连接的六边层状结构组成,不仅表现出超高的力学强度、导热性能,同时还具有电绝缘、对生物细胞完全无毒等特质,成为我们的关注重点。因表面极高的化学惰性,h-BN同大多数的无机填料一样,高填充量时在聚合物基体中难以分散均匀,与聚合物相界面结合弱,导致材料力学性能提高有限甚至变差等问题。
在无机填料表面接枝聚合可有效促进填料在基体中的分散,接枝物作为相容剂可有效改善填料相与基体相的相容性,大幅提高复合材料的综合性能。已有文献报道了采用表面含活泼氢原子的羟基磷灰石、碳纤维、微纤维化纤维素等无机填料作为大分子引发剂,引发环状聚酯类单体在填料表面开环聚合生成接枝物的研究,结果表明采用接枝聚合的方法可以有效促进填料在聚合物基体中的分散,进而改善聚酯基复合材料的力学性能。
但该方法的聚合时间普遍在24h及以上,存在反应时间较长的问题,微波辐射聚合是近年来新兴的一种辅助聚合方法,不仅可以极大地加快反应历程,缩短聚合时间,还可以制备高分子量的聚合物同时减少能源消耗。
发明内容
本发明的目的是提供一种原位增容聚酯/氮化硼复合材料的制备方法。
本发明的目的可以通过以下技术方案来实现:。
一种原位增容聚酯/氮化硼复合材料的制备方法,具体步骤如下:
步骤一)改性氮化硼的制备:取氮化硼加入到的NaOH水溶液中进行水热反应,使氮化硼表面羟基化,反应产物清洗后冷冻干燥,得到改性氮化硼粉末;
步骤二)原位增容聚酯/氮化硼复合材料的制备:将改性氮化硼加入到聚酯单体或熔体中,超声分散均匀,在催化剂和微波辅助下引发环状聚酯类单体开环聚合制备得到聚酯/氮化硼复合材料。
优选的,所述步骤一)中水热反应为先超声分散60min,再在120oC下水热反应48h。
优选的,步骤一)中使用的氮化硼尺寸为1μm~20μm。
优选的,步骤一)中使用的氮化硼尺寸为3μm ~5μm。
优选的,其特征在于:步骤一)中使用的NaOH水溶液浓度为3~10M
优选的,其特征在于:步骤一)中使用的NaOH水溶液浓度为5M。
优选的,其特征在于:步骤二)中聚酯单体为环状聚酯类的己内酯、L-丙交酯、D-丙交酯或D,L-丙交酯。
优选的,步骤二)中聚酯单体优选己内酯。
优选的,步骤二)中使用的催化剂可以为烷基铝、烷基锡等,或醇盐、烷氧化物,以及金属氧化物或卤化物,添加量为0.1%~0.6%。
优选的,步骤二)中使用的催化剂优选异辛酸亚锡,添加量0.2%。
优选的,步骤二)中微波辅助聚合条件为温度170~230℃,优选220℃,反应时间5min
本发明采用表面羟基化改性的BN作为大分子引发剂,在微波辐射的条件下引发环状聚酯类单体开环聚合,原位增容生成接枝物,从而提高聚酯基复合力学性能和热性能,扩大其应用范围。适宜在生物组织工程中应用。
附图说明
图1 h-BN及BN-OH的FTIR图。
图2 SEM图a)h-BN,b)改性BN。
图3 PCL/BN-5%复合材料的断面电镜图。
图4 50℃时不同BN含量的PCL/BN复合材料的导热性能。
图5 不同BN含量的PCL/BN复合材料的力学性能。
具体实施方式
为了更好的对本发明进行阐述说明,申请人例举了如下实施例,下述说明仅是为了解释本发明,并不对其内容进行限定。
1.改性氮化硼的制备
取1.5gBN分散于70ml浓度为5M的NaOH水溶液中,超声1h使其均匀混合。然后将混合溶液转移到100ml的高压反应釜中,120℃下反应48h,所得产物用去离子水反复洗涤至中性,冷冻干燥后即可得到改性氮化硼。
2.原位增容PCL/BN复合材料的制备
取0.3gBN-OH分散于6g己内酯单体中,超声60min使其均匀分散。加入0.2%(0.0012g)辛酸亚锡,使用微波辅助在220℃下聚合5min,得到BN添加量为5%的PCL/BN复合材料。
3.原位增容PLA/BN复合材料的制备
取6g的L-丙交酯在真空烘箱80℃干燥8h,以除去微量的水分,然后加入0.12g干燥的改性BN混合均匀,使用微波化学合成仪在130℃加热5min使L-丙交酯完全熔融,然后加入0.2%(0.0012g)辛酸亚锡在175℃下微波辐射聚合5min,得到BN添加量为2%的PLA/BN复合材料。
4.PCL/BN复合材料导热性能的测试
将不同BN添加量的PCL/BN复合材料经热压成型制备得到直径1mm厚0.8mm的小圆片,使用耐驰激光导热仪(LFA467)测其导热性能,测试结果见图4。
5.PCL/BN复合材料力学性能的测试
将不同BN添加量的PCL/BN复合材料经热压成型制备得到长方形样条,利用试验机测其拉伸性能,测试结果见图5。

Claims (10)

1.一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于,具体步骤如下:
步骤一)改性氮化硼的制备:取氮化硼加入到的NaOH水溶液中进行水热反应,使氮化硼表面羟基化,反应产物清洗后冷冻干燥,得到改性氮化硼粉末;
步骤二)原位增容聚酯/氮化硼复合材料的制备:将改性氮化硼加入到聚酯单体或熔体中,超声分散均匀,在催化剂和微波辅助下引发环状聚酯类单体开环聚合制备得到聚酯/氮化硼复合材料。
2.根据权利要求1所述一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于:所述步骤一)中水热反应为先超声分散60min,再在120oC下水热反应48h。
3.根据权利要求1所述一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于:步骤一)中使用的氮化硼尺寸为1μm~20μm。
4.根据权利要求1所述一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于:步骤一)中使用的NaOH水溶液浓度为3~10M。
5.根据权利要求1所述一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于:步骤一)中使用的NaOH水溶液浓度为5M。
6.根据权利要求1所述一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于:步骤二)中聚酯单体为环状聚酯类的己内酯、L-丙交酯、D-丙交酯或D,L-丙交酯。
7.根据权利要求1所述一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于:步骤二)中聚酯单体优选己内酯。
8.根据权利要求1所述一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于:步骤二)中使用的催化剂可以为烷基铝、烷基锡等,或醇盐、烷氧化物,以及金属氧化物或卤化物,添加量为0.1%~0.6%。
9.根据权利要求1所述一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于:步骤二)中使用的催化剂优选异辛酸亚锡,添加量0.2%。
10.根据权利要求1所述一种原位增容聚酯/氮化硼复合材料的制备方法,其特征在于:步骤二)中微波辅助聚合条件为温度170~230℃,优选220℃,反应时间5min。
CN201910569484.4A 2019-06-27 2019-06-27 一种原位增容聚酯/氮化硼复合材料的制备方法 Active CN110305302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910569484.4A CN110305302B (zh) 2019-06-27 2019-06-27 一种原位增容聚酯/氮化硼复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910569484.4A CN110305302B (zh) 2019-06-27 2019-06-27 一种原位增容聚酯/氮化硼复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN110305302A true CN110305302A (zh) 2019-10-08
CN110305302B CN110305302B (zh) 2021-09-21

Family

ID=68076803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910569484.4A Active CN110305302B (zh) 2019-06-27 2019-06-27 一种原位增容聚酯/氮化硼复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110305302B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417956A (zh) * 2022-08-12 2022-12-02 合肥学院 一种低热阻的氮化硼纳米片/聚合物复合水乳胶的制备方法及其在导热涂层中的应用
CN115547691A (zh) * 2022-11-04 2022-12-30 深圳市米韵科技有限公司 一种高频电容用导热隔膜及其制备方法
CN115928250A (zh) * 2022-12-12 2023-04-07 南京众山电池电子有限公司 一种聚酯纤维绝缘材料的制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023161A2 (en) * 1997-10-31 1999-05-14 Monsanto Company Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
CN1631973A (zh) * 2004-11-26 2005-06-29 中国科学院长春应用化学研究所 生物陶瓷与生物降解脂肪族聚酯复合材料的制备方法
US20060100363A1 (en) * 2004-11-09 2006-05-11 Wilson Tam Polymerization of macrocyclic polyester oligomers using metal amide and metal alkoxide catalysts
CN103319866A (zh) * 2013-07-16 2013-09-25 暨南大学 氧化镁晶须/生物降解聚酯复合材料及其制备方法和应用
CN107964101A (zh) * 2017-11-14 2018-04-27 华中科技大学 一种改性纳米材料的制备方法
CN109592653A (zh) * 2018-11-29 2019-04-09 盐城师范学院 一种二维羟基化氮化硼的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023161A2 (en) * 1997-10-31 1999-05-14 Monsanto Company Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
US20060100363A1 (en) * 2004-11-09 2006-05-11 Wilson Tam Polymerization of macrocyclic polyester oligomers using metal amide and metal alkoxide catalysts
CN1631973A (zh) * 2004-11-26 2005-06-29 中国科学院长春应用化学研究所 生物陶瓷与生物降解脂肪族聚酯复合材料的制备方法
CN103319866A (zh) * 2013-07-16 2013-09-25 暨南大学 氧化镁晶须/生物降解聚酯复合材料及其制备方法和应用
CN107964101A (zh) * 2017-11-14 2018-04-27 华中科技大学 一种改性纳米材料的制备方法
CN109592653A (zh) * 2018-11-29 2019-04-09 盐城师范学院 一种二维羟基化氮化硼的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUTONG YANG ET AL.: "Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization", 《COMPOSITES SCIENCE AND TECHNOLOGY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417956A (zh) * 2022-08-12 2022-12-02 合肥学院 一种低热阻的氮化硼纳米片/聚合物复合水乳胶的制备方法及其在导热涂层中的应用
CN115417956B (zh) * 2022-08-12 2024-02-27 合肥学院 一种低热阻的氮化硼纳米片/聚合物复合水乳胶的制备方法及其在导热涂层中的应用
CN115547691A (zh) * 2022-11-04 2022-12-30 深圳市米韵科技有限公司 一种高频电容用导热隔膜及其制备方法
CN115928250A (zh) * 2022-12-12 2023-04-07 南京众山电池电子有限公司 一种聚酯纤维绝缘材料的制备方法和应用
CN115928250B (zh) * 2022-12-12 2024-05-28 南京众山电池电子有限公司 一种聚酯纤维绝缘材料的制备方法和应用

Also Published As

Publication number Publication date
CN110305302B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN110305302A (zh) 一种原位增容聚酯/氮化硼复合材料的制备方法
Chun et al. Properties of coconut shell powder‐filled polylactic acid ecocomposites: Effect of maleic acid
Wu et al. Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites
Zhao et al. Nanodiamond/poly (lactic acid) nanocomposites: Effect of nanodiamond on structure and properties of poly (lactic acid)
Shih et al. Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites
Wu et al. Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes
Sridhar et al. Graphene reinforced biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites.
Aghajan et al. Using solvent-free approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin
Kim et al. Mechanical properties and thermal stability of poly (L‐lactide)/calcium carbonate composites
Yu et al. Mechanical properties and long-term durability of recycled polysulfone plastic
Abdalhadi et al. Controlling the properties of OPEFB/PLA polymer composite by using Fe 2 O 3 for microwave applications
Dehas et al. Thermal, mechanical, and viscoelastic properties of recycled poly (ethylene terephthalate) fiber‐reinforced unsaturated polyester composites
Wu et al. Thermal, mechanical and rheological properties of biodegradable poly (propylene carbonate) and poly (butylene carbonate) blends
Boonprasertpoh et al. Effect of crosslinking agent and branching agent on morphological and physical properties of poly (butylene succinate) foams
Bhattacharjee et al. Study of the thermal, mechanical and melt rheological properties of rice straw filled poly (butylene succinate) bio-composites through reactive extrusion process
Shahdan et al. Mechanical performance, heat transfer and conduction of ultrasonication treated polyaniline bio-based blends
Ren et al. Fast and Efficient Electric‐Triggered Self‐Healing Shape Memory of CNTs@ rGO Enhanced PCLPLA Copolymer
Liao et al. New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch
Wu Enhanced interfacial adhesion and characterisation of recycled natural fibre-filled biodegradable green composites
Zhai et al. Surface treatment of multiwalled carbon nanotubes and the formation of the multiscale conductivity network in long carbon fiber reinforced polypropylene
Yan et al. Preparation and characterization of fibrous sepiolite modified silane coupling agent/fluororubber nanocomposite
Liu et al. Preparation and characterization of poly (ε‐caprolactone)/calcium carbonate nanocomposites and nanocomposite foams
Yao et al. Preparation and characterization of poly (butylene terephthalate)/silica nanocomposites
Stefănescu et al. Synthesis and characterization of poly (vinyl alcohol)/ethylene glycol/silica hybrids. Thermal analysis and FT-IR study
Chakoli et al. Irradiation of poly (L-lactide) biopolymer reinforced with functionalized MWCNTs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant