WO1999000956A1 - Nachrichtenübertragungssystem mit frequenzaufteilenden optischen bauelementen zur parallelverarbeitung optischer impulse - Google Patents

Nachrichtenübertragungssystem mit frequenzaufteilenden optischen bauelementen zur parallelverarbeitung optischer impulse Download PDF

Info

Publication number
WO1999000956A1
WO1999000956A1 PCT/EP1998/003085 EP9803085W WO9900956A1 WO 1999000956 A1 WO1999000956 A1 WO 1999000956A1 EP 9803085 W EP9803085 W EP 9803085W WO 9900956 A1 WO9900956 A1 WO 9900956A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
communication system
area
optical communication
frequency
Prior art date
Application number
PCT/EP1998/003085
Other languages
English (en)
French (fr)
Inventor
Wolfgang Dultz
Hans Wilfried Peter Koops
Erna Frins
Gerald Meltz
Original Assignee
Deutsche Telekom Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom Ag filed Critical Deutsche Telekom Ag
Priority to CA002287326A priority Critical patent/CA2287326C/en
Priority to EP98928318A priority patent/EP0992141B1/de
Priority to JP50523799A priority patent/JP4087462B2/ja
Priority to DE59813478T priority patent/DE59813478D1/de
Publication of WO1999000956A1 publication Critical patent/WO1999000956A1/de
Priority to NO19996407A priority patent/NO321776B1/no

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/28Systems using multi-frequency codes with simultaneous transmission of different frequencies each representing one code element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components

Definitions

  • the present invention relates to a message transmission system with frequency-dividing optical components for parallel processing of optical pulses, in particular the use of fiber gratings and photonic crystals for the spatial distribution of the frequency-coded optical pulses.
  • Optical message transmission almost always takes place through a sequential sequence of individual, binary-coded light pulses. Since the transmission frequencies are already advancing into areas that no longer allow electronic data processing and, in particular, complicated encryption and decryption for secret transmission, there is a high demand for optical elements that read the temporal bit sequence into a one- or multi-dimensional spatial area. in order to be able to process them optically in parallel.
  • Optical parallel processing is capable of transforming a large amount of binary or analog signals arranged in an image or pattern at the same time, and is therefore much faster than an electronic computer. For areas of 1000 x 1000 optical points (pixels) would be a parallel processing of 10 6 signals and for certain optical operations, such as. B. the Fourier transform to achieve an extremely high time saving. Since optical Fourier transformations are an integral part of machine pattern recognition, encryption and decryption of messages would be optically easy and very quick.
  • Known electro-optical components that read a temporal pulse sequence into a spatial area can e.g. B. be built on the basis of the Brown tube.
  • the electron beam can currently only be deflected quickly enough in microtubes to read signals in the multi-gigahertz range.
  • Another method encodes the individual optical pulses alternately using the polarization of the light.
  • the first, third, fifth, etc. i.e. every odd pulse, is e.g. B. vertically, all pulses with an even number are linearly polarized horizontally. Then at least the even and odd pulses can be locally separated with the aid of a polarizing beam splitter. Cascading enables higher degrees of separation.
  • the advantage of this method is that the separating element - the beam splitter - is purely passive. After the pulses z. B. have been electro-optically polarized, is not an active one
  • the method according to the invention is characterized in that the individual successive optical pulses have a frequency coding instead of the polarization coding. Since the frequency of the light within an optical window of telecommunications can easily be changed by 100 ⁇ m, on the other hand semiconductor lasers can be detuned by changing the applied voltage by several nanometers, there is in principle the possibility of assigning optical frequencies to different frequencies in a wide range. For this purpose, several semiconductor lasers with different focal frequencies must be able to be changed in their emission frequency in an electrically switchable manner. The resulting optical pulses of different frequencies are then binary coded for message transmission and fed into the transmitting glass fiber. The message is thus impressed on a sequence of pulses, the first of which has the frequency v.
  • FIG. 1 shows the use of a passive optical component for dividing light at the end of an optical fiber according to an embodiment of the invention.
  • Fig. 2a and 2b show the use of diagonally arranged fiber grids for coupling out the light from the optical fiber according to two AusfijJhrungsbei admir the invention.
  • Fig. 3 shows a spiral arrangement of the fiber grating according to an embodiment of the invention.
  • Fig. 4 shows the use of photonic crystals etched into an optical glass fiber for frequency division of light according to an embodiment of the invention.
  • 5 a and 5b show the delay occurring between optical pulses of different frequencies and the use of a delay element to ensure simultaneous imaging of the light pulses on a matrix according to an embodiment of the invention.
  • the present invention uses a passive optical component that can spectrally split light spatially to distribute the pulses in a spatial area.
  • a component 1 is any spectrograph based on prisms or gratings (but also the two-beam interferometer and the multi-beam interferometer), which is incorporated into an optical fiber 2 or its end, the optical fiber being a frequency-coded digital or Analog message 3 transmitted as an optical pulse, which is mapped on a linear or fiber area 4.
  • Fiber gratings can also be used as spectrographs for the spatial division of the frequency-coded light pulses.
  • Such fiber grids are described, for example, by US Patent No. 5,546,481 to Meltz et. al. known, to which we hereby expressly refer.
  • obliquely (blazed) inscribed grids 5 are arranged diagonally in order to couple the light out of the fiber.
  • suitable focusing elements 6, such as that from application DE 196 30 705 AI (7/96, published 3/97) by H. Koops. to which explicit reference is made here, known anamorphic lenses, the rays of a single frequency (color) can be combined in a point-like manner on a linear area 4.
  • Each frequency v has a different focus. which all z. B. lie on a line parallel to the fiber 2.
  • the lenses 6 can also be attached directly to the optical fiber.
  • a method for producing such lenses is described, for example, in application DE 197 13 374.6 (application 3/97) by Koops et al. known, to which express reference is hereby made.
  • a lens can be applied to the optical cladding of the fiber.
  • the lenses to be used are mounted on the surfaces of the cylindrical optical cladding and can be vapor-deposited. by corpuscular beam lithography with a large focal depth or by X-ray lithography with intensity-modulated masks.
  • the lens can also be produced by polymerization, that is to say it can be produced by radiation polymerization in the surface of monomers absorbed or vapor-deposited thereon under the action of light emerging from the fiber by diffraction.
  • the material supply for shaping the lens profile should be regulated by a shadow mask.
  • FIG. 2b Another embodiment shown in Fig. 2b is characterized in that obliquely (blazed) inscribed fiber grids 5 consist of a plurality of grids of different periods arranged one behind the other in the optical fiber 2. Each grating is designed in such a way that it couples light of a single frequency out of the optical fiber 2 and emits it. As a result, as in the case of FIG. 2a, line-type arrangements of the individual light pulses outside the optical fiber 2 can be achieved by focusing elements 6.
  • FIG. 3 is characterized in that individual fiber grids 5 inscribed at an angle (blazed) are arranged in the optical fiber 2 in the manner of spiral staircases.
  • the impulses can be on two-dimensional areas 4, for example one Arrange the screen in rows and columns.
  • Each aisle of the spiral grid group corresponds approximately to a row on which the individual columns run side by side.
  • Places next to each other in the line correspond to successive grids in fiber 2 with a slightly different nesting level.
  • Places in the columns below one another correspond to grids in screw turns of the spiral staircase lying directly behind one another.
  • the optical fibers 2 can also be twisted or twisted (without illustration) and thus achieve the same effect of arranging the area of the light pulses.
  • the frequency-dividing elements can also be designed as gratings, which are characterized in that they are photonic crystals 7.
  • Photonic crystals are crystals with lattice constants of a few hundred nanometers. which, in contrast to the fiber grids described above, consist of much fewer individual elements (grating components), since the refractive index differences are far greater than with the fiber grids. In addition, resonance effects increase their efficiency.
  • H. Koops describes photonic crystals and their production in the article "Photonic crystals built by three-dimensional additive lithography enable integrated optic of high density", SPIE. Vol. 2849/29 (Denver / USA 1996), to which reference is expressly made here.
  • the photonic crystals can act as frequency-selective mirrors. Prisms or beam splitters are formed.
  • the photonic crystals are used as in Fig. 1 at the end of the glass fiber or as in Fig. 4 in small etched channels or pits 8 in the glass fiber 2.
  • a method for producing such small channels or pits 8 in the glass fiber 2 is described, for example, in application DE 197 13 371.1 (3/97) by H. Koops et al. under the title "Wavelength decoupling from D-Pro fil fibers with photonic
  • Crystals " which is also expressly referred to here.
  • light is transmitted in a D-profile fiber directly below the fiber surface.
  • this fiber surface by lithography and dry etching, by chemical wet etching or by laser or ion ablation only one a few micrometers wider Incision made.
  • lithography and dry etching by chemical wet etching or by laser or ion ablation only one a few micrometers wider Incision made.
  • a photonic crystal is then inserted exactly into the path of the light, through which a small part of the spectrum can be coupled into or out of the fiber due to the selective effect of the crystal on the transmitted light.
  • This light which covers a small spectral range, can be coupled out laterally from the fiber, since media made of photonic crystal either transmit light or only transmit it inside the material, provided that the light has a certain wavelength. Due to the special nature of the crystal, part of the light can be reflected from the fiber at an angle of less than 90 °. With the help of a three-
  • the photonic crystals bend the light of frequency v ; from the fiber 2.
  • the different frequencies and thus light impulses can be coupled out of the fiber 2 in pits (sections) 8 in the glass fiber 2 and can be depicted with focusing elements on an area 4 or in further waveguides or couple detectors.
  • the message is transmitted with the aid of the frequency-dividing elements described above, ie with individual light pulse sequences.
  • Each of these sequences consists of a number of optical pulses which are spatially separated from one another by the new element and e.g. projected onto a screen.
  • the impulses arrive on the screen only at certain positions of the screen 4 at the same time.
  • the screen 4 can be tilted or, under certain circumstances, curved in order to simultaneously display all the pulses by lighting up. In the case of a flat, two-dimensional area, the curvature creates a three-dimensional shape in the sense of this writing.
  • the delay can take place instead of an inclination or curvature (or in combination with both) in that the screen 4 is coated with a fluorescent or phosphorescent substance which continues to glow until all the pulses are one Pulse train have arrived.
  • electrical or electro-optical switching elements must be used which separate the individual sequences.
  • the individual pulses can be caught by glass fibers 9 instead of a screen after the frequency-dividing element and can be displayed on a matrix 10.
  • Each individual glass fiber 9 must serve as a delay path (delay interval) for the pulses it collects, so that the pulses of a frequency sequence are imaged on the matrix 10 at the same time.
  • Detectors are required for further optical processing, which take into account the broadband nature of the pulse sequence.
  • Other delay elements can be designed as an air gap or glass prism or gradient index prism.
  • detectors can be used directly. Each pulse of a sequence is detected separately, and the delay for parallel electronic processing takes place in the electrical area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Die Erfindung betrifft ein optisches Nachrichtenübertragungssystem mit frequenzaufteilenden optischen Bauelementen, bei denen Lichtimpulse mit unterschiedlichen Frequenzen durch Fasergitter und/oder photonische Kristalle aus einer optischen Faser ausgekoppelt und durch Fokussierelemente außerhalb der optischen Faser abgebildet werden. Die Fasergitter für verschiedene Frequenzen können in einer einzigen Periode oder in verschiedenen Perioden hintereinander angeordnet sein. Die photonischen Kristalle können am Ende der optischen Faser verwendet oder in einen Kanal oder eine Grube in einer Glasfaser eingeätzt werden. Durch zusätzliche Verzögerungselemente wird sichergestellt, daß Lichtimpulse mit unterschiedlicher Frequenz gleichzeitig in einem vorgegebenen und erwünschten Zeitverhältnis nach Maßgabe einer parallelen Weiterverarbeitung abgebildet werden.

Description

NACHRICHTENÜBERTRAGUNGSSYSTEM MIT FREQUENZAUFTEILENDEN OPTISCHEN BAUELEMENTEN ZUR PARALLELVERARBEITUNG OPTISCHER
IMPULSE
GEBIET DER ERFINDUNG
Die vorliegende Erfindung betrifft ein Nachrichtenübertragungssystem mit frequenzaufteilenden optischen Bauelementen zur Parallelverarbeitung optischer Impulse, insbesondere die Verwendung von Fasergittern und photonischen Kristallen für die räumliche Verteilung der frequenzcodierten optischen Impulse.
STAND DER TECHNIK
Die optische Nachrichtenübertragung erfolgt fast immer durch eine sequentielle Folge einzelner, binär kodierter Lichtimpulse. Da die Übertragungsfrequenzen heute bereits in Bereiche vorstoßen, die eine elektronische Datenverarbeitung und insbesondere komplizierte Verschlüsselungen und Entschlüsselungen zur geheimen Übermittlung nicht mehr erlauben, besteht ein hoher Bedarf an optischen Elementen, die die zeitliche Bitfolge in ein ein- oder mehrdimensionales räumliches Areal einlesen. um sie dann optisch parallel weiterverarbeiten zu können. Die optische Parallelverarbeitung ist in der Lage, eine große Menge binärer oder analoger Signale, die zu einem Bild oder Muster angeordnet sind, gleichzeitig zu transformieren, und arbeitet somit erheblich schneller als ein elektronischer Rechner. Bei Arealen von 1000 x 1000 optischen Punkten (pixels) wäre ohne weiteres eine Parallelverarbeitung von 106 Signalen und für gewisse optische Operationen, wie z. B. der Fouriertransformation, ein außerordentlich hoher Zeitgewinn zu erzielen. Da optische Fouriertransformationen ein wesentlicher Bestandteil der maschinellen Mustererkennung sind, würden gerade Verschlüsselungen und Entschlüsselungen von Nachrichten optisch leicht und sehr schnell erfolgen können.
Bekannte elektrooptische Bauteile, die eine zeitliche Impulsfolge in ein räumliches Areal einlesen. können z. B. auf der Grundlage der Brownschen Röhre aufgebaut sein. Wie aus DE 196 09 234.5 bekannt ist (H. Koops, Anmeldung 3/96), das nicht unbedingt als Vorpatent zur vorliegenden Erfindung zu betrachten ist, kann der Elektronenstrahl derzeit nur in Mikroröhren schnell genug ablenkt werden, um Signale im Multigigahertzbereich einzulesen.
Eine andere Methode kodiert die einzelnen optischen Impulse alternierend mit Hilfe der Polarisation des Lichtes. Der erste, dritte, fünfte usw., also jeder ungerade Impuls, wird z. B. vertikal, alle Impulse mit gerader Nummer horizontal linear polarisiert. Dann lassen sich mit Hilfe eines polarisierenden Strahlteilers jeweils wenigstens die geraden und ungeraden Impulse örtlich trennen. Eine Kaskadierung ermöglicht höhere Trennungsgrade. Der Vorteil dieser Methode liegt darin, daß das separierende Element - der Strahlteiler - rein passiv ist. Nachdem die Impulse z. B. elektrooptisch polarisationskodiert wurden, ist keine aktive
Schaltung mehr notwendig. Der Nachteil des Verfahrens ist offensichtlich die geringe Zahl von nur zwei parallelen Kanälen pro Kaskadenstufe.
ZUSAMMENFASSUNG DER ERFINDUNG Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß die einzelnen aufeinanderfolgenden optischen Impulse anstelle der Polarisationskodierung eine Frequenzkodierung haben. Da die Frequenz des Lichtes innerhalb eines optischen Fensters der Telekommunikation ohne weiteres um 100 um geändert werden kann, andererseits sich Halbleiterlaser durch Veränderung der angelegten Spannung um mehrere Nanometer verstimmen lassen, besteht im Prinzip die Möglichkeit, optischen Impulsen unterschiedliche Frequenzen in einem breiten Bereich zuzuordnen. Dazu müssen mehrere Halbleiterlaser mit verschiedenen Schwerpunktfrequenzen elektrisch schaltbar in ihrer Abstrahlfrequenz geändert werden können. Die entstehenden optischen Impulse unterschiedlicher Frequenz werden dann zur Nachrichtenübertragung binär kodiert und in die übertragende Glasfaser eingespeist. Die Nachricht wird also einer Folge von Impulsen aufgeprägt, von denen der erste die Frequenz v, hat. Dabei gilt z. B. V, < V2 < V3 < — < V; < Vi+1 < — < VN.
KURZERLÄUTERUNG DER ZEICHNUNGEN Abb. 1 zeigt die Verwendung eines passiven optischen Bauteils zur Aufteilung von Licht am Ende einer optischen Faser nach einem Ausführungsbeispiel der Erfindung.
Abb. 2a und 2b zeigen die Verwendung diagonal angeordneter Fasergitter zur Auskoppelung des Lichtes aus der optischen Faser nach zwei AusfijJhrungsbeispielen der Erfindung.
Abb. 3 zeigt eine spiralförmige Anordnung der Fasergitter nach einem Ausführungsbeispiel der Erfindung.
Abb. 4 zeigt die Verwendung von in eine optische Glasfaser eingeätzten photonischen Kristallen zur Frequenzaufteilung von Licht nach einem Ausführungsbeispiel der Erfindung. Abb. 5 a und 5b zeigen die zwischen optischen Impulsen verschiedener Frequenzen eintretende Verzögerung und die Verwendung eines Verzögerungselements zur Gewährleistung einer simultanen Abbildung der Lichtimpulse auf einer Matrix nach einem Ausführungsbeispiel der Erfindung.
DETAILLIERTE BESCHREIBUNG
Die vorliegende Erfindung verwendet ein passives optisches Bauteil, das Licht spektral örtlich aufteilen kann, zur Verteilung der Impulse in einem räumlichen Gebiet. Im Ausführungsbeispiel von Abb. 1 ist ein solches Bauteil 1 jeder Spektrograph auf der Grundlage von Prismen oder Gittern (aber auch das Zweistrahlinterferometer und das Mehrstrahlinterferometer), der in eine optische Faser 2 oder deren Ende eingearbeitet ist, wobei die optische Faser eine frequenzcodierte digitale oder analoge Nachricht 3 als optischen Impuls übermittelt, der auf einem linearen oder Faserareal 4 abgebildet wird. Fasergitter können auch als Spektrographen zur räumlichen Aufteilung der frequenzcodierten Lichtimpulse eingesetzt werden. Solche Fasergitter sind beispielsweise vom US- amerikanischen Patent Nr. 5,546,481 an Meltz et. al. her bekannt, auf das hiermit ausdrücklich verwiesen wird.
In der Darstellung in Abb. 2a und 2b sind schräg (geblazed) eingeschriebene Gitter 5 diagonal angeordnet, um das Licht aus der Faser auszukoppeln. Durch geeignete fokussierende Elemente 6, wie beispielsweise die aus Anmeldung DE 196 30 705 AI (7/96, veröffentlicht 3/97) von H. Koops. auf die hier ausdrücklich verwiesen wird, bekannten anamorphotischen Linsen, lassen sich die Strahlen einer einzelnen Frequenz (Farbe) auf einem linearen Areal 4 punktförmig vereinigen. Jede Frequenz v, hat dabei einen anderen Fokussierpunkt. die alle z. B. auf einer Linie parallel zur Faser 2 liegen. Was die Linsen 6 betrifft, so können diese auch direkt auf der optischen Faser angebracht werden. Eine Methode zur Herstellung solcher Linsen ist beispielsweise aus Anmeldung DE 197 13 374.6 (Anmeldung 3/97) von Koops et al. bekannt, auf die hiermit ausdrücklich verwiesen wird. Bei einer optischen Faser mit einem schräg (geblazed)eingeschriebenen Bragg-Fasergitter kann eine Linse auf den optischen Mantel der Faser aufgebracht werden. Die zu verwendenden Linsen werden auf den Oberflächen des zylindrischen optischen Mantels montiert und können nach dem AufdampfVerfahren. durch Korpuskularstrahlen-Lithographie mit großer Fokaltiefe oder durch Röntgenlithographie mit intensitätsmodulierten Masken angefertigt werden. Ferner kann die Linse auch durch Polymerisation hergestellt werden, d.h. durch Strahlenpolymerisation in die Oberfläche absorbierter oder auf sie aufgedampfter Monomere unter Einwirkung von aus der Faser durch Beugung austretendem Licht angefertigt werden. Dabei sollte die Materialzufuhr zur Formgebung des Linsenprofils durch eine Lochmaske geregelt werden.
Eine weitere, in Abb. 2b dargestellte Ausführungsform ist dadurch gekennzeichnet, daß schräg (geblazed) eingeschriebene Fasergitter 5 aus mehreren hintereinander in der optischen Faser 2 angeordneten Gittern unterschiedlicher Periode bestehen. Jedes Gitter ist so anlegt, daß es Licht einer einzigen Frequenz aus der optischen Faser 2 auskoppelt und abstrahlt. Dadurch lassen sich ebenfalls wie im Fall Abb. 2a durch fokussierende Elemente 6 linienhafte Anordnungen der einzelnen Lichtimpulse außerhalb der optischen Faser 2 erreichen. Eine weitere, in Abb. 3 dargestellte Ausführungsform ist dadurch gekennzeichnet, daß einzelne schräg (geblazed) eingeschriebene Fasergitter 5 wendeltreppenartig in der optischen Faser 2 angeordnet sind. Dadurch und in Verbindung mit geeigneten fokussierenden Elementen 6 (hier ohne Abbildung, jedoch denen in den anderen Abbildungen entsprechend)lassen sich die Impulse auf zweidimensionalen Arealen 4, beispielsweise einem Schirm, zeilen- und spaltenweise anordnen. Jeder Gang der spiralförmigen Gittergruppe entspricht etwa einer Zeile, auf der nebeneinander die einzelnen Spalten laufen. Nebeneinander liegende Plätze in der Zeile entsprechen hintereinander liegenden Gittern in der Faser 2 mit leicht unterschiedlicher Schmiegeebene. Untereinander liegende Plätze in den Spalten ent- sprechen Gittern in direkt hintereinander liegenden Schraubenwindungen der Wendeltreppe. Anstelle der wendelförmigen Anordnung der Gitter lassen sich auch die optischen Fasern 2 wendein oder tordieren (ohne Abbildung) und so der gleiche Effekt einer Arealanordnung der Lichtimpulse erreichen.
In einem weiteren Ausfiihrungsbeispiel, dargestellt in Abb. 4, lassen sich an Stelle von lichtgenerierten Fasergittern die frequenzaufteilenden Elemente auch als Gitter ausbilden, die dadurch gekennzeichnet sind, daß sie photonische Kristalle 7 sind. Photonische Kristalle sind Kristalle mit Gitterkonstanten von einigen hundert Nanometern. die im Gegensatz zu den oben beschriebenen Fasergittern aus viel weniger Einzelelementen (Gitterbausteinen) bestehen, da die Brechungsindexunterschiede weitaus größer sind als bei den Fasergittern. Außerdem verstärken Resonanzeffekte ihre Effizienz. Photonische Kristalle und ihre Herstellung werden von H. Koops in dem Artikel "Photonic crystals built by three- dimensional additive lithography enable integrated optic of high density", SPIE. Bd. 2849/29 (Denver/USA 1996)behandelt, auf den hier ausdrücklich verwiesen wird. Die photonischen Kristalle können ebenso wie die Fasergitter als frequenzselektive Spiegel. Prismen oder Strahlteiler ausgebildet werden.
Die photonischen Kristalle werden wie in Abb. 1 am Ende der Glasfaser angewandt oder wie in Abb. 4 in kleinen eingeätzten Kanälen oder Gruben 8 in der Glasfaser 2 untergebracht. Ein Verfahren zur Herstellung solcher kleiner Kanäle oder Gruben 8 in der Glasfaser 2 ist beispielsweise aus Anmeldung DE 197 13 371.1 (3/97) von H. Koops et al. unter dem Titel "Wellenlängen-Entkopplung aus D-Pro fil-Fasern mit photonischen
Kristallen" bekannt, auf die hier ebenfalls ausdrücklich verwiesen wird. Im genannten Patent wird Licht in einer D-Profil-Faser unmittelbar unterhalb der Faseroberfläche übertragen. In diese Faseroberfläche wird durch Lithographie und Trockenätzung, durch chemische Naßätzung oder durch Laser- oder Ionenablation ein nur wenige Mikrometer breiter Einschnitt vorgenommen. Durch additive, dreidimensionale Lithographie wird sodann ein photonischer Kristall genau in die Bahn des Lichtes eingesetzt, durch den aufgrund des selektiven Effekts des Kristalls auf das übertragene Licht ein kleiner Teil des Spektrums in die Faser hinein oder aus ihr heraus gekoppelt werden kann. Dieses Licht, das einen kleinen Spektralbereich umfaßt, kann seitlich aus der Faser ausgekoppelt werden, da Medien aus photonischem Kristall Licht entweder durchlassen oder ausschließlich im Inneren des Materials weiterleiten, sofern das Licht eine bestimmte Wellenlänge hat. Aufgrund der besonderen Beschaffenheit des Kristalls kann auf diese Weise ein Teil des Lichtes mit einem Winkel von weniger als 90° aus der Faser reflektiert werden. Mit Hilfe einer dreidimensional konstruierten Linse kann das Licht auch in eine weiterführende Faser abgelenkt werden.
Von den Kanälen oder Gruben aus beugen die photonischen Kristalle also das Licht der Frequenz v; aus der Faser 2. Durch geeignete Gitterkonstanten der photonischen Kristalle 7 lassen sich in hintereinander liegenden Gruben (Ausschnitten) 8 in der Glasfaser 2 die verschiedenen Frequenzen und damit Lichtimpulse aus der Faser 2 auskoppeln und mit fokussierenden Elementen auf einem Areal 4 abbilden oder in weitere Wellenleiter oder Detektoren einkoppeln.
In einem Ausführungsbeispiel, dargestellt in Abb. 5a und 5b, erfolgt die Nachrichtenübertragung mit Hilfe der oben beschriebenen frequenzaufteilenden Elemente also mit einzelnen Lichtimpulsfolgen. Jede dieser Folgen besteht aus einer Zahl von optischen Impulsen, die durch das neue Element räumlich voneinander getrennt und z.B. auf einen Schirm projiziert werden. Wie man sich anhand Abb. 5a leicht klarmacht, treffen die Impulse nur bei gewissen Stellungen des Schirmes 4 zur gleichen Zeit auf dem Schirm ein. Als Verzögerungsmechanismus für einige der einzelnen Lichtimpulssequenzen kann der Schirm 4 gekippt oder unter Umständen gekrümmt werden, um gleichzeitig alle Impulse durch Aufleuchten anzuzeigen. Im Falle eines flachen, zweidimensionalen Areals entsteht durch die Krümmung eine dreidimensionale Form im Sinne dieser Schrift.
Die Verzögerung kann anstelle einer Neigung oder Krümmung (oder in Verbindung mit beiden)auch dadurch erfolgen, daß der Schirm 4 mit einem Fluoreszenz- oder Phosphoreszenzstoff bestrichen ist, der so lange nachleuchtet, bis alle Impulse einer Impulsfolge eingetroffen sind. Um ein starkes unerwünschtes Nachleuchten zu vermeiden, das die einzelnen Impulsfolgen überlappen läßt, müssen elektrische oder elektrooptische Schaltelemente verwendet werden, die die einzelnen Folgen trennen.
In einem Ausfuhrungsbeispiel, dargestellt in Abb. 5b, können die Einzelimpulse anstelle eines Schirmes nach dem frequenzaufteilenden Element durch Glasfasern 9 aufgefangen und auf einer Matrix 10 abgebildet werden. Jede einzelne Glasfaser 9 muß für die von ihr aufgefangenen Impulse als Verzögerungsstrecke (Verzögerungsintervall) dienen, so daß die Impulse einer Frequenzfolge zur gleichen Zeit auf der Matrix 10 abgebildet werden. Zur optischen Weiterverarbeitung werden Detektoren benötigt, die der Breitban- digkeit der Impulsfolge Rechnung tragen. Andere Verzögerungselemente können als Luftstrecke oder Glasprisma oder Gradientenindexprisma ausgebildet sein.
Anstelle der Glasfasern 9 können Detektoren direkt verwendet werden. Jeder Impuls einer Folge wird getrennt detektiert, und die Verzögerung zur parallelen elektronischen Weiterverarbeitung erfolgt im elektrischen Bereich.

Claims

PATENTANSPRÜCHE
1. Optisches Nachrichtenübertragungssystem, dadurch gekennzeichnet, daß mehrere optische Einzelimpulse, mit denen die digitale oder analoge Nachrichtenübertragung erfolgt, unterschiedliche Lichtfrequenzen haben, bestehend aus: einer optischen Faser; einem frequenzaufteilenden optischen Bauelement zur Aufteilung der optischen Einzelimpulse anhand ihrer unterschiedlichen Lichtfrequenzen; und einem Areal, dadurch gekennzeichnet, daß die optischen Einzelimpulse durch die optische Faser übertragen und durch das frequenzaufteilende optische Bauelement aufgeteilt werden, so daß sie zur Weiterverarbeitung nebeneinander auf dem Areal abgebildet werden.
2. Optisches Nachrichtenübertragungssystem nach Anspruch 1. dadurch gekennzeichnet, daß mindestens ein Fokussierelement zur Fokussierung mindestens eines der aufgespaltenen optischen Einzelimpulse auf dem Areal vorgesehen ist.
3. Optisches Nachrichtenübertragungssystem nach Anspruch 2, dadurch gekennzeichnet, daß für jeden der aufgeteilten optischen Einzelimpulse ein entsprechendes Fokussierelement vorgesehen ist.
4. Optisches Nachrichtenübertragungssystem nach Anspruch 1, dadurch gekennzeichnet, daß das frequenzaufteilende Bauelement ein Spektrograph ist, durch den sich die optischen Impulse lokal voneinander trennen und auf dem Areal anordnen lassen.
5. Optisches Nachrichtenübertragungssystem nach Anspruch 1 , dadurch gekennzeichnet, daß das Areal als lineares Areal ausgebildet ist.
6. Optisches Nachrichtenübertragungssystem nach Anspruch 1, dadurch gekennzeichnet, daß das Areal als zweidimensionales Areal ausgebildet ist.
7. Optisches Nachrichtenübertragungssystem nach Anspruch 1. dadurch gekennzeichnet, daß das Areal als dreidimensionales Areal ausgebildet ist.
8. Optisches Nachrichtenübertragungssystem nach Anspruch 1, dadurch gekennzeichnet. daß das Areal so geformt ist. daß die optischen Einzelimpulse gleichzeitig parallel auf dem
Areal abgebildet werden.
9. Optisches Nachrichtenübertragungssystem nach Anspruch 1. dadurch gekennzeichnet, daß das frequenzaufteilende optische Bauelement auf der Grundlage eines Prismenspektrographen aufgebaut ist.
10. Optisches Nachrichtenübertragungssystem nach Anspruch 1, dadurch gekennzeichnet, daß das frequenzaufteilende optische Bauelement auf der Grundlage eines Gitterspektrographen aufgebaut ist.
11. Optisches Nachrichtenübertragungssystem nach Anspruch 1 , dadurch gekennzeichnet, daß das frequenzaufteilende optische Bauelement auf der Grundlage eines Zweistrahlinterferometers aufgebaut ist.
12. Optisches Nachrichtenübertragungssystem nach Anspruch 1. dadurch gekennzeichnet, daß das frequenzaufteilende optische Bauelement auf der Grundlage eines Vielstrahlinterferometers aufgebaut ist.
13. Optisches Nachrichtenübertragungssystem nach Anspruch 1, dadurch gekennzeichnet, daß das frequenzaufteilende optische Bauelement aus mehreren Fasergittern besteht, die in der optischen Faser entweder als diagonal (geblazed) eingeschriebene Fasergitter oder als wendeltreppenartige Fasergitter angeordnet sind.
14. Optisches Nachrichtenübertragungssystem nach Anspruch 1, dadurch gekennzeichnet, daß das frequenzaufteilende optische Bauelement in Form mehrerer photonischer Kristalle ausgebildet ist.
15. Optisches Nachrichtenübertragungssystem nach Anspruch 14, dadurch gekennzeichnet, daß das Areal zweidimensional ausgebildet ist.
16. Optisches Nachrichtenübertragungssystem nach Anspruch 1 , weiter dadurch gekennzeichnet, daß mindestens ein Verzögerungselement zur Verzögerung ausgewählter optischer Impulse vorgesehen ist.
17. Optisches Nachrichtenübertragungssystem nach Anspruch 16, dadurch gekennzeichnet, daß das Verzögerungselement den Laufzeitunterschied der optischen Einzelimpulse ausgleicht, so daß diese auf dem Areal gleichzeitig weiterverarbeitet werden können.
18. Optisches Nachrichtenübertragungssystem nach Anspruch 16, dadurch gekennzeichnet, daß das Verzögerungselement als fluoreszierender oder phosphoreszierender Schirm ausgebildet ist, der den Laufzeitunterschied der einzelnen Impulse durch genügend lange optische Abklingzeiten ausgleicht.
19. Optisches Nachrichtenübertragungssystem nach Anspruch 16, dadurch gekennzeichnet, daß das Verzögerungselement als Luftstrecke oder als Glasfaserbündel ausgebildet ist.
20. Optisches Nachrichtenübertragungssystem nach Anspruch 16, dadurch gekennzeichnet, daß das Verzögerungselement als Glasprisma oder als Gradientenindexprisma ausgebildet ist.
PCT/EP1998/003085 1997-06-25 1998-05-26 Nachrichtenübertragungssystem mit frequenzaufteilenden optischen bauelementen zur parallelverarbeitung optischer impulse WO1999000956A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002287326A CA2287326C (en) 1997-06-25 1998-05-26 Message transmission system with frequency dividing optical components for parallel processing of optical pulses
EP98928318A EP0992141B1 (de) 1997-06-25 1998-05-26 Einrichtung zur übertragung von optischen signalen unterschiedlicher frequenzen
JP50523799A JP4087462B2 (ja) 1997-06-25 1998-05-26 異なる周波数の光信号を伝送および処理する装置
DE59813478T DE59813478D1 (de) 1997-06-25 1998-05-26 Einrichtung zur übertragung von optischen signalen unterschiedlicher frequenzen
NO19996407A NO321776B1 (no) 1997-06-25 1999-12-22 Innretning til overforing og behandling av optiske signaler med forskjellige frekvenser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/882,638 1997-06-25
US08/882,638 US6198557B1 (en) 1997-06-25 1997-06-25 Telecommunication system having frequency-dividing optical components for the parallel processing of optical pulses

