WO1999016117A1 - Procede et systeme de traitement au plasma et procede de fabrication d'un substrat pour semi-conducteurs - Google Patents

Procede et systeme de traitement au plasma et procede de fabrication d'un substrat pour semi-conducteurs Download PDF

Info

Publication number
WO1999016117A1
WO1999016117A1 PCT/JP1998/004258 JP9804258W WO9916117A1 WO 1999016117 A1 WO1999016117 A1 WO 1999016117A1 JP 9804258 W JP9804258 W JP 9804258W WO 9916117 A1 WO9916117 A1 WO 9916117A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
processing
plasma processing
substance
substrate
Prior art date
Application number
PCT/JP1998/004258
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Anan
Shinji Sasaki
Shigeru Kakuta
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1999016117A1 publication Critical patent/WO1999016117A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube

Definitions

  • the present invention relates to a plasma processing method for performing an etching process or a film forming process on a substrate to be processed such as a semiconductor substrate using plasma, an apparatus therefor, and a method for manufacturing a semiconductor substrate.
  • processing devices that perform a film forming process and an etching process have been used to form passive elements, active elements, wiring, and the like on a semiconductor substrate.
  • a generated substance sometimes adheres to and accumulates on an internal member of the processing chamber.
  • a reaction product generated in the plasma diffuses into the processing chamber and adheres to an internal member to cause deposition.
  • a substance formed in an internal member of the processing chamber is referred to as a deposited substance.
  • FIG. 5 is a cross-sectional view showing a state of adhesion of a deposited substance formed on an internal member installed in a processing chamber in a plasma processing apparatus for performing an etching process.
  • 10 is an internal member installed in the processing chamber, and 30 and 31 are deposit materials. From this, it can be seen that an interface is formed between the deposited materials 30 and 31. This is because the properties such as the composition are different between the deposition material 30 and the deposition material 31 because the processing conditions set when the deposition material 30 and the deposition material 31 are formed are different. If the adhesive force at this interface is weak, the deposited material 31 will peel off from this interface, not from the surface of the internal member 10 installed in the processing chamber. Therefore, as shown in Prior Art 1, even if the surface of the internal member is roughened, the contact area only slightly increases, and the adhesion of the deposited material to the surface of the internal member is greatly increased. An increase cannot be expected, and the interface between the deposited material generated on the deposited material in response to the change in the set processing conditions causes an interface to occur, and the effect of reducing the peeling is not sufficient.
  • the peeling reduction effect is not sufficient, the deposited material peels off and adheres to the part of the substrate to be reprocessed, causing defects such as short-circuiting, disconnection, and poor processing of the product. This will reduce the yield. Also, if the sedimentation material is peeled off frequently, the members inside the processing chamber will need to be replaced and cleaned frequently, which will reduce productivity.
  • An object of the present invention is to solve the above-mentioned problems, and in the plasma processing, deposits generated when performing a plasma processing on a substrate to be injected and adhered to a partial member installed in a processing chamber. It is an object of the present invention to provide a plasma processing method and apparatus capable of preventing or reducing material peeling to suppress generation of particles and improving product yield and productivity. Another object of the present invention is to change the type of the substrate to be processed in the plasma processing, and change the plasma processing conditions so as to match the change.
  • the present invention provides a plasma processing method in which a substrate to be processed is placed on an electrode installed in a processing chamber, and plasma is generated on the processing substrate to perform plasma processing on the substrate to be processed.
  • a substance that prevents or reduces peeling is formed on a member installed in the processing chamber by generating plasma on the electrode, and the plasma processing is performed during the plasma processing.
  • a plasma processing method characterized by depositing a generated deposition material on a substance which prevents or reduces the peeling, and desirably prevents an interface from being generated in the deposition material.
  • the present invention is characterized in that in the above-mentioned plasma processing method, the plasma processing is a plasma etching processing.
  • the present invention provides a plasma processing method in which a substrate to be processed is placed on an electrode provided inside a processing chamber, and plasma is generated on the substrate to perform plasma processing on the substrate to be processed.
  • the processing conditions for forming a substance that prevents or reduces peeling are determined based on the plasma processing conditions for performing the plasma processing on the substrate to be processed.
  • a control parameter is controlled based on the determined processing conditions to generate a plasma on the electrode to form a substance for preventing or reducing the separation on a member installed in the processing chamber, and
  • a plasma processing method characterized by depositing a substance generated during plasma processing on a substance that prevents or reduces the above-mentioned separation, and desirably prevents an interface from being generated in the deposited substance.
  • the present invention also provides a plasma processing apparatus for placing a substrate to be processed on an electrode installed in a processing chamber, generating plasma on the substrate, and performing plasma processing on the substrate to be processed.
  • a substance that prevents or reduces peeling is formed on a member installed in the processing chamber by generating plasma on the electrode, and the deposited substance generated during the plasma processing is formed on the member.
  • a plasma processing apparatus comprising a control means for attaching to a substance for preventing or reducing peeling, and desirably for preventing an interface from being formed in the deposited substance.
  • control means in the plasma processing apparatus may determine processing conditions for forming a substance for preventing or reducing peeling based on plasma processing conditions for performing plasma processing on a substrate to be processed. Under the determined processing conditions, control parameters are controlled to form a substance that prevents or reduces peeling.
  • the present invention provides the control means in the plasma processing apparatus, wherein, when the plasma processing conditions for performing the plasma processing on the substrate to be processed are changed, the processing conditions for forming a substance for preventing or reducing peeling are changed to those before the change.
  • the plasma processing conditions are determined based on the plasma processing conditions and the plasma processing conditions after the change, and a control parameter is controlled under the determined processing conditions to form a substance that prevents or reduces peeling.
  • the control means in the plasma processing apparatus When the plasma processing conditions for performing the plasma processing on the substrate to be processed are changed, the processing conditions for forming a substance for preventing or reducing peeling are changed between the plasma processing conditions before the change and the plasma processing conditions after the change. Are determined by interpolation, and the control parameters are sequentially controlled under the determined processing conditions to form a substance that prevents or reduces peeling.
  • the present invention provides a method of manufacturing a semiconductor substrate, comprising: placing a semiconductor substrate on an electrode installed in a processing chamber; generating plasma on the semiconductor substrate; and performing plasma processing on the semiconductor substrate.
  • a substance that prevents or reduces exfoliation is formed on a member installed in the processing chamber by generating plasma on the electrode, and the deposition generated during the plasma processing is formed.
  • a method of manufacturing a semiconductor substrate characterized in that a substance is deposited on a substance that prevents or reduces peeling, and desirably, an interface does not occur in the deposited substance.
  • the configuration in the plasma processing, separation or separation of a deposited substance generated when the plasma processing is performed on the substrate to be processed and adhered to the internal member installed in the processing chamber is prevented or reduced. As a result, the generation of particles can be suppressed, and product yield and productivity can be improved.
  • the plasma processing even if the type of the substrate to be processed is changed and the plasma processing conditions are changed so as to be adapted to the change, the plasma is generated by the plasma processing and generated in the processing chamber.
  • the generation of particles can be suppressed by preventing or reducing the exfoliation of the deposited material adhering to the internal members provided on the vehicle, and the product yield and the productivity can be improved.
  • the semiconductor substrate to be supplied is generated when the semiconductor substrate is subjected to the plasma processing and is manufactured, and is generated in the processing chamber Prevents or reduces the separation of deposited substances adhering to the installed internal members, suppresses the generation of particles, reduces short-circuit breaks in wiring due to particles, and reduces shape defects, etc., and reduces the yield of semiconductor substrates.
  • the productivity can be improved.
  • the frequency of removal of the sediment can be reduced and the productivity of the product can be improved by reducing the separation of the sediment.
  • FIG. 1 is a schematic sectional view showing a plasma etching treatment method according to the present invention and a schematic diagram showing a state on a member inside a processing chamber.
  • FIG. 2 is an embodiment of a plasma etching treatment apparatus according to the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example, FIG. 3 is a view showing that the substance for preventing or reducing peeling according to the present invention improves the adhesion of sediment, and
  • FIG. FIG. 5 is a diagram for explaining a method of measuring the adhesion of a deposited material according to the present invention.
  • FIG. 5 is a cross-sectional view showing a state of a deposited material formed on a conventional member inside a processing chamber. .
  • the present invention includes at least a wafer processing step, a step of preventing or reducing the separation of the deposited material formed by the processing step, and a step of removing the deposited substance. It is preferable that the peel prevention step is used for at least one or more of the above-mentioned interface portions in the deposited material before the deposited material is formed on the members inside the processing chamber.
  • the separation prevention step since the interface in the deposited material is likely to occur when the wafer is processed by changing the setting conditions of the wafer processing step, the separation prevention step must be performed before the processing of the wafer by changing the setting conditions of the wafer processing step. It is preferably used.
  • FIG. 1 shows a wafer processing method in which a silicon oxide film on a wafer is re-etched by plasma in one etching apparatus, which is an embodiment of the method of manufacturing a semiconductor device according to the present invention.
  • a treatment for preventing or reducing the detachment on the member 10 inside the processing chamber is performed before the normal etching treatment.
  • the treatment for preventing or reducing peeling is to form a substance 20 for preventing or reducing peeling on the member 10 inside the processing chamber.
  • Numeral 1 16 denotes a dummy wafer used for performing a process for preventing or reducing peeling.
  • a fine resist pattern 7 is formed on a silicon oxide film 61 of an insulating layer to be processed on a normal wafer 106.
  • an etching process is performed on the silicon oxide film 61 under a first set processing condition (hereinafter, referred to as processing condition 1) to form a fine first pattern.
  • processing condition 1 a first set processing condition
  • a mixture of Ar and a fluorocarbon-based gas is introduced into the processing chamber to a desired pressure (about 0.5 to 100 Pa), turned into plasma, and generated in the plasma.
  • the radical containing fluorine or carbon reacts with the silicon oxide film by the incident energy of ions on the wafer and etches.
  • the desired processing of the resist pattern is performed.
  • the substance 20 that prevents or reduces the peeling on the member 10 inside the processing chamber is deposited on the substance 20 due to the particles polymerized by the reaction between radicals or the reaction products generated from the wafer. 30 will be formed.
  • the etched wafer 106 is carried out of the processing chamber, and then the fine resist pattern 71 is removed, whereby a fine first pattern is formed on the silicon oxide film 61. become.
  • the etching process on the object to be processed 62 differs from the etching process on the object to be processed 61 in pattern, thickness, and the like.
  • the gas flow rate, the gas pressure, the high-frequency power, and the frequency of the power are different.
  • an interface occurs in the deposited material, such as when the set processing conditions consisting of the processing time and the like are significantly changed from the first set processing conditions, processing to prevent or reduce peeling before performing the etching process that generates the interface.
  • the silicon oxide film 61 is subjected to an etching process and a rougher surface than the resist pattern 71 on the silicon oxide film 62 of the insulating layer, which is an object to be processed having a different pattern, thickness, and the like.
  • the silicon oxide film 62 is subjected to second setting processing conditions different from the first setting processing conditions (hereinafter referred to as processing conditions 2).
  • An etching process is performed to form, for example, a second pattern that is coarser than the first pattern.
  • FIG. 1 (c) the substance 21 and the deposited substance 31 which prevent or reduce the separation so that no interface is formed are formed on the deposited substance 30.
  • the deposition material 3 If there is no interface at the boundary between 0 and the deposited material 31, it is not necessary to perform a treatment to prevent or reduce peeling before that. Then, the etched wafer 106 is placed in a processing chamber. Then, by removing the fine resist pattern 72, a second pattern different from the first pattern is formed on the silicon oxide film 62.
  • Reference numeral 63 denotes a wiring conductor pattern formed between the silicon oxide film 61 of the insulating layer and the silicon oxide film 62 of the insulating layer.
  • the processing chamber is opened and the deposition materials 30 and 3 are opened.
  • the deposited substances 30 and 31 and the substances 20 and 21 that prevent or reduce the exfoliation are removed by an operation such as replacing a member with 1 or the like with a member without.
  • the above procedure is repeated to perform the etching processing.
  • the adhesion between the processing chamber inner member 10 and the substance 20 for preventing or reducing peeling, the substance 20 for preventing or reducing peeling and the deposited material 30 is determined by the adhesive force between the processing chamber inner member 10 and the deposited material 30.
  • the substance 20 that prevents or reduces the exfoliation as well as the substance 20 that prevents or reduces exfoliation is prevented from being exfoliated from the member 10 inside the processing chamber by increasing the adhesive force.
  • the adhesion between the sedimentary substance 30 and the substance 21 that prevents or reduces exfoliation the adhesion between the substance 21 that prevents or reduces exfoliation 21 and the sedimentary substance 31, and the adhesion between the sedimentary substance 30 and the sedimentary substance 31
  • the deposited substance 31 as well as the substance 21 for preventing or reducing the separation is prevented from being separated from the member 10 inside the processing chamber. Therefore, compared with the case where the substances 20 and 21 for preventing or reducing the exfoliation are not formed, the exfoliation of the accumulated substances 30 and 31 from the member 10 inside the processing chamber can be prevented or significantly reduced. .
  • generation of particles can be suppressed for a long period of time, and it becomes possible to process a wafer with improved yield and productivity.
  • Plasma is also used in the process to prevent or reduce peeling. Therefore, a series of etching processes can be performed quickly without the need to open the processing chamber.
  • substances 20 and 21 for preventing or reducing separation are formed on the member 10 inside the processing chamber and on the deposited material 30 using plasma.
  • the processing conditions for forming the substance that prevents or reduces exfoliation are as follows: Determined from the set processing conditions in the etching process (hereinafter referred to as processing condition 1) and the set processing conditions in the etching process after forming the substance that prevents or reduces the peeling (hereinafter referred to as processing condition 2).
  • processing condition 1 and 2 are the etching processing conditions optimized for the processing target to be etched.
  • the etching conditions include, for example, gas flow rate, gas pressure, high frequency power, frequency of the power, processing time, and the like.
  • substances 20 and 21 for preventing or reducing peeling are formed on the member 10 inside the processing chamber and on the deposited material 30 using plasma, and preferably no interface is generated. In this way, the deposits 30 and 31 formed in the processing step are prevented from peeling off the members 10 inside the processing chamber. You.
  • parameters 1 and 2 for example, parameters such as gas flow rate, gas pressure, high frequency power, frequency of the power, processing time, etc. are interpolated, and The substances 20 and 21 are formed by dividing the steps into about 100 and changing the properties stepwise to prevent or reduce peeling. Desirably, no interface is formed in a portion in contact with the member 10 inside the processing chamber and the deposited materials 30 and 31.
  • the method of determining the conditions will be described in detail.
  • the processing conditions 1 and 2 so that no interface is formed at the part in contact with the deposited materials 30 and 31, for example, from the gas flow rate, gas pressure, high-frequency power, frequency of the power, processing time, etc. Then, the difference between the parameters is obtained, and the obtained difference is divided by the step width desirably so as not to generate an interface with respect to each parameter, thereby obtaining the number of steps. For example, if the difference in power as a parameter is 300 W and the step width is 100 W, the number of steps is three. Of the number of steps determined from each parameter in this way, the largest number is the number of steps for forming a substance that prevents or reduces peeling.
  • the processing conditions in each step are conditions obtained by interpolating the parameters of processing condition 1 and processing condition 2.
  • linear interpolation is used, for example, the power of processing condition 1 is 800 W, the gas pressure is 30 Pa, the power of processing condition 2 is 11 ⁇ 0 W, and the gas pressure is If the number of steps is 3, the power of step 1 is 900 W, the gas pressure is 3 OPa, the number of steps is 3, the power is 100 W in step 2, the gas pressure is 25 Pa, the step At 3, the power is 110 W and the gas pressure is 20 Pa.
  • the processing conditions in each step of each parameter are determined, and each step is executed.
  • the properties of the substances 20 and 21 that prevent or reduce peeling gradually change in property, and the deposited substances 3 on both sides 3 At the portions in contact with 0 and 31, the properties are similar to those of the accumulated substances 30 and 31 on both sides. For this reason, the adhesion between the substance 21 that prevents or reduces the exfoliation and the sedimentary substances 30 and 31 that are in contact with both sides of the substance 21 becomes larger than the adhesion between the sedimentary substances, and the sedimentary substance 31 Peeling can be prevented or significantly reduced.
  • the inner member side of the substance 20 for preventing or reducing exfoliation is reduced, for example, by lowering the gas pressure on the inner member 10 of the processing chamber, and the high-frequency power is increased so as to adhere densely, thereby preventing or reducing exfoliation.
  • the separation of the deposition substance 30 can be prevented or significantly reduced.
  • the generation of particles can be suppressed for a long period of time, and the wafer can be subjected to the etching process with improved yield and productivity.
  • FIG. 3 shows the comparison result of c.
  • Pulling down is one method of measuring the adhesive force. As shown in Fig. 4, the material 25 formed on the member 15 with the adhesive 40 as shown in Fig. 4 Vertically put a bar 50 on top Then, a force F is applied to the rod in the horizontal direction with the film, and the force when the substance 25 is peeled is examined.
  • the force for peeling off the deposited substance 31 formed on the top is 1.4 as compared with the case where they are not formed. It is possible to prevent or significantly reduce the separation of the deposited substances 30 and 31, thereby suppressing the generation of particles over a long period of time and improving the yield and productivity. It is possible to perform the etching process on the wafer with the improvement.
  • the substances 20 and 21 that prevent or reduce exfoliation may be formed on all parts of the deposited materials 30 and 31 that will be interfaces, but it is recommended that only the interface with weak adhesion be selected and formed. May be. Further, in the present embodiment, the substances 20 and 21 are formed in order to prevent or reduce the exfoliation by changing each parameter step by step. However, the substance to prevent or reduce the exfoliation by continuously changing each parameter is formed. 20 and 21 may be formed, or if the processing conditions that have a strong adhesive force to the material in contact with both sides are determined in advance by experiments, etc., peeling can be prevented or prevented under the processing conditions regardless of the above method. A reducing substance may be formed.
  • a substance 20 for preventing or reducing peeling is formed on the surface of the member 10 inside the processing chamber, first, a substance having a large adhesive force with the internal member 10 is formed, and then the conditions under which the substance is formed are determined.
  • a substance 20 for preventing or reducing peeling is formed by the method of interpolating the above-described parameters from the setting conditions of the next wafer processing step.
  • the conditions for forming the substance having a large adhesive force with the internal member 10 may be determined from various experimental results.
  • the processing conditions for forming a substance 20 for preventing or reducing peeling by plasma on the surface of the member 10 inside the processing chamber can be set independently of the etching processing conditions, so that the processing conditions are large compared to the internal member 10. It can be set to form an adhesive substance.
  • a mixture of Ar and a fluorocarbon-based gas introduced into the processing chamber is used to lower the gas pressure and increase the high-frequency power applied between the electrodes to form a substance 20 that prevents or reduces dense separation. Then, it is sufficient to have a large adhesive force with the internal member 10.
  • FIG. 2 shows a schematic configuration of a plasma etching apparatus for a silicon oxide film (SiO 2 ) which is an embodiment of the etching processing apparatus according to the present invention.
  • the plasma etching apparatus is, for example, a parallel plate narrow electrode type as shown in FIG. That is, the parallel plate narrow electrode type plasma etching apparatus includes a processing chamber (vacuum vessel) 101, an exhaust device 102 that can control the inside of the processing chamber 101 to a desired gas pressure, and a processing chamber.
  • a gas supply device 103 capable of supplying a desired amount of gas in a fixed amount within 101, and a high-frequency potential of several 100 kHz to several 10 MHz applied between electrodes to generate plasma.
  • the high frequency power supply 104 and the matching box 105 are provided.
  • a temperature adjuster 108 for adjusting the temperature of the wafer is connected to the wafer mounting electrode 107 for mounting the wafer 106 or the dummy wafer 116 to be subjected to the etching process. ing. Further, the wafer-mounted electrode 107 is electrically insulated from surrounding members by an insulating material 109, and can be moved up and down by an elevator 110.
  • the counter electrode 111 on the surface facing the wafer mounting electrode 107 is connected to the ground.
  • the ring-shaped insulating members 1 1 2 and 1 1 3 which are one of the internal members are used to confine the plasma between the wafer 106 and the counter electrode 1 1 1. It is installed so as to cover around 106 and the upper electrode (counter electrode).
  • the processing gas introduced into the gas supply device 103 is dispersed on the substrate 106 through the gas supply ports 114 provided in the upper electrode 111 toward the substrate (wafer) 106. Supplied.
  • the member provided with the gas supply port 114 is formed of carbon-silicon or the like which has no problem even when exposed to plasma.
  • the etching process in the parallel plate narrow electrode type plasma etching apparatus is performed as follows. First, the lower electrode 107 is lowered by the elevator 110, and the substrate to be processed 106 is received from a substrate supply device (not shown) by a transfer means such as a robot, and is placed on the lower electrode 107. Thereafter, the lower electrode 107 is lifted by the elevating mechanism 110, and a gap of about 1 Omm is maintained between the lower electrode 107 and the upper electrode 111. Then, the processing chamber 1 ⁇ 1 is evacuated to a high vacuum by an exhaust device 102, and then used as a gas supplied from a gas supply device 103, for example, Ar and an organic mixture such as CF 4, CHF 3, or C 4 F 8.
  • a gas supply device 103 for example, Ar and an organic mixture such as CF 4, CHF 3, or C 4 F 8.
  • Electrode 1 07, 1 1 1 flop plasma is generated between, on the target substrate 1 06 for example S i 0 2 film, S i N film or the like is by re etching reaction with CF 4 or CHF 3 or C 4 F 8, is performed.
  • the substrate to be processed 1 0 6 surface (S i 0 2 film or S i N film) is S i of reacting with Li removed, such as silicon fluoride gas, also decomposed carbon atom S I_ ⁇ 2 or, It is combined with ⁇ and N in Si N and removed as C ⁇ 2 (carbon dioxide) and CN to perform etching.
  • ions in the plasma are accelerated by the electric field and are incident on the surface of the substrate to be processed 106, so that Si previously formed on the surface of the substrate to be processed 106 is obtained.
  • O 2 silicon oxide Decomposes the film or SiN film to produce silicon fluoride and carbon dioxide or carbon nitride.
  • a polymerization reaction occurs with the carbon fluoride gas molecules, and a polymerized film of carbon fluoride (CF 3 — (CF 2 ) n -CF 3 ) is formed.
  • Fluorocarbon gas molecules adsorbed on the surfaces of the ring-shaped insulating members 112, 113 and the wall of the processing chamber 101 are subjected to the impact of fluorocarbon ions in the plasma to generate fragments that release fluorine.
  • Fluorocarbon radicals are generated, and then Fluorocarbon The radicals polymerize to form a polymerized carbide polymer film (CF 3 — (CF 2 ) argue— CF 3 ).
  • the thickness of the carbide to be deposited increases continuously.
  • the apparatus management system 200 manages the operation of the plasma etching apparatus such as a series of steps of the etching processing.
  • the etching processing conditions are determined according to the type of the film to be etched formed on the wafer to be supplied to the plasma etching processing apparatus obtained from the line monitoring system 300.
  • the etching process is executed by controlling, for example, a gas flow rate, a gas pressure, a high-frequency power, a frequency of the power, a processing time, a wafer temperature, and the like based on the program and the etching process conditions determined based on the program.
  • a storage device 201 is provided for storing a program, a processing condition determination program for forming the substances 20 and 21 for preventing or reducing exfoliation, and a processing program for executing the program.
  • the equipment management system 200 is connected to a line monitoring system 300 that manages the entire production line, so that the type of etching processing film formed on the wafer to be put into the plasma etching processing equipment and the etching process can be controlled. Information such as the number of pages processed is input from the line monitoring system 300 via the network.
  • the line monitoring system 300 is used for processing the etching conditions for the film to be etched formed on the input wafer, the operating status of the apparatus, and the material for opening or closing the processing chamber to prevent or reduce the deposition material and the peeling.
  • the information obtained by removing the ring-shaped insulating members 1 1 2 and 1 1 3 with the new ones and replacing them with new ones, and the cleaned information can be removed from the device management system 200. .
  • the gas supply device 103 has a flow rate for measuring the flow rate of the supplied gas.
  • a quantity sensor (not shown) is provided.
  • a pressure sensor (not shown) for measuring gas pressure is provided.
  • the control of the desired gas pressure in the processing chamber 101 controls the flow rate of the gas supplied from the gas supply device 103 based on the command from the device management system 200 and the exhaust device 1. This is executed by controlling the displacement of the engine according to 02.
  • the control of the high-frequency power, the frequency of the power, and the processing time is performed by controlling the high-frequency power supply 104 based on a command from the device management system 200.
  • the temperature controller 108 is controlled in accordance with the temperature of the wafer detected by a temperature sensor (not shown) based on a command from the device management system 200. It is executed by
  • the apparatus management system 200 determines the etching processing conditions according to the type of the substrate (wafer) to be processed, which is supplied to the plasma etching processing apparatus obtained from the line monitoring system 300, and determines the determined etching processing conditions.
  • the gas supply device 103, the exhaust device 102, the high frequency power supply 104 and the temperature controller 108 By controlling the gas supply device 103, the exhaust device 102, the high frequency power supply 104 and the temperature controller 108 based on the matter, the etching process film formed on the substrate (wafer) to be processed Etching process will be performed under the conditions suitable for the type.
  • the equipment management system 2000 determines the etching processing conditions according to the type of the substrate (wafer) to be processed, which is supplied to the plasma etching processing apparatus obtained from the line monitoring system 300, so that this determination is made. As a result, it is possible to grasp the etched etching conditions, and as a result, by using a processing condition determination program that forms a substance that prevents or reduces the peeling, such as interpolating between the processing conditions 1 and 2, the peeling is performed.
  • the processing conditions for forming a substance that prevents or reduce air pollution are determined, and based on the determined processing conditions, the gas supply device 103, the exhaust device 102, the high-frequency power supply 104, and the Forming substances 2 ⁇ and 21 which prevent or reduce peeling on the ring-shaped insulating members 1 1 2 and 1 13 which is one of the internal members 10 by controlling the temperature controller 108 Can be.
  • the device management system 20 Calculation processing such as interpolation between processing conditions 1 and 2 is performed from the conditions to determine the processing conditions for forming a material that prevents or reduces peeling, and the dummy wafer 1 16 is mounted on the wafer mounting electrode 1
  • the wafer mounting electrode 107 is moved up and down to a predetermined position by the elevator 110, the gas supply device 103, the exhaust device 102,
  • the high-frequency power supply 104 and the temperature controller 108 By controlling the high-frequency power supply 104 and the temperature controller 108, a plasma is generated between the upper and lower electrodes 107 and 111, and a ring-shaped insulation which is one of the internal members 10 is generated.
  • a substance 20 for preventing or reducing peeling is formed on the members 112, 113.
  • the apparatus management system 200 determines etching processing conditions suitable for the type of the film to be etched on the substrate to be processed (wafer) 106, and sets the etching film to the above.
  • the substrate (wafer) 106 to be processed is mounted on the wafer mounting electrode 107, and the wafer mounting electrode 107 is moved up and down to a predetermined position by an elevator 110, and then the etching processing conditions determined above are determined.
  • the gas supply device 103, the exhaust device 102, the high-frequency power supply 104, and the temperature controller 108 By controlling the gas supply device 103, the exhaust device 102, the high-frequency power supply 104, and the temperature controller 108 based on the above, plasma is generated between the upper and lower electrodes 107, 111. Then, an etching process is performed on the etching target film.
  • the gas supply device A predetermined amount of Ar and fluorocarbon-based gas is supplied from the gas supply device 103 by controlling 103, and the pressure is adjusted to a predetermined pressure by controlling the exhaust device 102. During this time, the substrate to be processed 106 is adjusted to a predetermined temperature by the temperature adjuster 108. Thereafter, by controlling the high-frequency power supply 104, a desired high-frequency power is supplied by the high-frequency power supply 104 and the matching device 105 to generate plasma between the upper and lower electrodes 107, 111. Then, an etching process is performed on the film to be etched.
  • the plasma is confined during this period by the ring-shaped insulating members 112, 113, the deposited material 30 is mainly deposited only on the ring-shaped insulating members 112, 113 in the wafer processing process. Will be formed.
  • the equipment management system 20 ⁇ is configured to perform the etching process by changing the set processing conditions so as to match the type of the film to be etched on the substrate (wafer) 106 to be charged.
  • the processing conditions for forming a substance for preventing or reducing peeling are determined from the changed etching processing conditions, and a gas supply device 103, an exhaust device 102, and a high-frequency power source 104 are determined based on the determined processing conditions.
  • a gas supply device 103, an exhaust device 102, and a high-frequency power source 104 are determined based on the determined processing conditions.
  • plasma is generated between the upper and lower electrodes 107, 111, and the ring-shaped insulating member 112, which is one of the internal members 10, is formed.
  • a substance 21 for preventing or reducing peeling is formed on 1 1 3.
  • the wafer processing step and the step of preventing or reducing the peeling are repeated, and when the peeling of the deposited material is likely to occur, or when the consumable parts inside the processing chamber 101 are replaced.
  • Deposits are removed.
  • the removal of the sedimentary material is performed by opening the processing chamber 101 and forming a ring-shaped insulating member 1 1 2, 1 on which the sedimentary materials 30, 31 and the substances 20, 21 for preventing or reducing the exfoliation are formed. 1 Remove 3 and replace with a new one. After replacement, the wafer processing step and the peeling prevention or reduction step should be performed. Removed
  • the ring-shaped insulating members 112, 113 are cleaned to remove deposited substances and substances that prevent or reduce exfoliation, and are made usable again.
  • the processing gas (methane gas) is ionized by high-frequency power applied by a high-frequency power supply, causing a potential change at a frequency f between the substrate to be processed and the electrode, and ionizing to generate plasma.
  • the generated plasma causes a high-frequency current to flow between the electrode and the substrate to be processed, but a large potential difference is generated between the substrate and the plasma because the area of the substrate to be processed is smaller than that of the electrode. .
  • the input power is mainly used for accelerated incidence of ions on the substrate due to the potential difference of the sheath between the plasma and the substrate to be processed, and a high quality carbon film is formed on the surface of the substrate to be processed. It will be deposited.
  • the present invention even if the type of the substrate to be processed is changed in the plasma processing and the plasma processing conditions are changed so as to be adapted to the change, the plasma generated by the plasma processing is changed.
  • the present invention has the effect of preventing or reducing the separation of the deposited material adhering to the internal members installed in the processing chamber, suppressing the generation of particles, and improving the product yield and productivity.
  • the present invention in the plasma processing, when the semiconductor substrate to be charged is subjected to the plasma processing to manufacture the semiconductor substrate, the deposited substance generated and adhered to the internal member provided in the processing chamber is separated. By preventing or reducing the occurrence of particles, the generation of particles is suppressed, and the short-circuiting and disconnection of wiring due to particles, the shape defect, and the like are reduced, and the yield and the productivity of the semiconductor substrate can be improved.
  • the separation of the sedimentary substance is reduced, so that the sedimentary substance is reduced. Removal frequency can be reduced, and product productivity can be improved. As described above, the present invention can improve yield and yield productivity, and is therefore suitable for manufacturing semiconductor devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書 プラズマ処理方法およびその装置並びに半導体基板の製造方法 技術分野
この発明は、 半導体基板等の被処理基板に対してプラズマを用いてェ ッチング処理または成膜処理するブラズマ処理方法およびその装置並び に半導体基板の製造方法に関するものである。 背景技術
従来、 半導体装置等の製造において半導体基板上に受動素子、 能動素 子、 配線などを形成するために、 成膜処理やエッチング処理を行う処理 装置が用いられている。 これら処理装置では、 処理室内において被処理 基板に対して成膜処理やエッチング処理を行う際、 生成された物質が処 理室の内部部材に付着し、 堆積していく場合がある。 例えば、 プラズマ を用いて成膜処理やエッチング処理を行うプラズマ処理装置では、 プラ ズマ中で発生した反応生成物が処理室内に拡散し、 内部部材に付着して 堆積が起こる。 以後、 被処理基板に対してプラズマ処理する際、 処理室 内部部材に形成される物質を堆積物質と記すことにする。
この堆積物質の剥離は、 パーティクルの原因となるので、 これを除去 するために、 通常、 堆積物質が形成される部分の部材を取リ外し可能に しておき、 交換できるようにしてある。 交換された部材は、 可能であれ ば洗浄などによリ堆積物質を取リ除き、 再び使用できる状態にされる。 ところで、 堆積物質の剥離を抑制するために、 従来技術 1 (特開昭 6 3 - 1 6 2 8 6 1号公報) において、 処理室の内部部材の表面を粗面化 する方法が知られている。 第 5図は、 エッチング処理を行うプラズマ処理装置において、 処理室 内に設置された内部部材上に形成された堆積物質の付着状態を示す断面 図である。 第 5図において、 1 0は処理室内に設置された内部部材、 3 0と 3 1は堆積物質である。 これから堆積物質 3 0、 3 1の間に界面が 生じていることがわかる。 これは堆積物質 3 0と堆積物質 3 1とが形成 されたときの設定処理条件が違うために、 堆積物質 3 0と堆積物質 3 1 との間において、 組成などの性質が異なるためである。 この界面での付 着力が弱いと、 処理室内に設置された内部部材 1 0の表面からではなく、 この界面から堆積物質 3 1が剥離することになる。 このため、 従来技術 1に示すように、 内部部材の表面を粗面化したとしても、 接触面積が多 少増加するに過ぎず、 内部部材の表面との間において堆積物質の付着力 の大幅な増加を期待することができず、 しかも設定処理条件の変化に応 じて堆積物質上に生成される堆積物質について界面が生じて剥離が発生 することになリ、 剥離低減効果が十分でない。
このように剥離低減効果が十分でないと、 堆積物質が剥離してパーテ イタルとなリ被処理基板上に付着し、 配線のショートや断線、 加工の形 状不良といった不良を引き起し、 製品の歩留まリを低下させることにな る。 また、 堆積物質の剥離が頻繁に起きると、 処理室内部部材の交換や 洗浄が頻繁に起き、 生産性を低下することになる。
本発明の目的は、 上記課題を解決すべく、 プラズマ処理において、 投 入される被処理基板に対してプラズマ処理を行う際に生成されて処理室 内に設置された內部部材上に付着する堆積物質の剥離を防止または低減 してパーティクルの発生を抑制し、 製品の歩留まリゃ生産性を向上でき るようにしたプラズマ処理方法およびその装置を提供することにある。 また、 本発明の他の目的は、 プラズマ処理において、 投入される被処 理基板の種類が変化し、 該変化に適合するようにプラズマ処理条件を変 化させたとしても、 これらプラズマ処理によって生成されて処理室内に 設置された内部部材上に付着する堆積物質の剥離を防止または低減して パーティクルの発生を抑制し、 製品の歩留まリゃ生産性を向上できるよ うにしたプラズマ処理方法およびその装置を提供することにある。 また、 本発明の他の目的は、 プラズマ処理において、 投入される半導 体基板に対してプラズマ処理を行って製造する際に生成されて処理室内 に設置された内部部材上に付着する堆積物質の剥離を防止または低減し てパーティクルの発生を抑制し、 半導体基板の歩留まリゃ生産性を向上 できるようにした半導体基板の製造方法を提供することにある。 発明の開示
上記目的を達成するために、 本発明は、 処理室内部に設置された電極 上に被処理基板を載置し、 該処理基板上にプラズマを発生させて被処理 基板に対してプラズマ処理するプラズマ処理方法において、 上記プラズ マ処理をする前に上記電極上にプラズマを発生させて処理室内部に設置 された部材上に剥離を防止または低減する物質を形成しておき、 上記プ ラズマ処理の際生成される堆積物質を上記剥離を防止または低減する物 質上に付着させ、 望ましくは上記堆積物質に界面が生じないようにする ことを特徴とするプラズマ処理方法である。
また、 本発明は、 上記プラズマ処理方法において、 プラズマ処理がプ ラズマエッチング処理であることを特徴とする。
また、 本発明は、 処理室内部に設置された電極上に被処理基板を載置 し、 該処理基板上にプラズマを発生させて被処理基板に対してプラズマ 処理するプラズマ処理方法において、 上記プラズマ処理をする前に、 上 記被処理基板に対してプラズマ処理しようとするプラズマ処理条件に基 づいて剥離を防止または低減する物質を形成する処理条件を決定し、 該 決定された処理条件に基づいて制御パラメ一タを制御して上記電極上に プラズマを発生させて処理室内部に設置された部材上に上記剥離を防止 または低減する物質を形成しておき、 上記プラズマ処理の際生成される 堆積物質を上記剥離を防止または低減する物質上に付着させ、 望ましく は上記堆積物質に界面が生じないようにすることを特徴とするプラズマ 処理方法である。
また、 本発明は、 処理室内部に設置された電極上に被処理基板を載置 ■し、 該処理基板上にプラズマを発生させて被処理基板に対してブラズマ 処理するプラズマ処理装置において、 上記プラズマ処理をする前に上記 電極上にプラズマを発生させて処理室内部に設置された部材上に剥離を 防止または低減する物質を形成しておき、 上記プラズマ処理の際生成さ れる堆積物質を上記剥離を防止または低減する物質上に付着させ、 望ま しくは上記堆積物質に界面が生じないようにする制御手段を有すること を特徴とするプラズマ処理装置である。
また、 本発明は、 上記プラズマ処理装置における制御手段において、 剥離を防止または低減する物質を形成する処理条件を、 被処理基板に対 してプラズマ処理しようとするプラズマ処理条件に基づいて決定し、 該 決定された処理条件で制御パラメ一タを制御して剥離を防止または低減 する物質を形成するように構成したことを特徴とする。
また、 本発明は、 上記プラズマ処理装置における制御手段において、 被処理基板に対してプラズマ処理するプラズマ処理条件を変更した際、 剥離を防止または低減する物質を形成する処理条件を、 上記変更前のプ ラズマ処理条件と上記変更後のプラズマ処理条件とに基づいて決定し、 該決定された処理条件で制御パラメータを制御して剥離を防止または低 減する物質を形成するように構成したことを特徴とする。
また、 本発明は、 上記プラズマ処理装置における制御手段において、 被処理基板に対してプラズマ処理するプラズマ処理条件を変更した際、 剥離を防止または低減する物質を形成する処理条件を、 上記変更前のプ ラズマ処理条件と上記変更後のプラズマ処理条件との間を補間すること によって決定し、 該決定された処理条件で逐次制御パラメータを制御し て剥離を防止または低減する物質を形成するように構成したことを特徴 とする。
また、 本発明は、 処理室内部に設置された電極上に半導体基板を载置 し、 該半導体基板上にプラズマを発生させて半導体基板に対してプラズ マ処理して製造する半導体基板の製造方法において、 上記プラズマ処理 をする前に上記電極上にプラズマを発生させて処理室内部に設置された 部材上に剥離を防止または低減する物質を形成しておき、 上記ブラズマ 処理の際生成される堆積物質を上記剥離を防止または低減する物質上に 付着させ、 望ましくは上記堆積物質に界面が生じないようにすることを 特徴とする半導体基板の製造方法である。
前記構成によれば、 プラズマ処理において、 投入される被処理基板に 対してプラズマ処理を行う際に生成されて処理室内に設置された内部部 材上に付着する堆積物質の剥離を防止または低減してパーティクルの発 生を抑制し、 製品の歩留まリや生産性を向上することができる。
また、 前記構成によれば、 プラズマ処理において、 投入される被処理 基板の種類が変化し、 該変化に適合するようにプラズマ処理条件を変化 させたとしても、 これらプラズマ処理によって生成されて処理室内に設 置された内部部材上に付着する堆積物質の剥離を防止または低減してパ 一ティクルの発生を抑制し、 製品の歩留まリゃ生産性を向上することが できる。
また、 前記構成によれば、 プラズマ処理において、 投入される半導体 基板に対してプラズマ処理を行って製造する際に生成されて処理室内に 設置された内部部材上に付着する堆積物質の剥離を防止または低減して パーティクルの発生を抑制してパ一ティクルによる配線のショートゃ断 線、 形状不良などを低減し、 半導体基板の歩留まリゃ生産性を向上する ことができる。
また、 前記構成によれば、 堆積物質の剥離が低減することで、 堆積物 質の除去の頻度を低減でき、 製品の生産性を向上することができる。 図面の簡単な説明
第 1図は、 本発明に係るプラズマエッチング処理方法を示す概略断面 図及び処理室内部部材上の状態を示す模式図でぁリ、 第 2図は、 本発明 に係るプラズマエッチング処理装置の一実施例を示す概略断面図でぁリ、 第 3図は、 本発明に係る剥離を防止または低減する物質によって堆積物 質の付着力が向上することを示す図でぁリ、 第 4図は、 本発明に係る堆 積物質の付着力を測定する方法を説明するための図であリ、 第 5図は、 従来の処理室内部部材上に形成された堆積物質の状態を示す断面図であ る。 発明を実施するための最良の形態
本発明をよリ詳細に説述するために、 添付の図面に従ってこれを説明 する。
なお、 以下に説明した本発明に係る実施の形態にとらわれることなく、 堆積物質が形成される各種の処理について、 本発明を実施することがで きることは勿論である。
本発明では、 少なくともウェハ処理工程と、 その処理工程によって形 成される堆積物質の剥離を防止または低減する工程と、 堆積物質の除去 工程とを有している。 剥離防止工程は、 処理室内部部材に堆積物質が形成される前、 上述し た堆積物質中の界面となる部分の少なくとも一つ以上に用いることが望 ましい。
また、 堆積物質中の界面は、 ウェハ処理工程の設定条件を変えてゥェ ハを処理すると生じやすいので、 ウェハ処理工程の設定条件を変えてゥ ェハを処理する前に、 剥離防止工程を用いるのが好ましい。
第 1図には、 本発明に係る半導体装置の製造方法の実施の形態である ウェハ上のシリコン酸化膜を、 一つのエッチング処理装置においてプラ ズマによリエッチングするウェハ処理方法を示している。
最初に、 ウェハ処理の一実施の形態であるエッチング処理方法につい て一つのエッチング処理装置において実行する一連流れを説明する。 まず、 例えば通常のエッチング処理する前に、 第 1図 (a ) に示す剥 離防止または低減工程において、 処理室内部部材 1 0上に剥離を防止ま たは低減する処理を行う。 この剥離を防止または低減する処理とは、 処 理室内部部材 1 0上に、 剥離を防止または低減する物質 2 0を形成する ことにある。 1 1 6は剥離を防止または低減する処理を行う時に用いる ダミ一ウェハである。
次に、 第 1図 (b ) に示すウェハ処理工程において、 例えば通常のゥ ェハ 1 0 6上の被処理対象物である絶縁層のシリコン酸化膜 6 1上に微 細なレジス トパターン 7 1が形成された状態で、 上記シリ コン酸化膜 6 1に対して第 1の設定処理条件 (以下、 処理条件 1と記す) でエツチン グ処理を行って微細な第 1のパターンを形成する。 このエッチング処理 は、 処理室内に A r とフルォロカーボン系のガスを混合したものを所望 の圧力 (0 . 5〜 1 0 0 P a程度) になるように導入し、 プラズマ化し、 プラズマ中で生成されたフッ素または炭素を含むラジカルをウェハ上に おいてイオンの入射エネルギによリシリコン酸化膜と反応させてエッチ ングを進行させてレジス トパターン通リの所望の加工が行われる。 しか し、 上記エッチング処理において、 処理室内部部材 1 0上の剥離を防止 または低減する物質 2 0上に、 ラジカル同士で反応して重合した粒子や ウェハから発生した反応生成物によリ堆積物質 3 0が形成されることに なる。 そして、 エッチング処理されたウェハ 1 0 6を処理室から搬出し、 その後微細なレジストパターン 7 1を除去することによって、 シリ コン 酸化膜 6 1には、 微細な第 1のパターンが形成されることになる。
このエッチング処理において、 被処理対象物 6 2へのエッチング処理 が被処理対象物 6 1へのエッチング処理とパターンや厚さ等が異なって、 例えばガス流量、 ガス圧力、 高周波電力、 該電力の周波数、 処理時間等 からなる設定処理条件を第 1の設定処理条件から大幅に変える場合など 堆積物質中に界面が生じる場合には、 界面が生じるエッチング処理を行 う前に剥離を防止または低減する処理を行い、 それから、 シリ コン酸化 膜 6 1に対するエッチング処理とパターンや厚さ等が異なる被処理対象 物である絶縁層のシリ コン酸化膜 6 2上に例えばレジス トパタ一ン 7 1 に比べて粗いレジストパターン 7 2が形成された状態で、 上記シリ コン 酸化膜 6 2に対して上記第 1の設定処理条件と異なる第 2の設定処理条 件 (以下、 処理条件 2と記す) でエッチング処理を行って、 例えば第 1 のパターンより粗い第 2のパターンを形成する。 これによリ第 1図 (c ) に示すように界面が生じないように剥離を防止または低減する物質 2 1 および堆積物質 3 1が堆積物質 3 0上に形成されることになる。 なお、 このエッチング処理において、 例えばガス流量、 ガス圧力、 高周波電力、 該電力の周波数、 処理時間等からなる第 2の設定処理条件を上記第 1の 設定処理条件から僅か変えても、 堆積物質 3 0と堆積物質 3 1との境界 に界面が生じない場合には、 その前に剥離を防止または低減する処理を 行う必要はない。 そして、 エッチング処理されたウェハ 1 0 6を処理室 から搬出し、 その後微細なレジストパターン 7 2を除去することによつ て、 シリ コン酸化膜 6 2には、 第 1のパターンと異なる第 2のパターン が形成されることになる。 6 3は、 絶縁層のシリ コン酸化膜 6 1と絶縁 層のシリコン酸化膜 6 2との間に形成された配線導体パターンを示す。 最後に、 堆積物質除去工程において、 堆積物質 3 0、 3 1および剥離 を防止または低減する物質 2 0、 2 1が所望の厚さになった後、 処理室 を開いて堆積物質 3 0、 3 1等が付着した部材を付着していない部材と 交換する等の作業によって堆積物質 3 0、 3 1および剥離を防止または 低減する物質 2 0、 2 1を除去する。
一つのエッチング処理装置において、 以上の手順を繰り返してエッチ ング処理が行われる。
そして、 処理室内部部材 1 0と剥離を防止または低減する物質 2 0、 剥離を防止または低減する物質 2 0と堆積物質 3 0の付着力を、 処理室 内部部材 1 0と堆積物質 3 0の付着力よリも大きくなるようにして、 剥 離を防止または低減する物質 2 0はもとよリ堆積物質 3◦が処理室内部 部材 1 0から剥がれないようにする。 また、 堆積物質 3 0と剥離を防止 または低減する物質 2 1、 剥離を防止または低減する物質 2 1と堆積物 質 3 1との付着力を、 堆積物質 3 0と堆積物質 3 1の付着力よりも大き くなるようにして、 剥離を防止または低減する物質 2 1はもとより堆積 物質 3 1が処理室内部部材 1 0から剥がれないようにする。 従って、 剥 離を防止または低減する物質 2 0、 2 1を形成しない場合に比べて、 堆 積物質 3 0、 3 1について処理室内部部材 1 0からの剥離を防止または 著しく低減することができる。 これにより、 長期間にわたってパーティ クルの発生を抑制し、 歩留まリおよび生産性を向上させてウェハを処理 することが可能となる。
また、 剥離を防止または低減する処理においてもプラズマを用いてい るため、 処理室を開放するなどの手間がいらず、 一連のエッチング処理 を迅速に実行することができる。
次に各工程の詳細について説明する。
剥離防止または低減工程では、 プラズマを用いて処理室内部部材 1 0 上および堆積物質 3 0上に剥離を防止または低減する物質 2 0、 2 1を 形成する。 堆積物質中の界面となる部分 (3 0と 3 1との間) に剥離を 防止または低減する物質 2 1を形成する場合、 剥離を防止または低減す る物質を形成する処理条件は、 直前のエッチング処理における設定処理 条件 (以下、 処理条件 1と記す) と剥離を防止または低減する物質を形 成した後のエッチング処理における設定処理条件 (以下、 処理条件 2と 記す) から決定する。 何れにしても、 処理条件 1および処理条件 2とも に、 エツチング処理する被処理対象物に対して最適化されたエッチング 処理条件である。 エッチング処理条件としては、 例えばガス流量、 ガス 圧力、 高周波電力、 該電力の周波数、 処理時間等からなる。 ところで、 エッチング処理する際、 処理室内部部材 1 0上に堆積する堆積物質は、 処理室内部部材 1 0との境界を除いて処理条件が同じであれば界面が生 じることなく剥がれ難い状態が維持されることになる。 しかしながら、 同じエッチング処理装置でも、 被処理対象物が異なること等によリ異な つたエッチング処理条件 (例えば、 高周波電力や、 処理ガスや、 処理ガ ス圧等が異なる。 ) で処理する場合が生じ、 剥離を防止または低減する 物質 2 0、 2 1を形成しない場合には堆積物質 3 0と堆積物質 3 1との 間に界面が生じて剥がれてしまうことになる。 そこで、 剥離防止または 低減工程において、 プラズマを用いて処理室内部部材 1 0上および堆積 物質 3 0上に剥離を防止または低減する物質 2 0、 2 1を形成し、 望ま しくは界面が生じないようにして、 処理工程において形成される堆積物 質 3 0、 3 1が処理室内部部材 1 0から剥がれないようにしたことにあ る。
概略的には、 処理条件 1と処理条件 2との間において、 例えばガス流 量、 ガス圧力、 高周波電力、 該電力の周波数、 処理時間等からなる各パ ラメ一タについて補間し、 1〜 1 0 0程度のステップに分けて、 段階的 に性質を変えて剥離を防止または低減する物質 2 0、 2 1を形成する。 望ましくは、 処理室内部部材 1 0および堆積物質 3 0、 3 1に接する部 分において界面が生じることのないようにする。 以下、 条件の決定方法 を詳細に説明する。
堆積物質 3 0 , 3 1に接する部分において界面が生じることのないよ うに処理条件 1と処理条件 2とから、 例えばガス流量、 ガス圧力、 高周 波電力、 該電力の周波数、 処理時間等からなる各パラメータの差を求め、 この求められた差を各パラメータに対して、 望ましくは界面が生じない ように定めたステップ幅で割ってステップ数を求める。 例えば、 あるパ ラメータである電力の差が 3 0 0 Wでステップ幅が 1 0 0 Wの場合、 ス テツプ数は 3になる。 このようにして各パラメータから求めたステップ 数のうち、 最大のものを剥離を防止または低減する物質形成のステップ 数とする。
各ステップにおける処理条件 (例えばガス流量、 ガス圧力、 高周波電 力、 該電力の周波数、 処理時間等からなる。 ) は、 処理条件 1と処理条 件 2の各パラメ一タを補間した条件とする。 本実施の形態では、 線形補 間を用いてぉリ、 例えば処理条件 1の電力が 8 0 0 W、 ガス圧力が 3 0 P a、 処理条件 2の電力が 1 1 ◦ 0 W、 ガス圧力が 2 0 P a、 ステップ 数が 3の場合はステップ 1の電力は 9 0 0 W、 ガス圧力は 3 O P a、 ス テツプ 2では電力は 1 0 0 0 W、 ガス圧力は 2 5 P a、 ステップ 3では 電力は 1 1 0 0 W、 ガス圧力は 2 0 P aとなる。 このようにして各パラ メータの各ステップにおける処理条件を決定し、 各ステップを実行に移 す。 当然、 処理条件 1と処理条件 2との間において、 パラメータの値に 変動がなければ、 各ステップにおいて同じ値をとることになる。 また、 上記の如く、 各パラメータの各ステップにおける処理条件を決定し、 各 ステップを実行に移す際、 堆積物質と剥離を防止または低減する物質と の境界および剥離を防止または低減する物質内において、 剥離が生じや すいかどうかを確認する必要がある。 そのため、 確認できるデータべ一 スを予め、 実験や過去の処理実績から作成しておく必要がある。
以上に説明した方法で剥離を防止または低減する物質 2 0、 2 1を形 成すると、 剥離を防止または低減する物質 2 0、 2 1は段階的に性質が 変わっていき、 両側の堆積物質 3 0、 3 1に接する部分では、 両側の堆 積物質 3 0、 3 1のそれぞれに類似した性質となる。 このため、 剥離を 防止または低減する物質 2 1とその両側に接するそれぞれの堆積物質 3 0、 3 1との付着力が、 堆積物質同士の付着力に比べて大きくなり、 堆 積物質 3 1の剥離を防止または著しく低減することができる。 また、 剥 離を防止または低減する物質 2 0の内部部材側を処理室内部部材 1 0上 に例えばガス圧を低く し、 また高周波電力を高めて緻密に付着させ、 剥 離を防止または低減する物質 2 0を堆積物質側に向かって堆積物質 3 0 に類似した性質となるように、 段階的に性質を変えていくことによって、 堆積物質 3 0の剥離を防止または著しく低減することができる。 これに ょリ、 長期間にわたってパーティクルの発生を抑制し、 歩留まリおよび 生産性を向上させてウェハをェツチング処理することができる。
上記線形補間によって剥離を防止または低減する物質 2 0、 2 1を形 成した (有リ) 場合と剥離を防止または低減する物質 2 0、 2 1無しの 場合とにおける引き倒し法による引剥がし力の比較結果を第 3図に示す c 引き倒し方とは、 付着力を測定する一方法であり、 第 4図に示すように 接着剤 4 0で部材 1 5上に形成された物質 2 5の上に垂直に棒 5 0をた て、 この棒に膜と水平方向に力 Fを加えていき、 物質 2 5が剥がれると きの力を調べるものである。
第 3図に示す如く、 剥離を防止または低減する物質 2 0、 2 1を形成 した場合は、 形成しない場合に比べて一番上に形成された堆積物質 3 1 を引き剥す力が 1 . 4倍に向上し、 堆積物質 3 0、 3 1の剥離を防止ま たは著しく低減することが可能となり、 その結果、 長期間にわたってパ —ティクルの発生を抑制し、 歩留まリおよび生産性を向上させてウェハ をエッチング処理することが可能となる。
剥離を防止または低減する物質 2 0、 2 1は、 堆積物質 3 0、 3 1中 の界面となる全ての部分に形成してもよいが、 付着力の弱い界面だけを 選んで形成するようにしても良い。 また、 本実施の形態では段階的に各 パラメータを変えて剥離を防止または低減する物質 2 0、 2 1を形成し ているが、 連続的に各パラメータを変えて剥離を防止または低減する物 質 2 0、 2 1を形成しても良いし、 両側に接する物質と強い付着力を持 つ処理条件を実験等により予め求めておけば、 上記方法によらずその処 理条件で剥離を防止または低減する物質を形成してもよい。
処理室内部部材 1 0の表面に剥離を防止または低減する物質 2 0を形 成する場合は、 まず内部部材 1 0と大きな付着力を有する物質を形成し、 次に前記物質を形成した条件と次に行うウェハ処理工程の設定条件から 上述した各パラメータの補間を行う方法によリ剥離を防止または低減す る物質 2 0を形成する。 内部部材 1 0と大きな付着力を有する物質の形 成条件は、 様々な実験結果から決定すれば良い。 処理室内部部材 1 0の 表面にプラズマによリ剥離を防止または低減する物質 2 0を形成する処 理条件は、 エッチング処理条件とは独立して設定できることからして、 内部部材 1 0と大きな付着力を有する物質を形成すべく設定することが 可能である。 内部部材 1 0と大きな付着力を有する物質を形成するため には、 例えば、 処理室内に導入する A rとフルォロカーボン系のガスを 混合したもののガス圧を低くすると共に電極間に印加する高周波電力を 高めて緻密な剥離を防止または低減する物質 2 0を形成して内部部材 1 0と大きな付着力を有するようにすれば良い。
特に、 処理条件 1でエッチング処理を実行して内部部材 1 0上に形成 される堆積物質 3 0と内部部材 1 0の付着力が強い場合は、 内部部材 1 0の表面に剥離を防止または低減する物質 2 0を形成しなくてもよい。 次に、 以上説明したエツチング処理を実行するエツチング処理装置の 一実施例について、 第 2図を用いて具体的に説明する。
第 2図は、 本発明に係るエッチング処理装置の一実施例であるシリコ ン酸化膜 (S i 0 2) 用プラズマエッチング装置の概略構成を示したも のである。
プラズマエッチング装置は、 例えば第 2図に示すように平行平板狭電 極型で構成される。 即ち、 平行平板狭電極型のプラズマエッチング装置 は、 処理室 (真空容器) 1 0 1と、 この処理室 1 0 1の内部を所望のガ ス圧に制御できる排気装置 1 0 2と、 処理室 1 0 1内に所望のガスを所 定量で供給できるガス供給装置 1 0 3と、 電極間に数 1 0 0 k H z〜数 1 O MH z程度の高周波電位を印加しプラズマを発生させるための高周 波電源 1 0 4と整合器 1 0 5を備えている。 エッチング処理が施される 処理対象となるウェハ 1 0 6またはダミーウェハ 1 1 6を搭載するため のウェハ搭載電極 1 0 7には、 ウェハの温度を調整するための温度調整 機 1 0 8が接続されている。 また、 ウェハ搭載電極 1 0 7は、 絶緣材 1 0 9によリ周囲の部材と電気的に絶縁され、 昇降機 1 1 0によリ昇降が 可能となっている。
ウェハ搭載電極 1 0 7に対向する面にある対向電極 1 1 1は、 アース に接続している。 石英やセラミック等の耐熱性の高い材料で形成された 内部部材の一つであるリング状絶縁部材 1 1 2、 1 1 3は、 プラズマを ウェハ 1 06と対向電極 1 1 1の間に閉じこめるべく、 下部電極 (ゥェ ハ搭載電極) 1 07におけるウェハ 1 06の周囲および上部電極 (対向 電極) 1 1 1の周囲を覆うように設置されている。 ガス供給装置 1 03 ょリ導入された処理ガスは、 上部電極 1 1 1に被処理基板 (ウェハ) 1 06に向けて多数設けられたガス供給口 1 14から被処理基板 1 06上 に分散して供給される。 上記ガス供給口 1 14が穿設された部材は、 プ ラズマに晒されても問題のないカーボンゃシリコン等で形成される。 平行平板狭電極型のプラズマエツチング装置におけるエツチング処理 は次のように行われる。 まず、 下部電極 10 7を昇降機 1 1 0により降 下させ、 基板供給装置 (図示せず) からロボット等の搬送手段にょリ被 処理基板 1 06を受け取り、 下部電極 1 07上に設置する。 その後、 下 部電極 1 07は昇降機構 1 1 0によリ上昇し、 上部電極 1 1 1との間に 1 Omm程度の間隔が保たれる。 そして、 処理室 1 ◦ 1は排気装置 1 0 2により高真空に排気された後、 ガス供給装置 103ょリ処理ガスとし て例えば A rおよび CF 4若しくは CHF3若しくは C4F8等の有機混合 ガスを導入し、 電極 10 7、 1 1 1間を0. 5〜1 O O P a程度の圧力 に設定する。 処理ガスは、 内部部材の一つであるリング状絶縁部材 1 1 2、 1 1 3間の間隙を通り排気される。 この状態で、 高周波電源 1 04 からの高周波電力を印加することで、 電極 1 07、 1 1 1 との間にはプ ラズマが発生し、 被処理基板 1 06上の例えば S i 02膜、 S i N膜等 が C F4、 または CHF3または C4F8との反応によリエッチングが行わ れる。 プラズマは、 電極 1 07、 1 1 1の間に電界がかかっていること とリング状絶縁部材 1 1 2とリング状絶縁部材 1 1 3との間隙が 2〜 3 mm程度と狭いことにより、 リング状絶縁部材 1 1 2、 1 1 3の内側の みに発生することになる。 このように、 プラズマが上下電極 1 0 7、 1 1 1間に閉じ込められることにより、 電極面以外のプラズマに接する壁 面での荷電粒子の損失が減リ、 高密度のプラズマが得られることと、 そ こに堆積する反応生成物からの発生ガス、 塵埃等による影響を極力抑え ることが可能となる。
このように、 入射するイオンのエネルギと密度の高い力ソード電極 (被処理基板 1 06) 1 07上において、 フッ化炭素の分解にょリ発生 する F、 CF、 CF2、 C F 3といったフッ素ラジカルは被処理基板 1 0 6の表面 (S i 02膜、 または S i N膜) の S i と反応してフッ化珪素 ガスとなリ除去され、 また分解した炭素原子も S i〇2、 または S i N 中の〇、 Nと結合して C〇2 (炭酸ガス) や CNとなリ除去されてエツ チングが行われる。 即ち、 被処理基板 1 06上では、 プラズマ中のィォ ンが電界により加速して被処理基板 1 06の表面に入射することで、 被 処理基板 1 06の表面に予め形成していた S i 02 (シリコン酸化) 膜、 または S i N膜を分解し、 シリコンのフッ化物と炭酸ガスまたは窒化炭 素を生成する。
これに対し、 イオンが加速入射しないリング状絶縁部材 1 1 2、 1 1 3及び処理室 1 0 1の表面では、 プラズマ中で分解されたラジカルが吸 着し互いに結合しあい、 高分子の炭化物重合膜 (CF3— (CF2)n— C F3) が形成されることになる。 即ち、 リング状絶緣部材 1 1 2、 1 1 3の表面及び処理室 10 1の壁面では、 表面へのイオンの入射エネルギ が少なく十分に分解しないフッ化炭素イオンが、 表面に吸着しているフ ッ化炭素ガス分子と重合反応を起こし、 フッ化炭素の重合膜 (CF3— (CF2)n-CF3) が形成されることになる。 リング状絶縁部材 1 1 2、 1 1 3の表面及び処理室 1 0 1の壁面に吸着したフッ化炭素ガス分子が プラズマ中のフッ化炭素イオンの衝撃を受けて、 フッ素を放出したフラ グメントを持つフッ化炭素ラジカルが生成され、 しかる後にフッ化炭素 ラジカル同士が重合して高分子の炭化物重合膜 (C F 3—(C F 2)„— C F 3) が形成されることになる。
このように、 多数の被処理基板 1 0 6を連続して処理する量産用ブラ ズマニッチング装置においては、 堆積する炭化物膜厚は増えつづけるこ とになる。
装置管理システム 2 0 0は、 エッチング処理の一連の手順などプラズ マエッチング処理装置の運転を管理するものである。 この装置管理シス テム 2 0◦中には、 ライン監視システム 3 0 0から得られるプラズマェ ツチング処理装置に投入されるウェハ上に形成された被エッチング処理 膜の種類に応じてエッチング処理条件を決定するプログラムと、 該プロ グラムに基づいて決定されたエッチング処理条件に基づいて例えばガス 流量、 ガス圧力、 高周波電力、 該電力の周波数、 処理時間、 ウェハの温 度等を制御してエッチング処理を実行するプログラムと、 剥離を防止ま たは低減する物質 2 0、 2 1を形成する処理条件決定プログラムと、 そ の実行を行うための処理プログラムとを格納する記憶装置 2 0 1が備え られている。 装置管理システム 2 0 0は、 製造ライン全体を管理するラ イン監視システム 3 0 0とつながってぉリ、 プラズマエッチング処理装 置に投入されるウェハ上に形成された被エッチング処理膜の種類やエツ チング処理枚数等の情報がライン監視システム 3 0 0からネットワーク を介して入力される。 また、 ライン監視システム 3 0 0は、 投入された ウェハ上に形成された被エッチング膜に対するエッチング処理条件や装 置の稼働状況や、 処理室を開放して堆積物質及び剥離を防止または低減 する物質が形成されたリング状絶縁部材 1 1 2、 1 1 3を取り外して新 しいものと交換した情報およびクリーニングした情報などを、 装置管理 システム 2 0 0との間でやリ取リすることができる。
ところで、 ガス供給装置 1 0 3には、 供給するガス流量を測定する流 量センサ (図示せず。 ) が備えられている。 処理室 1 0 1内には、 ガス 圧力を測定する圧力センサ (図示せず。 ) が設けられている。 従って、 処理室 1 0 1内の所望のガス圧の制御は、 装置管理システム 2 0 0から の指令に基づいてガス供給装置 1 0 3から供給されるガス流量を制御す ると共に、 排気装置 1 0 2による排気量の制御によって実行される。 更 に、 高周波電力、 該電力の周波数および処理時間の制御については、 装 置管理システム 2 0 0からの指令に基づいて高周波電源 1 0 4を制御す ることによって実行される。 またウェハの温度の制御についても、 装置 管理システム 2 0 0からの指令に基づいて温度センサ (図示せず。 ) で 検出されるウェハの温度に応じて温度調整機 1 0 8を制御することによ つて実行される。
装置管理システム 2 0 0は、 ライン監視システム 3 0 0から得られる プラズマエッチング処理装置に投入される被処理基板 (ウェハ) の種類 に応じてエツチング処理条件を決定し、 該決定されたエツチング処理条 件に基づいてガス供給装置 1 0 3、 排気装置 1 0 2、 高周波電源 1 0 4 および温度調整機 1 0 8を制御することによって、 被処理基板 (ウェハ) 上に形成された被ェッチング処理膜の種類に適合した条件でェツチング 処理されることになる。
また、 装置管理システム 2 0 0は、 ライン監視システム 3 0 0から得 られるプラズマエッチング処理装置に投入される被処理基板 (ウェハ) の種類に応じてエッチング処理条件を決定しているから、 この決定され たエッチング処理条件を把握することができ、 その結果、 処理条件 1と 処理条件 2 との間を補間する等の剥離を防止または低減する物質を形成 する処理条件決定プログラムを用いることによって、 剥離を防止または 低減する物質を形成する処理条件を決定し、 該決定された処理条件に基 づいてガス供給装置 1 0 3、 排気装置 1 0 2、 高周波電源 1 0 4および 温度調整機 1 0 8を制御することによって、 内部部材 1 0の一つである リング状絶緣部材 1 1 2、 1 1 3上に剥離を防止または低減する物質 2 ◦、 2 1を形成することができる。
次に本実施例でのブラズマエツチング処理方法の一連の手順を説明す る。
まず、 内部部材 1 ◦の一つであるリング状絶縁部材 1 1 2、 1 1 3上 に堆積物質が形成される前に、 剥離防止または低減工程において、 装置 管理システム 2 0◦は、 エッチング処理条件から処理条件 1と処理条件 2との間を補間する等の演算処理を行って剥離を防止または低減する物 質を形成する処理条件を決定し、 ダミ一ウェハ 1 1 6をウェハ搭載電極 1 〇 7に搭載し、 昇降機 1 1 0によりウェハ搭載電極 1 0 7を所定の位 置まで昇降させた後、 上記決定された処理条件に基づいてガス供給装置 1 0 3、 排気装置 1 0 2、 高周波電源 1 0 4および温度調整機 1 0 8を 制御することによって、 上下電極 1 0 7、 1 1 1との間にプラズマを発 生させて、 内部部材 1 0の一つであるリング状絶緣部材 1 1 2、 1 1 3 上に剥離を防止または低減する物質 2 0を形成する。
次に、 ウェハ処理工程において、 装置管理システム 2 0 0は、 投入さ れる被処理基板 (ウェハ) 1 0 6上の被エッチング膜の種類に適合する エツチング処理条件を決定し、 上記被ェッチング膜を有する被処理基板 (ウェハ) 1 0 6をウェハ搭載電極 1 0 7に搭載し、 昇降機 1 1 0によ リウェハ搭載電極 1 0 7を所定の位置まで昇降させた後、 上記決定され たエッチング処理条件に基づいてガス供給装置 1 0 3、 排気装置 1 0 2、 高周波電源 1 0 4および温度調整機 1 0 8を制御することによって、 上 下電極 1 0 7、 1 1 1との間にプラズマを発生させて、 上記被エツチン グ膜に対してエッチング処理を行う。
即ち、 上記決定されたエッチング処理条件に基づいて、 ガス供給装置 1 0 3を制御することによってガス供給装置 1 0 3から A r とフルォロ カーボン系のガスが所定量供給され、 排気装置 1 0 2を制御することに よリ所定の圧力に調整される。 この間に温度調整機 1 0 8によリ被処理 基板 1 0 6は、 所定の温度に調整される。 この後、 高周波電源 1 0 4を 制御することによって高周波電源 1 0 4と整合器 1 0 5により所望の高 周波電力が供給されて上下電極 1 0 7、 1 1 1との間にプラズマを発生 させて、 上記被エツチング膜に対してエツチング処理を行う。
― プラズマは、 リング状絶縁部材 1 1 2、 1 1 3により、 この間に閉じ こめられるため、 ウェハ処理工程において堆積物質 3 0は、 主としてリ ング状絶緣部材 1 1 2、 1 1 3上のみに形成されることになる。
ウェハ処理工程において、 装置管理システム 2 0◦は、 投入される被 処理基板 (ウェハ) 1 0 6上の被エッチング膜の種類に適合するように 設定処理条件を変えてエッチング処理を行う場合は、 これら変えるエツ チング処理条件から剥離を防止または低減する物質を形成する処理条件 を決定し、 該決定された処理条件に基づいてガス供給装置 1 0 3、 排気 装置 1 0 2、 高周波電源 1 0 4および温度調整機 1 0 8を制御すること によって、 上下電極 1 0 7、 1 1 1との間にプラズマを発生させて、 内 部部材 1 0の一つであるリング状絶緣部材 1 1 2、 1 1 3上に剥離を防 止または低減する物質 2 1を形成する。
このようにゥェハ処理工程と剥離を防止または低減する工程とを繰リ 返していき、 堆積物質の剥離が起きやすくなつた場合、 または処理室 1 0 1内部の消耗部品の交換が発生したときに堆積物質除去を行う。 この 堆積物質除去は、 処理室 1 0 1を開放して、 堆積物質 3 0、 3 1及び剥 離を防止または低減する物質 2 0、 2 1が形成されたリング状絶緣部材 1 1 2 , 1 1 3を取リ外し、 新しいものと交換する。 交換した後はゥェ ハ処理工程、 剥離防止または低減工程が行える状態にする。 取リ外した リング状絶縁部材 1 1 2、 1 1 3は、 洗浄によリ、 堆積物質及び剥離を 防止または低減する物質を取リ除き、 再び使用可能な状態にする。 上記に説明した手順を繰リ返してウェハ処理を行うことによリ、 パー ティクルの発生が抑制され、 歩留まりよく、 また生産性よくウェハのェ ツチング処理を行うことができる。
以上は、 プラズマエッチング装置の場合について説明したが、 C V D 成膜装置にも適用することができる。 即ち、 C V D成膜装置において、 処理室内に対向する電極を設置し、 一方の電極に被処理基板を搭載し、 これら電極間に高周波電力を供給し、 処理室内に被処理基板上に成膜す るためのメタンガス等の処理ガスを導入することによって被処理基板上 に炭素膜等を C V D成膜する場合にも適用することができる。
この場合、 処理ガス (メタンガス) は、 高周波電源によって印加され る高周波電力によリ、 被処理基板と電極との間において周波数 f で電位 変動を起こして電離してプラズマが発生することになる。 このように発 生したプラズマは、 電極と、 被処理基板との間に高周波電流を流すが、 被処理基板の面積が電極に比べ狭いため、 被処理基板とプラズマとの間 に大きな電位差が生じる。 これによリ投入された電力は、 主にプラズマ と被処理基板との間のシースの電位差によるイオンの基板への加速入射 に使われ、 被処理基板の表面には、 高品質の炭素膜が成膜されることに なる。
しかし、 プラズマに印加される電力は高周波であるため、 電極にもそ の面積の大きさ故に電流密度は少ないが、 同じ大きさのィオン電流が流 れる。 したがって処理室の壁面にもプラズマ中あるいは該容器壁面で分 解された炭素分子、 または炭化水素化合物が付着し、 徐々に炭化水素化 合物を含む炭化物重合膜 (C H 3— ( C H 2) n— C H 3) が堆積物質として 堆積することになる。 この場合においても、 C V D成膜して堆積物質を形成する前に剥離を 防止または低減する物質を形成することによって、 堆積物質を界面を生 じることなく処理室内部の部材上に付着させることができ、 その結果、 堆積物質の剥離を防止または著しく低減することができ、 これによリ長 期間にわたってパーティクルの発生を抑制し、 歩留まリおよび生産性を 向上させて C V D処理を行うことができる。
産業上の利用可能性
本発明によれば、 プラズマ処理において、 投入される被処理基板に対 してプラズマ処理を行う際、 生成されて処理室内に設置された内部部材 上に付着する堆積物質の剥離を防止または低減してパーティクルの発生 を抑制し、 製品の歩留まりや生産性を向上することができる効果を奏す る。
また、 本発明によれば、 プラズマ処理において、 投入される被処理基 板の種類が変化し、 該変化に適合するようにプラズマ処理条件を変化さ せたとしても、 これらプラズマ処理によって生成されて処理室内に設置 された内部部材上に付着する堆積物質の剥離を防止または低減してパー ティクルの発生を抑制し、 製品の歩留まリゃ生産性を向上することがで きる効果を奏する。
また、 本発明によれば、 プラズマ処理において、 投入される半導体基 板に対してプラズマ処理を行って製造する際、 生成されて処理室内に設 置された内部部材上に付着する堆積物質の剥離を防止または低減してパ 一ティクルの発生を抑制してパーティクルによる配線のショートゃ断線、 形状不良などを低減し、 半導体基板の歩留まリゃ生産性を向上すること ができる効果を奏する。
また、 本発明によれば、 堆積物質の剥離が低減することで、 堆積物質 の除去の頻度を低減でき、 製品の生産性を向上することができる。 このように、 本発明は、 歩留まリゃ生産性を向上することができるの で、 半導体装置の製造に適している。

Claims

請 求 の 範 囲
1 . 処理室内部に設置された電極上に被処理基板を載置し、 該処理基板 上にプラズマを発生させて被処理基板に対してプラズマ処理するブラ ズマ処理方法において、 上記プラズマ処理をする前に上記電極上にプ ラズマを発生させて処理室内部に設置された部材上に剥離を防止また は低減する物質を形成しておき、 上記プラズマ処理の際生成される堆 積物質を上記剥離を防止または低減する物質上に付着させることを特 徴とするプラズマ処理方法。
2 . 請求の範囲第 1項記載のプラズマ処理が、 プラズマエッチング処理 であることを特徴とするプラズマ処理方法。
3 . 処理室内部に設置された電極上に被処理基板を載置し、 該処理基板 上にプラズマを発生させて被処理基板に対してプラズマ処理するブラ ズマ処理方法において、 上記プラズマ処理をする前に、 上記被処理基 板に対してプラズマ処理しようとするプラズマ処理条件に基づいて剥 離を防止または低減する物質を形成する処理条件を決定し、 該決定さ れた処理条件に基づいて制御パラメータを制御して上記電極上にブラ ズマを発生させて処理室内部に設置された部材上に上記剥離を防止ま たは低減する物質を形成しておき、 上記プラズマ処理の際生成される 堆積物質を上記剥離を防止または低減する物質上に付着させることを 特徴とするブラズマ処理方法。
4 . 請求の範囲第 1項または第 2項または第 3項記載のプラズマ処理方 法において、 剥離を防止または低減する物質の形成にょリ、 堆積物質 に界面が生じないようにすることを特徴とするプラズマ処理方法。
5 . 処理室内部に設置された電極上に被処理基板を載置し、 該処理基板 上にプラズマを発生させて被処理基板に対してプラズマ処理するブラ ズマ処理装置において、 上記プラズマ処理をする前に上記電極上にプ ラズマを発生させて処理室内部に設置された部材上に剥離を防止また は低減する物質を形成しておき、 上記プラズマ処理の際生成される堆 積物質を上記剥離を防止または低減する物質上に付着させるようにす る制御手段を有することを特徴とするプラズマ処理装置。
. 請求の範囲第 5項記載の制御手段において、 剥離を防止または低減 する物質の形成によリ、 堆積物質に界面が生じないように制御するこ とを特徴とするプラズマ処理装置。
. 請求の範囲第 5項または第 6項記載の制御手段において、 剥離を防 止または低減する物質を形成する処理条件を、 被処理基板に対してプ ラズマ処理しようとするプラズマ処理条件に基づいて決定し、 該決定 された処理条件で制御パラメータを制御して剥離を防止または低減す る物質を形成するように構成したことを特徴とするプラズマ処理装置。. 請求の範囲第 5項または第 6項記載の制御手段において、 被処理基 板に対してプラズマ処理するプラズマ処理条件を変更した際、 剥離を 防止または低減する物質を形成する処理条件を、 上記変更前のプラズ マ処理条件と上記変更後のプラズマ処理条件とに基づいて決定し、 該 決定された処理条件で制御パラメータを制御して剥離を防止または低 減する物質を形成するように構成したことを特徴とするプラズマ処理 . 請求の範囲第 5項または第 6項記載の制御手段において、 被処理基 板に対してプラズマ処理するプラズマ処理条件を変更した際、 剥離を 防止または低減する物質を形成する処理条件を、 上記変更前のプラズ マ処理条件と上記変更後のプラズマ処理条件との間を補間することに よって決定し、 該決定された処理条件で逐次制御パラメータを制御し て剥離を防止または低減する物質を形成するように構成したことを特 徴とするプラズマ処理装置。
0 . 処理室内部に設置された電極上に半導体基板を载置し、 該半導体 基板上にプラズマを発生させて半導体基板に対してプラズマ処理して 製造する半導体基板の製造方法において、 上記プラズマ処理をする前 に上記電極上にプラズマを発生させて処理室内部に設置された部材上 に剥離を防止または低減する物質を形成しておき、 上記ブラズマ処理 の際生成される堆積物質を上記剥離を防止または低減する物質上に付 着させることを特徴とする半導体基板の製造方法。
1 . 請求の範囲第 1 0項記載の半導体基板の製造方法において、 剥離 を防止または低減する物質の形成によリ、 堆積物質に界面が生じない ようにすることを特徴とする半導体基板の製造方法。
PCT/JP1998/004258 1997-09-25 1998-09-22 Procede et systeme de traitement au plasma et procede de fabrication d'un substrat pour semi-conducteurs WO1999016117A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25916897A JPH1197426A (ja) 1997-09-25 1997-09-25 プラズマ処理方法およびその装置並びに半導体基板の製造方法
JP9/259168 1997-09-25

Publications (1)

Publication Number Publication Date
WO1999016117A1 true WO1999016117A1 (fr) 1999-04-01

Family

ID=17330308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004258 WO1999016117A1 (fr) 1997-09-25 1998-09-22 Procede et systeme de traitement au plasma et procede de fabrication d'un substrat pour semi-conducteurs

Country Status (2)

Country Link
JP (1) JPH1197426A (ja)
WO (1) WO1999016117A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293920A (ja) * 1987-05-27 1988-11-30 Hitachi Ltd 半導体装置の製造装置
JPH01188678A (ja) * 1988-01-22 1989-07-27 Mitsubishi Electric Corp プラズマ気相成長装置
JPH02240267A (ja) * 1989-03-14 1990-09-25 Fujitsu Ltd Cvd装置の残留ガス除去方法
JPH05243167A (ja) * 1992-02-28 1993-09-21 Sony Corp 半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293920A (ja) * 1987-05-27 1988-11-30 Hitachi Ltd 半導体装置の製造装置
JPH01188678A (ja) * 1988-01-22 1989-07-27 Mitsubishi Electric Corp プラズマ気相成長装置
JPH02240267A (ja) * 1989-03-14 1990-09-25 Fujitsu Ltd Cvd装置の残留ガス除去方法
JPH05243167A (ja) * 1992-02-28 1993-09-21 Sony Corp 半導体装置の製造方法

Also Published As

Publication number Publication date
JPH1197426A (ja) 1999-04-09

Similar Documents

Publication Publication Date Title
JP5211332B2 (ja) プラズマcvd装置、dlc膜及び薄膜の製造方法
KR100405578B1 (ko) 반도체 장치의 제조 방법
US20040072426A1 (en) Process chamber for manufacturing a smiconductor device
JPH07130713A (ja) ダウンフローエッチング装置
JPH0963794A (ja) マイクロ波プラズマ処理装置
WO2005104203A1 (ja) 基板処理装置および半導体装置の製造方法
WO2000024046A1 (fr) Procede d'attaque au plasma
CN116235278A (zh) 在处理腔室中使用双频率rf功率的方法
JP2001123271A (ja) プラズマcvd装置のプリコート方法
JP3801366B2 (ja) プラズマエッチング処理装置のクリーニング方法
JP3350264B2 (ja) プラズマクリーニング方法
US6545245B2 (en) Method for dry cleaning metal etching chamber
JPH10242130A (ja) プラズマ処理方法及び装置
CN111448640A (zh) 在室调节中的抗氧化保护层
WO1999016117A1 (fr) Procede et systeme de traitement au plasma et procede de fabrication d'un substrat pour semi-conducteurs
US20040222188A1 (en) Method of cleaning a deposition chamber and apparatus for depositing a metal on a substrate
JP3779277B2 (ja) 半導体装置の製造方法
JP2000012523A (ja) 半導体装置の製造方法
JP2004259819A (ja) 試料の表面処理装置及び表面処理方法
JP4902054B2 (ja) スパッタリング装置
JP2000178741A (ja) プラズマcvd装置およびそれにおける成膜とクリーニング制御法
JPH09186137A (ja) 半導体製造装置
JPH11307521A (ja) プラズマcvd装置及びその使用方法
JP4130278B2 (ja) 半導体装置の製造方法
JP2001176843A (ja) ドライクリーニング方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase