WO1999000804A1 - Verfahren zur herstellung einer magnetspule für ein ventil und ventil mit einer magnetspule - Google Patents

Verfahren zur herstellung einer magnetspule für ein ventil und ventil mit einer magnetspule Download PDF

Info

Publication number
WO1999000804A1
WO1999000804A1 PCT/DE1998/001142 DE9801142W WO9900804A1 WO 1999000804 A1 WO1999000804 A1 WO 1999000804A1 DE 9801142 W DE9801142 W DE 9801142W WO 9900804 A1 WO9900804 A1 WO 9900804A1
Authority
WO
WIPO (PCT)
Prior art keywords
base body
valve
winding
coil
carrier
Prior art date
Application number
PCT/DE1998/001142
Other languages
English (en)
French (fr)
Inventor
Klaus Noller
Dieter Maier
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP11505195A priority Critical patent/JP2001500321A/ja
Priority to EP98925444A priority patent/EP0922287B1/de
Priority to DE59809336T priority patent/DE59809336D1/de
Priority to US09/254,110 priority patent/US6702253B2/en
Publication of WO1999000804A1 publication Critical patent/WO1999000804A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0665Lift valves with valve member being at least partially ball-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0667Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature acting as a valve or having a short valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0651One-way valve the fluid passing through the solenoid coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling

Definitions

  • the invention relates to a method for producing a solenoid for a valve according to the genus
  • the magnet coil has a circuit to which, inter alia, belongs a magnet coil, by the excitation of which a valve member can be actuated to open or close the valve.
  • the magnet coil is designed in such a way that a coil body made of plastic, as a carrier and protective element, receives a winding, which is carried out with known coil wire.
  • the prefabricated assembly of bobbin and winding is mounted in the valve so that a valve inner tube serving as an inner pole engages in the inner opening of the bobbin, so that the solenoid completely encompasses the inner pole in the circumferential direction.
  • the coil body is applied to the valve inner tube with the help of sealing rings.
  • the method according to the invention for producing a magnetic coil for a valve with the characterizing features of claim 1 has the advantage that valves with smaller dimensions can be produced in a compact manner in a simple manner. Installation space is advantageously saved by the direct application of a winding support to an inner base body (valve inner tube, inner pole) of the valve, since the radial wall thicknesses of the winding support can be made very thin. Overall, valves with smaller outside diameters can be realized.
  • a separate assembly device for attaching the coil wire to a coil former to form an independent assembly can be omitted, since the winding is introduced into the winding carrier already provided on the base body, so that a cost reduction is achieved.
  • valve according to the invention with the characterizing features of claim 9 has the advantage of a very small and compact design, so that a reduced installation space is required when using such a valve, for example in an internal combustion engine.
  • winding carrier saves material. In addition to reducing the dimensions of the valve, there is also a reduction in mass.
  • FIG. 1 shows a valve with a magnet coil arrangement produced according to the invention
  • FIGS. 2a and 2b show a first example for attaching a magnet coil to an inner valve component
  • FIGS. 3a and 3b show a second example for attaching a magnet coil on an inner valve component.
  • the valve in the form of an electromagnetically actuable injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines which is shown by way of example and partially in accordance with the invention in FIG. -flow as well as Serving valve seat support and representing a valve inner tube, largely tubular metal base body 2.
  • This valve is described by way of example for solenoid valves, which can have magnet coils 1 according to the invention in their various designs.
  • the base body 2 is stepped several times and is designed to be stepped upstream of the magnet coil 1 in the radial direction, so that the base body 2 with an upper cover section 3 partially envelops the magnet coil 1 radially and enables a particularly compact structure of the injection valve in the area of the magnet coil 1.
  • the magnet coil 1 is from an outer sleeve-shaped, for. B. ferromagneti Service valve jacket 5 surrounded as an outer pole, which completely surrounds the magnet coil 1 in the circumferential direction and at its upper end firmly with the base body 2 on the cover portion 3 z. B. is connected by a weld 6.
  • the base body 2 downstream of the magnet coil 1 is also designed in a stepped manner, so that a guide section 8 is formed which axially delimits the magnet coil 1 similar to the cover section 3, the guide section 8 delimiting the magnet coil 1 downwards or in the downstream direction.
  • the cover section 3, the guide section 8 and the elongated inner part of the base body 2 delimit an annular, chamber-like coil space 9, in which the actual winding 4 of the magnet coil 1 is introduced.
  • the valve jacket 5 closes off the coil space 9 from the outside.
  • the base body 2 has an inner, concentric to one
  • Longitudinal valve 11 extending longitudinal axis 11, which in an upstream area 11a as a fuel flow channel and in a downstream area 11b additionally at least partially as a guide opening for a along the valve longitudinal axis 10 axially movable valve needle 12 is used.
  • the area 11b has a larger diameter than the area 11a, since a step shoulder 13 is provided in the longitudinal opening 11 in the axial extension area of the magnet coil 1.
  • the base body 2 Immediately downstream of the step 13, the base body 2 has a thin-walled magnetic throttle point 16 on the circumference, which is surrounded by the magnet coil 1.
  • the base body 2 functions as a valve seat support, since a valve seat body 14 having a fixed valve seat surface 15 as a valve seat is introduced at the downstream end of the region 11b of the longitudinal opening 11.
  • the valve seat body 14 is fixedly connected to the base body 2 by means of a weld seam, for example produced by means of a laser.
  • the lower region 11b of the longitudinal opening 11 serves to receive the valve needle 12, which is formed by an armature 17 and a spherical valve closing body 18.
  • On the downstream end face of the valve seat body 14 is, for. B. in a recess 19 a flat spray plate 20, the fixed connection of valve seat body 14 and spray plate 20 z. B. is realized by a circumferential weld seam 21.
  • the armature 17 serving as a closing body support is firmly connected at its downstream end facing the spraying orifice plate 20 to the spherical valve closing body 18, for example by a weld seam.
  • the injection valve is actuated electromagnetically in a known manner. For the axial movement of the
  • Valve needle 12 and thus for opening against the spring force of a return spring 25 or closing the injection valve, the electromagnetic circuit with the solenoid 1, the inner base 2, the outer valve jacket 5 and the armature 17 is used.
  • the armature 17 is corresponding to the Base body 2 aligned.
  • the return spring 25 extends in the longitudinal opening 11, for example, both downstream and upstream of the stepped shoulder 13, that is to say in both regions 11a and 11b.
  • the spherical valve closing body 18 interacts with the valve seat surface 15 of the valve seat body 14 which tapers in the shape of a truncated cone and is formed in the axial direction downstream of a guide opening in the valve seat body 14.
  • the spray orifice plate 20 has at least one, for example four, spray openings 27 formed by eroding or stamping.
  • the insertion depth of the valve seat body 14 in the injection valve is, among other things, decisive for the stroke of the valve needle 12.
  • the one end position of the valve needle 12 when the solenoid coil 1 is not energized is determined by the valve closing body 18 bearing against the valve seat surface 15 of the valve seat body 14, while the other End position of the valve needle 12 when excited
  • Magnetic coil 1 results from the system of the armature 17 on the step shoulder 13 of the base body 2.
  • the stroke is set e.g. by axially displacing the valve seat body 14, which is subsequently firmly connected to the base body 2 in accordance with the desired position.
  • an adjusting sleeve 29 is inserted into the upper region 11a of the longitudinal opening 11.
  • the adjusting sleeve 29 is used to adjust the spring preload of the return spring 25 abutting the adjusting sleeve 29, which is supported with its opposite side on a bottom region 30 of an inner recess 31 in the closing body carrier 17, an adjustment also being made the dynamic spraying quantity with the adjusting sleeve 29.
  • the anchor 17 has e.g. in the axial extent of the magnetic throttle point 16 on the outer circumference on an annular upper guide surface 32, which serves to guide the axially movable valve needle 12 in the longitudinal opening 11.
  • the armature 17 has an upper abutment surface 33 facing the step 13, which is provided with a wear protection layer, e.g. is chrome plated.
  • a through opening 34 is formed in the closing body carrier 17, which extends as far as the valve closing body 18.
  • a plurality of branch openings 35 branch off from the through opening 34 and extend to the outer one
  • Branch openings 35 can be designed freely (e.g. with circular, elliptical or polygonal cross sections) and can run radially or at an angle.
  • a valve in the construction described above is characterized by its particularly compact construction, so that a very small, handy component is formed, the valve jacket 5 of which has an outer diameter of only about 11 to 14 mm, for example.
  • the components described so far form a preassembled independent assembly, which as
  • Functional part 40 can be called.
  • the fully set and assembled functional part 40 has z. B. an upper end face 42, here the cover portion 3, on which, for example, two contact pins 43 protrude. Via the electrical contact pins 43, which are called electrical Serve connecting elements, the electrical contacting of the winding 4 of the magnet coil 1 and thus their excitation.
  • connection part (not shown) can be connected, which is distinguished above all by the fact that it comprises the electrical and the hydraulic connection of the entire injection valve.
  • a hydraulic connection between the connection part (not shown) and the functional part 40 is achieved in the fully assembled injection valve in that flow bores of the two assemblies are brought together so that an unimpeded flow of fuel is ensured. It is then z. B. the end face 42 of the functional part 40 directly on a lower
  • connection part When the connection part is mounted on the functional part 40, a base body connector 45 of the base body 2 projecting beyond the end face 42 and thus over the cover section 3 can protrude into a flow bore of the connection part in order to increase the connection stability.
  • a sealing ring 46 In the connection area for secure sealing z. B. is provided a sealing ring 46 which rests on the end face 42 of the cover portion 3 surrounding the base body 45.
  • Contact pins 43 form a secure electrical connection with corresponding electrical connecting elements of the connecting part in the fully assembled valve.
  • FIGS. 2a and 2b show the base body 2 already known from FIG. 1, on the one hand before insertion and on the other hand after Introducing the winding 4 of the magnet coil 1.
  • the winding 4 is not carried out on a coil body, as is known from known valves, which is assembled together with the winding as a prefabricated assembly, but on an already on the base body 2 or on Inner pole or winding support 50 provided on the valve inner tube, which, for example, adhesively lines the coil space 9 along the wall of the base body 2 as a thin layer 50a.
  • the thin layer 50a adheres adhesively to the surface of the base body 2 and, for example, also completely fills an annular groove 51 of the coil space 9 required to form the magnetic throttle point 16.
  • the thin layer 50a made of plastic is used for the electrical insulation of the winding 4 to be introduced later into the coil space 9 from the
  • the layer 50a is applied in the coil space 9, for example by vapor deposition, spraying, powder coating, painting or other coating processes.
  • the winding 4 of the magnet coil 1 is only introduced after the winding carrier 50 has been attached to the base body 2.
  • the coated coil space 9 is wound with a coil wire, the cover section 3 and the guide section 8, which are also provided with the layer 50a, advantageously serving as winding limits which prevent the winding 4 from axially expanding or drifting.
  • FIGS. 3a and 3b show a second exemplary embodiment in which an insulating winding carrier 50b is also adhesively applied to a base body 2 of the valve before the actual winding 4 of the magnet coil 1 is introduced.
  • the stepped winding carrier 50b made of plastic becomes direct sprayed onto, for example, the thin-walled, tubular base body 2 (valve inner tube, inner pole) of the valve.
  • the winding support 50b consists of a tubular support section 53 which nestles directly against the wall of the base body 2.
  • Two radial collar sections 54 which extend from the carrier section 53 and are formed in the same plastic injection molding process as the carrier section 53, serve as the axial limits for the later winding 4.
  • the magnetic throttle point 16 is also extrusion-coated since the annular groove 51 on the base body 2 is also filled with plastic.
  • the encapsulation of the thin-walled throttle point 16 increases the mechanical strength in this more sensitive area.
  • the contact pins 43 for making electrical contact with the magnetic coil 1 can be directly included in the
  • Winding carrier 50b are injected.
  • Another solution, not shown, provides for the contact pins 43 to be attached to the winding 4 only subsequently. With the introduction of the winding 4, of course, contacting the ends of the coil wire with the
  • the winding 4 of the magnet coil 1 is only introduced into the winding carrier 50b again after the winding carrier 50b has been fixed on the base body 2. So there is no assembly consisting of coil former and winding, which is completely assembled on the base body 2; rather, the winding 4 is provided subsequently.
  • the direct spraying of the winding carrier 50b or the application of the layer 50a advantageously makes it possible
  • Installation space is saved because the radial wall thicknesses of the winding carrier 50b are reduced or the layers 50a can be made very thin. It is also conceivable to apply the winding carrier 50b to the base body 2 with a positive fit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Das erfindungsgemässe Verfahren zur Herstellung einer Magnetspule eines Ventils zeichnet sich dadurch aus, dass zuerst ein metallener Grundkörper (2) des Ventils bereitgestellt wird, danach ein elektrisch isolierender Wicklungsträger (50) an der äusseren Wandung des Grundkörpers (2) aufgebracht wird und abschliessend eine Wicklung (4) der Magnetspule (1) in den Wicklungsträger (50) eingebracht wird. Ein derartiges Ausbilden einer Magnetspule eignet sich besonders bei Brennstoffeinspritzventilen, die in gemischverdichtenden fremdgezündeten Brennkrafmaschinen zum Einsatz kommen, jedoch auch bei allen anderen Magnetventilen.

Description

Verfahren zur Herstellung einer Magnetspulβ für ein Ventil und Ventil mit einer Magnetspule
Stand der Technik
Die Erfindung geht aus von einem Verfahren zur Herstellung einer Magnetspule für ein Ventil nach der Gattung des
Anspruchs 1 bzw. von einem Ventil mit einer Magnetspule nach der Gattung des Anspruchs 9.
Aus der US-PS 4,610,080 ist bereits ein elektromagnetisch betätigbares Ventil bekannt, das einen elektromagnetischen
Kreis aufweist, zu dem unter anderem eine Magnetspule gehört, durch deren Erregung ein Ventilglied zum Öffnen bzw. Schließen des Ventils betätigbar ist. Die Magnetspule ist derart ausgebildet, daß ein Spulenkörper aus Kunststoff als Träger- und Schutzelement eine Bewicklung aufnimmt, die mit bekanntem Spulendraht vorgenommen wird. Die vorgefertigte Baugruppe aus Spulenkörper und Bewicklung wird im Ventil so montiert, daß ein als Innenpol dienendes Ventilinnenrohr in die innere Öffnung des Spulenkörpers eingreift, so daß die Magnetspule den Innenpol in Umfangsrichtung vollständig umgreift. Der Spulenkörper wird dabei mit Hilfe von Dichtringen auf das Ventilinnenrohr aufgebracht.
Auch aus den Veröffentlichungen EP-PS 0 513 037, GB- OS 2 212 982 und DE-GM 295 14 315 ist es bekannt, Magnetspulenbaugruppen für elektromagnetisch betätigbare Ventile vorzufertigen, die aus einem Spulenkörper und einer eingebetteten Bewicklung bestehen. In stets ähnlicher Weise werden diese vorgefertigten Baugruppen auf einem inneren Ventilbauteil des Magnetkreises montiert.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren zur Herstellung einer Magnetspule für ein Ventil mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, daß auf einfache Art und Weise Ventile mit kleineren Abmessungen in kompakter Bauweise herstellbar sind. In vorteilhafter Weise wird durch das direkte Aufbringen eines Wicklungsträgers auf einen inneren Grundkörper (Ventilinnenrohr, Innenpol) des Ventils Einbauraum eingespart, da die radialen Wandungsdicken des Wicklungsträgers sehr dünn ausgebildet werden können. Insgesamt sind so Ventile mit kleineren Außendurchmessern realisierbar. Eine separate Montageeinrichtung für das Anbringen des Spulendrahtes auf einem Spulenkörper zu einer eigenständigen Baugruppe kann entfallen, da die Wicklung in den bereits am Grundkörper vorgesehenen Wicklungsträger eingebracht wird, so daß eine Kostenreduzierung erreicht wird.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Verfahrens möglich.
In vorteilhafter Weise werden unmittelbar am Grundkörper bzw. am aufgespritzten Wicklungsträger ringförmige Spulenräume geschaffen, die axiale Wickelbegrenzungen aufweisen, die ein axiales Aufweiten oder Verrutschen der Bewicklung verhindern. Das erfindungsgemäße Ventil mit den kennzeichnenden Merkmalen des Anspruchs 9 hat den Vorteil einer sehr kleinen und kompakten Bauweise, so daß ein reduzierter Bauraum beim Einsatz eines solchen Ventils, z.B. in einer Brennkraftmaschine benötigt wird. Durch die dünnwandige
Ausbildung des Wicklungsträgers wird eine Materialeinsparung erreicht. Neben der Verringerung der Abmessungen des Ventils geht auch eine Reduzierung der Masse einher.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 9 angegebenen Ventils möglich.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein Ventil mit einer erfindungsgemäß hergestellten Magnetspulenanordnung, Figuren 2a und 2b ein erstes Beispiel für das Anbringen einer Magnetspule auf einem inneren Ventilbauteil und Figuren 3a und 3b ein zweites Beispiel für das Anbringen einer Magnetspule auf einem inneren Ventilbauteil .
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 beispielhaft und teilweise vereinfacht dargestellte, erfindungsgemäße bzw. erfindungsgemäß hergestellte Ventil in der Form eines elektromagnetisch betätigbaren Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen hat einen einteiligen, von einer Magnetspule 1 umgebenen, als Innenpol des Magnetkreises und als Brennstoffeinlaß bzw. -durchfluß sowie als Ventilsitzträger dienenden und ein Ventilinnenrohr darstellenden, weitgehend rohrförmigen metallenen Grundkörper 2. Dieses Ventil wird beispielhaft für Magnetventile beschrieben, die in ihren verschiedensten Bauformen erfindungsgemäße Magnetspulen 1 aufweisen können. Der Grundkörper 2 ist mehrfach gestuft und dabei stromaufwärts der Magnetspule 1 in radialer Richtung gestuft ausgeführt, so daß der Grundkörper 2 mit einem oberen Deckelabschnitt 3 die Magnetspule 1 teilweise radial umhüllt und einen besonders kompakten Aufbau des Einspritzventils im Bereich der Magnetspule 1 ermöglicht. Die Magnetspule 1 ist von einem äußeren hülsenförmigen, z. B. ferromagnetisehen Ventilmantel 5 als Außenpol umgeben, der die Magnetspule 1 in Umfangsrichtung vollständig umgibt und an seinem oberen Ende fest mit dem Grundkörper 2 an dessen Deckelabschnitt 3 z. B. durch eine Schweißnaht 6 verbunden ist. Zum Schließen des magnetischen Kreises ist der Grundkörper 2 stromabwärts der Magnetspule 1 ebenfalls gestuft ausgeführt, so daß ein Leitabschnitt 8 gebildet ist, der ähnlich dem Deckelabschnitt 3 die Magnetspule 1 axial begrenzt, wobei der Leitabschnitt 8 die Begrenzung der Magnetspule 1 nach unten hin bzw. in stromabwärtiger Richtung darstellt. Der Deckelabschnitt 3, der Leitabschnitt 8 sowie der langgestreckte innere Teil des Grundkörpers 2 begrenzen einen ringförmigen, kammerartigen Spulenraum 9, in dem die eigentliche Wicklung 4 der Magnetspule 1 eingebracht ist. Der Ventilmantel 5 schließt den Spulenraum 9 nach außen hin ab.
Der Grundkörper 2 besitzt eine innere, konzentrisch zu einer
Ventillängsachse 10 verlaufende Längsöffnung 11, die in einem stromaufwärtigen Bereich 11a als BrennstoffStrömungskanal und in einem stromabwärtigen Bereich 11b noch zusätzlich wenigstens teilweise als FührungsÖffnung für eine entlang der Ventillängsachse 10 axial bewegliche Ventilnadel 12 dient. Der Bereich 11b weist einen größeren Durchmesser auf als der Bereich 11a, da im axialen Erstreckungsbereich der Magnetspule 1 ein Stufenabsatz 13 in der Längsöffnung 11 vorgesehen ist. Unmittelbar stromabwärts des Stufenabsatzes 13 besitzt der Grundkörper 2 am Umfang eine dünnwandige magnetische Drosselstelle 16, die von der Magnetspule 1 umgeben ist.
Beispielsweise stromabwärts des Leitabschnitts 8 fungiert der Grundkörper 2 als Ventilsitzträger, da am stromabwärtigen Ende des Bereichs 11b der Längsöffnung 11 ein Ventilsitzkörper 14 eingebracht ist, der eine feste Ventilsitzfläche 15 als Ventilsitz aufweist. Der Ventilsitzkörper 14 ist mit einer beispielsweise mittels eines Lasers erzeugten Schweißnaht fest mit dem Grundkörper 2 verbunden. Ansonsten dient der untere Bereich 11b der Längsöffnung 11 der Aufnahme der Ventilnadel 12, die von einem Anker 17 und einem kugelförmigen Ventilschließkörper 18 gebildet wird. An der stromabwärtigen Stirnseite des Ventilsitzkörpers 14 ist z. B. in einer Vertiefung 19 eine flache Spritzlochscheibe 20 angeordnet, wobei die feste Verbindung von Ventilsitzkörper 14 und Spritzlochscheibe 20 z. B. durch eine umlaufende Schweißnaht 21 realisiert ist. Der als Schließkörperträger dienende Anker 17 ist an seinem stromabwärtigen, der Spritzlochscheibe 20 zugewandten Ende mit dem kugelförmigen Ventilschließkörper 18 beispielsweise durch eine Schweißnaht fest verbunden.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise elektromagnetisch. Zur axialen Bewegung der
Ventilnadel 12 und damit zum Öffnen entgegen der Federkraft einer Rückstellfeder 25 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspule 1, dem inneren Grundkörper 2, dem äußeren Ventilmantel 5 und dem Anker 17. Der Anker 17 ist entsprechend auf den Grundkörper 2 ausgerichtet. Die Rückstellfeder 25 erstreckt sich in der Längsöffnung 11 beispielsweise sowohl stromabwärts als auch stromaufwärts des Stufenabsatzes 13, also in beiden Bereichen 11a und 11b.
Der kugelförmige Ventilschließkörper 18 wirkt mit der sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitzfläche 15 des Ventilsitzkörpers 14 zusammen, die in axialer Richtung stromabwärts einer Führungsöffnung im Ventilsitzkörper 14 ausgebildet ist. Die Spritzlochscheibe 20 besitzt wenigstens eine, beispielsweise vier durch Erodieren oder Stanzen ausgeformte Abspritzöffnungen 27.
Die Einschubtiefe des Ventilsitzkörpers 14 im Einspritzventil ist unter anderem entscheidend für den Hub der Ventilnadel 12. Dabei ist die eine Endstellung der Ventilnadel 12 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörpers 18 an der Ventilsitzfläche 15 des Ventilsitzkörpers 14 festgelegt, während sich die andere Endstellung der Ventilnadel 12 bei erregter
Magnetspule 1 durch die Anlage des Ankers 17 an dem Stufenabsatz 13 des Grundkörpers 2 ergibt. Die Hubeinstellung erfolgt z.B. durch ein axiales Verschieben des Ventilsitzkörpers 14, der entsprechend der gewünschten Position nachfolgend fest mit dem Grundkörper 2 verbunden wird.
In den oberen Bereich 11a der Längsöffnung 11 ist außer der Rückstellfeder 25 eine Einstellhülse 29 eingeschoben. Die Einstellhülse 29 dient zur Einstellung der Federvorspannung der an der Einstellhülse 29 anliegenden Rückstellfeder 25, die sich mit ihrer gegenüberliegenden Seite an einem Bodenbereich 30 einer inneren Vertiefung 31 im Schließkörperträger 17 abstützt, wobei auch eine Einstellung der dynamischen Abspritzmenge mit der Einstellhülse 29 erfolgt .
Der Anker 17 weist z.B. im axialen Erstreckungsbereich der magnetischen Drosselstelle 16 am äußeren Umfang eine ringförmige obere Führungsfläche 32 auf, die der Führung der axial beweglichen Ventilnadel 12 in der Längsöffnung 11 dient. Der Anker 17 hat eine obere, dem Stufenabsatz 13 zugewandte Anschlagfläche 33, die mit einer Verschleißschutzschicht versehen ist, z.B. verchromt ist. Vom Bodenbereich 30 der Vertiefung 31 ausgehend ist in dem Schließkörperträger 17 eine Durchgangsöffnung 34 ausgeformt, die sich bis zum Ventilschließkörper 18 erstreckt. Nahe des Ventilschließkörpers 18 zweigen mehrere Abzweigöffnungen 35 von der Durchgangsöffnung 34 ab, die bis zur äußeren
Begrenzung des Schließkörperträgers 17 verlaufen. Diese Ausbildung des Schließkörperträgers 17 ermöglicht es, daß der der Ventilsitzfläche 15 zuzuführende Brennstoff durch die Vertiefung 31 und die Durchgangsöffnung 34 sowie die Abzweigöffnungen 35 ungehindert strömen kann. Die
Abzweigöffnungen 35 sind in ihrer Form frei gestaltbar (z.B. mit kreisförmigen, elliptischen oder mehreckigen Querschnitten) und können radial oder schräg verlaufen.
Ein Ventil in oben beschriebener Bauweise zeichnet sich durch seinen besonders kompakten Aufbau aus, so daß ein sehr kleines, handliches Bauelement entsteht, dessen Ventilmantel 5 beispielsweise einen Außendurchmesser von nur ca. 11 bis 14 mm aufweist. Die bisher beschriebenen Bauteile bilden eine vormontierte eigenständige Baugruppe, die als
Funktionsteil 40 bezeichnet werden kann. Das fertig eingestellte und montierte Funktionsteil 40 weist z. B. eine obere Stirnfläche 42, hier des Deckelabschnitts 3, auf, über die beispielsweise zwei Kontaktstifte 43 herausragen. Über die elektrischen Kontaktstifte 43, die als elektrische Verbindungselemente dienen, erfolgt die elektrische Kontaktierung der Wicklung 4 der Magnetspule 1 und damit deren Erregung.
Mit einem solchen Funktionsteil 40 ist ein nicht dargestelltes Anschlußteil verbindbar, das sich vor allen Dingen dadurch auszeichnet, daß es den elektrischen und den hydraulischen Anschluß des gesamten Einspritzventils umfaßt. Eine hydraulische Verbindung von dem nicht dargestellten Anschlußteil und dem Funktionsteil 40 wird beim vollständig montierten Einspritzventil dadurch erreicht, daß Strömungsbohrungen beider Baugruppen so zueinander gebracht werden, daß ein ungehindertes Durchströmen des Brennstoffs gewährleistet ist. Dabei liegt dann z. B. die Stirnfläche 42 des Funktionsteils 40 unmittelbar an einer unteren
Stirnfläche des Anschlußteils an und ist mit diesem fest verbunden. Bei der Montage des Anschlußteils auf dem Funktionsteil 40 kann ein über die Stirnfläche 42 und damit über den Deckelabschnitt 3 überstehender Grundkörperstutzen 45 des Grundkörpers 2 zur Erhöhung der Verbindungsstabilität in eine Strömungsbohrung des Anschlußteils hineinragen. Im Verbindungsbereich ist zur sicheren Abdichtung z. B. ein Dichtring 46 vorgesehen, der auf der Stirnfläche 42 des Deckelabschnitts 3 aufliegend den Grundkörperstutzen 45 umgibt. Die als elektrische Verbindungselemente dienenden
Kontaktstifte 43 gehen im vollständig montierten Ventil eine sichere elektrische Verbindung mit korrespondierenden elektrischen Verbindungselementen des Anschlußteils ein.
In den nachfolgenden Figuren sind Grundkörper 2 vollständig bzw. teilweise im Bereich der Magnetspule 1 dargestellt, um die erfindungsgemäße Ausbildung der Magnetspule 1 zu verdeutlichen. Dabei zeigen die Figuren 2a und 2b den bereits aus Figur 1 bekannten Grundkörper 2, und zwar einerseits vor dem Einbringen und andererseits nach dem Einbringen der Wicklung 4 der Magnetspule 1. Die Wicklung 4 wird bei dem erfindungsgemäßen Ausbilden der Magnetspule 1 nicht wie bei bekannten Ventilen auf einem Spulenkörper vorgenommen, der zusammen mit der Bewicklung als vorgefertigte Baugruppe montiert wird, sondern auf einem bereits am Grundkörper 2 bzw. am Innenpol oder am Ventilinnenrohr vorgesehenen Wicklungsträger 50, der z.B. als dünne Schicht 50a adhäsiv den Spulenraum 9 entlang der Wandung des Grundkörpers 2 auskleidet. Die dünne Schicht 50a haftet adhäsiv an der Oberfläche des Grundkörpers 2 und füllt dabei beispielsweise auch eine zur Bildung der magnetischen Drosselstelle 16 benötigte Ringnut 51 des Spulenraums 9 vollständig aus. Die dünne Schicht 50a aus Kunststoff dient der elektrischen Isolierung der später in den Spulenraum 9 einzubringenden Wicklung 4 gegenüber dem
Grundkörper 2. Das Aufbringen der Schicht 50a im Spulenraum 9 erfolgt beispielsweise durch Aufdampfen, Aufspritzen, Pulverbeschichten, Lackieren oder andere Beschichtungsverfahren .
Wie Figur 2b zeigt, wird erst nach dem Anbringen des Wicklungsträgers 50 am Grundkörper 2 die Wicklung 4 der Magnetspule 1 eingebracht. Dazu wird der beschichtete Spulenraum 9 mit einem Spulendraht bewickelt, wobei der Deckelabschnitt 3 und der Leitabschnitt 8, die ebenfalls mit der Schicht 50a versehen sind, in vorteilhafter Weise als Wickelbegrenzungen dienen, die ein axiales Aufweiten oder Abdriften der Wicklung 4 verhindern.
In den Figuren 3a und 3b ist ein zweites Ausführungsbeispiel dargestellt, bei dem ebenfalls ein isolierender Wicklungsträger 50b adhäsiv haftend auf einem Grundkörper 2 des Ventils aufgebracht wird, bevor die eigentliche Wicklung 4 der Magnetspule 1 eingebracht wird. Der gestuft ausgeführte Wicklungsträger 50b aus Kunststoff wird direkt auf den z.B. dünnwandigen, rohrförmigen Grundkörper 2 (Ventilinnenrohr, Innenpol) des Ventils aufgespritzt. Der Wicklungsträger 50b besteht dabei aus einem rohrförmigen Trägerabschnitt 53, der sich unmittelbar an die Wandung des Grundkörpers 2 anschmiegt. Als axiale Begrenzungen für die spätere Wicklung 4 dienen zwei radial verlaufende Kragenabschnitte 54, die sich vom Trägerabschnitt 53 aus erstrecken und im gleichen Kunststoffspritzgußprozeß wie der Trägerabschnitt 53 ausgeformt werden. Die magnetische Drosselstelle 16 wird ebenfalls mitumspritzt, da die Ringnut 51 am Grundkörper 2 auch mit Kunststoff ausgefüllt wird. Das Umspritzen der dünnwandigen Drosselstelle 16 erhöht die mechanische Festigkeit in diesem sensibleren Bereich. Wie Figur 3a zeigt, können die Kontaktstifte 43 zur elektrischen Kontaktierung der Magnetspule 1 unmittelbar mit in den
Wicklungsträger 50b eingespritzt werden. Eine andere, nicht dargestellte Lösung sieht vor, die Kontaktstifte 43 erst nachträglich mit der Wicklung 4 anzubringen. Mit dem Einbringen der Wicklung 4 muß selbstverständlich eine Kontaktierung der Enden des Spulendrahtes mit den
Kontaktstiften 43 vorgenommen werden.
Gemäß Figur 3b wird die Wicklung 4 der Magnetspule 1 erst wiederum nach der Fixierung des Wicklungsträgers 50b auf dem Grundkörper 2 in den Wicklungsträger 50b eingebracht. Es liegt also keine Baugruppe bestehend aus Spulenkörper und Wicklung vor, die komplett auf dem Grundkörper 2 montiert wird; vielmehr wird die Wicklung 4 nachträglich vorgesehen. In vorteilhafter Weise wird durch das direkte Aufspritzen des Wicklungsträgers 50b oder das Aufbringen der Schicht 50a
Einbauraum eingespart, da die radialen Wandungsdicken des Wicklungsträgers 50b reduziert bzw. die Schichten 50a sehr dünn ausgebildet werden können. Ein Aufbringen des Wicklungsträgers 50b auf dem Grundkörper 2 unter Formschluß ist ebenfalls denkbar.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer Magnetspule für ein Ventil mit den Verfahrensschritten a) Ausbilden eines inneren metallenen Grundkörpers (2) des Ventils mit einer inneren Längsöffnung (11) , b) Aufbringen eines elektrisch isolierenden Wicklungsträgers (50) an der äußeren Wandung des Grundkörpers (2) , c) Einbringen einer Wicklung (4) der Magnetspule (1) in den Wicklungsträger (50) .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Grundkörper (2) derart ausgeformt wird, daß ein ringförmiger Spulenraum (9) gebildet ist, an dessen Wandungen der Wicklungsträger (50) als dünne, adhäsiv haftende Schicht (50a) aufgebracht wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Aufbringen der Schicht (50a) durch Aufdampfen, Pulverbeschichten, Lackieren oder Aufspritzen eines elektrisch isolierenden Materials erfolgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß als Beschichtungsmaterial ein Kunststoff verwendet wird.
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß eine zur Bildung einer magnetischen Drosselstelle (16) des Grundkörpers (2) vom Spulenraum (9) aus vorgesehene Ringnut (51) ebenfalls mit der Schicht (50a) ausgefüllt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß auf den Grundkörper (2) an dessen äußerer Wandung ein Wicklungsträger (50b) aus Kunststoff aufgespritzt wird, der einen rohrförmigen Trägerabεchnitt (53) aufweist, von dem aus zwei radial verlaufende Kragenabschnitte (54) ausgebildet sind, die damit einen ringförmigen Spulenraum (9) begrenzen.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß eine zur Bildung einer magnetischen Drosselstelle (16) am Grundkörper (2) vorgesehene Ringnut (51) ebenfalls mit dem Kunststoff des Wicklungsträgers (50b) ausgefüllt wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß unmittelbar in den Wicklungsträger (50b) Kontaktstifte (43) eingespritzt werden.
9. Ventil mit einer Magnetspule, die einen inneren metallenen Grundkörper (2) , der eine innere Längsöffnung (11) aufweist, umgibt und einen elektrisch isolierenden Wicklungsträger (50) sowie eine Wicklung (4) hat, dadurch gekennzeichnet, daß die Wicklung (4) auf den bereits auf dem Grundkörper (2) aufgebrachten Wicklungsträger (50) gewickelt ist.
10. Ventil nach Anspruch 9, dadurch gekennzeichnet, daß der Grundkörper (2) derart ausgeformt ist, daß ein ringförmiger Spulenraum (9) gebildet ist, an dessen Wandungen der Wicklungsträger (50) als dünne, adhäsiv haftende Schicht (50a) aufgebracht ist.
11. Ventil nach Anspruch 10, dadurch gekennzeichnet, daß die Schicht (50a) durch Aufdampfen, Pulverbeschichten, Lackieren oder Aufspritzen eines elektrisch isolierenden Materials aufbringbar ist.
12. Ventil nach Anspruch 11, dadurch gekennzeichnet, daß das Beschichtungsmaterial ein Kunststoff ist.
13. Ventil nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß eine zur Bildung einer magnetischen Drosselstelle (16) des Grundkörpers (2) vom Spulenraum (9) aus vorgesehene Ringnut (51) ebenfalls mit der Schicht (50a) ausgefüllt ist.
14. Ventil nach Anspruch 9, dadurch gekennzeichnet, daß auf den Grundkörper (2) an dessen äußerer Wandung ein Wicklungsträger (50b) aus Kunststoff aufgespritzt ist, der einen rohrförmigen Trägerabschnitt (53) aufweist, von dem aus zwei radial verlaufende Kragenabschnitte (54) ausgebildet sind, die damit einen ringförmigen Spulenraum (9) begrenzen.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß eine zur Bildung einer magnetischen Drosselstelle (16) am Grundkörper (2) vorgesehene Ringnut (51) ebenfalls mit dem Kunststoff des Wicklungsträgers (50b) ausgefüllt ist.
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß unmittelbar in den Wicklungsträger (50b) Kontaktstifte (43) eingespritzt sind.
PCT/DE1998/001142 1997-06-27 1998-04-24 Verfahren zur herstellung einer magnetspule für ein ventil und ventil mit einer magnetspule WO1999000804A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11505195A JP2001500321A (ja) 1997-06-27 1998-04-24 弁のための電磁コイルを製造するための方法及び電磁コイルを有した弁
EP98925444A EP0922287B1 (de) 1997-06-27 1998-04-24 Verfahren zur herstellung einer magnetspule für ein ventil und ventil mit einer magnetspule
DE59809336T DE59809336D1 (de) 1997-06-27 1998-04-24 Verfahren zur herstellung einer magnetspule für ein ventil und ventil mit einer magnetspule
US09/254,110 US6702253B2 (en) 1997-06-27 1998-04-24 Method for producing a magnetic coil for a valve and valve with a magnetic coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19727414A DE19727414A1 (de) 1997-06-27 1997-06-27 Verfahren zur Herstellung einer Magnetspule für ein Ventil und Ventil mit einer Magnetspule
DE19727414.5 1997-06-27

Publications (1)

Publication Number Publication Date
WO1999000804A1 true WO1999000804A1 (de) 1999-01-07

Family

ID=7833868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/001142 WO1999000804A1 (de) 1997-06-27 1998-04-24 Verfahren zur herstellung einer magnetspule für ein ventil und ventil mit einer magnetspule

Country Status (6)

Country Link
US (1) US6702253B2 (de)
EP (1) EP0922287B1 (de)
JP (1) JP2001500321A (de)
KR (1) KR100524215B1 (de)
DE (2) DE19727414A1 (de)
WO (1) WO1999000804A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243057A (ja) * 2000-12-11 2002-08-28 Denso Corp 電磁弁装置
EP0944769B1 (de) * 1997-10-10 2003-05-07 Robert Bosch Gmbh Brennstoffeinspritzventil
EP2363595A1 (de) * 2010-02-25 2011-09-07 Continental Automotive GmbH Ventilanordnung für ein Einspritzventil und Einspritzventil

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794209A1 (fr) * 1999-05-28 2000-12-01 Rene Vinci Electrovanne a structure monolithique en materiau ferromagnetique
DE19927898A1 (de) 1999-06-18 2000-12-21 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19936581C1 (de) * 1999-08-03 2000-10-26 Daimler Chrysler Ag Verfahren zur Herstellung von Aktoren zur elektromagnetischen Ventilsteuerung bei dem als Vergußmasse für die Erregerspule ein Metall bzw. eine Metallegierung verwendet wird
JP2001263521A (ja) * 2000-03-17 2001-09-26 Denso Corp 電磁駆動装置およびそれを用いた流体制御弁と電磁駆動装置の製造方法
US6669166B2 (en) * 2000-07-28 2003-12-30 Nippon Soken, Inc. Electromagnetic valve
DE10039083A1 (de) * 2000-08-10 2002-02-21 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10063471A1 (de) 2000-12-19 2002-06-20 Claas Industrietechnik Gmbh Kontaktierungsvorrichtung und eine Magnetspule
JP4058026B2 (ja) * 2004-06-16 2008-03-05 株式会社ケーヒン 電磁式燃料噴射弁
DE102005000985B4 (de) * 2005-01-07 2008-12-18 A. Kayser Automotive Systems Gmbh Spulenkörper mit integrierter Magnetkernlagerung
US7581302B2 (en) * 2005-01-13 2009-09-01 G. W. Lisk Company, Inc. Solenoid valve combining a core and cartridge in a single piece
JP2007288129A (ja) * 2006-03-20 2007-11-01 Denso Corp コイル装置およびインジェクタ
DE202006006825U1 (de) * 2006-04-27 2007-08-30 Bürkert Werke GmbH & Co. KG Ventil mit einem elektromagnetischen Antrieb
EP2916054A2 (de) * 2007-03-28 2015-09-09 Fillon Technologies Dosierventil
WO2009054848A1 (en) * 2007-10-23 2009-04-30 Brooks Instrument Llc Pressure retaining sleeve
TW201019352A (en) * 2008-11-11 2010-05-16 Delta Electronics Inc Conductive winding and manufacturing method thereof
DE102008061414B4 (de) * 2008-12-10 2013-01-31 Hydac Electronic Gmbh Verfahren zum Herstellen einer elektromagnetischen Betätigungsvorrichtung, insbesondere zum Betätigen von Ventilen, sowie nach dem Verfahren hergestellte Betätigungsvorrichtung
JP5077331B2 (ja) 2009-11-16 2012-11-21 株式会社デンソー リニアソレノイド
DE102011088463A1 (de) * 2011-06-29 2013-01-03 Robert Bosch Gmbh Bauteil für einen Magnetaktor sowie Verfahren zu dessen Herstellung
DE102011084724A1 (de) * 2011-10-18 2013-04-18 Robert Bosch Gmbh Verfahren zur Herstellung einer magnetischen Trennung für ein Magnetventil
JP2014105753A (ja) * 2012-11-27 2014-06-09 Denso Corp 高圧流体用電磁弁装置
JP5733581B2 (ja) * 2012-11-27 2015-06-10 株式会社デンソー 高圧流体用電磁弁装置
EP2775132A1 (de) * 2013-03-07 2014-09-10 Continental Automotive GmbH Ventilkörper und Flüssigkeitseinspritzdüse
DE102013005478B3 (de) * 2013-03-28 2014-01-30 Thomas Magnete Gmbh Druckregelventil mit elektrischer Ansteuerung
US10309357B2 (en) * 2013-09-13 2019-06-04 Continental Automotive Gmbh Fluid injector
DE102013221484A1 (de) * 2013-10-23 2015-04-23 Robert Bosch Gmbh Kraftstoffinjektor
JP2015086761A (ja) * 2013-10-30 2015-05-07 日立オートモティブシステムズ株式会社 電磁式燃料噴射弁
JP6164167B2 (ja) * 2014-06-25 2017-07-19 株式会社デンソー リニアソレノイド
EP3244425A1 (de) * 2016-02-23 2017-11-15 Rausch und Pausch GmbH Polrohr für elektromagnete und magnetventile, und verfahren sowie vorrichtung zu dessen herstellung
CN109313973B (zh) 2016-03-07 2021-05-07 胡斯可汽车控股有限公司 具有一体式极片的电磁致动器
JP5990356B1 (ja) * 2016-05-25 2016-09-14 伸和コントロールズ株式会社 電磁弁
CN107477239B (zh) * 2016-06-08 2023-03-07 浙江盾安禾田金属有限公司 一种电磁水阀
DE102016112643A1 (de) * 2016-07-11 2018-01-11 Rolf Prettl Verfahren zur Herstellung einer Magnetspule sowie Magnetspule
DE102017116383A1 (de) 2017-07-20 2019-01-24 Liebherr-Components Deggendorf Gmbh Injektor zum Einspritzen von Krafstoff
DE102018128577A1 (de) * 2018-11-14 2020-05-14 Rapa Automotive Gmbh & Co. Kg Polrohr für elektromagnete, hubregelmagnete und magnetventile und verfahren zu dessen herstellung
DE102018219527A1 (de) * 2018-11-15 2020-05-20 Robert Bosch Gmbh Ventil zum Zumessen eines Fluids
CN209164045U (zh) * 2018-11-19 2019-07-26 浙江锐韦机电科技有限公司 泵阀一体机构
EP3800650A1 (de) * 2019-10-01 2021-04-07 HUSCO Automotive Holdings LLC Doppelt geflanschtes einheitliches polstück und elektromagnetischer aktuator, der das doppelt geflanschte einheitliche polstück umfasst
US20240231080A9 (en) * 2022-10-25 2024-07-11 Stanadyne Operating Company Llc Harsh environment sensor enclosure and cleaning system
DE102023105834A1 (de) 2023-03-09 2024-09-12 Danfoss A/S Polrohr für eine Magnetventilanordnung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2303360A1 (fr) * 1975-03-07 1976-10-01 Philips Nv Electro-aimant
JPS5648122A (en) * 1979-09-26 1981-05-01 Ikeda Denki Kk Production of bobbin
EP0140290A2 (de) * 1983-10-24 1985-05-08 Mitsubishi Denki Kabushiki Kaisha Elektromagnetisches Solenoid
US4610080A (en) 1985-07-29 1986-09-09 Allied Corporation Method for controlling fuel injector lift
GB2212982A (en) 1987-11-24 1989-08-02 Weber Srl Coils for fuel injection valves
EP0513037A1 (de) 1990-02-03 1992-11-19 Bosch Gmbh Robert Elektromagnetisch betätigbares ventil.
DE29514315U1 (de) 1995-09-06 1995-11-02 Siemens AG, 80333 München Magnetspule