Publications (1)

Publication Number Publication Date
WO1999000956A1 true WO1999000956A1 (de) 1999-01-07

Family

ID=25381019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/003085 WO1999000956A1 (de) 1997-06-25 1998-05-26 Nachrichtenübertragungssystem mit frequenzaufteilenden optischen bauelementen zur parallelverarbeitung optischer impulse

Country Status (8)

Country Link
US (1) US6198557B1 (de)
EP (1) EP0992141B1 (de)
JP (1) JP4087462B2 (de)
AT (1) ATE322786T1 (de)
CA (1) CA2287326C (de)
DE (1) DE59813478D1 (de)
NO (1) NO321776B1 (de)
WO (1) WO1999000956A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059140A1 (de) * 1999-03-26 2000-10-05 Deutsche Telekom Ag Verfahren zur dispersionskompensation gemeinsam übertragener optischer signale mit unterschiedlichen wellenlängen, mittels photonischer kristalle

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519224C2 (sv) * 2000-12-29 2003-02-04 Proximion Fiber Optics Ab Optiskt arrangemang
US6865320B1 (en) * 2002-03-15 2005-03-08 Fitel U.S.A. Corp. Optical taps formed using fiber gratings
US7010195B2 (en) * 2002-03-15 2006-03-07 Fitel Usa Corp. Fiber optic grating with tunable polarization dependent loss
US6876784B2 (en) * 2002-05-30 2005-04-05 Nanoopto Corporation Optical polarization beam combiner/splitter
US7386205B2 (en) * 2002-06-17 2008-06-10 Jian Wang Optical device and method for making same
US7283571B2 (en) * 2002-06-17 2007-10-16 Jian Wang Method and system for performing wavelength locking of an optical transmission source
US20040047039A1 (en) * 2002-06-17 2004-03-11 Jian Wang Wide angle optical device and method for making same
US6859303B2 (en) 2002-06-18 2005-02-22 Nanoopto Corporation Optical components exhibiting enhanced functionality and method of making same
EP1535106A4 (de) 2002-08-01 2009-01-07 Api Nanofabrication And Res Co Präzisionsphasenverzögerungsvorrichtung und deren herstellungsverfahren
US6920272B2 (en) * 2002-10-09 2005-07-19 Nanoopto Corporation Monolithic tunable lasers and reflectors
US7013064B2 (en) * 2002-10-09 2006-03-14 Nanoopto Corporation Freespace tunable optoelectronic device and method
WO2004072692A2 (en) * 2003-02-10 2004-08-26 Nanoopto Corporation Universal broadband polarizer, devices incorporating same, and method of making same
US7092344B2 (en) * 2003-04-18 2006-08-15 Lucere Enterprises, Ltd. Apparatus for creating a multi-dimensional data signal
US20040258355A1 (en) * 2003-06-17 2004-12-23 Jian Wang Micro-structure induced birefringent waveguiding devices and methods of making same
US20050052982A1 (en) * 2003-09-09 2005-03-10 Lucere, Lp Virtual head for generating a multi-dimensional data signal
CA2911446C (en) 2012-05-25 2020-10-13 Vascular Imaging Corporation Optical fiber pressure sensor
US10327645B2 (en) * 2013-10-04 2019-06-25 Vascular Imaging Corporation Imaging techniques using an imaging guidewire
US10537255B2 (en) 2013-11-21 2020-01-21 Phyzhon Health Inc. Optical fiber pressure sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635278A (en) * 1983-09-12 1987-01-06 Sanders Associates, Inc. Autoregressive digital telecommunications system
JPH07139996A (ja) * 1993-11-15 1995-06-02 Oki Electric Ind Co Ltd 多重出力光ファイバセンサ装置
DE19630705A1 (de) * 1995-08-30 1997-03-20 Deutsche Telekom Ag Verfahren zur Herstellung von 3-dimensional strukturierten Polymerschichten für die integrierte Optik

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920983A (en) * 1973-10-10 1975-11-18 Gte Laboratories Inc Multi-channel optical communications system utilizing multi wavelength dye laser
US4405199A (en) * 1981-02-11 1983-09-20 Ogle James W Method for enhancing signals transmitted over optical fibers
US4822127A (en) * 1986-06-16 1989-04-18 Shiley Incorporated Multi-channel optical transmission system
US4839884A (en) * 1988-03-04 1989-06-13 General Electric Company Multiple wavelength optical source and multiplexed light communication system
DE3904752A1 (de) * 1989-02-16 1990-08-23 Siemens Ag Vorrichtung fuer den optischen direktempfang mehrerer wellenlaengen
US5099114A (en) * 1989-04-28 1992-03-24 Nippon Telegraph & Telephone Corporation Optical wavelength demultiplexer
US5245404A (en) * 1990-10-18 1993-09-14 Physical Optics Corportion Raman sensor
US5355237A (en) * 1993-03-17 1994-10-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating
US5450223A (en) * 1993-09-07 1995-09-12 Martin Marietta Corp. Optical demultiplexer for optical/RF signals
FR2725040A1 (fr) * 1994-09-23 1996-03-29 Bruno Adrien Dispositif optoelectronique integrant un recepteur multilongueur d'onde perfectionne
US5546481A (en) 1995-03-02 1996-08-13 United Technologies Corporation Single polarization fiber and amplifier
US5887090A (en) * 1995-06-30 1999-03-23 Yissum Research Development Company Of The Hebrew University Of Jerusalem Optical network
US5838470A (en) * 1995-07-27 1998-11-17 University Technology Corporation Optical wavelength tracking receiver
US5671304A (en) * 1995-12-21 1997-09-23 Universite Laval Two-dimensional optoelectronic tune-switch
JPH09214429A (ja) * 1996-02-05 1997-08-15 Kokusai Denshin Denwa Co Ltd <Kdd> 光アクセス方式
DE19609234A1 (de) 1996-03-09 1997-09-11 Deutsche Telekom Ag Röhrensysteme und Herstellungsverfahren hierzu
US5929986A (en) * 1996-08-26 1999-07-27 Kaiser Optical Systems, Inc. Synchronous spectral line imaging methods and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635278A (en) * 1983-09-12 1987-01-06 Sanders Associates, Inc. Autoregressive digital telecommunications system
JPH07139996A (ja) * 1993-11-15 1995-06-02 Oki Electric Ind Co Ltd 多重出力光ファイバセンサ装置
DE19630705A1 (de) * 1995-08-30 1997-03-20 Deutsche Telekom Ag Verfahren zur Herstellung von 3-dimensional strukturierten Polymerschichten für die integrierte Optik

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 095, no. 009 31 October 1995 (1995-10-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059140A1 (de) * 1999-03-26 2000-10-05 Deutsche Telekom Ag Verfahren zur dispersionskompensation gemeinsam übertragener optischer signale mit unterschiedlichen wellenlängen, mittels photonischer kristalle
US6760513B1 (en) 1999-03-26 2004-07-06 Deutsche Telekom Ag Method using photonic crystals for the dispersion compensation of optical signals of different wavelengths which are transmitted together

Also Published As

Publication number Publication date
ATE322786T1 (de) 2006-04-15
NO996407L (no) 2000-02-21
CA2287326A1 (en) 1999-01-07
JP4087462B2 (ja) 2008-05-21
EP0992141B1 (de) 2006-04-05
EP0992141A1 (de) 2000-04-12
CA2287326C (en) 2005-12-20
US6198557B1 (en) 2001-03-06
JP2002511954A (ja) 2002-04-16
NO996407D0 (no) 1999-12-22
DE59813478D1 (de) 2006-05-18
NO321776B1 (no) 2006-07-03

Similar Documents

Publication Publication Date Title
WO1999000956A1 (de) Nachrichtenübertragungssystem mit frequenzaufteilenden optischen bauelementen zur parallelverarbeitung optischer impulse
EP0788673B1 (de) Anordnung zur führung und formung von strahlen eines geradlinigen laserdiodenarrays
DE19511593C2 (de) Mikrooptische Vorrichtung
DE69733670T2 (de) Optischer demultiplexer mit einem beugungsgitter
DE69731148T2 (de) Festkörperlaserverstärker
DE19743322B4 (de) Laserstrahlformgebungssystem
WO1998044366A1 (de) Faser-integrierte mikrolinsen und optische faser-bragg-gitter-koppler und damit aufgebaute spektrometer und multiplexer
DE19918391A1 (de) Beugungsgitter-Modulatorarray
EP2217961A1 (de) Vorrichtung zur strahlformung
DE102017115786B4 (de) Optische Anordnung und Verfahren zur Erzeugung eines kombinierten Strahls mehrerer Laserlichtquellen
DE102012100209A1 (de) Vorrichtung zum Einkoppeln von Licht in einen Lichtleiter
DE19508754C2 (de) Verfahren und Vorrichtung zum Vermindern von Interferenzen eines kohärenten Lichtbündels
DE60133765T2 (de) Strahlformer
DE69024523T2 (de) Integration von planaren, optischen Freiraum-Komponenten
EP1521110A1 (de) Kohärenzminderer
DE60316469T2 (de) Lichtemissionseinrichtung mit beugendem optischem film auf einer lichtemissionsoberfläche und herstellungsverfahren dafür
DE60026771T2 (de) Optisches Element zur Regelung der Strahlseparation von mehreren Strahlen
EP1601072B1 (de) Strahlformungsoptik und -modul für eine Diodenlaseranordnung
DE10215162B4 (de) Strahlteilervorrichtung und Laserrastermikroskop
DE602006000447T2 (de) System zum optischen Pumpen einer Laserquelle und Laserquelle welche dieses optische Pumpsystem verwendet
DE60115525T2 (de) Polarisierendes doppelbrechendes Filter mit Doppeldurchgang
DE60216765T2 (de) Optisches ablenkmodul
EP2237079B1 (de) Vorrichtung zum Homogenisieren kohärenter Strahlung
DE2506272C2 (de) Belichtungsautomat für einen Röntgengenerator
DE19841285C1 (de) Optische Anordnung zur Verwendung bei einer Laserdiodenanordnung sowie Diodenlaser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998928318

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2287326

Country of ref document: CA

Ref country code: CA

Ref document number: 2287326

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998928318

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998928318

Country of ref document: EP