WO1999006429A1 - Stabilisation de proteines utiles et compositions a base de proteines utiles - Google Patents

Stabilisation de proteines utiles et compositions a base de proteines utiles Download PDF

Info

Publication number
WO1999006429A1
WO1999006429A1 PCT/JP1998/003431 JP9803431W WO9906429A1 WO 1999006429 A1 WO1999006429 A1 WO 1999006429A1 JP 9803431 W JP9803431 W JP 9803431W WO 9906429 A1 WO9906429 A1 WO 9906429A1
Authority
WO
WIPO (PCT)
Prior art keywords
useful protein
silkworm
composition according
stabilized
interferon
Prior art date
Application number
PCT/JP1998/003431
Other languages
English (en)
French (fr)
Inventor
Fumiyoshi Okano
Katsushige Yamada
Masatoshi Watanabe
Naomi Hara
Masahiro Satoh
Tsukasa Ito
Akira Yanai
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to DE69838667T priority Critical patent/DE69838667T2/de
Priority to EP98935316A priority patent/EP0950663B1/en
Priority to AU84620/98A priority patent/AU740735B2/en
Priority to CA2267210A priority patent/CA2267210C/en
Priority to US09/269,833 priority patent/US6391296B1/en
Publication of WO1999006429A1 publication Critical patent/WO1999006429A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a method for stabilizing and preserving a useful protein, and a composition capable of stably maintaining the physiological activity of a useful protein.
  • the present invention relates to a method for stabilizing and preserving mammalian, especially dog or nephron interferon, and a composition capable of stably retaining its activity.
  • Proteins, especially enzymes, useful proteins with biological activity, etc. can be mass-produced at low cost by genetic recombination technology, etc., and are expected to be used in various fields, especially in medicine, diagnostics, and foods. It has become.
  • protein is not only inactivated when its primary structure is damaged due to degradation or the like, but its function is also largely due to its higher-order structure, and the degree varies depending on the type of protein. Due to various external factors (temperature, temporal change, light, pH), the higher-order structure is easily destroyed and its function (physiological activity) is lost. Methods to stabilize and maintain bioactivity have been studied.
  • IFN interferon
  • a physiologically active substance having an immunomodulatory action and an antiviral action and attracting attention for pharmaceutical use can be mentioned in Japanese Patent Application Laid-Open No. 60-222842, In Japanese Patent Application Laid-Open No. 60-34991, Japanese Patent Application Laid-Open No. 61-37828, and Japanese Patent Application Laid-Open No. 60-265253, it is mixed with albumin-zelatin.
  • a method for stabilization is disclosed.
  • compounds other than proteins that have a protein stabilizing effect include sugars, especially Monosaccharides, disaccharides and polysaccharides such as dextran hydroxethyl starch (Japanese Unexamined Patent Publication Nos. Sho 59-181222, Japanese Patent Publication No. Hei 6-516141, 6 1
  • the present inventors have conducted intensive studies and found that Arabic acid, which has a new basic structure of arabic acid, It has been found that protein activity can be stably maintained by mixing an aqueous solution of rubber with a useful protein. Furthermore, they found that the useful protein composition obtained by freeze-drying this mixed solution retained high physiological activity, and thus reached the present invention.
  • FIG. 1 is a diagram showing a configuration of an ultraviolet irradiation device used in the present invention. Symbols 1 to 5 mean the following.
  • the useful protein of the present invention is not particularly limited, but may be any protein whose activity is not inhibited by a compound having the basic structure of arabic acid, and may be a protein having an enzyme or a physiological activity, such as interferon, interleukin, insulin, Examples include growth hormone, G-CSF, erythropoietin, and NGF.
  • animal-derived interferons such as canine interferon (types of hi, ⁇ , and a), and cat interferon- ⁇ are also included.
  • canine interferon-r is a polypeptide consisting of an amino acid sequence shown in Reference 1, but in which a part of the amino acid sequence has been substituted, or a part thereof. Lacking, or having some amino acid residues added, can be found in canine-derived cells, such as canine MDCK cells (ATCCCCL-34), as described in Reference 2.
  • canine-derived cells such as canine MDCK cells (ATCCCCL-34), as described in Reference 2.
  • Such polypeptides having the natural physiological activity of interferoner are included in the useful protein of the present invention. Specific examples include a polypeptide comprising the amino acid sequence of the mature protein portion shown in SEQ ID NO: 3. Further, for example, inuinterferon- ⁇ lacking a sugar chain binding site such as the mature protein portion shown in SEQ ID NO: 27 can be mentioned.
  • C-terminal deletions such as the mature protein portions shown in SEQ ID NOs: 28 and 29
  • Nuin Yuichi Ferrona One example is Nuin Yuichi Ferrona.
  • Further examples include inulin interferon- ⁇ having an amino acid added to the N-terminus as shown in SEQ ID NO: 30.
  • Feline interferon is a polypeptide having an amino acid sequence disclosed in US Pat. No. 5,089,921, which is a polypeptide in which a part of the amino acid sequence is replaced. Also, useful proteins of the present invention include those lacking some of them or those having some amino acid residues added.
  • the canine interferon-adzuki interferon used in the present invention may be extracted from natural biological materials and further purified to a required purity, or may be chemically synthesized.
  • the product manufactured using is easy to use industrially.
  • the method for producing the useful protein of the present invention using the gene recombination technique is the same as the usual technique.For example, both ends of a DNA fragment encoding a useful protein are cleaved with a restriction enzyme to enable replication. It can be easily performed by inserting the plasmid into an appropriate site, and then introducing the plasmid into cells that sufficiently replicate.
  • a DNA encoding an inteferon-feron-a protein required for producing an inteferon-fer-a by a gene recombination technique can be produced, for example, as follows. That is, after extracting poly (A) RNA from canine cells, it is converted to cDNA, and the polymerase chain reaction (hereinafter PCR) is performed using primers based on the gene sequence encoding inulin-ferrona. By doing so, it is possible to obtain a gene that codes for inulin fermenter.
  • Methods for obtaining RNA from inulin spheres stimulated with mitogen, etc. include conventional methods, such as separation of polysomal, sucrose gradient centrifugation and electrophoresis. .
  • guanidine-thiosinate treatment followed by CsCI density gradient centrifugation by guanidine-thiosine-to-cesium chloride method (Reference 3)
  • a ribonucleic acid method using a vanadium complex is used.
  • Method of performing phenol extraction after treatment with a surfactant in the presence of zein inhibitor can be carried out by selecting an appropriate method from among the following methods: treatment with guanidine-thiosinate, followed by treatment with thiocyanate followed by precipitation with RNA.
  • MRNA is isolated by a more conventional method than inulin spheres, for example, the lithium chloride / urea method, guanidine / isothiocyanate method, oligo dT cellulose column method, and the like.
  • CDNA is synthesized by methods such as the method of Gubler et al. (Reference 5) and the method of H. Okayama et al. (Reference 6).
  • a method using a reverse transcriptase such as Triosteoblast virus (AMV) and a method using a DNA polymerase using a partial primer are used. Combinations may be used, but it is convenient to use commercially available synthesis or cloning kits.
  • the DNA encoding the feline interferon protein can be obtained from the plasmid pFelFNl described in JP-A-2-195884 by using an appropriate restriction enzyme such as SfaNl and Hinc II. It can be easily adjusted by following the genetic recombination technique.
  • inulin interferon- ⁇ By introducing the synthetic plasmid into which the DNA is integrated into an expression plasmid vector, for example, into monkey COS cells, inulin interferon- ⁇ can be produced.
  • a DNA encoding the protein of Inulin interferon-L can be ligated to the expression vector of E. coli, and E. coli can be transformed to produce E. coli producing Inulin interferon-L.
  • Escherichia coli used for the production of inulin fermenter in the culture supernatant is resistant to isoleucine antimetabolite and secretes periplasmic protein into the culture supernatant. If what large Escherichia coli having the properties used in the present invention may be obtained from nature, but Escherichia coli having the properties can be obtained by artificially obtaining a mutant strain according to the present invention. Is simple.
  • any Escherichia coli can be used.However, when the purpose is to produce a recombinant protein, it is an excellent recombinant host.
  • HB101, ⁇ 1101, J ⁇ 105, JM109 derived from Escherichia coli K—12 strains having characteristics, and BL21 strain derived from Escherichia coli B strain are preferably used.
  • Commercially available Escherichia coli can be used. Examples of Escherichia coli used in the present invention include, for example, TI41 strain (FERMP-169798) and TI139 strain (FERMRM-167) obtained from E. coli JM101 strain. 9 7).
  • Escherichia coli ⁇ I41 and ⁇ I139 strains were obtained by conventional mutagenesis and are resistant to thiisoleucine. Mutants that are resistant to isoleucine antimetabolites and have the ability to secrete proteins accumulated in the periplasm into the culture supernatant can be induced by irradiating the parent strain with ultraviolet light or using a mutagen such as ⁇ -methyl. — Obtain a strain that can grow on a solid medium containing a concentration of anisotrophic antimetabolite that does not allow growth of the parent strain after treatment with N'-nitro- ⁇ ⁇ -nitrosguanidine, ethyl methanesulfonic acid, etc. It is done by that.
  • the structure is also known to have very high similarity. Therefore, the same effects as those of the present invention can be expected for enterobacteria that are resistant to isoleucine antimetabolites and have the property of secreting the protein accumulated in periplasm into the culture supernatant. Will be able to.
  • the isoleucine antimetabolite in the present invention the growth of Escherichia coli is inhibited, and the growth inhibition is restored by L-isoleucine, or the activity of an isoleucine biosynthetic enzyme is inhibited, or Any substance can be used as long as it is a substance that suppresses the expression of genes, and the substance whose inhibition or suppression is restored by L-isoleucine.
  • Examples include thiisoleucine, isoleucine hydroxamate, norleucine, ⁇ -aminobutyrate and the like, and those commercially available can be used. Among them, Is most preferably used.
  • the isoloicin antimetabolite-resistant strain in the present invention is a strain which is less susceptible to growth inhibition by an isoleucine antimetabolite than the parent strain.
  • the relative growth was measured by measuring the absorbance of the culture at 660 nm, and expressed as a relative value when the absorbance of the culture without addition of an isoleucine antimetabolite was set to 100%. It is a thing.
  • canine interferon-a cat interferon can be produced by using a silkworm expression system by producing a recombinant silkworm nuclear polyhedrosis virus that infects silkworms.
  • Recombinant silkworm nucleopolyhedrovirus is a recombinant vector produced by ligating a DNA encoding a feline interferon or inu-feron-r protein to a silkworm-cloning vector-1 (Reference 7). Rasmid and silkworm nuclear polyhedrosis virus DNA can be produced by cotransfection of silkworm established cells.
  • Examples of such a recombinant nuclear polyhedrosis disease virus include, for example, rBNVlOO in which a DNA encoding a feline IFN protein has been recombined, and a DN encoding a canine IFN-a protein.
  • RBNV r in which A has been recombined can be mentioned.
  • rBNV100 can be produced by the method disclosed in Japanese Patent Application Laid-Open No. Hei 210-198. That is, the DNA portion encoding the protein of cat IFN is extracted from plasmid extracted by a general method from a transformant of E. coli deposited as FERM P-1633 with the Life Science Research Institute, for example, p Recombinant plasmids are produced by a general genetic engineering technique in which ligation is performed downstream of the expression control portion of a silkworm cloning vector such as BMO30 (Reference 7).
  • the recombinant plasmid and the silkworm nuclear polyhedrosis virus DNA are cotransfected into established silkworm cells, such as the BM-N strain (Reference 7), according to the method described in the literature.
  • the virus is obtained by cloning the recombinant virus from the non-recombinant (wild type) and the recombinant virus that have appeared in the culture solution by a common method such as limiting dilution or plaque method. be able to. Since the recombinant virus has no polyhedron-forming ability, it can be easily distinguished from the wild-type virus.
  • RBNVr is a recombinant DNA obtained by ligating the DNA portion encoding the protein of Inulin Yuichi Feron-r downstream of the expression control portion of a silkworm cloning vector such as pBM030. It can be obtained in the same manner as in the production of rBNV100 using plasmid.
  • the production of feline interferon dinui ichiron feron-r is carried out by growing the above-described recombinant virulent nucleopolyhedrovirus in a silkworm established cell or a silkworm living body.
  • BM-N cells are infected with a culture solution containing the recombinant virus, and cultured by flat culture or suspension culture.
  • a medium for culturing BM-N cells include, for example, TC-10 medium (Reference 8) and TC-100 medium (Japan) supplemented with fetal bovine serum (manufactured by Gibco, abbreviated as FBS hereinafter). Manufactured by Agricultural Industry Co., Ltd.).
  • the appropriate culture temperature is 25 to 28 t :.
  • a culture solution containing the recombinant virus is injected into a silkworm larva, fed with artificial feed, and reared, so that Nekoin Yuichi Feron or Inuinterferon-a is contained in the body fluid. Be produced.
  • the stabilized useful protein composition disclosed in the present invention is used as a pharmaceutical.
  • it is essential to inactivate the recombinant baculovirus used from the viewpoint of safety.
  • inactivating recombinant silkworm nucleopolyhedrovirus for the purpose of producing a useful protein it is necessary to maintain the activity of the useful protein of interest while losing the infectivity of the recombinant baculovirus. is necessary.
  • Watanabe et al. Have reported in detail the inactivation of silkworm nuclear polyhedrosis virus, one of the baculoviruses (Reference 9). However, denaturation of proteins may occur under the physical inactivation conditions such as heating, ultraviolet light, and drying, as well as the chemical inactivation conditions with bactericides such as phenol and formalin, and alcohol. Therefore, it is difficult to use it for producing useful proteins.
  • the report also relates to the inactivation of wild-type silkworm nuclear polyhedrosis virus. No inactivation of recombinant silkworm nuclear polyhedrosis virus is disclosed. Japanese Patent Application Laid-Open No.
  • Hei 4-207198 discloses a method for inactivating a recombinant silkworm nuclear polyhedrosis virus, which comprises adjusting a silkworm body fluid to pH 5 to pH 3.0. However, this method is not sufficient because it is limited to the production of useful proteins that are stable against acidity.
  • Japanese Patent Application Laid-Open No. 61-152,276 discloses a technique for inactivating recombinant Escherichia coli using benzalkonium chloride.However, a method for inactivating a recombinant baculovirus is disclosed. Is not disclosed. On the other hand, the inactivating effect of benzalkonium chloride on the virus differs depending on the virus. Yamamoto et al.
  • the quaternary ammonium salts used for inactivating recombinant baculovirus include alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkyldimethylbenzylammonium salts, alkylpyridinium salts, and the like. Asilaminopropyl dimethyl benzylammonium salt and the like can be used. Specifically, for example, benzalkonium chloride and benzethonium chloride are preferably used from the viewpoint of economy or safety.
  • the concentration of the quaternary ammonium salt used may be any concentration that is sufficient to inactivate the recombinant baculovirus and does not reduce the activity of the target useful protein.
  • the final concentration of the recombinant baculovirus It is preferably used in an amount of 0.01% by weight or more based on the culture supernatant of cultured insect cells infected with E. coli or the body fluid of silkworm larvae infected with recombinant baculovirus.
  • the use of a quaternary ammonium salt in an excessively high concentration is not only economically disadvantageous but also sometimes makes it difficult to purify the target useful protein. Normally, a concentration of less than 0.5% by weight of 4 Treatment with high-grade ammonium salts gives good results in the production of useful proteins.
  • a method of treating a silkworm cell culture supernatant and a silkworm body fluid with a quaternary ammonium salt a method of adding a quaternary ammonium salt to a silkworm cell culture supernatant or a silkworm body fluid or a method of adding a quaternary ammonium salt aqueous solution is used. It is possible to add the culture supernatant of silkworm cells or the body fluid of the silkworm, or to immerse the dissected silkworm directly in a quaternary ammonium salt aqueous solution.Either method has the same effect. can get.
  • the treatment temperature and treatment time with the quaternary ammonium salt are not particularly limited as long as the recombinant baculovirus is sufficiently inactivated, and are not particularly limited. Good results can be obtained by treating for 24 hours.
  • the inactivation of the recombinant baculourovirus can also be achieved by ultraviolet irradiation.
  • the wavelength of the ultraviolet light irradiated for inactivating the recombinant baculovirus may be any wavelength as long as it is a wavelength that inactivates the baculovirus, but is preferably from 200 nm to 300 nm. Yes, and more preferably 253.7 nm.
  • a flow type is preferable.
  • a preferred embodiment of a flow-type ultraviolet irradiation device will be described with reference to the drawings.
  • FIG. 1 shows a flow-type ultraviolet irradiation apparatus according to an embodiment of the present invention.
  • reference numeral 1 denotes an ultraviolet irradiation device main body.
  • the irradiation device consists of a casing 3 for mounting a germicidal lamp 2 with a germicidal lamp 2 of ultraviolet irradiation.
  • a germicidal lamp 2 with a germicidal lamp 2 of ultraviolet irradiation.
  • the distance between the germicidal lamp for ultraviolet irradiation and the casing depends on the transmittance of the irradiated ultraviolet light, but is 5 mrr! About 50 mm is preferred.
  • the metal chelating agent is preferably disodium ethylenediaminetetraacetate and the like, and the addition amount is preferably from 0.1 mM to 100 mM, more preferably from ImM to 100 mM, based on the liquid to be treated. O m M.
  • an acid treatment at pH 3 or lower or an alkali treatment at pH 9 or higher can be used for inactivation of the recombinant baculovirus.
  • the interface loses its activity, but regenerates its activity by keeping it neutral and at a low temperature.
  • the interferon- ⁇ thus regenerated in activity can also be used for preparing the stabilized protein composition of the present invention.
  • Acids or alkalis used for inactivating the genetically modified baculovirus include, but are not limited to, hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid, formic acid, and sodium hydroxide.
  • the acid or pH of the alkaline solution used may be a value sufficient to inactivate the recombinant baculovirus, and usually 3 or less or 9 or more is appropriate.
  • the method is also carried out at a temperature above the freezing point, preferably between 4 and 40.
  • the processing time is at least one minute, but longer processing is possible, and good results can be obtained by processing for 1 to 12 hours.
  • the activity can be regenerated by treating inulin-ferrona, which has lost its biological activity by the treatment, at a neutral or low temperature.
  • neutral means pH 6 to 8
  • low temperature is preferably 0 to 15 ° C.
  • the treatment time is preferably at least 12 hours or more, more preferably 1 to 7 days.
  • useful proteins such as feline interferon or inuinine
  • useful proteins can be obtained from the culture supernatant of silkworm-cultured cells or from the body fluid of silkworm larvae.
  • There is no particular limitation on the method of recovering terferon-a and ordinary protein recovery and purification methods can be used.
  • Ultrafiltration facilitates the recovery of useful proteins, for example, feline interferon and inuin ferro-feron.
  • Useful proteins without inactivated recombinant baculovirus particles can be recovered from the permeate.
  • the silkworm body fluid When ultrafiltration of a silkworm larva body fluid is performed, the silkworm body fluid is colored brown with time, and a phenomenon that the filterability of the ultrafiltration is reduced by this coloring is observed. In many cases, the stability of the intended useful protein is not good, so it is desirable that the ultrafiltration treatment be as short as possible. It has been found in the present invention that the coloring of the silkworm larval humor is effectively suppressed by maintaining the pH at 6 or less. Therefore, good filtration properties can be obtained by ultrafiltration under conditions of pH 6 or less, and the ultrafiltration treatment can be completed in a shorter time. However, once the pH is set to 6 or lower, if the pH is set to 7 or higher, coloring of the silkworm larvae's body fluid starts, and therefore, the filterability in ultrafiltration deteriorates.
  • the silkworm larvae fluid infected with the recombinant silkworm nucleopolyhedrovirus needs to have a pH of 7 or more due to the isolation or purification process of the target protein or the stability of the target protein, etc.
  • addition of a metal chelating agent is effective. That is, when a metal chelating agent is added, even if the pH is 7 or more, the body fluid of the silkworm larva is not colored, so that it is possible to maintain good filterability in ultrafiltration.
  • Metal chelating agents added to body fluids of silkworm larvae infected with recombinant silkworm nucleopolyhedrovirus include ethylenediaminetetraacetic acid (EDTA), ethylenediaminetriacetic acid, ethylenediaminediacetic acid, trans 1,2-cyclohexanediamine Examples include acetic acid, diethylene triamine pentaacetic acid, triethylene tetramine hexaacetic acid or salts thereof, diamines such as 0-phenanthroline, dipyridine and the like.
  • EDTA is used from the viewpoint of safety. It is preferably used.
  • the concentration of the metal chelating agent used is not particularly limited as long as it is a concentration that suppresses the coloring of the silkworm larval humor, but the coloring of the silkworm larval humor is usually effective by adding 2 mM or more. Is suppressed.
  • the treatment temperature with the metal chelating agent is not particularly limited as long as the activity of the target protein is stably maintained, and is preferably 0 to 30 in general.
  • the material for the ultrafiltration membrane is not particularly limited, but industrially available ultrafiltration membranes such as cellulose derivatives and polyphenylsulfone derivatives can be suitably used.
  • ultrafiltration membranes such as cellulose derivatives and polyphenylsulfone derivatives
  • shape of the ultrafiltration membrane There is no particular limitation on the shape of the ultrafiltration membrane, and commercially available ultrafiltration membranes such as a flat membrane ultrafiltration membrane and a hollow fiber ultrafiltration membrane can be used.
  • various types of ultrafiltration devices can be used depending on the ultrafiltration membrane used, but the same effect can be obtained by using any type of ultrafiltration device.
  • the performance of the ultrafiltration membrane is as follows: Among the proteins present in the body fluid of the silkworm larva, the molecular weights on SDS-PAGE are about 30,000 and 70,000, and both are combined. As long as it has a molecular weight fraction that does not allow penetration of evening protein, which accounts for 80% to 90% of the total evening protein amount in the body fluid of the silkworm larva, it is usually displayed as the performance of an ultrafiltration membrane.
  • An ultrafiltration membrane having a molecular weight fraction size of 50,000 or more and less than 300,000 can be suitably used.
  • proteins having molecular weights of about 30,000 and 700,000 on the SDS-PAGE, which are present in the body fluid of the silkworm larva have a molecular weight fraction size of 100,000.
  • the method for isolating and purifying the useful protein produced by the genetic recombination technique in this way is not particularly limited, and an ordinary protein purification method can be used.
  • an ordinary protein purification method can be used.
  • chromatography using silica gel carrier, ion exchange carrier, gel filtration carrier, chelating carrier, dye carrier, etc., ultrafiltration, gel Purification and isolation can be achieved by a combination of desalting and concentration by filtration, dialysis, salting out and the like.
  • composition of the useful protein in the present invention can be produced using the thus-collected and further purified feline interferon and canine interferon-alpha.
  • the structure of arabic acid of the present invention is shown.
  • the compound having a basic structure of arabic acid used for stabilizing a protein in the present invention includes a component that inactivates the protein or a component that prevents the stabilizing effect of the protein by arabic acid as an auxiliary component.
  • Gum arabic which is a compound with all the basic structures of arabic acid, and a number of high molecular compounds linked to arabic acid (with a molecular weight of 20-250,000), and their decomposed and modified products .
  • the concentration of the aqueous solution of the compound having the basic structure of arabic acid may be any concentration, but if the concentration is too low, the stabilizing effect is small, if the concentration is high, the cost is high, and in the case of arabia rubber, the viscosity increases. From the viewpoint of difficulty in handling, the concentration is preferably from 0.01 to 10.0% by weight, more preferably from 0.5 to 2.0% by weight.
  • Useful proteins tend to lose their biological activity due to external factors such as temperature change due to freezing, thawing, heating, pH change in extraction, purification, and dissolution in buffer solution.
  • a compound with the basic structure of arabic acid By mixing it with an aqueous solution of, its biological activity is significantly maintained.
  • the purification operation is also one of the operations that induces inactivation.However, by mixing with a compound having the basic structure of arabic acid during the step before or during the purification, the purification operation is performed. Can prevent protein deactivation.
  • the inactivation of a useful protein over time in an aqueous solution can also be prevented by mixing with an aqueous solution of a compound having a basic structure of arabic acid.
  • a useful protein composition containing a compound having the basic structure of arabic acid is stored in a liquid state, it may be 15 or less depending on the thermal stability of the useful protein, but the mixture is frozen. If the temperature is not high, the lower the temperature, the better, preferably 4 to 10.
  • the composition is preferably frozen or freeze-dried and stored.
  • the temperature may be any number of times as long as the temperature is low enough not to thaw, and after thawing, it is the same as the case of storing in a liquid state.
  • freeze-drying it is preferable to dry to a water content of 5% or less, since the lower the water content, the better the storage stability.
  • the composition thus freeze-dried is preferably stored in a cold place, and can be stably stored for one year if stored at room temperature or longer if stored refrigerated. In addition, even under the harsh conditions of 5 O :, storage stability of 2 months or more can be expected.
  • the freeze-dried product will be used after re-dissolving in water or, in some cases, a solution such as physiological saline.
  • the storage after re-dissolving is the same as that in the liquid state.
  • the preferred pH of a mixture of an aqueous solution of a compound having arabic acid as a basic structure and a useful protein depends on the pH stability of the useful protein itself. However, by mixing the useful protein with a compound having a basic structure of arabic acid, the range of pH stability of the useful protein is widened. For example, it is known that the IFN-A used in the present invention is significantly inactivated when it is not kept at pH 6 to 8 in the case of an aqueous solution. A high activity of 100% or more can be maintained in the range of ⁇ 7, and 70% or more in the range of pH 4.5 to 8.0. In addition, when freeze-dried, the activity is maintained at about 100% in the pH range of 4.5 to 8.0.
  • the mixture of gum arabic and useful proteins can be used for various applications based on the functions of the protein. If the useful protein is a grade that is useful for medicinal use and has no problem for medicinal use, use the mixture for medicinal use by listing gum arabic on the Japanese Pharmacopoeia or as a grade added to pharmaceuticals. Can be.
  • the useful protein composition containing a compound having arabic acid as a basic structure can contain, besides these components, any compound that does not inhibit the activity of the protein.
  • polyols such as polyethylene glycol, surfactants such as Tween 20, sugars such as sorbitol, amino acids such as glycine, or proteins such as gelatin may be added.
  • the osmotic pressure can be adjusted with salt.
  • the canine inferon gene was prepared in accordance with the method disclosed in Japanese Patent Application Laid-Open No. Hei 9-234,085. That is, it is specifically composed of the following two steps. (1) Preparation of canine cDNA
  • Lymphocytes were isolated from dog peripheral blood, and phytohemagglutinin (PHA) was stimulated for 48 hours at a final concentration of 50 g / ml. After the stimulation, total RNA was prepared using IS OGEN (manufactured by Futsubojin Co., Ltd.). The obtained RNA was dissolved in 10 mM Tris-HCl buffer (pH 7.5) (hereinafter abbreviated as TE) containing ImM EDTA, and treated with 70 for 5 minutes. The same amount of TE containing ML i C 1 was added. The RNA solution was applied to an oligo dT cellulose column equilibrated with TE containing 0.5 MLiC1, and washed with the same buffer.
  • TE Tris-HCl buffer
  • the adsorbed poly (A) RNA was eluted with 2 mM EDTA (pH 7.0) containing 0.01% SDS.
  • a single-stranded cDNA was synthesized using the poly (A) RNA thus obtained. That is, 5 g of poly (A) RNA and 0.5 g of oligo dT primer (12-18 mer) were placed in a sterilized 0.5 ml microcentrifuge tube, and treated with getylvirocarbonate. Sterile water was added to make 121, incubated at 70 for 10 minutes and then immersed in ice for 1 minute. This 2 0 0 mM Tris-HCl (p H 8.
  • Primers having Eco RI cleavage sites added to the two types of ends were synthesized using a DNA synthesizer. Take the cDNA obtained in the above (1) into a 0.5 ml microcentrifuge tube, apply 20 pmo to each primer, and add 20 mM Tris-HCl buffer ( ⁇ 80 mM M g C l 2, 2 5 mM KC 1, 1 0 0 tg / m 1 gelatin, each reagent such that each d NTP, 4 units E x T aq D NA polymerase hydrolase (Takara Shuzo Co., Ltd.) In addition, the total amount is 100 0 ⁇ 1.
  • DNA denaturation conditions were 94 for 1 minute, and primer annealing conditions were 55 t: 2
  • the elongation conditions of the primer and primer were 72 and 3 minutes, respectively, and 30 cycles of reaction were performed using Perkin-E1mer Cetus DNA cycler. This was electrophoresed on a 1% agarose gel, and a DNA fragment of about 560 bp was prepared according to a conventional method (Reference 12). This DNA fragment was ligated to T-Vector of Invitrogen using a DNA Ligation Kit Ver. 1 of Takara Shuzo Co., Ltd. for 16 T: for 2 hours. Using this, Escherichia coli was transformed according to a conventional method, and plasmid DNA was prepared from the obtained transformant according to a conventional method.
  • 1 g of the cloning vector pCDL-SR ⁇ 296 (Reference 13) was digested with 30 units of restriction enzyme EcoRI for 37 to 16 hours, and then 1 unit of bacterial alkaline phosphatase was digested. The terminal was dephosphorylated with Fatase (Takara Shuzo Co., Ltd.). This was electrophoresed on a 1% agarose gel, and a DNA fragment of about 3.7 kb was prepared according to a conventional method. Using the DNA Ligation Kit Ver. 1 for 16 to 16 hours, the ligation reaction was carried out, and the pCDL-SRa296 and DIN of interferon-alpha prepared as described above were prepared. The NA fragments were ligated.
  • Escherichia coli HB101 was transformed according to a conventional method.
  • DNA denaturation conditions were 94, 1 minute, primer annealing conditions were 55 X :, 2 minutes, and primer extension conditions were 72 :, 3 minutes.
  • primer extension conditions were 72 :, 3 minutes.
  • PCR was performed for 30 cycles to obtain a DNA fragment of about 65 bp, which encodes a canine interferon-encoding DNA.
  • a plasmid was obtained that was incorporated in p CDL-SRa296 in a positive direction. This recombinant plasmid was designated as pSR ⁇ .
  • Escherichia coli containing this plasmid was named E. coli (pSRar).
  • the DNA denaturation conditions were 94 and 1 minute
  • the primer annealing conditions were 55 and 2 minutes
  • the primer extension conditions were 72 and 3 minutes.
  • PCR was performed for 30 cycles using a DNA thermal cycler of Perkkn-E1mer Cetus to obtain a DNA fragment of about 500 bp. This was digested with 30 units of restriction enzyme NcoI, precipitated with ethanol, digested with 30 units of restriction enzyme BamHI, and electrophoresed on 1% agarose gel. was prepared.
  • pET8c which is the expression vector of E. coli
  • NcoI restriction enzyme
  • BamHI restriction enzyme
  • the plasmid was digested with the restriction enzymes NcoI and BamHI, and the DNA fragment of the human intron-feron-a from which a DNA fragment of about 500 bp was obtained was obtained. The resulting plasmid was obtained.
  • the recombinant plasmid was designated as ⁇ ⁇ ⁇ ", and Escherichia coli BL21 was transformed using the recombinant plasmid according to a standard method.
  • the Escherichia coli was named E. coli (pETr).
  • step 2 the Perkin-E 1 mer Cetus DNA cycler was used under the conditions of 3 minutes. PCR was performed for 30 cycles. This was electrophoresed on a 1% agarose gel, and a DNA fragment of about 500 bp was prepared according to a conventional method (Reference 12).
  • p KK2 23-3 (Pharmacia) lg, an E. coli expression vector, was digested with 30 units of restriction enzyme EcoRI, ethanol precipitated, and then 30 units of restriction enzyme Hind III And electrophoresed on a 1% agarose gel to prepare a DNA fragment according to a conventional method.
  • Ligation reaction was carried out for 16 to 16 hours using DNA Ligation Kit Ver. 1 of TAKARA Co., Ltd., and DKK of PKK2 23-3 and Dininterferon- ⁇ prepared as described above was performed.
  • the NA fragment was ligated, and Escherichia coli HB101 strain was transformed by the calcium chloride method.
  • Transformants grown on LB plates containing 100 ⁇ g / ml ampicillin were cultured in 3 ml LB medium containing 100 ig / ml ampicillin for 8 hours, and the collected bacteria After extracting and purifying the plasmid from the body, the plasmid giving a DNA fragment of about 500 bp was obtained by digestion with the restriction enzymes EcoRI and HindIII.
  • This recombinant plasmid was used as pK-key, and Escherichia coli JM101, TI41, and TI139 were transformed using this plasmid in a conventional manner.
  • KK-r Escherichia coli T1139 (pKK-r).
  • a ligation reaction was performed for 16 hours at 16 using DNA Ligat iOnKit V er.1, and the PBM 030 prepared as described above and
  • a plasmid for silkworm expression of a mutant of Inuyu Feru-alpha was prepared according to the method disclosed in JP-A-10-166627. That is, based on the nucleotide sequences of the N-terminal and C-terminal of canine IFN-
  • the two types of primers were synthesized by requesting Japan Bioservices Co., Ltd. Transfer 21 of the cDNA obtained in Reference Example 1 into a 0.5 ml microcentrifuge tube, and transfer each primer to 20 pmo1, 20 mM Tris-HCl buffer (pH 8.0), 1. 5 mM Mg C12, 25 mM KC1, 100 ⁇ g / m1 gelatin, 50 M Add each reagent to make each dNTP, 4 units ExTaq DNA polymerase (Takara Shuzo Co., Ltd.) to make a total volume of 100 ⁇ 1.
  • DNA denaturation conditions were 94 min, primer annealing conditions were 55 min, primer extension conditions were 72 min, primer extension conditions were 72 T: and 3 min, respectively.
  • the reaction was carried out for 30 cycles using a DNA thermocycler. This was electrophoresed on a 1% agarose gel, and a 5117 bp DN'A fragment (SEQ ID NO: 13) was prepared according to a conventional method (Reference 12). This DNA fragment was ligated to T-Vector of Invitrogen to Takara Shuzo Co., Ltd. according to a conventional method. Using this, Escherichia coli was transformed according to a conventional method, and plasmid DNA was prepared from the obtained transformant according to a conventional method.
  • DNA sequencer 3773S manufactured by PerkinElmer
  • PerkinElmer's Daikin-Mineter Cycler Sequencing Kit according to the attached protocol. It was confirmed that the obtained DNA fragment had a D ⁇ base sequence encoding canine IFN- ⁇ .
  • PCR was performed under the same conditions as above using three combinations of primers (SEQ ID NOs: 14 to 19), and the three types of PCR amplified fragments (SEQ ID NOs: 20 to 22) was obtained.
  • SEQ ID NOs: 20 to 22 were collected according to a conventional method, and the fragment shown in SEQ ID NO: 20 was obtained using restriction enzymes BamHI and Eco RV, and the fragment shown in SEQ ID NO: 21 was obtained using restriction enzymes HincII and SnabI. :
  • the fragment shown in 22 is cut with restriction enzymes Eco RV and Eco RI, respectively, and then the restriction enzyme-treated sequence number: 19 and the restriction enzyme-treated sequence number: 22 are mixed.
  • PCR was performed using pBM ⁇ S2 (-) as a type II and the primers shown in SEQ ID NO: 24 and SEQ ID NO: 25 to obtain a DNA fragment shown in SEQ ID NO: 26.
  • pBM O was inserted into the 30 BglII and EcoRI sites to create pBM ⁇ S2 (-) /-20.
  • Recombinant virus was prepared by the method of Reference 7. That, 5 0 mM HEPES buffer (PH 7. 1), 0. 2 8 MN a C to 0. 7 mM N a 2 HP 0 4, consisting of 0. 7 mM N a H 2 P O- 2. 5 ml the solution, 2. 5 ml of a DNA mixed-solution (0. 2 5 MC a C 1 2, DNA 1 chi co nuclear polyhedrosis virus B m NPVT 3 strain (Reference 7) 0 ig, recombinant plasmids (Including 65 ⁇ g of pBMBA DNA), and add 0.5 ml of the resulting suspension to a TC-110 medium (Reference 2) supplemented with 5 ml of 10% FBS.
  • Reference 7 5 0 mM HEPES buffer (PH 7. 1), 0. 2 8 MN a C to 0. 7 mM N a 2 HP 0 4, consisting of 0. 7 mM N a H 2 P O- 2. 5 ml the solution
  • the DNA was introduced into silkworm cells in addition to the culture medium of about 3 ⁇ 10 5 BmN cells cultured in a plane in a 25 cm 2 flask. After 20 hours, the medium was replaced with a fresh medium, and after culturing for another 7 days, the culture solution was recovered. The culture was centrifuged and the clarified supernatant was diluted and added to the culture medium of BM-N cells cultured on a flat plate.After culturing for 8 days, virus infection was observed under a microscope and polyhedra were formed. An uncultured culture medium was selected (limited dilution method).
  • the limiting dilution method was repeated seven times to clone the recombinant virus.
  • the recombinant virus containing the DNA (SEQ ID NO: 23) encoding the canine IFN-a mutant produced here was encoded by rBNVrS2 (-) and canine IFN-a.
  • a recombinant virus containing DNA (SEQ ID NO: 3) was designated as rBNVa.
  • Recombinant virus was prepared by the method of Reference 7. That, 5 0 mM HE PES buffer (p H 7. 1), 0.2 8 MN a C 0.7 mM N a 2 HP_ ⁇ 4, to 0.7 mM N a H consisting 2 PO 4 2. of 5 m 1 solution, 2. 5 ml of DNA mixture (0.25 MCaC12, Bombyx mori nucleopolyhedrovirus BmN PVT 3 strains)
  • the limiting dilution method was repeated seven times, and the recombinant virus was cloned.
  • the recombinant virus containing the DNA encoding the cat IFN produced here was designated as rBNV100.
  • Interferon activity was measured by its antiviral effect.
  • the activity of canine interferon- ⁇ was also measured by the action of enhancing the expression of class II MHC in canine cell lines. '
  • Antiviral activity was measured by the CPE method according to ref. Vesicular S tomatitis Virus was used as a virus for measurement, and canine MD CK (ATC CCCL-34) cells were used as susceptible cells when measuring the antiviral activity of canine IFN-a. When measuring the antiviral activity of feline IFN, Feline FC 9 (Reference 15) was used.
  • a diluted solution of a sample containing dog IFN- ⁇ was added to dog MDCK (ATCCCCL-134) cells cultured at 37 ° C until confluent on a 96-well microplate, or Similarly, a diluted solution of the sample containing feline IFN was added to the feline FC9 cells cultured to confluence in 37 :, and further cultured in 37: 20 to 24 hours for anti-virus. Activity was induced. After adding VSV and culturing for 24 hours at 37, canine MDCK cells or feline FC9 cells that survive and adhere to the microplate are crystal violet containing 20% formalin. Stained with staining solution.
  • the amount of canine IFN-a or cat IFN at 50% cell viability was defined as 1 unit (1 U) of antiviral activity.
  • the standard deviation of the antiviral activity data obtained by this method was 32%.
  • FCBR1 derived from a canine mammary tumor tissue expressing class IIMHC was established according to the method of Reference 16, and the expression enhancing activity of class II MHC was measured using this.
  • 24 4 pieces of FCBR 1 per hole were adhered to a 4 ⁇ el plate, and the expressed inuine ferrofer was added thereto, and 1% under the condition of 5% C ⁇ 2 and 37. Cultured. After the culture, the cells were detached with trypsin and centrifuged in a 1.5 ml microcentrifuge tube.
  • a single colony of E.co 1 i (pET r) obtained in Reference Example 2 was inoculated into 5 ml of B medium containing 100 gZml of ampicillin. OD 6 . .
  • the cells were cultured at 37 until the concentration reached about 0.7, and 0.5 mM isopropyl 3-D-thiogalactopyranoside (IPTG) at a final concentration of 0.5 mM was added thereto, followed by further culturing for 1.5 hours.
  • IPTG isopropyl 3-D-thiogalactopyranoside
  • the cells were collected, washed three times with physiological saline, and then washed with a phosphate buffer (pH 6) containing 250 g / ml N-methyl-1N'-nitro-1N-2-nitrosoguanidine. . 0) was added and suspended, and the mixture was incubated at 37 T: for 5 minutes. Subsequently, the cells were collected by centrifugation and washed three times with physiological saline.
  • Escherichia coli JM101 strain, TI41 strain, and TI139 strain were cultured with shaking at 3 Ot: for 24 hours using the medium shown in Table 1, and the grown cells were washed with physiological saline.
  • the cell suspension of the washed bacterial cells was inoculated into 5 ml of the medium shown in Table 1 containing 2 Omg / 1 of L-thiisoleucine, and cultured with shaking at 30.After 48 hours, the growth of each strain was determined. It was determined by measuring the absorbance at 660 nm.
  • E. coli T11319 (pKK-r) was inoculated into 400 ml of LB medium, cultured aerobically at 37, and added with I mM PTG during logarithmic growth. Continued. After 3, 5, 8, and 21 hours, 5 ml of the culture solution was collected, centrifuged at 9,000 rpm for 5 minutes to separate the culture supernatant and the cells. The cells were suspended in 5 ml of 20 mM sodium phosphate buffer (pH 7.0), disrupted completely by sonication on ice, and then centrifuged at 12,200 rpm. Obtained as a soluble fraction of bacterial cells.
  • Table 5 shows the results obtained by measuring the antiviral activity of the culture supernatant and the bacterial cell soluble fraction thus obtained. From these results, it can be seen that in the mutant strain of Escherichia coli of the present invention, almost all of the inulin fermenter was secreted and produced outside the cells after 21 hours of culture.
  • the virus solution of the recombinant virus rBNVa obtained in Reference Example 3 was cultured in a 0.5 cm 2 flask in a 25 cm 2 flask in TC-10 medium containing 10% FBS for about 3 hours. It was added to the X 1 0 6 single B mN cells. After 30 minutes, the medium was replaced with a fresh 5 ml TC-10 medium containing 10% FBS, and cultured at 27 for 3 days. Take the centrifuged supernatant of the culture solution, the result of examining the activity, 1 0 5 UZm 1 or more antiviral activity are obtained.
  • rBNvva or rBNvrS2 (—) obtained in Reference Example 3 was injected into the silkworm larvae on the 2nd day of 5th order, After breeding with a commercially available artificial feed (Kanebo Silk Elegance) for 4 days at 25, cut the abdomen of 10 silkworms, collect the body fluid in an ice-cooled Eppendorf tube, and centrifuge. give a supernatant, after filtration sterilization using a filter of 0.
  • the culture supernatant of the silkworm cultured cells infected with the recombinant silkworm nucleopolyhedrovirus or the body fluid of the silkworm larva was diluted and added to a 5 ⁇ 10 5 Zm I BM-N cell culture solution. After culturing at 27 for 10 days, the cytopathic effect on BM-N cells was confirmed by microscopic observation, and the amount of infectious virus was calculated. The amount of infectious virus was determined by obtaining TCID 50 (50% tissue culture infectious dose) according to Reference 17.
  • the silkworm larvae on the 2nd day of the 5th day were injected with 2 U.1 of the virus solution of the recombinant virus rBNVa obtained in Reference Example 3 and one of them was used on a commercial artificial feed (Kanebo) (Silk elegance)). Cut the abdomen of 10 silkworms and immerse them in 100 ml of 50 mM acetate buffer (pH 3.5) containing 0%, 0.01%, or 0.02% benzalkonium chloride And kept at 4 t: for 20 hours. The obtained silkworm body fluid extract was centrifuged at 5,000 rpm for 15 minutes, and the supernatant was recovered. Table 6 shows the results obtained by examining the obtained supernatant for antiviral activity, protein concentration, and amount of infectious recombinant silkworm nuclear polyhedrosis virus.
  • the present invention 0.0 1 Not detected 4. 0 X 1 0 6 7 ' . 1 5. 6 X 1 0 5
  • Example 1 invention 0.0 2 Not detected 2. 0 X 1 0 6 6 . 6 3. 0 X 1 0 5
  • the silkworm larvae on the 2nd day of the 5th day were injected with 21 virus heads of the recombinant virus rBNV100 obtained in Reference Example 4 and the artificial artificial feed (Kanebo silk) was used for 4 days at 25 ° C. (Elegance)). Cut the abdomen of 10 silkworms and immerse them in 100 ml 50 mM acetate buffer (pH 3.5) containing 0%, 0.01%, or 0.02% benzalkonium chloride. 4: Hold for 20 hours. The resulting silkworm body fluid extract was centrifuged at 5,000 rpm for 15 minutes, and the supernatant was collected.
  • Table 7 shows the results obtained by examining the obtained supernatant for antiviral activity, protein concentration, and amount of infectious recombinant silkworm nuclear polyhedrosis virus.
  • Table 7 Production of cat FN in silkworm larvae and inactivation of recombinant silkworm nucleopolyhedrovirus by benzalkonium chloride Experimental example Benza chloride infectious virus Antiviral protein concentration Specific activity
  • the present invention 0.0 1 Not detected 6. 5 X 1 0 6 7 . 5 8. 6 X 1 0 5
  • Example 1 invention 0.0 2 Not detected 6. 1 X 1 0 6 6 . 1 1. 0 X 1 0 5
  • Example 2
  • the silkworm larvae on the 2nd day of the 5th day were injected 2 / zl with the viral solution of the recombinant virus rBNVa obtained in Reference Example 3 at a temperature of 25 ° C for 4 days, and commercially available artificial feed (Kanebo) (Silk elegance)). Cut the abdomen of 10 silkworms and immerse them in 100 ml of 50 mM acetate buffer (pH 3.5) containing 0%, 0.01%, or 0.02% benzozetnium chloride And kept at 4 for 20 hours. The obtained physiological body fluid extract was centrifuged at 5,000 rpm for 15 minutes, and the supernatant was recovered.
  • Table 8 shows the results of examining the amount of infectious recombinant silkworm nucleopolyhedrovirus in the obtained supernatant.
  • Table 8 Inactivation of recombinant silkworm nuclear polynucleosis virus by benzene chloride
  • the silkworm larvae on the 2nd day of the 5th day were injected with 21 of the virus solution of the recombinant virus rBNVa obtained in Reference Example 3 in 21 heads, and the artificial diet (Kanebosil quelegans) was used for 4 days at 25 days. (Manufactured by Sharp Corporation).
  • the abdomen of 80 silkworms was cut off, and the body fluid was extracted with 10 ml cold water containing 2.5 mM / 1 disodium ethylenediaminetetraacetate per animal. While cooling the body fluid extract at 80 Om 1 at 5, it was sent to the ultraviolet irradiation device shown in Fig.
  • the ultraviolet transmittance of the body fluid extract was measured using a spectrophotometer (Hitachi U-2000) and found to be 26% (10 mm cell).
  • the body fluid extract was sampled, and cultured with silkworm cells according to the method of Reference Example 12 to check for virus growth.
  • One hour later 75% of the virus was inactivated in the body fluid extract (actual irradiation time was 0.4 hours considering the convection time), and the body fluid extract 2.5 hours later (actual 100% of the virus was inactivated at 1 hour after UV irradiation.
  • the titer of canine interferon was measured by the bioassay method and found to be 3 ⁇ 10 6 UZml.
  • a virus solution of the transgenic recombinant baculovirus rBNVa disclosed in Japanese Patent Application Laid-Open No. 9-234085 is inoculated into silkworm larvae on the 5th and 2nd days, and the artificial artificial cultivars are commercially available at 25 for 4 days.
  • the animals were fed and fed (Kanebo Silk Elegance). 50 silkworm abdomen cut off, immersed in 500 ml 50 mM phosphate buffer (pH 3.5) containing 0.01% benzalkonium chloride, kept at 4 for 20 hours did.
  • the obtained physiological body fluid extract was neutralized with 2N NaOH, and then centrifuged at 500 rpm for 15 minutes to collect a supernatant.
  • the resulting supernatant was applied to sulfopropyl sepharose (high-performance type, manufactured by Pharmacia), washed with 20 mM phosphate buffer (pH 7.0), and adsorbed by a linear concentration gradient of sodium chloride. Was eluted, and the fractions having anti-viral activity were collected.
  • the canine IFN- ⁇ was recovered, and subjected to 20 dialysis in 20 mM sodium phosphate buffer (pH 7.0). This was used as a canine IFN-sample to examine stabilizers.
  • the extract was centrifuged at 500 rpm for 15 minutes to collect the supernatant.
  • the obtained supernatant was subjected to ultrafiltration using an ultrafiltration membrane device of a type 1 hollow fiber (Am Icon, molecular weight cut off size: 100,000, HIP 40-100).
  • This permeated solution is applied to a column packed with a sulfopropyl sepharose carrier (high performance type, manufactured by Pharmacia), and then subjected to 20 mM phosphate buffer (pH 7.0).
  • the adsorbate was eluted with a linear concentration gradient of sodium chloride, and fractions having antiviral activity were collected to collect dog IFN-F.
  • the obtained fraction is applied to a column packed with a blue sepharose carrier (manufactured by Amersham Pharmacia Biotech), washed with 20 mM phosphate buffer (pH 7.0), and then dried.
  • the adsorbate was eluted with 5 M sodium chloride, and fractions having antiviral activity were collected to recover canine IFN- ⁇ .
  • the obtained canine IFN- ⁇ was added to 20 mM sodium phosphate buffer (pH 7.
  • Escherichia coli (BL21 strain) transfected with a vector (pET) into which the gene encoding the canine IFN protein has been introduced is inoculated into an LB liquid medium, and IPTG is added to a final concentration of 1 during logarithmic growth. mM, and the cells were collected 2 hours later. The obtained cells were suspended in 1/50 volume of 2OmM sodium phosphate buffer (pH 7.0) at the time of culturing, and the cells were disrupted by ultrasonication, and then disrupted. After centrifugation at rpm, the resulting supernatant was filtered through a 0.45 m sterile filter to give an IFN-Key extract.
  • This extract was purified with a sulfopropyl sepharose column (high performance type, manufactured by Pharmacia). Specifically, the extract was applied to the column, washed with 20 mM sodium phosphate buffer (pH 7.0), and further added with 2 OmM sodium phosphate containing 0.4 M NaCl. After washing with buffer buffer (pH 7.0), the solution containing 0.5 M, 0.6 M, 0.7 M, 0.8 M, 0.9 M and 1.OM NaC1 It was eluted stepwise with sodium phosphate buffer. The obtained eluted fraction was subjected to SDS-PAGE, and the fraction containing IFN-A was further purified by Blue Sepharose (Fastoff type). In particular, the extract was applied to the column, washed with 20 mM sodium phosphate buffer (pH 7.0), and further added with 2 OmM sodium phosphate containing 0.4 M NaCl. After washing with buffer buffer (pH 7.0), the solution containing 0.5 M, 0.6 M, 0.7 M,
  • Reference Example 17 The canine IF®-r sample (dissolved in 20 mM sodium phosphate buffer, pH 7.0) obtained in Reference Example 7 was refrigerated and frozen without adding any other additives. Changes in the activity upon treatment and freeze-drying without the addition of stabilizers were examined. The residual activity was expressed as 100% of the activity of the sample before the treatment. Table 9 shows the results.
  • the freeze-dried product was redissolved in sterile distilled water and used for measurement of antiviral activity.
  • the canine IFN-a sample extracted and purified from the silkworm obtained in Reference Example 17 (dissolved in 20 mM sodium phosphate buffer, pH 7.0) and various concentrations (final concentrations) After mixing 1 ml of the arabia rubber aqueous solution (5.0, 7.5, 10.0, 12.5, 15.0, 20.0 mg / m1) in a glass vial and freeze-drying residual ratio of residual activity and activity upon re-dissolved (1. 1 0 0% 2 4 X 1 0 5 U) shown in Table 1 0.
  • Table 10 Addition amount of Arabic gum and dog IFN-r activity Arabic gum Residual activity Residual rate
  • Reference Example 19 A canine IFN- ⁇ sample (dissolved in 20 mM sodium phosphate buffer, pH 7.0) extracted and purified from the recombinant Escherichia coli obtained in Example 19 was mixed with HC1 and NaOH. The aqueous solution of arabia adjusted to various pHs using the above method was mixed, and the remaining activity and the residual ratio (1.20) after 1 mL (last concentration of gum arabic: 10 mg / m 1) was stored at 4 for 6 days. X 1 0 to 5 U was 1 0 0%) shown in Table 1 2.
  • Reference Example 19 A canine IFN-a sample (dissolved in 20 mM sodium phosphate buffer, pH 7.0) extracted and purified from the recombinant Escherichia coli obtained in Example 9 and an aqueous solution of gum arabic adjusted to various pHs LmL (1 Omg / ml of acacia) was placed in a glass vial and lyophilized. Residual activity and the residual rate at the time of re-dissolution of the lyophilized formulation (4 was 1 0 0% 0 X 1 0 5 U) shown in Table 1 3.
  • the water content of the freeze-dried sample at this time was about 1.7% (average value during three measurements), and the content (% by weight) of gum arabic in the freeze-dried sample was about 98.3% It is.
  • Table 13 Activity of pH and canine IFN-r with addition of arabic gum
  • I j I FN- ⁇ solution 1 mL was placed into a glass vial, freeze-drying process the rows Tsutanochi, residual ratio of residual activity and activity at the time of re-dissolution (1. 2 4 X 1 0 5 U 1 0 0 %).
  • the water content of the lyophilized sample at this time was about 1.7% (average value during three measurements).
  • Table 14 shows the residual activity of each lyophilized sample and its gum arabic content (% by weight). ).
  • Table 15 shows the residual activity and gum arabic content (% by weight) of each lyophilized sample. Show. Table 15 Addition amount of macrogol and activity of canine IFN- ⁇ in the presence of arabia rubber Arabia rubber MAG mouth Gall Residual activity Residual rate
  • the water content of the freeze-dried sample at this time was about 1.5% (average value during three measurements).
  • Table 16 shows the residual activity and gum arabic content (% by weight) of each freeze-dried sample. Is shown. 16 Addition of Arabic rubber and the activity of dog IFN- ⁇ in the presence of macrogol Arabic rubber Mack Gall Residual activity Residual rate Freeze-dried and dried
  • Reference Example 18 A canine IFN-a sample (dissolved in 20 mM sodium phosphate buffer, pH 7.0) extracted and purified from the silkworm obtained in Silkworm, 10 mg / m 1, gum arabic Gol 400 (polyethylene glycol 400) mixed at 5 mg / mi and glycine at 10 mM, a total volume of 1 ml was placed in a glass vial, lyophilized, and then re-dissolved. The residual activity was examined. As a result, the charged I j IF 1 ⁇ - after lyophilization against ⁇ active 6. 0 1 0 4 U, activity when re-dissolved is 5.4 X 1 0 4 U, 9 0% of the activity remaining Was.
  • useful proteins such as interferon can be stably stored without inactivating them, and thus can be used in various industrial fields including the pharmaceutical industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

明細書
有用タンパク質の安定化方法および有用タンパク質組成物
技術分野
本発明は有用タンパク質の安定化および保存方法ならびに有用夕ンパク質の生 理活性を安定に保持することが可能な組成物に関する。 有用タンパク質のなかで も、 哺乳類、 特に、 ィヌまたはネ のインターフェロンの安定化方法および保存 法、 ならびに、 その活性を安定に保持することが可能な組成物に関する。
背景技術
タンパク質、 特に酵素、 生理活性を持つ有用タンパク質等は遺伝子組み換え技 術などにより安価に量産できるようになつていることから、 さまざまな分野、 特 に医薬、 診断薬あるいは食品分野などで利用されるようになっている。 一方で夕 ンパク質は分解などによりその一次構造にダメージを受けた場合に失活するのは もちろんのこと、 その機能が高次構造によるところも大きく、 タンパク質の種類 によって程度の違いはあるが、 さまざまな外的要因 (温度、 時間的変化、 光、 p H) により容易に高次構造が崩れ、 その機能 (生理活性) を失ってしまうとい う問題があることから、 タンパク質の高次構造を安定化させ、 生理活性を維持さ せる方法が研究されている。
現在、 タンパク質の安定化方法として有用かつ一般的であるのは、 他のタンパ ク質 (ゼラチン、 アルブミン、 血清、 コラーゲンなど) と混合させることであり、 ゼラチンや血清と混合することで比較的長期間保存できるようになり、 医薬品と して製品化された酵素および生理活性タンパク質は多く知られている (特開平 2 - 2 6 4 7 2 8号公報、 特開平 2 - 4 9 7 3 4号公報、 特開昭 5 4— 8 0 4 0 6 号公報、 および特開昭 5 6— 6 8 6 0 7号公報) 。
免疫調節作用、 抗ウィルス作用を持つ生理活性物質であり医薬用途で注目され ているインターフェロン ( I F N) の安定化について挙げるならば、 特開昭 6 0 一 2 2 8 4 2 2号公報、 特開昭 6 0— 34 9 1 9号公報、 特開昭 6 1— 1 3 7 8 2 8号公報、 および特開昭 6 0 - 2 6 0 5 2 3号公報においてアルブミ ンゃゼラ チンと混合することにより安定化する方法が開示されている。 また、 タンパク質 以外の化合物でタンパク質の安定化作用がある化合物の例としては、 糖類、 特に 単糖類、 二糖類およびデキス トランゃヒ ドロキシェチルデンプンのような多糖類 (特開昭 5 9— 1 8 1 2 2 3号公報、 特公平 6— 5 1 6 4 1号公報、 特開昭 6 1
- 4 4 8 2 6号公報、 および特開昭 6 0— 1 5 5 1 3 6号公報) あるいはサイク ロデキス トリ ンゃ多価糖アルコール (特開昭 5 8— 9 2 6 9 1号公報、 特公平 3
- 5 0 0 8 8 2号公報) が知られている。 また、 ラク トビオン酸によって、 活性 の高い I F N—ァの二量体を優勢にさせる方法もある (特公平 3— 5 0 1 6 0 4 号公報) 。
ァラビアゴムとタンパク質の混合物の報告としては、 アラビアゴム水溶液を薬 剤の分散剤として用いたものが多いが (特開平 6 - 3 2 1 8 0 3号公報) 、 希に 抗体産生において抗原とするタンパク質を単独で投与するより もアラビアゴムと の混合物として投与する方が抗体産生量が増加した例 (特公昭 5 8— 2 3 8 4 7 号公報) ゃ抗ガン剤と著量のアラビアゴムとの併用により抗ガン活性が増した例 (特開平 3— 1 2 7 7 4 0号公報) あるいは薬剤 (ポリペプチド) とアラビアゴ ムの複合体を合成することで薬剤の特定の細胞への輸送効率を高めた例 (U S P 5 5 5 4 3 8 6号明細書) など特殊な報告例もある。 しかし、 アラビアゴムと混 合することによる有用タンパク質の安定化方法、 または、 アラビアゴムと混合す ることにより安定化された有用夕ンパク質組成物については知られていない。 医薬用添加物、 特に注射用医薬品の添加物としてタンパク質を用いる場合、 添 加物自身が生体にとって異種のタンパク質であるので添加量によってはァレルギ 一を引き起こす可能性があること、 また医薬品に種々な目的で添加可能なタンパ ク質としてよく用いられるゥシ由来のゼラチンにおいては狂牛病の原因夕ンパク 質が混入することを確実に避けることが困難であることなど様々な問題が指摘さ れている。 そこで、 タンパク質以外で、 生体に無毒であり、 タンパク質の安定化 作用を持つ化合物が求められており、 そのような例として、 糖類、 多価アルコー ルなどが知られているが、 水溶液あるいは凍結乾燥などの固形といった保存形態 で、 また幅広い p Hで生理活性タンパク質を安定に保つことは困難であり、 さら に安全で効果の高い安定化剤が望まれている。
発明の開示
本発明者らは鋭意検討の結果、 新たにァラビン酸の基本構造からなるアラビア ゴムの水溶液を有用タンパク質と混合することによりタンパク質の活性を安定に 保つことができることを見いだした。 さらに、 この混合液を凍結乾燥することに よって得られた有用タンパク質の組成物は高い生理活性を保持していることを見 い出し、 本発明に至った。
図面の簡単な説明
図 1 は、 本発明において使用される紫外線照射装置の構成を示す図である。 1 ~ 5の符号は下記を意味する。
1 紫外線照射装置本体
2 殺菌灯
3 ケーシング
4 ポンプ
5 バキユウロウィルスの入った昆虫体液
発明を実施するための最良の形態
本発明の有用ダンパク質としては特に限定されないが、 ァラビン酸の基本構造 を持つ化合物によって活性を阻害されないタンパク質であればよく、 酵素や生理 活性を持つタンパク質、 例えばインターフェロン、 インターロイキン、 インシュ リ ン、 成長ホルモン、 G— C S F、 エリスロポエチン、 N G Fなどが例として挙 げられる。 さらに動物由来のインターフェロンであるィヌインターフェロン (ひ、 β、 アの各タイプ) 、 ネコイ ンタ一フエロン- ωなどが挙げられる。
例えば、 ィヌインタ一フエロン一 rは、 参考文献 1 に示されているアミ ノ酸配 列からなるポリぺプチドであるが、 そのアミ ノ酸配列の一部が置換されたもの、 また、 その一部が欠如したもの、 あるいは、 いくつかのアミ ノ酸残基が付加され たものなどでも、 ィヌ由来細胞、 例えば、 ィヌ M D C K細胞 (A T C C C C L - 3 4 ) に対して、 文献 2 に示されているようなインターフェロンーァの本来の 生理活性を有するポリペプチドであれば本発明の有用タンパク質に含まれる。 具 体的には、 例えば配列番号 3に示す成熟蛋白質部分のアミ ノ酸配列からなるポリ ペプチドが挙げられる。 また、 例えば、 配列番号 2 7示す成熟蛋白質部分のよう な糖鎖結合部位を欠如させたィヌイ ンターフェロン-ァ を挙げることができる。 また、 配列番号 2 8 、 2 9 に示す成熟蛋白質部分のような C末端が欠損したィ ヌイ ン夕一フエロンー ァを挙げることができる。 さ らには、 配列番号 3 0 に示す ような N末端にアミノ酸が付加したィヌイ ンターフェロン-ァを挙げることがで さる。
また、 ネコインターフェロンは、 U S P 5 5 0 8 9 2 1号明細書に開示されて いるアミ ノ酸配列からなるポリぺプチ ドである力^ そのアミ ノ酸配列の一部が置 換されたもの、 また、 その一部が欠如したもの、 あるいは、 いくつかのアミノ酸 残基が付加されたものなどでも本発明の有用タンパク質に含まれる。
本発明で用いられるィヌインターフェロン-ァゃネコイ ンターフェロンは、 天 然の生物材料から抽出しさらに必要な純度まで精製したものでもよいし、 化学合 成されたものでもよいが、 遺伝子組換え手法を用いて製造したものが工業的には 利用し易い。 遺伝子組換え手法を用いて本発明の有用タンパク質の生産を実施す る方法は通常どおりの手法と同様であり、 例えば、 有用タンパク質をコードする D N A断片の両端を制限酵素で切断し、 複製可能なプラスミ ドの適切な部位に挿 入したのち、 そのプラスミ ドが十分に複製する細胞に導入することにより容易に 実施可能である。
遣伝子組換え手法によってィヌイ ンターフェロン-ァを製造する際に必要なィ ヌイ ンタ一フエロン-ァの蛋白をコー ドする D N Aは例えば次のようにして製造 することができる。 すなわち、 ィヌの細胞からポリ (A ) R N Aを抽出した後、 c D N Aに転換し、 ィヌインタ一フエロン-ァ をコ一 ドする遺伝子配列を元にし たプライマーを用いてポリ メラーゼ連鎖反応 (以下 P C Rと略す) を行う ことに よってィヌイン夕一フエロン-ァをコ一 ドする遺伝子を得ることができる。 マイ トージェンなどで刺激されたィヌ リ ンパ球などより R N Aを得る方法としては、 通常の方法、 例えば、 ポリ ソ一ムの分離、 ショ糖密度勾配遠心や電気泳動を利用 した方法などが挙げられる。 上記ィヌ細胞より R N Aを抽出する方法としては、 グァニジン · チオシァネー ト処理後 C s C I 密度勾配遠心を行うグァニジン · チ オシァネ一トー塩化セシウム法 (文献 3 ) バナジウム複合体を用いてリボヌク レ ァ一ゼインヒビター存在下に界面活性剤で処理したのちフエノール抽出を行う方 法 (文献 4 ) , グァニジン ' チオシァネ一 トーホッ ト ' フエノール法、 グァニジ ン · チオシァネート一グァニジン塩酸法、 グァニジン · チオシァネ一トーフエノ P98/0 1 ール · クロ口ホルム法、 グァニジン · チオシァネー トで処理したのち塩化りチウ ムで処理して RNAを沈殿させる方法などの中から適当な方法を選んで行う こと ができる。
ィヌ リ ンパ球などよ り通常の方法、 例えば、 塩化リチウム/尿素法、 グァニ ジン · イソチオシァネート法、 オリゴ d Tセルロースカラム法等により mRNA を単離し、 得られた mRNAから ^通常の方法、 例えば、 G u b l e r らの方法 (文献 5) , H. O k a y am aらの方法 (文献 6 ) 等により c DNAを合成す る。 得られた mRN Aから c D N Aを合成するには、 基本的には ト リ骨芽球ウイ ルス (AMV) などの逆転写酵素などを用いるほか 1部プライマーを用いて D N Aポリメラーゼなどを用いる方法を組み合わせてよいが、 市販の合成あるいはク ローニング用キッ トを用いるのが便利である。 この c DNAを铸型としてィヌィ ンターフェロン-ァの塩基配列を基にしたプライマーを用いて P C Rを行う こと によってィヌイ ンターフェロン-ァのタンパク質をコー ドする DNAを得ること ができる。
また、 ネコイ ンターフェロンのタンパク質をコードする DNAは、 特開平 2— 1 9 5 8 84号公報に記載されているプラスミ ド pFelFNlから、 適切な制限酵素、 例えば、 SfaNlと Hinc II を用いて通常の遺伝子組換え手法に従う ことで容易に 調整することができる。
この DN Aを発現プラスミ ドベクタ一に組込んだ合成プラスミ ドを、 例えば サルの C O S細胞に導入することによって、 ィヌイ ンターフェロン -ァ を生産さ せることができる。 また、 大腸菌の発現べクタ一にィヌイ ンタ一フエロン -ァの タンパク質をコー ドする DNAを連結し、 大腸菌を形質転換させてィヌイ ンター フエロン-ァ生産性大腸菌を製造することができる。 さ らに、 イソロイシン代謝 拮抗物質に対して耐性を有し、 かつ、 ペリブラズムに蓄積したタンパク質を培養 上清中に分泌する能力を有する大腸菌にィヌインターフェロン-ァの蛋白質をコ 一ドする遺伝子を導入することによって、 培養上清中にィヌイ ンタ一フエロン- ァを蓄積させることができる。 ィヌイ ン夕一フエロン-ァを培養上清中に生産す る目的で使用される大腸菌は、 イソロイシン代謝拮抗物質に対して耐性を有し、 かつ、 ぺリブラズム蛋白質を培養上清中に分泌する大腸菌であればどのような大 腸菌であってもよく、 本発明で用いる性質を有する大腸菌は、 自然界から得るこ とも可能であるが、 本発明に従って人為的に変異株を取得することで該性質を有 する大腸菌を得ることが簡便である。 変異株を分離する際の親株としては特に制 限はなく どのような大腸菌でも用いることが可能であるが、 遺伝子組換えタンパ ク質の生産を目的とする場合は、 遺伝子組換え宿主として優れた性質を持つ大腸 菌 K— 1 2株由来の HB 1 0 1 , Ϊ Μ 1 0 1、 J Μ 1 0 5 , J M 1 0 9や、 大腸 菌 B株由来の B L 2 1株などが好適に使用でき、 これら大腸菌は市販されている ものを用いることができる。 本発明で用いられる大腸菌としては、 例えば大腸菌 J M 1 0 1株から得られた、 T I 4 1株 (F E RM P— 1 6 7 9 8) 、 T I 1 3 9株 (F E RM Ρ— 1 6 7 9 7 ) がある。 大腸菌 Τ I 4 1株、 Τ I 1 3 9株 は通常の変異処理法で得られたもので、, チアイソロイシンに対して耐性である。 イソロイシン代謝拮抗物質に耐性で、 かつ、 ペリブラズムに蓄積される蛋白質質 を培養上清に分泌する能力を有する変異株の誘導は親株を紫外線照射するか、 あ るいは変異誘発剤、 例えば Ν—メチル— N'—二 トロ— Ν—二トロソグァ二ジン、 ェチルメタンスルホン酸などで処理したのち、 親株が生育できない濃度のィソ口 ィシン代謝拮抗物質を含む固体培地で生育可能な菌株を取得することで行われる。 また、 微生物の分類学上、 大腸菌に近縁である Providenchia 属、 Shigella 属、 Serratia 属、 Citrobacter 属に属するグラム陰性の腸内細菌類は、 大腸菌と同 様ペリブラズムを有しており、 かつ、 遺伝子構造も類似性が非常に高いことが知 られている。 したがって、 イソロイシン代謝拮抗物質に対して耐性で、 かつ、 ぺ リブラズムに蓄積された夕ンパク質を培養上清に分泌する性質を有するような腸 内細菌類においても本発明と同様な効果を期待することができるであろう。
本発明におけるイソロイシン代謝拮抗物質としては、 大腸菌の生育を阻害し、 かつ、 その生育阻害が L-イソロイシンによって回復するか、 または、 イソロイ シン生合成系酵素の活性を阻害するか、 または、 その酵素遺伝子の発現を抑制す る物質であり、 これら阻害や抑制が L-イ ソロイシンによって回復する物質であ ればどのような物質であってもよく、 例えば、 チアイソロイシン、 イソロイシン ハイ ドロキサメート、 ノルロイ シン、 α—アミ ノブチレ一 トなどがあげられ、 こ れらは市販されているものを使用することができる。 この中でもチアイソ口イシ ンが最も好適に利用できる。
本発明におけるィソロイシン代謝拮抗物質耐性株とは、 親株よりイソロイ シン 代謝拮抗物質によって生育阻害を受けにく い株のことである。 例えば親株の相対 生育度が 3 0 %以下を示すイソロイシン代謝拮抗物質の濃度において、 6 0 %以 上の相対生育度を示す変異株を取得することが望ましい。 ここでの相対生育度は 培養液の 6 6 0 nmにおける吸光度を測定し、 各菌株のイソロイシン代謝拮抗物 質の添加していない培養液の吸光度を 1 0 0 %とした時の相対値で示したもので ある。
また、 ィヌインターフェロン-ァゃネコインタ一フエロンは、 カイコに感染す る組換えカイコ核多角体病ウィルスを作製することによって、' カイコ発現系を用 いても生産することができる。 組換えカイコ核多角体病ウィルスは、 ネコインタ —フエロン、 または、 ィヌイ ンタ一フエロン- rのタンパク質をコー ドする DN Aをカイコのクロ一ニングベクタ一 (文献 7 ) に連結して作製した組み換え体プ ラスミ ドとカイコ核多角体病ウィルス DNAとを、 カイコ樹立細胞にコ トランス フエクシヨ ンして作製することができる。 このような遺伝子組換え核多角体病ゥ ィルスとして、 例えば、 ネコ I FNのタンパク質をコードする DN Aが組換えら れた r B NV l O Oや 、 ィヌ I F N -ァの蛋白質をコードする DN Aが組換えら れた rBNV rを挙げることができる。
r B NV 1 0 0は、 特開平 4一 2 0 7 1 9 8号公報に開示された方法によって 作製することができる。 すなわち、 生命科学研究所に FERM P- 1 6 3 3号とし て寄託されている大腸菌の形質転換体から一般的な手法により抽出したプラスミ ドからネコ I F Nのタンパク質をコードする DNA部分を、 例えば p BM O 3 0 (文献 7 ) などのカイコのクローニングベクターの発現調節部分の下流に連結す るという一般的な遺伝子操作技術によつて組換えプラスミ ドを作製する。
この組換えプラスミ ドとカイ コ核多角体病ウィルス D N A (文献 7 ) とを、 文献のような方法でカイコ樹立細胞、 例えば BM— N株 (文献 7 ) にコ トランス フエクシヨ ンした後、 培養を続け、 培養液中に出現した非組換え体 (野性型) と 組換え体のウィルスの中から限界希釈法、 もしくはプラーク法などの一般的な方 法によって組換え体ウィルスをクローニングすることによって得ることができる。 組換え体ウィルスは多角体の形成能がないことから、 野性型ウィルスと容易に区 別できる。 また、 rB NV rは、 ィヌイン夕一フエロン- rのタンパク質をコー ド する DNA部分を、 p BM O 3 0などのカイコのクローニングベクターの発現調 節部分の下流に連結して得られた組換えプラスミ ドを用いて、 r B NV l 0 0の 作製と同様の方法によって得ることができる。
ネコイ ンターフェロンゃィヌイシ夕一フエロン- rの生産は、 上記の組換え力 ィコ核多角体ウィルスをカイコ樹立細胞中、 またはカイコ生体中で増殖させるこ とにより行なう。 カイコ樹立細胞を用いる場合は、 前記組換え体ウィルスを含む 培溶液により、 BM— N細胞を感染させ、 平面培養または浮遊培養により培養す る。 BM— N細胞を培養する培地としては、 例えば牛胎児血清 (ギブコ社製、 以 下 F B Sと略記する。 ) を添加した T C一 1 0培地 (文献 8 ) や T C— 1 0 0培 地 (日本農産工業 (株) 製) を使用することができる。 培養温度は 2 5〜 2 8t: が適当である。
カイコ生体を用いる場合は、 前記の組換え体ウィルスを含む培養液をカイコ 幼虫に注射して、 人工飼料を与えて飼育することでその体液中にネコィン夕一フ ェロンまたはィヌインターフェロン-ァが生産される。
本発明で開示される安定化された有用タンパク質の組成物は、 医薬品として用 いられる場合が想定される。 バキュロウィルスを用いた有用タンパク質の生産方 法によって特に医薬品などを製造する場合には、 安全性の観点から使用した組換 えバキュロウィルスの不活性化が不可欠である。 また、 有用タンパク質の生産を 目的とした組換えカイコ核多角体病ウィルスの不活性化においては、 組換えバキ ュロウィルスの感染力を失わせると同時に、 目的とする有用タンパク質の活性を 維持することが必要である。
バキュロウィルスの一つであるカイコ核多角体病ウイルスの不活性化に関して は、 Watanabe らが詳細に報告している (文献 9 ) 。 しかし、 開示されている加 熱、 紫外線、 乾燥など、 物理的な不活性化条件、 および、 フエノール、 ホルマリ ンなどの殺菌剤、 アルコールなどによる化学的な不活性化条件ではタンパク質の 変性が生じることから、 有用タンパク質の製造に利用することは困難である。 ま た、 この報告は、 野生型カイコ核多角体病ウィルスの不活性化に関するものであ り、 組換えカイコ核多角体病ウィルスの不活性化については開示されていない。 特開平 4- 2 0 7 1 9 8号公報には、 カイ コ体液を p H O . 5〜 p H 3.0にす ることを特徴とする組換えカイコ核多角体病ウィルスの不活性化方法が開示され ているが、 この方法では酸性に対して安定な有用タンパク質を製造する場合に限 られることから、 十分な方法ではない。 また、 特開昭 6 1 -1 5 2 2 7 6号公報 には、 塩化ベンザルコニゥムを用いた組換え大腸菌の不活性化に関する技術が開 示されているが、 組換えバキュロウィルスの不活性化方法については開示されて いない。 一方、 ウィルスに対する塩化ベンザルコニゥムの不活性化作用はウィル スによって異なり、 Yamamoto らは H I Vウィルスが塩化べンザルコニゥムで不 活性化されることを報告しているが (文献 1 0 ) 、 一方、 Watanabe らはカイコ の Flacherie virus は塩化ベンザルコニゥムによって不活性化されないと報告し ている (文献 1 1 ) 。
しかしながら、 本発明においては、 塩化ベンザルコニゥム処理によって有用夕 ンパク質がその生理活性を失う ことなく組換えバキュロウィルスが不活性化され ることが示され、 また、 塩化ベンザルコニゥム処理して得られた有用タンパク質 の安定化方法、 および、 その有用タンパク質組成物が示されている。
組換えバキュロウィルスの不活性化に使用する 4級アンモニゥム塩としては、 アルキル卜リ メチルアンモニゥム塩、 ジアルキルジメチルアンモニゥム塩、 アル キルジメチルベンジルアンモニゥム塩、 アルキルピリジニゥム塩、 ァシルァミノ プロピルジメチルペンジルアンモニゥム塩などを用いることができるが、 具体的 には、 経済性または安全性の観点から、 例えば塩化ベンザルコニゥム、 塩化ベン ゼトニゥムが好適に使用される。
使用される 4級アンモニゥム塩の濃度は、 組換えバキュロウィルスの不活性化 に十分で、 かつ、 目的とする有用タンパク質の活性を低下させない濃度であれば よく、 例えば、 終濃度で組換えバキュロウィルスを感染させた昆虫培養細胞の培 養上清、 または、 '組換えバキュロウィルスを感染させたカイコ幼虫の体液に対し て 0.0 1重量%以上が好適に用いられる。 しかし、 過度に高濃度の 4級アンモ 二ゥム塩を使用することは、 経済的に不利であるばかりでなく、 目的とする有用 タンパク質の精製を困難とする場合がある。 通常、 0. 5重量%以下の濃度の 4 級アンモニゥム塩による処理が、 有用タンパク質の生産において良い結果をもた らす。
カイコ細胞の培養上清、 および、 カイコ体液を 4級アンモニゥム塩で処理する 方法としては、 カイコ細胞の培養上清またはカイコ体液に 4級アンモニゥム塩を 添加する方法、 もしくは、 4級アンモニゥム塩水溶液にカイコ細胞の培養上清ま たはカイコ体液を添加する方法、 もしくは、 切開したカイコを直接 4級アンモニ ゥム塩水溶液に浸漬する方法などが可能であるが、 いずれの方法によっても同様 な効果が得られる。 また、 4級アンモニゥム塩による処理温度、 処理時間は、 組 換えバキュロウィルスが十分に不活性化される条件であればよく、 特に制限はな いが、 例えば 0でから 2 5 において、 1時間から 2 4時間処理することによつ て良好な結果が得られる。
また、 組換えバキユウロウィルスの不活性化は、 紫外線照射によっても達成す ることが可能である。 組換えバキュロウィルスの不活性化のために照射する紫外 線の波長は、 バキユウロウィルスを不活化する波長であれば、 いかなる波長でも 良いが、 好ましくは、 2 0 0 n m〜 3 0 0 n mであり、 さ らに好ましくは、 2 5 3 . 7 n mである。
紫外線照射装置としては、 流通式のものが好ましい。 流通式の紫外線照射装置 について、 望ましい実施形態を図面を参照して説明する。
図 1は本発明の一実施態様にかかる流通式の紫外線照射装置を示している。 図 1 において 1 は紫外線照射装置本体を示す。
照射装置は紫外線照射の殺菌灯 2を殺菌灯をとりつけるケーシング 3からなる。 ケ一シングの上部と下部に溶液の出入り口があり、 殺菌灯とケ一シングの間を力 ィコ細胞培養上清またはカイコ幼虫の体液が流れるようになつている。 また、 紫 外線照射中に紫外線のエネルギーによりカイコ細胞培養上清またはカイコ幼虫の 体液の温度が上昇する場合は、 照射装置や、 処理する液体の循環ラインを冷却す るのが好ましい。 紫外線照射のための殺菌灯とケ一シングとの距離は、 照射する 紫外線の透過率により異なるが、 5 m rr!〜 5 0 m m程度が好ましい。
また、 カイコ細胞培養上清またはカイコ幼虫の体液が、 微量の金属と結合した り、 空気による酸化などで変成して着色が起こると、 紫外線の透過率が低下して、 ウィルスの不活化が起こ りにく くなることがある。 これを防止する目的で金属キ レー ト剤を添加するのが好ましい。 金属キレー ト剤としては、 エチレンジァミン 四酢酸ニナトリウムなどが好ましく、 添加量としては、 処理する液体に対し、 0 . 1 m Mから 1 0 0 m Mが好ましく、 さらに好ましくは、 I m Mから l O m Mであ る。
また、 遺伝子組換えバキュロウィルスの不活化には、 p H 3以下の酸処理また は p H 9以上のアルカリ処理を用いることができる。 この場合、 インターフエ口 ン-ァはその活性を失うが、 中性でかつ低温に保持することで活性が再生する。 こう して活性を再生させたイ ンターフェロン-ァ も本発明の安定化されたタンパ ク質組成物の調整に用いることができる。 遺伝子組換えバキュロウィルスの不活 化に使用する酸またはアルカリ としては、 塩酸、 硫酸、 酢酸、 リ ン酸、 蟻酸、 水 酸化ナ ト リウムなどが用いられるが、 これらに限定されない。 使用される酸また はアル力リ溶液の P Hは遺伝子組換えバキュロウィルスの不活化に十分な値であ ればよく、 通常 3以下または 9以上が適当である。 またこの方法は凍結点より高 い温度で、 好ましくは 4〜 4 0でで実施される。 処理時間は少なく とも 1分間で あるが、 それより長い処理も可能で、 1 〜 1 2時間処理することにより良好な結 果が得られる。
処理により生物学的活性を失ったィヌイ ンタ一フエロン-ァ を中性、 低温で処 理することによ り活性を再生させることができる。 ここで中性とは、 p H 6 〜 8 であり、 低温は、 0〜 1 5 °Cが好ましい。 処理時間は少なく とも 1 2時間以上が 好ましく、 さ らに好ましくは 1 〜 7 日間である。
組換えバキュロウィルスを利用した有用タンパク質を生産において、 カイコ培 養細胞ではその培蹇上清中から、 また、 カイコ幼虫の場合はその体液から、 有用 蛋白質、 例えば、 ネコイ ンターフェロン、 または, ィヌイ ンターフェロン-ァを 回収する方法に特に制限はなく、 通常の蛋白質の回収方法、 および、 精製方法を 用いることができるが、 特に、 前述の 4級アンモニゥム塩で組換えバキュロウィ ルスを不活性化したのちに限外濾過をすることによって、 有用タンパク質、 例え ば、 ネコインターフェロン、 ィヌイ ン夕一フエロン-ァの回収が容易となる。 ま た、 この時、 組換えバキュロウィルスが透過できない限外濾過膜を用いることで、 不活性化された組換えバキュロウィルス粒子を含まない有用タンパク質が、 透過 液側から回収することができる。
カイコ幼虫体液を限外濾過する場合、 カイコ体液が時間とともに茶褐色に着色 し、 この着色によって限外濾過の濾過性が低下する現象が認められる。 目的とす る有用タンパク質は多くの場合安定性が良好ではないため、 限外濾過処理はでき るだけ短時間とすることが望ましい。 カイコ幼虫体液は P Hを 6以下に保持する ことによって有効にその着色が抑制されることが本発明で見出された。 したがつ て、 p H 6以下の条件下で限外濾過することで良好な濾過性が得られ、 より短時 間で限外濾過処理を終了することが可能となる。 しかし、 一度 p Hを 6以下とし た場合でも、 その p Hを 7以上とするとカイコ幼虫体液の着色が始まり、 このた め限外濾過における濾過性が悪くなる。
目的タンパク質の単離、 精製プロセスの必要上、 または、 目的タンパク質の安 定性の理由などから、 組換えカイコ核多角体ウィルスが感染したカイコ幼虫体液 を p H 7以上にする必要がある場合には、 金属キレー ト剤の添加が有効である。 すなわち、 金属キレート剤を添加した場合は、 p Hが 7以上の場合でもカイコ 幼虫体液が着色することがないため、 限外濾過における濾過性を良好に維持する ことが可能となる。
組換えカイコ核多角体ウィルスが感染したカイコ幼虫体液に添加される金属キ レー ト剤としては、 エチレンジァミ ン 4酢酸 (E D T A ) 、 エチレンジァミン 3 酢酸、 エチレンジァミン 2酢酸、 トランス 1 , 2 —シクロへキサンジァミ ン 4酢 酸、 ジエチレン トリアミン 5酢酸、 トリエチレンテトラミン 6酢酸またはそれら の塩、 0—フエナント口リ ン、 ジピリジン等のジァミン類が挙げられるが、 医薬 品等の製造においては安全性の観点から E D T Aが好適に用いられる。 使用され る金属キレート剤の濃度は、 カイコ幼虫体液の着色が抑制される濃度であれば良 く特に制限はないが、 通常 2 m M以上添加することでカイコ幼虫体液の着色が効 果的に抑制される。 また、 金属キレー ト剤による処理温度については特に制限は なく、 目的とするタンパク質の活性が安定に保持される温度であればよく、 通常 は、 0 から 3 0でが好適である。
組換えカイコ核多角体ウィルスが感染したカイコ幼虫体液の限外濾過における 限外濾過膜の素材には特に制限はないが、 セルロース誘導体、 ポリ フエニルスル ホン誘導体など、 工業的に入手可能な限外濾過膜が好適に利用できる。 また、 限 外濾過膜の形状にも特に限定はなく、 平膜状の限外濾過膜、 ホロ一ファイバー状 の限外濾過膜など一般に市販されている限外濾過膜が利用できる。 また、 用いる 限外濾過膜に依存していろいろなタイプの限外濾過装置が利用可能であるが、 い ずれのタイプの限外濾過装置を用いても同様な効果が得られる。
限外濾過膜の性能としては、 カイコ幼虫体液中に存在する夕ンパク質のうち、 SDS- PAGE上で分子量が約 3 0, 0 0 0 と 7 0 , 0 0 0であり、 かつ、 両者合わせて カイコ幼虫体液中の全夕ンパク量の 8 0 %から 9 0 %を占める夕ンパク質を透過 させない分子量分画能を有しておればよく、 通常、 限外濾過膜の性能として表示 されている分子量分画サイズとして、 5 0, 0 0 0以上 3 0 0, 0 0 0未満の限外 濾過膜が好適に利用できる。 さらに、 意外なことに、 カイコ幼虫体液中に存在す る上記 SDS- PAGE上で分子量が約 3 0 , 0 0 0 と 7 0 , 0 0 0の蛋白質は、 分子量分 画サイズ 1 0 0, 0 0 0の限外濾過膜をほとんど透過しないことが本発明で見出 された。 したがって、 分子量分画サイズ 1 0 0 , 0 0 0 の限外濾過膜を目的蛋白 質が透過する場合は、 分子量分画サイズ 1 0 0, 0 0 0 の限外濾過膜を用いた限 外濾過において、 カイコ体液中の主な夾雑タンパク質と目的タンパク質の分離は 透過液側で良好に達成されることになる。
こう して遺伝子組み換え技術によって製造された有用夕ンパク質を単離 ' 精製 するための方法に特に限定はなく、 通常のタンパク質の精製方法を用いることが できる。 例えば、 目的とする有用タンパク質が本来有する活性を指標としながら、 シリカゲル担体、 イオン交換性担体、 ゲル濾過担体、 キレー ト性担体、 色素担持 担体等を用いたクロマ トグラフィーや、 限外濾過、 ゲル濾過、 透析、 塩析等によ る脱塩、 濃縮を組み合わせることによって精製し単離することができる。
こう して回収され、 さ らには精製されたネコインターフェロン、 ィヌインタ一フ ェロン-ァを用いて、 本発明における有用タンパク質の組成物を製造することが できる。 ここで本発明のァラビン酸の構造を示す。
6,1— Araf— 3,1— Galp
I
Galp一 1 ,3— Galp— 1 ,3—Galp— 1 ,3— Gaip-1
6,1 6,1
I I
Rhap— 1,3— Galp Rhap一 1 ,3— Galp
6,1 6,1
G.A.— 4, 1一 Araf G.A— 4,1一 Araf
Qalp: D-ガラクトビラノース Rhap:し-ラムノピラノース
Araf丄-ァラボフラノース G. A.: D-ダルク口ン »
本発明においてタンパク質を安定化させるために用いられるァラビン酸の基本 構造を持つ化合物とは、 タンパク質を失活させるような成分あるいはァラビン酸 による蛋白質の安定化作用を妨げるような成分を副成分として含まないすべての ァラビン酸の基本構造を持つ化合物であり、 ァラビン酸がいくつもつながった高 分子化合物 (分子量 2 0〜2 5万といわれる) であるアラビアゴムおよびその分 解物、 修飾物も含まれる。
ァラビン酸の基本構造を持つ化合物の水溶液の濃度はいかなる濃度でも良いが、 濃度が低すぎると安定化効果が少なく、 高濃度であればコス トがかかり、 またァ ラビアゴムの場合は粘性が増して扱いにく いことから、 0 . 0 1 ~ 1 0 . 0重量 %の濃度が好ましく、 さ らに好ましく は 0 . 5〜2 . 0重量%である。
有用タンパク質は凍結、 融解、 加熱などによる温度変化、 抽出、 精製、 緩衝液 への溶解における P H変化などの外的要因により、 その生理活性を失いやすいが、 これらの不活性化を誘引する操作に先立ち、 ァラビン酸の基本構造を持つ化合物 の水溶液と混合しておく ことで、 その生理活性は有意に保たれる。
また一般的に, タンパク質の精製操作では、 精製段階が進み目的とするタンパク 質の純度が高くなるとその蛋白質が失活し易くなることが知られている。 すなわ ち、 精製操作もまた不活性化を誘引する操作の 1つであるが、 精製前の段階ある いは途中でァラビン酸の基本構造を持つ化合物と混合しておく ことで、 精製によ る夕ンパク質の失活を防止することができる。
有用タンパク質の水溶液中での経時的失活、 すなわち保存時の失活についても ァラビン酸の基本構造を持つ化合物の水溶液と混合することで防ぐことが可能で ある。 ァラビン酸の基本構造を持つ化合物を含む有用夕ンパク質組成物は液体状 態で保存する際には有用タンパク質の熱安定性にもよるが 1 5 以下であればよ いが、 その混合物が凍結しない温度ならば低温であるほど良く、 好ましく は 4〜 1 0でがよい。 保存が長期に及ぶ場合には該組成物を凍結もしくは凍結乾燥して 保存することが好ましい。 凍結保存する場合には融解しない程度の低温であれば 何度でも良く、 融解した後においては液体状態で保存する場合と同様である。 凍結乾燥する場合には、 水分含量が少ないほど保存性が增すため、 好ましくは 水分 5 %以下まで乾燥させる方が良い。 このように凍結乾燥処理した該組成物は 冷喑所に保存することが好ましく、 室温保存ならば一年、 冷蔵保存であればそれ 以上の期間安定に保存することが可能である。 また、 5 O :という苛酷な条件下 においても 2ヶ月以上の保存性が望める。 なお、 凍結乾燥品は水、 場合によって は生理的食塩水などの溶液で再溶解して使用することになるが、 再溶解後の保存 に関しては液体状態での保存方法と同様である。
ァラビン酸を基本構造とする化合物の水溶液と有用タンパク質の混合物の好ま しい p Hは有用タンパク質自身の p H安定性による。 しかしながら、 有用タンパ ク質とァラビン酸を基本構造とする化合物とを混合することによって有用タンパ ク質の p H安定性の範囲が広くなる。 例えば、 本発明において用いた I F N—ア は水溶液の場合 p H 6 ~ 8 に保持しないと著しく失活することが知られているが、 7ラビアゴムの水溶液と混合し冷蔵保存した場合、 p H 6 ~ 7の範囲で 1 0 0 %、 p H 4 . 5〜 8 . 0の範囲で 7 0 %以上の高い活性を保持できる。 また、 凍結乾 燥処理をした場合は P H 4 . 5〜 8 . 0の範囲で 1 0 0 %近い活性を保持する。 アラビアゴムと有用タンパク質の混合物はそのタンパク質の持つ機能に基づき、 さまざまな用途に用いられ得る。 有用タンパク質が医薬用途として有用でありか つ医薬用途として問題のないグレー ドであるならば、 アラビアゴムを日本薬局方 収載または医薬品添加グレー ドにすることで、 その混合物を医薬用途に用いるこ とができる。
また、 医薬用途以外に各種の測定や診断の目的で使用されている酵素類につい ても、 本発明によって開示される安定化方法、 保存方法、 組成物を利用すること によって、 その安定性が向上し、 長期間の使用が可能になることが期待できる。 ァラビン酸を基本構造とする化合物を含む有用タンパク質組成物はこれらの成 分以外に、 タンパク質の活性を阻害しないあらゆる化合物を含むことができる。 例えば、 ポリエチレングリ コールをはじめとするポリオール類、 Twe e n 2 0 のような界面活性剤、 ソルビトールのような糖類、 グリ シンのようなアミノ酸類 あるいはゼラチンのような蛋白質を添加してもよい。 また、 食塩を添加しても問 題ないことから、 例えば該組成物を注射用医薬品として用いる場合には食塩で浸 透圧を調整することができる。
実施例
以下、 実施例をもって本発明を具体的に説明するが、 本発明の範囲がこれに限 定されるものではない。
[参考例 1 ] ィヌインターフェロン-ァ遺伝子の作成
ィヌインタ一フエロン-ァ遺伝子は、 特開平 9一 2 3 4 0 8 5号公報に開示し た方法に従って作成した。 すなわち、 具体的には以下に示す 2工程から成る。 ( 1 ) ィヌ c D N Aの調製
ィヌ末梢血より リ ンパ球を分離し、 フイ トへムァグルチニン (P HA) を 5 0 g/m I の終濃度で 4 8時間刺激した。 刺激後、 I S OGE N (二ツボンジ —ン (株) 製) を用いて総 RN Aを調製した。 得られた RNAを I mM E DT Aを含む 1 0 mM ト リス塩酸緩衝液 (p H 7. 5 ) (以下 TEと略する。 ) に 溶解し、 7 0でで 5分間処理した後、 1 M L i C 1 を含む T Eを同量加えた。 0. 5 M L i C 1 を含む T Eで平衡化したオリゴ d Tセルロースカラムに RN A溶液をアプライ し、 同緩衝液にて洗浄した。 さらに 0. 3 M L i C 1 を含む T Eにて洗浄後、 0. 0 1 % S D Sを含む 2 mM E D T A ( p H 7. 0 ) で 吸着したポリ (A) R NAを溶出した。 こう して得られたポリ (A) R NAを用 いて一本鎖 c D N Aを合成した。 すなわち、 滅菌した 0. 5 m l のミクロ遠心チ ユーブに 5 gのポリ (A) R NAと 0. 5 gのオリゴ d Tプライマー ( 1 2 - 1 8 m e r ) を入れ、 ジェチルビロカルポネート処理滅菌水を加えて 1 2 1 にし、 7 0でで 1 0分間イ ンキュベー トしたのち氷中に 1分間つけた。 これに 2 0 0 mM トリス塩酸 ( p H 8. 4 ) , 5 0 0 mM 1:じ 1 溶液を 2 ^ 1 , 2 5 mM M g C l 2 を 2 / 1 , 1 0 mM d NT Pを 1 /z l および 0. 1 M D T Tを 2 1それぞれ加え、 4 2でで 5分間イ ンキュベートしたのち、 2 0 0ュニ ッ 卜の逆転写酵素 ( G i b c o B R L社製、 S u p e r S c r i p t ll) を 1 1 加え、 4 2ででさ らに 5 0分間イ ンキュベートして c D N A合成反応を行つ た。 さ らに 7 01 で 1 5分間イ ンキュベートして反応を停止し、 氷上に 5分間置 いた。 この反応液に 1 ^ 1 の E. c o l i RN a s e H ( 2 u n i t s /m 1 ) を加え、 3 7でで 2 0分間インキュベートした。
( 2 ) ィヌインターフェロン-ァ遺伝子の合成
ィヌインターフェロン-ァの N末端および C末端の塩基配列 (文献 1 ) をもと に、
5 ' G C GAAT T C AT GAAT TAT A C AA G C TA TAT C T T AG C T 3 ' (配列番号 1 )
5 ' G C GAAT T C T T AT T T C GAT G C T C T G C G G C C T C GA A A 3 ' (配列番号 2 )
の 2種類の末端に E c o R I 切断部位を付加したプライマ一を D NAシンセサ ィザ一にて合成した。 上記 ( 1 ) で得られた c DNAを 0. 5 m l のミクロ遠心 チューブに づっ取り、 各プライマ一を 2 0 p m o し 2 0 mMト リス塩酸 緩衝液 ( ρ Η 8 · 0 ) 、 1. 5 mM M g C l 2 、 2 5 mM KC 1 , 1 0 0 t g /m 1 ゼラチン, 各 d N T P、 4単位 E x T a q D NAポリメ ラーゼ (宝酒造 (株) 製) となるように各試薬を加え、 全量 1 0 0 ^ 1 とする。 D N Aの変性条件を 9 4で, 1分、 プライマーのアニーリ ング条件を 5 5 t:、 2 分、 プライマ一の伸長条件を 7 2 、 3分の各条件で P e r k i n — E 1 m e r C e t u s社の D NAサ一マルサイクラ一を用い、 3 0サイクル反応させた。 こ れを 1 %ァガロースゲルにて電気泳動し、 約 5 6 0 b pの D NA断片を常法 (文 献 1 2 ) に従って調製した。 この D NA断片を I n v i t r o g e n社の T— V e c t o r に宝酒造 (株) の D NA L i g a t i o n K i t V e r . 1 を用いて 1 6 T:、 2時間反応を行 、 連結した。 これを用いて常法に従い大腸菌 を形質転換し、 得られた形質転換体よりプラスミ ド D N Aを常法に従い調製した。 次にこのプラスミ ドに P C R断片が挿入されていることを前述と同じ条件の P C Rによって確認し、 蛍光 D NAシーケンサー (パーキンエルマ一社製 D N Aシー ケンサ一 3 7 3 S ) を用い、 その添付プロ トコールに従って、 パーキンエルマ一 社のダイターミネータ一サイクルシ一ケンシングキッ トを用いて、 得られた D N A断片がィヌイ ンタ一フエロン-ァ D N Aの塩基配列 (配列番号 3 ) であること を確認した。
[参考例 2 ] ィヌイ ンターフェロン-ァをコー ドする D NAを含む発現用組換 えプラスミ ドの作製
( 1 ) 動物細胞発現用組換えプラスミ ドの作製
特開平 9一 2 3 4 0 8 6号公報に開示された方法に従って作製した。 すなわち、 参考例 1で得られたプラスミ ド l gを 3 0ュニッ トの制限酵素 E c o R I で 3 7 、 1 6時間消化し、 ァガロースゲルにて電気泳動し、 約 5 6 0 b pのィヌィ ン夕一フエロン-ァの D NA断片を常法に従い調製した。
一方、 クローニングベクタ一 p C D L— S R α 2 9 6 (文献 1 3 ) 1 gを 3 0ユニッ トの制限酵素 E c o R I で 3 7 、 1 6時間消化した後、 1ユニッ トの バクテリア由来アルカリホスファタ一ゼ (宝酒造 (株) 製) で末端を脱リ ン酸化 した。 これを 1 %ァガロースゲルにて電気泳動し、 約 3. 7 k bの D N A断片を 常法に従い調製した。 D NA L i g a t i o n K i t V e r . 1 を用い て、 1 6 、 1 6時間ライゲーシヨ ン反応を行い、 上記のように調製した、 p C D L— S R a 2 9 6 と、 ィヌインターフェロン-ァの D NA断片を連結した。 これを用いて常法に従い大腸菌 H B 1 0 1 を形質転換した。 1 0 0 μ g/m 1 の アンピシリ ンを含む L Bプレー ト上に生育するコロニーの中から、 ィヌインター フエロン-ァ をコー ドする D NAの開始コ ドンから 2 7 b pまでを含むプライマ 一、 すなわち、
5 ' AT GAAT TATACAAG C TATAT C TTAG C T 3 ' (配列番 号 4 )
p C D L - S R a 2 9 6のクロ丄ニングサイ ト E c o R Iから下流の 3 0 b p のプライマー、 すなわち、
5 ' T T T T C A C T G C AT T C TAG T T G T G G T T T G T C C 3 ' (配列番号 5 )
の 2種類のプライマーを用いて、 D N Aの変性条件を 9 4で, 1分、 プライマ 一のアニーリ ング条件を 5 5 X:、 2分、 プライマーの伸長条件を 7 2 :、 3分の 各条件で P e r k i n— E 1 m e r C e t u s社の DNAサーマルサイクラ一 を用い、 3 0サイクルで P C Rを行い、 約 6 5 0 b pの DNA断片が得られた、 ィヌインターフェロン-ァをコー ドする DNAが p C D L— S R a 2 9 6に正方 向に組み込まれているプラスミ ドを得た。 この組換え体プラスミ ドを p S R αァ とした。 このプラスミ ドを含有する大腸菌を E. c o l i (p S R a r) と名付 けた。
( 2 ) 大腸菌発現用組換えプラスミ ドの作製
特開平 9一 2 34 0 8 5号公報に開示された方法に従って調製した。 すなわち、 ィヌインターフェロン-ァの成熟蛋白をコードする DNAを得るため、 参考例 1 で得られたプラスミ ドを铸型として、 制限酵素 N c o I切断部位を付加したブラ イマ一、 すなわち
5 ' C C GA C C AT GG C T C AGGC CAT GTTTTTTAAAGAA ATAGAAAAC 3 ' (配列番号 6 )
と、 制限酵素 B a mH I切断部位を付加したプライマー、 すなわち
5 ' GGAT C C TTATTT C GATG C T CT G C GG C C T C GAAA C A G 3 ' (配列番号 7 )
の 2種類のプライマーを用いて、 D N Aの変性条件を 9 4で, 1分、 プライマ —のアニーリ ング条件を 5 5で、 2分、 プライマーの伸長条件を 7 2で、 3分の 各条件で P e r k 〖 n— E 1 m e r C e t u s 社の D NAサーマルサイクラ一 を用い、 3 0サイクルで P C Rを行い、 約 5 0 0 b pの D NA断片を得た。 これ を 3 0ュニッ 卜の制限酵素 N c o I で消化しエタノ —ル沈殿後、 3 0ュニッ 卜の 制限酵素 B a mH I で消化し、 1 %ァガロースゲルにて電気泳動し、 常法に従い D N A断片を調製した。
一方、 大腸菌発現べク夕一である p E T 8 c 1 gを 3 0ユニッ トの制限酵 素 N c o I で消化しェタノール沈殿後、 3 0ュニッ 卜の制限酵素 B amH I で消 化し、 1 %ァガロースゲルにて電気泳動しおよび B a mH I で切断し、 常法に従 い D N A断片を調製した。
D NA L i g a t i o n K i t V e r . 1 を用いて、 1 6で、 1 6時 間ライゲ一シヨ ン反応を行い、 上記のように調製した p E T 8 c とィヌイ ンター フエロン-ァの D NA断片を連結した。 これを用いて常法に従い大腸菌 H B 1 0 1を形質転換した。 1 0 0 g/m 1 のアンピシリ ンを含む L Bプレート上に生 育するコロニーのうち 1 5個を 1 0 O g/m l のアンピシリ ンを含む 3 m l の L B培地中で 8時間培養し、 集めた菌体からプラスミ ドを抽出、 精製後、 制限酵 素 N c o I および B a mH I で切断し、 約 5 0 0 b pの D NA断片が得られたィ ヌインタ一フエロン-ァの D N A断片を含んだプラスミ ドを得た。 この組換えプ ラスミ ドを ρ Ε Τ " とし、 これを用いて定法に従い、 大腸菌 B L 2 1 を形質転換 した。 この大腸菌を E. c o l i ( p E T r ) と名付けた。
あるいは、 特願平 1 0 — 1 6 7 4 5 4に開示された方法に従って作製した。 す なわち、 ィヌ I F Nァの成熟蛋白をコードする D N Aを得るため、 参考例 1で得 られた c DN Aを铸型として、 制限酵素 E c o R I 切断部位を付加したプライマ 一、 すなわち、 5 ' -A C G T G GAAT T C AT G C A G G C C AT GT T T TT TAAAGAA- 3 ' (配列番号 8 ) と、 制限酵素 H i n d 111切断部位を付 加したプライマ一、 すなわち、 5 ' - C GAA G C T T C AA GA T C T T T A T T T C GAT G C T C T G C G G C C T C GAAA C A G-3 ' (配列番号 9 ) の 2種類のプライマーを用いて、 D N Aの変性条件を 9 4 , 1分、 プライマ— のアニーリ ング条件を 5 5で、 2分、 プライマーの伸長条件を 7 2で、 3分の各 条件で P e r k i n - E 1 m e r C e t u s社の D NAサ—マルサイクラ一を 用い、 3 0サイクルで P C Rを行った。 これを 1 %ァガロースゲルにて電気泳動 し、 約 5 0 0 b pの DNA断片を常法 (文献 1 2 ) に従って調製した。
これを 3 0ュニッ 卜の制限酵素 E c o R Iで消化しェ夕ノ—ル沈殿後、 3 0ュ ニッ トの制限酵素 H i n d IIIでさ らに消化し、 1 %ァガロースゲルにて電気泳 動し、 常法に従い約 5 0 0 b pのィヌイ ンタ一フエロン- rの DNA断片を調製 した。
—方、 大腸菌発現べクタ一である p KK 2 2 3— 3 (フアルマシア製) l g を 3 0ュニッ 卜の制限酵素 E c o R Iで消化しエタノール沈殿後、 3 0ュニッ 卜 の制限酵素 H i n d IIIで消化し、 1 %ァガロースゲルにて電気泳動し、 常法に 従い D N A断片を調製した。
TAKARA社の DNA L i g a t i o n K i t V e r . 1を用いて、 1 6 、 1 6時間ライゲーシヨ ン反応を行い、 上記のように調製した、 P KK 2 2 3— 3とィヌイ ンターフェロン-ァの D NA断片を連結し、 塩化カルシウム法 で大腸菌 HB 1 0 1株を形質転換した。 1 0 0 ^g/mlのアンピシリ ンを含む L B プレー ト上に生育する形質転換体から、 1 0 0 ig/mlのアンピシリ ンを含む 3 ml の L B培地中で 8時間培養し、 集めた菌体からプラスミ ドを抽出、 精製後、 制限 酵素 E c o R Iおよび H i n d III による切断で、 約 5 0 0 b pの DNA断片 を与えるプラスミ ドを得た。 この組換えプラスミ ドを p K Κ-ァ とし、 これを用 いて常法に従い、 大腸菌 J M 1 0 1株、 T I 4 1株、 T I 1 3 9株を形質転換し た。 この大腸菌をそれぞれ、 大腸菌 J M 1 0 1 ( K K-r ) 、 大腸菌 T I 4 1
( KK-r ) 大腸菌 T 1 1 3 9 ( p KK-r ) と名付けた。
( 3) カイコ発現用プラスミ ドの作製
ベクター P BM 0 3 0 (文献 7 ) 1 gを 3 0ユニッ トの制限酵素 E c o R I で 3 7で、 1 6時間消化した後、 1ユニッ トのバクテリア由来アルカリホスファ 夕一ゼ (宝酒造 (株) 製) で末端を脱リ ン酸化した。 これを 1 %ァガロースゲル にて電気泳動し、 約 1 1. 3 K bの D N A断片を常法に従い調製した。
DNA L i g a t i o n K i t V e r . 1を用いて、 1 6で、 1 6時 間ライゲーシヨ ン反応を行い、 上記のように調製した、 P B M 0 3 0と、 上記
( 2 ) で調製したィヌイ ンターフェロン- rの D N A断片を連結した。 これを用 いて常法に従い大腸菌 HB 1 0 1を形質転換した。 1 0 0 g_ m 〖 のアンピシ リ ンを含む L Bプレー ト上に生育するコロニーの中から、 ィヌイ ンターフェロン -ァ をコードする DNAの開始コ ドンから 2 7 b pまでを含むプライマ一、 すな わち、
5 ' AT GAAT TATAC AAG C TATAT C TTAG C T 3 ' (配列番 号 1 0 )
p B M 0 3 0のクロ一ニングサイ ト E c o R Iから下流の 2 6 b pのプライマ 一、 すなわち、
5 ' AT CAAC AAC G CA CAGAAT C TAAC G C T 3 ' (配列番号 1 1 ) の 2種類のプライマ一を用いて、 D N Aの変性条件を 94で, 1分、 ブラ イマ一のアニーリ ング条件を 5 5で、 2分、 プライマ—の伸長条件を 7 2で、 3 分の各条件で P e r k i n - E 1 m e r C e t u s社の DNAサーマルサイク ラーを用い、 3 0サイクルで P C Rを行い、 約 6 5 0 b pの D N A断片が得られ た、 ィヌインターフェロン-ァをコー ドする DNAが p BM O 3 0に正方向に組 み込まれている組換えベクターを得た。 この組換え体プラスミ ドを p BM rとし た。 このプラスミ ドを含有する大腸菌を E. c 0 1 i ( p B M r ) と名付けた。 また、 特開平 1 0— 1 6 0 6 2 7号公報に開示されている方法に従って、 ィヌ イン夕一フエロン-ァの変異体のカイコ発現用プラスミ ドを作製した。 すなわち、 ィヌ I F N-ァの N末端および C末端の塩基配列 (文献 1 ) をもとに、
5 ' GCAGAT C TAT GAATTATAC AAG C TATAT C TTAG C T 3 ' (配列番号 : 1 2 )
5 ' GC GAATT C TTATTT C GAT G C T C T GC GG C C T C GA A A 3 ' (配列番号 : 2 )
の 2種類のプライマーを日本バイオサービス (株) に依頼し合成した。 参考例 1で得られた c DNAを 0. 5 m l のミクロ遠心チューブに 2 1づっ取り、 各 プライマ—を 2 0 p m o 1 , 2 0 mMトリス塩酸緩衝液 ( p H 8. 0) 、 1. 5 mM M g C 1 2 、 2 5 mM KC 1, 1 0 0 μ g /m 1 ゼラチン、 5 0 M各 d NT P、 4単位 E x T a q D N Aポリ メラーゼ (宝酒造 (株) 製) と なるように各試薬を加え、 全量 1 0 0 ^ 1 とする。 DNAの変性条件を 9 4 , 1分、 プライマーのアニーリ ング条件を 5 5で、 2分、 プライマーの伸長条件を 7 2 T:、 3分の各条件で P e r k i n— E 1 m e r C e t u s社の DNAサ— マルサイクラ—を用い、 3 0サイクル反応させた。 これを 1 %ァガロースゲルに て電気泳動し、 5 1 7 b pの DN'A断片 (配列番号 : 1 3 ) を常法 (文献 1 2 ) に従って調製した。 この DN A断片を I n v i t r o g e n社の T— V e c t o rに宝酒造 (株) に常法に従い連結した。 これを用いて常法に従い大腸菌を形質 転換し、 得られた形質転換体よりプラスミ ド D N Aを常法に従い調製した。 次に 蛍光 D N Aシーケンサー (パーキンエルマ一社製 D N Aシーケンサー 3 7 3 S ) を用い、 その添付プロ トコ一ルに従って、 パーキンエルマ一社のダイ夕一ミネ一 ターサイクルシーケンシングキッ トを用いて、 得られた DNA断片がィヌ I FN — τをコ—ドする D Ν Αの塩基配列であることを確認した。
次にこの D N A断片を铸型として 3種類のプライマ一の組合せ (配列番号 : 1 4〜1 9) で上記と同様の条件で P C Rを行い、 3種類の P C R増幅断片 (配列 番号 : 2 0〜 2 2 ) を得た。 これらを常法に従い回収し、 配列番号 : 2 0に示す 断片を制限酵素 B amH Iおよび E c o RV で、 配列番号 : 2 1 に示す断片を 制限酵素 H i n c I Iおよび S n a b I で、 配列番号 : 2 2に示す断片を制限 酵素 E c o R Vおよび E c o R Iで、 それぞれ切断後、 制限酵素処理した配列番 号 : 1 9に示す断片と制限酵素処理した配列番号 : 2 2に示す断片を混和して P UC 1 9の E c o R I、 B a mH I部位へ常法に従い挿入し、 組換えベクター を得た。 さらにこのベクターを制限酵素 E c o R Vで切断後、 配列番号 : 2 1に 示す断片を常法に従い挿入し組換えベクターを得、 挿入された D N Aの塩基配列 (配列番号 : 2 3 ) を上記と同様にして確認した。 その後、 制限酵素 B amH I および E c o R I で挿入された DNAを回収し、 これを制限酵素 B g I I Iお よび E c o R Iで切断した p BM O 3 0に常法に従い挿入して、 カイコ発現用組 換えべクタ一 p BMァ S 2 (- )を作製した。 また、 p B Mァ S 2 (- )を铸型として 配列番号 : 2 4と配列番号 : 2 5に示すプライマ一を用いて P C Rを行い、 配列 番号 : 2 6に示す D N A断片を得、 これを同様にして制限酵素処理後、 p BM O 3 0の B g l I Iおよび E c o R I 部位に挿入し、 p B Mァ S 2 (- ) /- 2 0を作 製した。
[参考例 3 ] ィヌイ ン夕一フエロン-ァをコー ドする D NAで組換えられた組 換えカイコ核多角体病ウィルスの作製
文献 7の方法で組換えウィルスを作製した。 すなわち、 5 0 mM H E P E S バッファー (PH 7. 1 ) 、 0. 2 8 M N a C し 0. 7 mM N a 2HP 04、 0. 7 mM N a H2P O-からなる 2. 5 m l の溶液に、 2. 5 m lの DNA混 合液 ( 0. 2 5 M C a C 1 2、 カイ コ核多角体病ウィルス B m N P V T 3株 (文献 7 ) の DNA 1 0 i g、 組換え体プラスミ ド p B Mァの D N A 6 5 ^ gを 含む) を滴下し、 生じた懸濁液 0. 5 m 1 を 5 m 1 の 1 0 % F B Sを添加した T C一 1 0培地 (文献 2 ) 中、 2 5 c m2のフラスコで平面培養した約 3 X 1 05個 の B mN細胞の培養基に加え、 カイコ細胞に D N Aを導入した。 2 0時間後、 新 鮮な培地と交換し、 さらに 7 日間培養後、 培養液を回収した。 その培養液を遠心 して清澄化した上清を希釈して平面に培養した BM— N細胞の培養基に添加して 8 日間培養後、 顕微鏡観察によりウィルス感染が見られ、 かつ多角体が形成して いない培養基を選択した (限界希釈法) 。
限界希釈法を 7回繰り返し、 組換え体ウィルスをクローニングした。 ここで作 製したィヌ I F N-ァ変異体をコー ドする DNA (配列番号 : 2 3 ) を含む組換 えウィルスを r BNV r S 2 (-)、 ィヌ I FN-ァをコードする DNA (配列番号 : 3 ) を含む組換えウィルスを r B N Vァとした。
[参考例 4] ネコ I F Nをコ一 ドする DNAを含む組換えカイコ核多核体病ウイ ルスの作成
( 1 ) ネコ I F Nをコー ドする遺伝子断片の調製
プラスミ ド pFelFNl (特開平 2 - 1 9 5 8 84号公報) から、 特開平 4 - 2 0 7 1 9 8号公報に示された方法にしたがって、 ネコ I F Nをコ一 ドする DNAを含 む組換えカイコ核多核体病ウィルスを作成した。 すなわち、 pFelFNlから得られ るネコ I F N遺伝子を含む SfaN卜 Hinc II 断片を pUCl 8に導入した後、 BamHI - Hindi 断片として再度切り出しネコ I F N遣伝子とした。
( 2 ) カイコ発現用プラスミ ドの作製 カイコクローニングベクター p BM O 3 0 (文献 7 ) の Bgl II - Hinc II サイ トに上記 ( a) の Bam HI - Hindi 断片を挿入してプラスミ ド p YU 8 7 1 を得た。
( 3 ) ネコ I F Nをコー ドする D N Aで組換えられた組換えカイコ核多角体病ゥ ィルスの作製
文献 7の方法で組換えウィルスを作製した。 すなわち、 5 0mM HE P E S バッファー ( p H 7. 1 ) 、 0.2 8 M N a C 0.7 mM N a 2H P〇4、 0.7 mM N a H 2 P O 4からなる 2. 5 m 1 の溶液に、 2. 5 m l の D NA混合 液 ( 0. 2 5 M C a C 1 2、 カイコ核多角体病ウィルス BmN P V T 3株
(文献 7 ) の DNA 1 0 ^ g、 組換え体プラスミ ド p YU 8 7 1の DNA 6 5 を含む) を滴下し、 生じた懸濁液 0. 5m l を 5 m l の 1 0 % F B Sを添加 した T C一 1 0培地 (文献 8 ) 中、 2 5 c m2のフラスコで平面培養した約 3 X
1 05個の B mN細胞の培養基に加え、 カイコ細胞に D N Aを導入した。 2 0時 間後、 新鮮な培地と交換し、 さ らに 7 日間培養後、 培養液を回収した。 その培養 液を遠心して清澄化した上清を希釈して平面に培養した BM— N細胞の培養基に 添加して 8日間培養後、 顕微鏡観察によりウィルス感染が見られ、 かつ多角体が 形成していない培養基を選択した (限界希釈法) 。
限界希釈法を 7回繰り返し、 組換え体ウィルスをクロ一ニングした。 ここで作 製したネコ I F Nをコードする DNAを含む組換えウィルスを r B NV l 0 0と した。
[参考例 5 ] r B NVァ、 r B NV r S 2 (-)および r B NV l 0 0ウィルス 液の調製
7 5 c m2のフラスコ底面で、 1 5m l の 1 0 % F B Sを含む T C— 1 0培地 中で平面培養した約 3 X 1 06個の B mN細胞に、 参考例 3、 または、 参考例 4 でクローニングした組換え体ウィルスを含む BM— N細胞の培養液 5 0 1 を B M— N細胞に添加して、 2 7 で 5 日間培養後、 培養液を 3, O O O r pmで 5 分間遠心分離して、 得られた遠心上清をそれぞれ r B NVァ、 r B N V r S 2 (-) および r Β Ν V 1 0 0ウィルス液とした。 得られた組換えウィルス液を 1 0〜 7 倍希釈し、 その l m 1 を BM— N細胞の培養液に添加して 2 7でで 7 日間培養を 続けると、 核多核体を形成しないウイルス感染が顕微鏡観察によって認められ、 組換えウィルスを取得できたことが確認された。
[参考例 6 ] 活性測定法
インターフェロンの活性は抗ウィルス作用によって測定した。 また、 ィヌイン ターフェロン-ァについては、 ィヌ細胞株のクラス II MHCの発現増強作用によ つても活性を測定した。 '
抗ウィルス活性は、 文献 1 4に従って C P E法により測定した。 測定用ウィル スとして V e s i c u l a r S t o m a t i t i s V i r u sを用い、 感受 性細胞としては、 ィヌ I F N-ァの抗ウィルス活性を測定する場合にはィヌ MD C K (ATC C C C L— 3 4 ) 細胞を、 また、 ネコ I F Nの抗ウィルス活性を 測定する場合にはネコ F C 9 (文献 1 5) を用いた。 すなわち、 9 6穴マイクロ プレー ト上にコンフルーェン トとなるまで 3 7 °Cで培養されたィヌ MD C K (A T C C C C L一 34) 細胞にィヌ I F N-ァ を含むサンプルの希釈液を、 また は、 同様に 3 7 :でコンフルーェン トとなるまで培養されたネコ F C 9細胞にネ コ I F Nを含むサンプルの希釈液を加え、 さらに、 3 7でで 2 0時間から 2 4時 間培養し抗ウィルス活性を誘導させた。 V S Vを加え 3 7 で 2 4時間培養した 後、 生存してマイクロプレー 卜上に付着しているィヌ MD C K細胞、 または、 ネ コ F C 9細胞を 2 0 %ホルマリ ンを含むクリスタルバイオレツ ト染色液で染色し た。 マイクロプレー ト上のク リスタルバイオレッ トの量を 5 7 O nm における吸 光度を測定することによって、 細胞を 5 0 %生存させる時のィヌ I F N-ァ、 ま たは、 ネコ I F Nの量を求め、 この時のィヌ I F N- r、 または、 ネコ I F Nの 量を、 抗ウィルス活性 1ユニッ ト ( 1 U) と定義した。 なお、 本法によって得ら れる抗ウィルス活性のデータの標準偏差は 3 2 %であった。
また、 クラス IIMHCを発現したィヌ乳腺腫瘍組織由来細胞株 F C B R 1を文 献 1 6の方法に従って樹立し、 これを用いてクラス I I MHCの発現増強活性を 測定した。 2 4ゥエルプレー トに 1穴あたり 1 04個の F C B R 1を接着させ、 これに発現させたィヌイ ン夕一フエロン-ァを添加し、 5 % C〇2 、 3 7での条 件で 1晚培養した。 培養後、 ト リプシンにて細胞を剥離し、 1. 5 m l のミクロ 遠心チューブにて遠心した。 これに 1 0 1 のラッ 卜抗ィヌ MHCクラス IIモノ ク口一ナル抗体 ( S t r a t a g e n e社製) を添加し、 さらに 5 0 1 の 1 0 % F B Sを添加した E R D F培地 (極東製薬株式会社製) で懸濁後、 氷上で 1時 間静置した。 P B Sで洗浄した後、 5 ^ 1 の F I T C標識ラビッ ト抗ラッ トモノ ク口一ナル抗体 ( S t r a t a g e n e社製) および 5 0 ^ 1 の 1 0 % F B Sを 添加した E R D F培地で懸濁し、 氷上で 1時間静置した。 P B Sで洗浄後、 べク トンディ ッキンソン株式会社の F A C S e a nにて解析した。
[参考例 7 ] C O S— 1細胞でのィヌインタ一フエロン-? "の生産
参考例 2で得られた 5 gの p S R a ァを 5 0 mMトリス塩酸緩衝液 ( p H 7. 5 ) 、 4 0 0 g Zm 1 の D E A Eデキストラン (フアルマシアバイオテク (株) 製) および 1 0 O Mのクロ口キン (シグマ社製) を含む 4 m l の 1 0 % F B S を添加した E RD F培地に加えておく。 一方、 直径 1 0 c mのディ ッシュを用い て 1 0 % F B Sを添加した E R D F培地で 5 0 %コンフルェントになるまで增殖 させた C O S — 1細胞 (AT C C C R L— 1 6 5 0 ) を P B Sで一回洗浄した 後、 上記で得た 4 m 1 の D N A混合液を加え、 5 % C〇2 、 3 7 :の条件で培養 した。 4時間後、 細胞を P B Sで洗浄した後、 2 011 1 の 1 0 % ? 83を添加し た E RD F培地にて 5 % C〇2 , 3 7 X:の条件で 4 日間培養し、 ィヌイ ンターフ ェロン-アが生産された培養上清を得た。 この培養上清の抗ウィルス活性を測定 したところ、 1 04希釈単位 Zm 1 以上の活性が認められた。
[参考例 8 ] 大腸菌でのィヌイ ンターフェロン-ァの生産
参考例 2で得られた E. c o 1 i ( p E T r ) のシングルコロニーを 1 0 0 gZm l のアンピシリンを含む 5 m l のし B培地に植菌した。 OD 6。。 が約 0. 7になるまで 3 7でで培養し、 終濃度 0. 5 mMのイソプロピル一 /3— D—チォ ガラク トピラノシド ( I P T G) を加えて、 さらに 1. 5時間培養した。
培養液 1. 5 m l を 1. 5 m 1 のマイクロ遠心チューブに取り、 1 2 0 0 0 r p mで 5分間遠心後、 上清を捨て、 1. 5 m 1 の 1 0 mM トリス塩酸 ( p H 7. 5 ) に懸濁し、 氷上にてハンディーソニックを用いて菌体を破枠した。 2 0 0 0 0 r p mで 3 0分間遠心し、 可溶性画分 (上清) を得た。
この画分の抗ウィルス活性を測定したところ、 1 07希釈単位 m l 以上の活 性が認められた。 また、 クラス II MH Cの発現増強作用を測定したところ、 ィ ヌ乳腺腫瘍細胞株 F C B R 1上のクラス II MHCの発現量を 1 0 0 %上昇させ た。
[参考例 9 ] 大腸菌の培養上清へのィヌインターフェロン- rの生産
( 1 ) ペリブラズム蛋白質分泌変異株の分離
ぺリブラズムに蓄積した蛋白質を培養上清中に分泌生産する変異株は、 まず、 チアイソロイシン耐性株を分離したのち、 得られた耐性株の中から大腸菌ペリプ ラズム蛋白質の一つであるアルカリ フォスファ夕一ゼを分泌する能力を有する変 異株をスクリーニングすることによって分離した。
a ) チアイソロイシン耐性変異株の分離
5mlの L B培地 (ポリペプトン 1 0g/l、 酵母エキス 5g/L N a C l 5 g/1) にて対数増殖期まで 3 7でで培養した大腸菌 J M 1 0 1、 J M 1 0 5および B L 2 1の菌体を回収し、 生理的食塩水で 3回洗浄したのち 2 5 0 g/mlの N—メチ ル一 N' —二トロ一 N—二トロソグァ二ジンを含むリ ンゴ酸バッファー (pH 6. 0 ) を 5 ml加え懸濁後、 5分間、 3 7 T:で保温した。 続いて、 菌体を遠心分離し 回収した後、 生理的食塩水で 3回洗浄した。
得られた菌体を適宜希釈した後、 表 1に示した培地にチアイソロイシン (S i g ma社製) を 0. 1〜2. OmMの各種濃度で添加した平板培地に塗布し、 3 7 で 一週間培養した。 生育してきたコロニーを同濃度のチアイソロイシンを含むプレ 一卜に再度塗布し シングルコロニーの単離を行い、 各大腸菌株につき約 2 5 0 株の耐性株を得た。
表 1 チアイソロイ シン耐性株分離用基礎培地
N a ri P〇 1 Δ Q
Κ Η Ρ Ο 6
Ν a C 1 U . 5 g
Ν Η C 1 1 . 0 g
グルコース * 5 • 0 g
L一プロ リ ン ' 0 . 1 g
チアミ ン' 2 0 mg
M g C 1 1 0 mM
C a C 1 1 mM
A g a r 2 0 . 0 g
* : 別滅菌後無菌的に添加した。
b) アルカリ フォスファターゼ分泌株の分離
リ ン酸濃度を 3. 0 mM以下に抑えた平板培地 (表 2 ) を作成し、 分離したすべ てのチアイソロイシン耐性株、 および、 比較対照として親株 ( J M 1 0 1、 J M 1 0 5および B L 2 1 ) を塗布したのち、 3 7 で一晚培養した。 1. 2 8 m g/ ml p—二トロフエニルリ ン酸および l OmM M g C l 2 を含む 5 0 mM T r i s 一 H C 1 ( p H 9. 0 ) に等量の l % A g a r ( 6 0で程度に冷ましたもの) を 混合し、 固まらないうちに平板培地の上に重層した。 これを 3 7 で 1時間 保 温し、 親株に比べコロニーの周りがより強く黄色に発色した株を 1 8株得た。 このうち J M 1 0 1由来の 2株を T I 4 1 (F E RM P— 1 6 7 9 8 ) およ び T 1 1 3 9 ( F E RM P— 1 6 7 9 7 ) とした。 表 2 アルカ リ フォスフ ァ タ一ゼ分泌変異株スク リ ーニング用基礎培地
N a 2H P 0 0 • 4 g
K H P 04 0 - 9 g
N a C 1 0 - 5 g
N H C 1 1 • 0 g
グルコース * 5 - 0 g
L一プロリ ン * 0 - 1 g
チアミ ン ' 2 0 rag
M g C 1 1 0 mM
C a C 1 2* 1 mM
A g a r 2 0 - 0 g
* : 別滅菌後無菌的に添加した。
c ) チアイソロイシン耐性変異株の耐性度
大腸菌 J M 1 0 1株、 および、 T I 4 1株、 T I 1 3 9株を表 1の培地を用い て 3 Ot:で 2 4時間振盪培養し、 生育した菌体を生理食塩水で洗浄した。 この洗 浄菌体の細胞懸濁液を L-チアイソロイシン 2 Omg/1を含む表 1の培地 5 mlに植菌 して、 3 0 で振盪培養し 4 8時間後の各菌株の生育度を 6 6 0 nmにおける吸光 度を測定することによって調べた。 その結果、 表 3に示すように本発明で使用す るチアイソロイシン耐性株 T I 4 1株、 および、 T I 1 3 9株は親株の J M 1 0 1株と比較してチアイソロイシンによって生育が阻害されず、 強いチアイソロイ シン耐性を獲得していることが分かる。
3 チアイ ソ ロイ シン耐性度の比較
Figure imgf000033_0001
(2 ) 大腸菌でのィヌインターフェロン-ァの分泌生産
参考例 2で得られた大腸菌 J M 1 0 1 (ρ ΚΚ-ァ) 、 大腸菌 T I 4 1 ( p K -r ) 、 および、 大腸菌 T 1 1 3 9 (p KK-ァ) のシングルコロニーを 1 0 0 g/mlのアンピシリ ンを含む 51111の1^ B培地に植菌した。
〇 D β。。 が約 0.7になるまで 3 7 で培養し、 終濃度 1 mMのィソプロピル一 /3 一 D—チォガラク トビラノシド ( I P TG) を加えて、 さらに 1 6時間培養した。 培養液 1.5m l を 1. 5m l のマイク口遠心チューブに取り、 9 , 0 0 0 rpmで 5 分間遠心分離し培養上清を得た。 この培養上清画分の抗ウィルス活性を測定した 結果を表 4に示す。 この結果から、 大腸菌 T I 4 1株、 または、 T I 1 3 9株を 宿主として用いることで培養上清中にィヌインターフエ口ン -ァが大量に蓄積す ることがわかる。 表 4 培養上清中へのィヌイ ンターフェ ロ ン- rの分泌生産
Figure imgf000034_0001
また、 大腸菌 T 1 1 3 9 ( p KK-r ) を L B培地 4 0 0 mlに接種し、 3 7で で好気的に培養し、 その対数増殖期に I PTGを I mM添加し培養を継続した。 3、 5、 8そして 2 1時間後に培養液 5 mlを採取し、 9, 0 0 0 rpmで 5分間遠心分離 し、 培養液上清と菌体に分けた。 菌体は 2 0 mM リ ン酸ナ ト リ ウムバッファ一 ( p H 7.0 ) 5mlに懸濁し氷上で超音波によりを完全に破砕した後、 1 2 , 0 0 0 rpmで遠心し、 上清を菌体の可溶性画分として得た。
こう して得られた培養液上清および菌体可溶性画分について、 抗ウィルス活性 を測定した結果を表 5に示す。 この結果から、 本発明の大腸菌変異株において、 ィヌイン夕一フエロン-ァは、 培養 2 1時間後にはほとんどすべて菌体外に分泌 生産されることがわかる。
表 5 ィ ヌイ ンターフェロン- rの大腸菌における分布の経時変化
Figure imgf000035_0001
[参考例 1 0 ] カイコ樹立細胞でのィヌインターフェロン- rの生産
参考例 3で得た組換え体ウィルス r BNVァのウィルス液を、 0. 5m lづっ、 2 5 c m2のフラスコで 1 0 %の F B Sを含む T C一 1 0培地中で平面培養した 約 3 X 1 06個の B mN細胞に加えた。 3 0分後、 新鮮な 5 m 1の 1 0 % F B S を含む T C一 1 0培地と交換し、 2 7 で 3日間培養した。 培養液の遠心上清を とり、 活性を調べた結果、 1 05 UZm 1以上の抗ウィルス活性が得られた。
[参考例 1 1 ] カイコ生体中でのィヌイン夕一フエロン-ァの生産
5令 2 日目のカイコ幼虫に、 参考例 3で得た組換え体ウィルス、 r B NVァ、 または、 r B NV r S 2 (—) のウィルス液を 5 0 /z l /頭注射し、 2 5でで 4 日間、 市販の人工飼料 (カネボウシルクエレガンス社製) を与えて飼育後、 1 0 頭のカイコの腹部を切り、 体液を氷冷したエツペン ドルフチューブに採取し、 遠 心分離後の上清を得、 0. 2 2 imのフィルターでろ過滅菌後、 活性を測定した 結果、 r BNV rを用いた場合のカイコ体液の抗ウィルス活性は約 2 X 1 07 U 1であったのに対し、 r B NV r S 2 (—) を用いた場合は、 カイコ体液の 抗ウィルス活性は約 4 X 1 07 U/m 1 と約 2倍の抗ウィルス活性が得られた。 また、 r B N Vァ を接種して得られるカイコ体液のクラス II MH Cの発現増強 作用を測定したところ、 ィヌ乳腺腫瘍細胞株 F C B R 1上のクラス II MH Cの 発現量を 1 0 0 %上昇させた。
[参考例 1 2 ] 細胞変性効果によるウィルス濃度の定量
組換えカイコ核多角体病ウィルスを感染させたカイコ培養細胞培養上清、 また は、 カイ コ幼虫体液を希釈し、 5 X 1 05個 Zm I の B M— N細胞培養液に添加 した。 2 7でで 1 0 日間培養した後に、 顕微鏡観察によって BM— N細胞に対す る細胞変性効果を確認し、 感染性ウィルス量を算定した。 感染性ウィルス量は、 文献 1 7に従って T C I D 5 0 ( 5 0 % tissue culture infectious dose) を 求めることによつて決定した。
[参考例 1 3 ] カイコ生体中でのィヌ I F N-ァの生産と塩化べンザルコニゥ ムによる組換えカイコ核多角体病ウィルスの不活性化
5令 2 日目のカイコ幼虫に、 参考例 3で得た組換え体ウィルス r B.N Vァのゥ ィルス液を 2 U. 1 頭注射し、 2 5でで 4日間、 市販の人工飼料 (カネボウシル クエレガンス社製) を与えて飼育した。 1 0頭のカイコの腹部を切り、 0 %、 0. 0 1 %, または、 0.0 2 %の塩化ベンザルコニゥムを含む 1 0 0 m 1 の 5 0 m M酢酸バッファー ( p H 3. 5 ) に浸漬し、 4 t:で 2 0時間保持した。 得られた カイコ体液抽出液を 5 , 0 0 0 r pm、 1 5分間遠心分離し上清を回収した。 得 られた上清の抗ウィルス活性、 蛋白濃度、 感染性の組換えカイコ核多角体病ウイ ルス量を調べた結果を表 6に示した。
表 6 カイ コ幼虫でのィ ヌ I F N -ァ の生産と塩化ベンザルコニゥムによ る 組換えカイ コ核多角体病ウィ ルスの不活性化 実験例 塩化ベンザ 感染性ウィル 抗ウィ ルス 蛋白濃度 比活性
ルコニゥム ス量 活性
処理濃度
( % ) ( TCID5 o/inl ) (U/ml) (fflg/lD 1 ) (ϋ/mg 蛋白) 比較例 0 8 . 6 X 1 0 8 1 . 4 X 1 0 6 1 2 . 5 1 . 1 X 1 0 5
本発明 0 . 0 1 検出されず 4. 0 X 1 0 6 7'. 1 5 . 6 X 1 0 5 例 1 本発明 0 . 0 2 検出されず 2 . 0 X 1 0 6 6 . 6 3 . 0 X 1 0 5 例 2
[参考例 1 4] カイコ生体中でのネコ I F Nの生産と塩化ベンザルコニゥムに よる組換えカイコ核多角体病ウィルスの不活性化
5令 2 日目のカイコ幼虫に、 参考例 4で得た組換え体ウィルス r BNV l 0 0 のウィルス液を 2 1ノ頭注射し、 2 5でで 4日間、 市販の人工飼料 (カネボウ シルクエレガンス社製) を与えて飼育した。 1 0頭のカイコの腹部を切り、 0 %、 0.0 1 %、 または、 0.0 2 %の塩化ベンザルコニゥムを含む 1 0 0 m 1 の 5 0 mM酢酸バッファ一 (p H 3. 5) に浸潰し、 4 :で 2 0時間保持した。 得られ たカイコ体液抽出液を 5 , 0 0 0 r pm、 1 5分間遠心分離し上清を回収した。 得られた上清の抗ウィルス活性、 蛋白濃度、 感染性の組換えカイコ核多角体病ゥ ィルス量を調べた結果を表 7に示した。 表 7 カイ コ幼虫でのネコ 〖 F Nの生産と塩化ベ ンザルコニゥムによる 組換えカイ コ核多角体病ウィ ルスの不活性化 実験例 塩化ベンザ 感染性ウィル 抗ウィ ルス 蛋白濃度 比活性
ルコニゥム ス量 活性
TEB
¾]; ¾ ¾.
( % ) ( TCIDs o/ml) (U/ml) (mg/m 1 ) (U/m g 蛋白) 比較例 0 8 . 6 X 1 0 8 7 . 0 X 1 0 6 1 1 . 7 5 . 9 X 1 0 5
本発明 0 . 0 1 検出されず 6 . 5 X 1 0 6 7 . 5 8 . 6 X 1 0 5 例 1 本発明 0 . 0 2 検出されず 6 . 1 X 1 0 6 6 . 1 1 . 0 X 1 0 5 例 2
[参考例 1 5 ] 塩化ベンゼン トニゥムによる組換えカイコ核多角体病ウィルス の不活性化
5令 2 日目のカイコ幼虫に、 参考例 3で得た組換え体ウィルス r B N Vァのゥ ィルス液を 2 /z lノ頭注射し、 2 5 °Cで 4日間、 市販の人工飼料 (カネボウシル クエレガンス社製) を与えて飼育した。 1 0頭のカイコの腹部を切り、 0 %、 0. 0 1 %、 または、 0.0 2 %の塩化べンゼトニゥ厶を含む 1 0 0 m 1 の 5 0 mM 酢酸バッファー (pH 3. 5 ) に浸漬し、 4 で 2 0時間保持した。 得られた力 ィコ体液抽出液を 5, 0 0 0 r pm、 1 5分間遠心分離し上清を回収した。 得ら れた上清の感染性の組換えカイコ核多角体病ウィルス量を調べた結果を表 8に示 した。 表 8 塩化べンゼ トニゥムによ る組換えカイ コ核多核体病ウィ ルスの不活性化
Figure imgf000039_0001
[参考例 1 6 ] カイコ生体中でのィヌ I F N-ァの生産と UV照射による組換 えカイコ核多角体病ウィルスの不活性化
5令 2 日目のカイコ幼虫に、 参考例 3で得た組換え体ウィルス r B N Vァのゥ ィルス液を 2 1ノ頭注射し、 2 5 で 4日間、 市販の人工飼料 (カネボウシル クエレガンス社製) を与えて飼育した。 8 0頭のカイコの腹部を切り、 1頭あた り 2. 5 mM/ 1のエチレンジァミン四酢酸ニナトリウムを含む 1 0m 1 の冷水 で、 体液を抽出した。 体液抽出液 8 0 Om 1 を 5でで冷却しながら、 図 1に示す 紫外線照射装置に送り、 定格 7 W、 波長 2 5 3. 7 nmの紫外線を殺菌灯を用い て照射した。 殺菌灯からの最大距離は 1 0 mm、 体液抽出液の対流時間は 3分で 循環した。 このときの体液抽出液の紫外線透過率を分光光度計 (日立 U— 2 0 0 0) を用いて測定したところ 2 6 % ( 1 0 mmセル) であった。
1時間後、 および 2. 5時間後に体液抽出液をサンプリ ングし、 参考例 1 2の 方法に従ってカイコ細胞とともに培養してウィルスの増殖を調べた。 1時間後の 体液抽出液 (対流時間を考慮した実際に紫外線を照射した時間は 0.4時間) で は 7 5 %のウィルスが不活化しており、 2. 5時間後の体液抽出液 (対流時間を 考慮した実際に紫外線を照射した時間は 1時間) では 1 0 0 %のウィルスが不活 化していた。 参考例 6の方法に従ってィヌインタ一フエロンの力価をバイオアツ セィ法により測定したところ 3 X 1 06UZm lであった。
[参考例 1 7 ] カイコ幼虫によるィヌイ ンタ一フエロン-ァの調製
特開平 9 - 2 3 4 0 8 5号公報に開示した遣伝子組換えバキュロウィルス r B N Vァのウィルス液を 5令 2 日のカイコ幼虫に接種し、 2 5でで 4日間、 市販の 人工飼料 (カネボウシルクエレガンス社製) を与えて飼育した。 5 0頭のカイコ 腹部を切り、 0. 0 1 %の塩化ベンザルコニゥムを含む 5 0 0 m 1 の 5 0 mMリ ン酸バッファ一 (p H 3. 5 ) に浸潰し、 4 で 2 0時間保持した。 得られた力 ィコ体液抽出液を 2 N N a OH で中和した後に、 5 0 0 0 r pmで 1 5分間遠 心分離し上清を回収した。 得られた上清をスルホプロピルセファロース (ハイパ フォーマンスタイプ、 Pharmacia製) にかけ、 2 0 mMリ ン酸緩衝液 ( p H 7. 0 ) で洗浄後、 塩化ナトリウムの直線的な濃度勾配により吸着物を溶出し、 抗ゥ ィルス活性を持つ画分を集めて、 ィヌ I FN—ァを回収し、 2 0 mMリ ン酸ナト リウムバッファ一 ( p H 7. 0 ) 中で一晚透析を行い、 これをィヌ I F N—アサ ンプルとして安定化剤の檢討に用いた。
[参考例 1 8 ] カイコ幼虫による糖鎖欠損ィヌインターフェロンーァの調製 参考例 3に示した遺伝子組換えバキュロウィルス r B N Vァ S 2 (-)のウィル ス液を 5令 2 日のカイコ幼虫に接種し、 2 5でで 4日間、 市販の人工飼料 (カネ ボウシルクエレガンス社製) を与えて飼育した。 5 0頭のカイコ腹部を切り、 0. 0 1 %の塩化べンザルコニゥムを含む 5 0 0 m 1 の 5 0 mM酢酸バッファー ( p H 3. 5 ) に浸漬し、 4 で 2 0時間保持した。 得られたカイコ体液抽出液を 2 N N a OH で中和した後に、 5 0 0 0 r pmで 1 5分間遠心分離し上清を回収 した。 得られた上清をホロファイバ一型の限外濾過膜装置 (Am i c o n社製、 分子量分画サイズ 1 0万、 H I P 4 0— 1 0 0 ) を用いて限外濾過を行なった。 この透過液をスルホプロピルセファロース担体 (ハイパフォーマンスタイプ、 Ph armacia製) を充填したカラムにかけ、 2 0 m Mリ ン酸緩衝液 ( p H 7. 0 ) で CT/JP98/03431 洗浄後、 塩化ナ トリ ウムの直線的な濃度勾配により吸着物を溶出し、 抗ウィルス 活性を持つ画分を集めィヌ I F N— ァを回収した。 得られた画分をブルーセファ ロース担体 (アマシャムフアルマシアバイオテック社製) を充填したカラムにか け、 2 0 mMリ ン酸緩衝液 ( p H 7. 0 ) で洗浄後、 1〜 1. 5 Mの塩化ナ ト リ ゥムで吸着物を溶出し、 抗ウィルス活性を持つ画分を集めィヌ I F N—ァを回収 した。 得られたィヌ I F N—ァを 2 0 mMリ ン酸ナトリゥムバッファー ( p H 7.
0 ) 中で一晩透析し、 これをィヌ I F N— rサンプルとして安定化剤の検討に用 いた。
[参考例 1 9 ] 大腸菌によるィヌイ ンターフェロン-ァの調製
ィヌ I FN— ァをコードする遺伝子を組み込んだベクタ一 '(p E T) を導入し た大腸菌 (B L 2 1株) を L B液体培地に植菌し、 対数増殖期で I P T Gを終濃 度 1 mMとなるように添加し、 2時間後に集菌した。 得られた菌体を培養時の 5 0分の 1容量の 2 OmMリ ン酸ナ トリ ウムバッファー ( p H 7. 0) に懸濁し、 超音波により菌体を破砕したのち 1 4 0 0 0 r pmで遠心処理し、 得られた上清 を 0. 4 5 mの滅菌フィルタ一でろ過し、 I FN—ァ抽出液とした。
この抽出液をスルホプロピルセファロースカラム (ハイパフォーマンスタイプ、 Pharmacia製) にて精製した。 具体的には、 抽出液をカラムにアプライ した後、 2 0 mMリ ン酸ナトリウムバッファ一 (p H 7. 0) で洗浄、 さ らに 0. 4MN a C l を含む 2 OmMリン酸ナ トリウムバッファ一 (p H 7. 0 ) にて洗浄した 後、 0. 5M、 0. 6 M、 0. 7 M、 0. 8 M、 0. 9 Mそして 1. O Mの N a C 1 を含むリ ン酸ナ トリウムバッファ一にて段階的に溶出した。 得られた溶出画 分について S D S— P AG Eを行い、 I F N—ァが含まれる画分についてさらに ブルーセファロース (ファス トフ口一タイプ) による精製を行った。 具体的には
1 F N—ァを含む画分を集めてカラムにアプライした後、 0. 5 M N a C l を 含むリ ン酸ナ トリウムバッファー (p H 7. 0 ) にて洗浄、 続いて 1. O M N a C 1 を含むリ ン酸ナト リウムバッファー ( p H 7. 0 ) にて洗浄した後、 1. 5 M、 2. O Mそして 2. 5 MN a C l を含むリ ン酸ナトリウムバッファ一にて 段階的に溶出し、 ィヌ I F N—ァ画分として得られる 2. 0 M溶出画分を 2 0 mMリ ン酸ナト リウムバッファ一 ( p H 7. 0 ) 中で一晚透析を行なった。 透析 後、 この画分をィヌ I F N— τサンプルとして、 安定化剤の検討に供した。
[比較例 1 ]
参考例 1 7で得られたィヌ I F Ν— rサンプル ( 2 0 mMリ ン酸ナトリ ゥムバ ッファー p H 7. 0に溶解させたもの) を他の添加物を加えず冷蔵保管処理、 凍結保管処理および安定化剤を加えず凍結乾燥処理した際の活性の変化を調べた。 活性の残存率は処理前のサンプルの活性を 1 0 0 %として表した。 結果を表 9に 示す。
なお、 凍結乾燥品は滅菌蒸留水で再溶解し、 抗ウィルス活性の測定に供した。
表 9 安定化剤無添加時の保存方法とィ ヌ I F N - rの活性 保存方法 活性残存率 (% )
冷蔵保管 2. 5 曰 7 1. 0 冷凍保管 2. 5 曰 1 7. 0 凍結乾燥 3 5. 4
[実施例 1 ]
参考例 1 7で得られたカイコから抽出精製したィヌ I F N—ァサンプル ( 2 0 mMリ ン酸ナ ト リ ウムバッファ一 p H 7. 0に溶解させたもの) と各種濃度 (終濃度) のァラビアゴム水溶液 ( 5. 0、 7. 5、 1 0. 0、 1 2. 5、 1 5. 0、 2 0. 0 m g/m 1 ) 1 m 1 をガラスバイアル中で混合し、 凍結乾燥した後 再溶解した時の残存活性と活性の残存率 ( 1. 2 4 X 1 05 Uを 1 0 0 %とする) を表 1 0に示す。 表 1 0 ア ラ ビアゴム添加量とィ ヌ I F N - r 活性 アラ ビアゴム 残存活性 残存率
( m g ) ( U ) ( % )
5. 0 1 . 4 7 X 1 0 5 1 1 9
7. 5 1 · 1 0 X 1 0 5 8 8
1 0. 0 1 . 9 7 X 1 0 5 1 5 8
1 2. 5 1 . 3 9 X 1 0 5 1 1 2
1 5. 0 1 · 1 9 X 1 0 5 9 6
2 0. 0 1 . 5 5 X 1 0 5 1 2 5
[実施例 2 ]
参考例 1 7で得られたカイコから抽出精製したィヌ I F N—ァサンプル ( 2 0 mMリ ン酸ナトリウムバッファ一 ρ Η 7 · 0に溶解させたもの) と各種 Ρ Ηを 示すアラビアゴム水溶液 (終濃度 l O mgZm l ) と混合した水溶液 1 m I をガ ラスバイアル中で凍結乾燥処理を行い、 再溶解後の残存活性および活性の残存率
( 1. 2 4 X 1 05 Uを 1 0 0 %とする) を調べた。 その結果を表 1 1示す。 な お、 アラビアゴム水溶液の p Hに関しては酸として H C 1、 アルカリ として N a OHの適当量をアラビアゴム水溶液に添加したのち、 これらの P Hを測定し、 そ の実測値を表に示している。 なお、 このときの凍結乾燥サンプルの水分含量は約
1. 8 % ( 3回測定中の平均値) であり、 凍結乾燥サンプル中のアラビアゴムの 含量 (重量%) は約 9 8. 2 %である。 表 1 1 アラ ビア ゴム添加時の p H とィ ヌ I F N -ァ の活性
P H 残存活性 残存率
(実測値) ( U ) ( % )
4. 2 3 1. 2 1 X 1 0 5 9 8
4. 5 4 1 . 6 0 X 1 0 5 1 2 9
4. 9 4 1. 9 4 X 1 0 5 1 5 6
5. 2 2 1. 3 8 X 1 0 5 1 1 1.
5. 4 5 2. 1 3 X 1 0 5 1 7 2
6. 8 1 2 . 0 0 X 1 0 5 1 6 1
9. 0 1 1. 2 7 1 0 5 1 0 2
[実施例 3 ]
参考例 1 9で得られた組換え大腸菌から抽出精製したィヌ I FN—ァサンプル ( 2 0 mMリ ン酸ナ トリウムバッファー p H 7. 0に溶解させたもの) と HC 1および N a OHを用いて各種 p Hに調整したァラビアゴム水溶液を混合し、 そ の l mL (アラビアゴム終濃度 1 0 m g/m 1 ) を、 4 で 6 日間保存した後の 残存活性および残存率 ( 1. 2 0 X 1 05 Uを 1 0 0 %とした) を表 1 2に示す。
アラ ビアゴム水溶液中のィ ヌ I F N r 活性に対する
ρ Hの影響
P H 残存活性 残存率
( U ) ( % )
3 - 0 2. 3 X 1 0 1 9. 2
3. 5 1. 2 X 1 0 1 4. 2
4. 0 2. 0 X 1 0 1 6. 0
4. 5 8. 4 X 1 0 7 0. 0
5. 0 8. 5 X 1 0 7 0. 8
5. 5 8. 5 X 1 0 7 0. 8
6. 0 2. 1 X 1 0 1 7 5. 0
7. 0 9. 9 X 1 0 8 3. 1
7. 5 1. 8 X 1 0 1 5 0. 0
8. 0 1. 7 X 1 0 1 4 1. 0
[実施例 4 ]
参考例 1 9で得られた組換え大腸菌から抽出精製したィヌ I FN— ァサンプル ( 2 0 mMリ ン酸ナトリウムバッファー p H 7. 0に溶解させたもの) と各種 pHに調整したアラビアゴム水溶液との混合溶液 l mL (アラビアゴム 1 O mg /m l ) をガラスバイアルに入れ、 凍結乾燥処理を行った。 この凍結乾燥製剤の 再溶解時の残存活性および残存率 (4. 0 X 1 05 Uを 1 0 0 %とした) を表 1 3に示す。 なお、 このときの凍結乾燥サンプルの水分含量は約 1. 7 % ( 3回測 定中の平均値) であり、 凍結乾燥サンプル中のアラビアゴムの含量 (重量%) は 約 9 8. 3 %である。 表 1 3 アラ ビアゴム添加時の p H とィ ヌ I F N - r の活性
P H 残存活性 残存率
(実測値) ( U ) ( % )
4. 0 2 1 . 4 X 1 0 4 3. 5
4. 3 6 2 · 5 X 1 0 5 6 2. 5
4. 6 1 4. 4 X 1 0 5 1 1 1 . 0
4. 8 6 5. 6 X 1 0 5 1 4 0 . 0
4. 9 0 3. 9 X 1 0 5 9 7. 5
5. 0 3 6. 2 X 1 0 5 1 5 5 . 0
5. 2 4 4. 8 X 1 0 5 1 2 0. 0
8. 2 0 3. 5 X 1 0 5 8 7 . 5·
[実施例 5 ]
参考例 1 7で得られたカイコより抽出精製したィヌ I F N—ァサンプル ( 2 0 mMリ ン酸ナ トリウムバッファ一 p H 7. 0に溶解させたもの) とアラビアゴ ムおよびレオドール (Twe e n 2 0 ) を含む水溶液を混合し、 アラビアゴム 1 0 m g/m U レオドール 0〜 0. 1 %を含むィヌ I FN—ァ溶液を調製した。 これらのィヌ I FN— ァ溶液 1 mLをガラスバイアルに入れ、 凍結乾燥処理を行 つたのち、 再溶解時の残存活性および活性の残存率 ( 1. 2 4 X 1 05 Uを 1 0 0 %とする) を調べた。 なお、 このときの凍結乾燥サンプルの水分含量は約 1. 7 % ( 3回測定中の平均値) であり、 表 1 4に各々の凍結乾燥サンプルの残存活 性とそのアラビアゴム含量 (重量%) を示す。
表 1 4 アラ ビアゴム存在下での レオ ドール濃度とィ ヌ I F N - r の活性 ア ラ ビアゴム レォ ド一ル 残存活性 残存率 凍結乾燥後
ァラヒ'アコ'ム含量
( mg/iiil ) (重量% ) • ( U ) ( % ) (重量% )
1 0. 0 0 1 9 7 X 1 0 5 1 5 8 9 8. 1
1 0. 0 0 . 0 1 1 7 8 X 1 0 5 1 4 3 9 8. 1
1 0. 0 0 . 0 2 1 6 4 X 1 0 5 1 3 7 9 8. 1
1 0. 0 0 . 0 5 1 5 1 X 1 0 5 1 2 2 9 8. 0
1 0. 0 0 - 1 0 1 9 0 X 1 0 5 1 5 3 . 9 8. 0
1 0. 0 0. 2 0 1 . 8 5 X 1 0 5 1 4 9 9 7. 9
[実施例 6 ]
参考例 1 7で得られたカイコから抽出精製したィヌ I F N— ァサンプル ( 2 0 mMリ ン酸ナト リウムバッファー p H 7. 0 に溶解させたもの) とアラビアゴ ムおよびマクロゴール 4 0 0 0 (ポリエチレングリコール 4 0 0 0 ) を含む水溶 液を混合し、 アラビアゴム 1 0 m g/m し マクロゴ一ル 0〜 1 0 . 0 1118ノ111 1 を含むィヌ I F N—ァ溶液を調製した。 これらのィヌ I F N—ァ溶液 l mLをガ ラスバイアルに入れ、 凍結乾燥処理を行ったのち、 再溶解時の残存活性および活 性の残存率 ( 1 . 2 4 X 1 0 5 Uを 1 0 0 %とする) を調べた。 なお、 このとき の凍結乾燥サンプルの水分含量は約 1 . Ί % ( 3回測定中の平均値) であり、 表 1 5 に各々の凍結乾燥サンプルの残存活性およびアラビアゴム含量 (重量%) を 示す。 表 1 5 アラ ビア ゴム存在下でのマク ロ ゴール添加量とィ ヌ I F N -ァ の活性 ア ラ ビアゴム マク 口 ゴール 残存活性 残存率 凍結乾燥後 ァラビアコ'ム含量
*
( mg/m 1 ) ( mg/m 1 ) ( U ) ( % ) (重量 )
1 0. 0 0 1. 6 7 X 1 0 5 1 3 5 9 8. 3
1 0. 0 2 . 5 1. 3 7 X 1 0 5 1 1 0 7 8. 3
1 0 - 0 5 . 0 1. 4 6 X 1 0 5 1 1 8 6 5. 0
1 0. 0 1 0 . 0 1. 5 2 X 1 0 5 1 2 3 4 8. 3
[実施例 7 I
参考例 1 9で得られた大腸菌から抽出精製したィヌ I F N—ァサンプル ( 2 0 mMリ ン酸ナ ト リウムバッファー p H 7. 0に溶解させたもの) とアラビアゴ ムおよびマクロゴール 40 0 0 (ポリエチレングリコール 4 0 0 0 ) を含む水溶 液を混合し、 アラビアゴム 0〜 2.0 m g Zm 1、 マクロゴール 5.0 m g 1 を含むィヌ I FN— ァ溶液を調製した。 これらのィヌ I FN—ァ溶液 1 mLをガ ラスバイアルに入れ、 凍結乾燥処理を行ったのち、 再溶解時の残存活性および活 性の残存率 ( 1.0 X 1 05 Uを 1 0 0 %とする) を調べた。
なお、 このときの凍結乾燥サンプルの水分含量は約 1. 5 % ( 3回測定中の平 均値) であり、 表 1 6に各々の凍結乾燥サンプルの残存活性およびアラビアゴム 含量 (重量%) を示す。 1 6 マク ロ ゴール存在下でのア ラ ビアゴム添加量とィ ヌ I F N -ァ の活性 ア ラ ビアゴム マク 口 ゴール 残存活性 残存率 凍結乾後燥
ァラヒ'アコ'ム含量
( mg/ml ) ( mg/ml ) ( U ) ( % ) (重量% )
0 5. 0 3. 8 1 X 1 0 ' 3 8 0
0. 5 5. 0 9. 7 5 X 1 0 5 9 7 7. 5
1. 0 5. 0 1. 1 2 X 1 0 5 1 1 2 1 5. 2
2. 0 5. 0 1. 1 8 X 1 0 5 1 1 8 2 7. 1
[実施例 8 ]
参考例 1 9で得られた組換え大腸菌より抽出精製したィヌ I FN—? "サンプル (2 O mMリ ン酸ナトリウムバッファ一 p H 7. 0に溶解させたもの) を用い て、 各種 p Hに調整した 1 0 m g/m 1 アラビアゴム、 5 m g 1マクロゴ一 ル 4 0 0 0 (ポリェチレングリコール) 、 2 0 mMグリシンからなるィヌ I FN -ァ水溶液と調製した。 これら水溶液を凍結乾燥処理を行ったのち、 再溶解時の 残存活性を調べた。 表 1 7に仕込みのィヌ I FN— ァ活性を 1 0 0 %としたとき の活性残存率を示す。 なお、 同じ試験を 2回行い、 それぞれ試験 No. 1、 試験 No. 2として結果に示した。 また、 このときの凍結乾燥サンプルの水分含量は約 1. 7 % ( 3回測定中の平均値) であり、 凍結乾燥サンプル中のアラビアゴムの含量 (重量%) は約 5 8. 9 %である。
7 p Hと凍結乾燥後のィ ヌ I F N -ァ の残存活性
P H 残存活性 ( % )
試験 No.1 試験 No.2
4. 5 1 1 0 1 5 6
5. 0 '· 8 1 1 5 9
5. 5 1 6 4 1 4 8
6. 0 1 0 0 2 0 3
6. 5 8 0 1 5 6
7. 0 1 3 6 1 7 8
[実施例 9 ]
参考例 1 8で得られたカイコから抽出精製したィヌ I F N-アサンプル ( 2 0 mMリ ン酸ナ ト リウムバッファ一、 p H 7.0に溶解) をアラビアゴム 1 0 mg /m 1 , マクロゴール 4 0 0 0 (ポリエチレングリ コ一ル 40 0 0) 5 m g / m i、 グリシン 1 0 mMとなるように混合し、 全量 1 m 1 をガラスバイアルに入 れ凍結乾燥した後、 再溶解時の残存活性を調べた。 この結果、 仕込んだィヌ I F 1^-ァ活性6. 0 1 04Uに対して凍結乾燥後、 再溶解した時の活性は 5.4 X 1 04Uであり、 9 0 %の活性が残存していた。
産業上の利用の利用可能性
ァラビン酸の基本骨格を持つ化合物を混合することにより、 インターフェロン などの有用タンパク質を失活することなく、 安定に保存することができるので、 医薬業界をはじめ種々の産業分野で利用可能である。
[参考文献]
1. D e v o s ら : J . I n t e r f e r o n R e s e r c h, 1 2 , 9 5 - 1 0 2 ( 1 9 9 2 ) .
2. I j z e rm a n s ら : I mmu n o b i o l o g y, 1 7 9, 4 5 6 -.
4 7 3 ( 1 9 8 9 ) h i r gw i nら : B i o c h e m i s t r y、 1 8、 5 2 9 4 ( 1 9 9) .
e r g e rら : B i o c h em i s t r y, 1 8, 5 1 43 ( 1 9 7 9) . u b l e r ら : G e e n. 2 5, 2 3 6 - 2 6 9 ( 1 9 8 3 ) .
k a y am aら : Mo し C e l l . B i o l . , 2 , 1 6 1, ( 1 9 2 ) & 3 , 2 8 0 , '( 1 9 8 3 ) .
. H o r i u c h i ら : A g i c . B i o l . C h e m. , 5 1, 1 5 7 3 - 1 5 8 0, ( 1 9 8 7 ) .
a r d i n e r ら : J . I n v e r t e b r a t e P h a t h o l . 2 5, 3 6 3 - 3 7 0 ( 1 9 7 5 )
S . W a t a n a b e ら : J a p a n J . E x p. M e d. , 2 1, 2 9 9 - 3 1 3 ( 1 9 5 1 )
. Y am amo t o rら : B o k i n B o b a i , 1 6,
5 0 5 - 5 0 8 ( 1 9 8 8 )
. Wa t a n a b e ら : 日本蚕糸学雑誌, 3 7, 2 1 3 - 2 1 8
( 1 9 6 8 )
o l e c u l a r C l o n i n g. C o l d S p r i n g H a r b o r L o b o r a t o r y. e w Y o r k. 1 9 8 2.
T a k e b e ら : Mo l . C e l l . B i o l . 8、 44 6 - 4 7 2
( 1 9 8 8 ) .
日本生化学会編 : 続生化学実験講座第 5巻、 ( 1 9 8 6) . P 2 5 0 - 2 5 6、 東京化学同人.
Y am amo t oら : V e t . I mmu n o l , a n d I mm u n o p a t h o 1. , 1 1 , 1 - 1 9 ( 1 9 8 6 )
Wh i t e s i d e ら : J . I mm u n o l . M e t h o d s , 9 0, 2 2 1 - 2 2 3 ( 1 9 8 6 ) .
モダンバイオロジーシリーズ 2 3、 動物組織培養法 ( 1 9 7 6 ) P 2 9 6 - 3 0 0. 共立出版

Claims

請求の範囲
1 . 有用タンパク質にァラビン酸の基本構造を持つ化合物の水溶液を混合するこ とを特徴とする有用タンパク質の安定化方法。
2 . ァラビン酸の基本構造を持つ化合物を 0 . 0 1 ~ 1 0 . 0重量%の濃度で混 合することを特徴とする請求項 1記載の有用タンパク質の安定化方法。
3 . ァラビン酸の基本構造を持つ ヒ合物の水溶液と混合した有用タンパク質を凍 結乾燥することを特徴とする請求項 1 または 2記載の有用タンパク質の安定化方 法。
4 . ァラビン酸の基本構造を持つ化合物がアラビアゴムであることを特徴とする 請求項 1 〜 3のいずれか 1項記載の有用タンパク質の安定化方法。
5 . 有用タンパク質がサイ ト力イン類であることを特徴とする請求項 1 〜 4のい ずれか 1項記載の有用タンパク質の安定化方法。
6 . サイ ト力イン類がインターフェロン一ひ、 インターフェロン一 /3、 イ ンター フエロンーァおよびィ ンターフェロン一 ωから選ばれたィ ンタ一フエロンである ことを特徴とする請求項 5記載の有用タンパク質の安定化方法。
7 . インターフエ口ンが脊椎動物のィ ンターフェロンであることを特徴とする請 求項 6記載の有用夕ンパク質の安定化方法。
8 . 脊椎動物のイ ンターフェロンがィヌインタ一フエロン- rまたはネコイ ンタ ーフヱロン一 ωであることを特徴とする請求項 7記載の有用タンパク質の安定化 方法。
9 . ィヌイ ンターフェロン- rが大腸菌またはカイコにより生産されたものであ ることを特徴とする請求項 8記載の有用タンパク質の安定化方法。
1 0 . 有用タンパク'質にァラビン酸の基本構造を持つ化合物を含有させてなる安 定化された有用タンパク質組成物。
1 1 . 0 . 0 1 〜 1 0 . 0重量%の濃度でァラビン酸の基本構造を持つ化合物を 含む水溶液であることを特徴とする請求項 1 0記載の安定化された有用タンパク 質組成物。
1 2 . 請求項 1 0記載の安定化された有用タンパク質組成物が凍結乾燥されてな る安定化された有用タンパク質組成物。
1 3. 凍結乾燥後の水分含量が 5重量%以下であることを特徴とする請求項 1 2 記載の安定化された有用タンパク質組成物
1 4. 有用タンパク質に対してァラピン酸の基本構造を持つ化合物を 5. 0 - 9 9. 9重量%含むことを特徴とする請求項 1 0、 1 2または 1 3のいずれか 1項 記載の安定化された有用タンパク質組成物
1 5. 有用タンパク質がサイ トカ^ ン類であることを特徴とする請求項 1 0〜 1 4のいずれか 1項記載の安定化された有用タンパク質組成物。
1 6. サイ トカイン類が脊椎動物のィ ンターフェロンであることを特徴とする請 求項 1 5記載の安定化された有用タンパク質組成物。
1 7. インターフェロンがイ ンターフェロン一 ひ、 インターフェロン一 0、 イン ターフェロンーァおよびインタ一フエロン一 ωから選ばれたインタ一フエロンで あること特徴とする請求項 1 6記載の有用タンパク質組成物。
1 8. イ ンターフェロンがィヌイ ンターフェロン-ァまたはネコイ ンタ一フエ口 ンー ωであることを特徴とする請求項 1 7記載の安定化された有用タンパク質組 成物。
1 9. ィヌインターフェロン-ァが大腸菌またはカイコにより生産されたもので あることを特徴とする請求項 1 8記載の安定化された有用タンパク質組成物。
2 0. ポリエチレングリコール、 グリ シン、 食塩および T w e e η 2 0の少なく とも 1種をさらに含有せしめた請求項 1 0 ~ 1 9のいずれか 1項記載の安定化さ れた有用タンパク質組成物
2 1. 請求項 1 0〜 2 0のいずれか 1項記載の安定化された有用タンパク質組成 物を含む注射用医薬品組成物。
2 2. ィヌインタ一フエロン-ァが、 ィヌインターフェロン-? "のタンパク質をコ ―ドする DN Αを組み込 だ組換えベクターにより大腸菌または真核細胞を形質 転換してなる形質転換体を培養して得たィヌインタ一フエロン-ァであることを 特徴とする請求項 1 9記載の安定化された有用タンパク質組成物。
2 3. ィヌインターフェロン-ァが、 ィヌインタ一フエロン-ァのタンパク質をコ —ドする DNAにより、 遺伝子組換えされた組換えカイコ核多角体病ウィルスを、 カイコ樹立細胞中またはカイコ生体中で増殖させて得たィヌイ ンターフェロン- rであることを特徴とする請求項 l 9記載の安定化された有用タンパク質組成物。
2 4 . ィヌインターフェロン-ァが、 糖鎖結合部位を除去したィヌイ ンタ一フエ 口ン-ァ遺伝子を導入した形質転換体を増殖させて得たィヌイ ンタ一フエロン-ァ であることを特徴とする請求項 1 9記載の安定化された有用タンパク質組成物。
2 5 . ィヌインターフェロン-ァが、 配列番号 : 2 7から 2 9 と同じあるいはそ の一部であるアミ ノ酸配列を有す'るィヌィンターフェロン- " であることを特徴 する請求項 2 4記載の安定化された有用タンパク質組成物。
2 6 . ィヌインタ一フエロン-ァが、 配列番号 : 3または配列番号 : 2 7から 2 9 に記載の D N A配列により遺伝子組換えされ 組換えカイコ核多角体病ウィル スを用いて、 カイコ樹立細胞中またはカイコ生'本中で増殖させて得たィヌインタ —フエロン-ァであることを特徴とする請求項 1^ 9記載の安定化された有用タン パク質組成物。
2 7 . ィヌインターフェロン- rが、 組換えバキュロウィルスを感染させたカイ コ細胞培養上清、 または、 組換えバキュロウィルスを感染させたカイコ幼虫の体 液を 4級アンモニゥム塩で処理したものであることを特徴とする請求項 1 9記載 の安定化された有用タンパク質組成物。
2 8 . 組換えバキュロウィルスを感染させた培養細胞が、 カイコ由来榭立株 B M - N細胞であることを特徴とする請求項 2 7記載の安定化された有用タンパク質 組成物。
2 9 . 4級アンモニゥム塩が塩化ベンザルコニゥムまたは塩化べンゼトニゥムで ある請求項 2 7記載の安定化された有用タンパク質組成物。
3 0 . 4級アンモニゥム塩を、 組換えバキユウロウィルスを感染させたカイコ培 養細胞または組換えバキユウロウィルスを感染させたカイコ幼虫の体液に対して、 0 . 0 1重量%以上の濃度で処理することを特徴とする請求項 2 7記載の安定化 された有用タンパク質組成物。
3 1 . ィヌインターフェロン- rが、 ィヌインターフェロン -了の蛋白質をコード する D N Aにより、 遺伝子組換えされた組換えカイコ核多角体病ウィルスを用い てィヌイ ンターフェロン-ァを製造する際に、 4級アンモニゥム塩で処理した後 にカチオン交換体を用いて精製したものであることを特徴とする請求項 1 9記載 の安定化された有用タンパク質組成物。
3 2 . カチオン交換体が、 スルフォプロピルセファロースであることを特徴とす る請求項 3 1記載の安定化された有用タンパク質組成物。
3 3 . ィヌイ ンターフェロン-ァが、 組換えバキュロウィルスを感染させたカイ コ細胞培養上清、 または、 組換えバキュロウィルスを感染させたカイコ幼虫の体 液から、 限外濾過膜を用いて組換えバキュロウィルスを除去したものであること を特徴とする請求項 1 9記載の安定化された有用タンパク質組成物。
3 4 . 限外濾過膜の分子量分画サイズが 1 0 0 , 0 0 0以下であることを特徴と する請求項 3 3記載の安定化された有用タンパク質組成物。
3 5 . ィヌインターフェロン-ァが、 組換えバキュロウィルスを感染させたカイ コ細胞培養上清、 または、 組換えバキュロウィルスを感染させたカイコ幼虫の体 液を 4級アンモニゥム塩で処理した後に限外濾過したものである請求項 1 9記載 の安定化された有用タンパク質組成物。
3 6 . ィヌインタ一フエロン-ァが、 組換えバキュロウィルスを感染させたカイ コ細胞培養上清、 または、 組換えバキュロウィルスを感染させたカイコ幼虫の体 液を、 4級アンモニゥム塩および金属キレー ト剤で処理した後に限外濾過したも のである請求項 1 9記載の安定化された有用タンパク質組成物。
3 7 . 限外濾過を p H 6以下の条件で行う ことを特徴とする請求項 3 5 または 3 6記載の安定化された有用タンパク質組成物。
3 8 . 分子量分画サイズが 5 0 , 0 0 0以上 3 0 0, 0 0 0未満の限外濾過膜で限 外濾過することを特徴とする請求項 3 5から 3 7のいずれか 1項記載の安定化さ れた有用タンパク質組成物。
3 9 . 4級アンモニゥム塩が塩化ベンザルコニゥムまたは塩化べンゼトニゥムで あることを特徴とする請求項 3 6記載の組成物。
4 0 . 4級アンモニゥム塩を、 組換えバキュロウィルスを感染させたカイコ細胞 培養上清、 または、 カイコ幼虫の体液に対して 0 . 0 1重量%以上の濃度で処理 することを特徴とする請求項 3 5記載の安定化された有用夕ンパク質組成物。
4 1 . 金属キレート剤がテ トラエチレンジァミ ン 4酢酸であることを特徴とする 請求項 3 6記載の安定化された有用タンパク質組成物。
4 2. ィヌインターフェロン-ァが、 ィヌインターフェロン- rの蛋白質をコー ド する DNAにより、 遺伝子組換えされた組換えカイコ核多角体病ウィルスを用い てィヌイ ンタ一フエロン-ァ を製造する際に、 4級アンモニゥム塩で処理した後 にカチオン交換体を用いて精製したものである請求項 1 9記載の安定化された有 用夕ンパク質組成物。
4 3. カチオン交換体が、 スルフ ^ "プロピルセファロースであることを特徴とす る請求項 42記載の安定化された有用タンパク質組成物。
44. ィヌインターフェロン-ァが、 ィヌインターフェロン-ァの蛋白質をコード する DNAにより遺伝子組換えされたバキユウロウィルスを感染させた昆虫培養 細胞の培養上清または該バキユウロウィルスを感染させたカイコ幼虫の体液抽出 液に含まれる組換えバキユウロウィルスを酸性またはアルカリ性条件下で処理す ることにより得られたものである請求項 1 9記載の安定化された有用夕ンパク質 組成物。
4 5. 酸性条件下の処理に用いる酸が塩酸、 硫酸、 酢酸、 リ ン酸および蟻酸から 選ばれる少なく とも 1種であることを特徵とする請求項 44記載の安定化された 有用タンパク質組成物。
4 6. 酸性条件が P H 3以下であることを特徴とする請求項 44または 4 5に記 載の安定化された有用タンパク質組成物。
4 7. 生物学的活性を失ったィヌインタ一フエロン-ァを p H 6 ~ 8および低温 での処理を施したィヌイ ンターフェロン-ァを含む請求項 1 9記載の安定化され た有用夕ンパク質組成物。
48. 低温での処理が 1 5 以下の処理であることを特徴とする請求項 4 7記載 の安定化された有用タンパク質組成物。
4 9. 遺伝子組換えバキュロウィルスが配列番号 : 5 1に記載の D N A配列によ り遺伝子組換えされた組換えカイコ核多角体病ウィルスであることを特徴とする 請求項 44から 4 8のいずれか 1項記載の安定化された有用タンパク質組成物。
5 0. 組換えバキュロウィルスを感染させたカイコ細胞培養上清、 または、 組換 えバキュロウィルスを感染させたカイコ幼虫の体液に流通式で紫外線を照射して 得たィヌインターフェロン-ァを含む請求項 1 9記載の安定化された有用タンパ ク質組成物。
5 1. 組換えバキュロウィルスを感染させたカイコ細胞培養上清または組み替え バキュロウィルスを感染させたカイコ幼虫の体液に金属キレート剤を添加するこ とを特徴とする請求項 5 0記載の安定化された有用タンパク質組成物。
5 2. 紫外線の波長が 2 0 0〜 3 0 0 nmであることを特徴とする請求 5 1記載 の安定化された有用タンパク質組 物。
5 3. 金属キレート剤がエチレンジアミン四酢酸またはエチレンジアミン四酢酸 のアルカリ金属塩であることを特徴とする請求項 5 1記載の安定化された有用タ ンパク質組成物。
54. 金属キレート剤を、 組換えバキュロウィルスを感染させたカイコ細胞培養 上清または組換えバキュロウィルスを感染させたカイコ幼虫の体液に対して、 0 -
1 mM〜 1 0 0 mM添加することを特徴とする請求項 5 3項記載の安定化された 有用タンパク質組成物。
5 5. 金属キレート剤を、 組換えバキュロウィルスを感染させたカイコ細胞培養 上清または組換えバキュロウィルスを感染させたカイコ幼虫の体液に対して、 1 mM〜 1 O.mM添加することを特徵とする請求項 5 4記載の安定化された有用夕 ンパク質組成物。
5 6. ィヌインターフェロンーァのタンパク質をコードする DNAにより遺伝子 組換えされた、 イソロイシン代謝拮抗物質に対して耐性を有し、 かつ、 ペリブラ ズムに蓄積されたタンパク質を培養上清中に分泌する能力を有する大腸菌を培養 し、 その培養上清から回収したィヌイ ンターフェロン- "を含むことを特徵とす る請求項 1 9記載の安定化された有用タンパク質組成物。
5 7. 大腸菌が T 1 4 1株 ( F E RM P— 1 6 7 9 8 ) または T I 1 3 9株 (F E RM P— 1 6 7 9 7 ) であることを特徴とする請求項 5 6記載の安定化 された有用タンパク質組成物。
PCT/JP1998/003431 1997-08-01 1998-07-31 Stabilisation de proteines utiles et compositions a base de proteines utiles WO1999006429A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69838667T DE69838667T2 (de) 1997-08-01 1998-07-31 Verfahren zur stabilisierung nützlicher proteine und nützliche proteinhaltige mittel
EP98935316A EP0950663B1 (en) 1997-08-01 1998-07-31 Method for stabilizing useful proteins and useful protein compositions
AU84620/98A AU740735B2 (en) 1997-08-01 1998-07-31 Method for stabilizing useful proteins and useful protein compositions
CA2267210A CA2267210C (en) 1997-08-01 1998-07-31 Method of stabilizing useful protein and useful protein composition
US09/269,833 US6391296B1 (en) 1997-08-01 1998-07-31 Method of stabilizing useful protein and useful protein compositions

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/208085 1997-08-01
JP20808697 1997-08-01
JP9/208086 1997-08-01
JP20808597 1997-08-01
JP35787297 1997-12-25
JP9/357872 1997-12-25

Publications (1)

Publication Number Publication Date
WO1999006429A1 true WO1999006429A1 (fr) 1999-02-11

Family

ID=27328840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003431 WO1999006429A1 (fr) 1997-08-01 1998-07-31 Stabilisation de proteines utiles et compositions a base de proteines utiles

Country Status (7)

Country Link
US (1) US6391296B1 (ja)
EP (1) EP0950663B1 (ja)
AU (1) AU740735B2 (ja)
CA (1) CA2267210C (ja)
DE (1) DE69838667T2 (ja)
NZ (1) NZ335005A (ja)
WO (1) WO1999006429A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346177B1 (ko) * 1999-10-19 2002-07-26 제일제당주식회사 효소의 안정성 및 활성 증진방법 및 조성물

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002241550A1 (en) 2000-12-01 2002-06-11 Auburn University Use of acacia gum (arabic gum) to isolate and preserve biological material
US7604807B2 (en) * 2000-12-01 2009-10-20 Auburn University Use of pullulan to isolate and preserve biological material
US6896894B2 (en) * 2001-10-30 2005-05-24 Battelle Memorial Institute Proteins stabilized with polysaccharide gums
US7060299B2 (en) 2002-12-31 2006-06-13 Battelle Memorial Institute Biodegradable microparticles that stabilize and control the release of proteins
WO2004112661A1 (en) * 2003-06-20 2004-12-29 Myers Thomas H Method and apparatus for strengthening the biomechanical properties of implants
GB0501655D0 (en) * 2005-01-26 2005-03-02 Veritron Ltd Therapeutic use
CA2609038A1 (en) 2005-05-18 2006-11-23 Trinity Biosystems, Inc. Methods and compositions for immunizing against chlamydia infection
US11246915B2 (en) 2010-09-15 2022-02-15 Applied Molecular Transport Inc. Cholix toxin-derived fusion molecules for oral delivery of biologically active cargo
CN103249401B (zh) 2010-09-15 2016-01-20 兰德尔·J·米斯尼 使用细菌毒素衍生的转运序列递送生物活性剂的系统和方法
WO2012101931A1 (ja) * 2011-01-24 2012-08-02 富士フイルム株式会社 経口用組成物
IL285716B (en) 2014-05-07 2022-09-01 Applied Molecular Transp Llc Compacted molecules derived from colic toxin for oral delivery of biologically active cargo
AU2019230230A1 (en) 2018-03-08 2020-10-22 Applied Molecular Transport Inc. Toxin-derived delivery constructs for oral delivery
EP4082558B1 (en) 2018-03-08 2023-08-23 Applied Molecular Transport Inc. Toxin-derived delivery constructs for oral delivery
TW202120521A (zh) 2019-08-16 2021-06-01 美商應用分子運輸公司 組合物、配方及介白素生產及純化

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059000A (ja) * 1983-09-09 1985-04-05 Kyowa Hakko Kogyo Co Ltd インタ−フェロンの安定化方法
JPH03139276A (ja) * 1989-06-29 1991-06-13 Toray Ind Inc ネコインターフェロンおよびその製造法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0133767B1 (en) * 1983-08-04 1991-04-03 The Green Cross Corporation Gamma interferon composition
JPS60258125A (ja) * 1984-06-06 1985-12-20 Hayashibara Biochem Lab Inc 蛋白性生理活性物質を含有する水溶性乾燥物
WO1986003944A1 (en) * 1985-01-03 1986-07-17 Joyce Patrick J Heat stabilized peptide table salt substitutes
EP0222412B1 (en) * 1985-11-14 1992-11-19 Daiichi Pharmaceutical Co., Ltd. Method of producing peptides
NZ235556A (en) * 1986-11-05 1991-06-25 Ethicon Inc Breast milk substitute containing recombinant human egf
JPH034790A (ja) * 1989-05-30 1991-01-10 Kanebo Ltd 酵素の安定化法
JPH06321803A (ja) 1993-05-17 1994-11-22 Kirin Brewery Co Ltd 水溶性ペプチドホルモンの徐放性製剤
DK126693D0 (da) * 1993-11-08 1993-11-08 Carlsberg As Drikkevare
EP0920329B1 (en) * 1996-05-09 2002-09-25 Feronpatent Limited Stabilization of interferons in aqueous solution by arabic gum
AU734887B2 (en) * 1997-03-06 2001-06-28 Toray Industries, Inc. Therapeutic agent and treatment for canine intractable dermatitis
JP2001526662A (ja) * 1997-05-09 2001-12-18 フェロンパテント リミテッド 舌下投与式タブレットの製造のための水溶液におけるインターフェロンの安定化

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059000A (ja) * 1983-09-09 1985-04-05 Kyowa Hakko Kogyo Co Ltd インタ−フェロンの安定化方法
JPH03139276A (ja) * 1989-06-29 1991-06-13 Toray Ind Inc ネコインターフェロンおよびその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0950663A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346177B1 (ko) * 1999-10-19 2002-07-26 제일제당주식회사 효소의 안정성 및 활성 증진방법 및 조성물

Also Published As

Publication number Publication date
CA2267210C (en) 2011-08-09
DE69838667D1 (de) 2007-12-20
EP0950663A4 (en) 2003-03-19
CA2267210A1 (en) 1999-02-11
DE69838667T2 (de) 2008-10-30
AU8462098A (en) 1999-02-22
US6391296B1 (en) 2002-05-21
NZ335005A (en) 2000-12-22
EP0950663A1 (en) 1999-10-20
AU740735B2 (en) 2001-11-15
EP0950663B1 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
WO1999006429A1 (fr) Stabilisation de proteines utiles et compositions a base de proteines utiles
JP4317890B2 (ja) 疎水性ポリペプチドの細菌生産
EP0155549B1 (en) Dna encoding human tumor necrosis factor and human tumor necrosis factor polypeptide
JPH07163368A (ja) 組換えdnaとその組換えdnaを含む形質転換体
KR950001992B1 (ko) 배양된 세포내에서 바쿨로바이러스 벡터를 이용한 펩타이드의 제조방법
CN103952388B (zh) 重组的弹性蛋白酶蛋白质及其制备方法和用途
RU2426745C2 (ru) Рекомбинантный химерный белок фактора ингибирования нейтрофилов и гиругена и содержащая его фармацевтическая композиция
WO2001047963A2 (en) Inhibitors of complement activation, their preparation and use
JPH05247090A (ja) 抗トロンビンポリペプチド
KR970002670B1 (ko) 고양이 인터페론 및 이의 제조방법
Dee et al. Expression and secretion of a functional scorpion insecticidal toxin in cultured mouse cells
CN111848814A (zh) 一种重组猪il-29融合蛋白及其制备方法与应用
HUT59961A (en) Recombinant process for producing hirudine and hirudine-like new polypeptides
JP2004537286A (ja) 新規なインターフェロン−サイモシン融合蛋白質、その製法および使用
CN113527461A (zh) 一种马铁菊头蝠来源抗菌肽rf-cath1及其应用
US20040101964A1 (en) Method of preparing virus vector
EP0444638A2 (en) Process for the expression of human nerve growth factor in arthropoda frugiperda cells by infection with recombinant baculovirus
US6534477B2 (en) Production and use of modified cystatins
HUT55049A (en) Process for expressing functional insect specific toxin gene in mammalian cells
KR19980079554A (ko) 개의 난치성 피부염의 치료제 및 치료방법
US20240131088A1 (en) Method for preparing a transformed, salmo salar interferon gamma (ifng)-producing lactococcus lactis bacterium
RU2294372C1 (ru) СПОСОБ ПОЛУЧЕНИЯ РЕКОМБИНАНТНОГО ИНТЕРФЕРОНА АЛЬФА-2b И ИНТЕРФЕРОНСОДЕРЖАЩИЙ ПРЕПАРАТ (ВАРИАНТЫ)
RU2131462C1 (ru) Фрагмент днк, рекомбинантный полипептид с антитромбиновой активностью, способ его получения (варианты), фармацевтическая композиция, рекомбинантный вектор (варианты)
JP2565668B2 (ja) ペプチド類の製造用ベクター
JPH1198997A (ja) インターフェロン−γの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 84620/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2267210

Country of ref document: CA

Ref country code: CA

Ref document number: 2267210

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 335005

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 09269833

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998935316

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998935316

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 84620/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998935316

Country of ref document: EP