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669380A (en) * 1970-02-16 1972-06-13 Gen Electric Apparatus for winding electrical coils
US3861644A (en) * 1973-10-09 1975-01-21 Gen Motors Corp Solenoid valve
IT1260476B (it) * 1992-05-28 1996-04-09 Dispositivo azionatore a comando elettromagnetico in particolare per valvole ed applicazioni elettroidrauliche
US5345209A (en) * 1992-07-30 1994-09-06 Tdk Corporation Adjustment system for a coil device
US5741558A (en) * 1993-04-07 1998-04-21 Nordson Corporation Method and apparatus for coating three dimensional articles
US5497096A (en) * 1993-07-02 1996-03-05 Cooper Industries, Inc. Faulted circuit indictor with three-dimensional display device
JP3453792B2 (ja) * 1993-07-09 2003-10-06 三菱電機株式会社 内燃機関用点火コイル
US5775374A (en) * 1994-01-06 1998-07-07 Koganei Corporation Solenoid controlled valve
US5723789A (en) * 1994-01-12 1998-03-03 Shannon; E. Paul Impact responsive sensor
US5450876A (en) * 1994-05-11 1995-09-19 Marotta Scientific Controls, Inc. Magnetically linked valve construction
US5533707A (en) * 1995-03-09 1996-07-09 Flexon, Inc. Check valve with internal longitudinally displaceable sleeve valve
JP3236469B2 (ja) * 1995-04-06 2001-12-10 アルパイン株式会社 磁気駆動装置およびその製造方法
US5607532A (en) * 1995-06-07 1997-03-04 Lostracco; Gregory Use of ultraviolet-curable adhesive in preparation of optical fiber dispensers
JP3338614B2 (ja) * 1996-06-03 2002-10-28 愛三工業株式会社 燃料噴射弁
US5878522A (en) * 1996-09-30 1999-03-09 Thedford; Alan Stranded wire tool
US6124775A (en) * 1997-03-05 2000-09-26 Kelsey-Hayes Company Bobbinless solenoid coil
FR2763376B1 (fr) * 1997-05-14 2002-11-01 Toyoda Automatic Loom Works Soupape de commande d'un compresseur a deplacement variable pour climatiseur d'air de vehicule, et compresseur comprenant une telle soupape

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2303360A1 (fr) * 1975-03-07 1976-10-01 Philips Nv Electro-aimant
JPS5648122A (en) * 1979-09-26 1981-05-01 Ikeda Denki Kk Production of bobbin
EP0140290A2 (de) * 1983-10-24 1985-05-08 Mitsubishi Denki Kabushiki Kaisha Elektromagnetisches Solenoid
US4610080A (en) 1985-07-29 1986-09-09 Allied Corporation Method for controlling fuel injector lift
GB2212982A (en) 1987-11-24 1989-08-02 Weber Srl Coils for fuel injection valves
EP0513037A1 (de) 1990-02-03 1992-11-19 Bosch Gmbh Robert Elektromagnetisch betätigbares ventil.
DE29514315U1 (de) 1995-09-06 1995-11-02 Siemens AG, 80333 München Magnetspule

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 005, no. 109 (E - 065) 15 July 1981 (1981-07-15) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0944769B1 (de) * 1997-10-10 2003-05-07 Robert Bosch Gmbh Brennstoffeinspritzventil
JP2002243057A (ja) * 2000-12-11 2002-08-28 Denso Corp 電磁弁装置
EP2363595A1 (de) * 2010-02-25 2011-09-07 Continental Automotive GmbH Ventilanordnung für ein Einspritzventil und Einspritzventil

Also Published As

Publication number Publication date
US6702253B2 (en) 2004-03-09
DE19727414A1 (de) 1999-01-07
EP0922287B1 (de) 2003-08-20
JP2001500321A (ja) 2001-01-09
DE59809336D1 (de) 2003-09-25
EP0922287A1 (de) 1999-06-16
US20030189183A1 (en) 2003-10-09
KR20000068358A (ko) 2000-11-25
KR100524215B1 (ko) 2005-11-01

Similar Documents

Publication Publication Date Title
EP0922287B1 (de) Verfahren zur herstellung einer magnetspule für ein ventil und ventil mit einer magnetspule
DE19712589C1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung einer Ventilnadel eines Brennstoffeinspritzventils
EP0352445B1 (de) Elektromagnetisch betätigbares Ventil
EP0975868B1 (de) Elektromagnetisch betätigbares ventil
EP0352444B1 (de) Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung
DE3831196C2 (de)
EP1114249B1 (de) Brennstoffeinspritzventil
EP0865573A1 (de) Ventilnadel für ein einspritzventil
DE4310719C2 (de) Verfahren zur Herstellung eines Magnetkreises für ein Ventil
EP0865574A1 (de) Brennstoffeinspritzventil und verfahren zur herstellung
EP1789673A1 (de) Einspritzventil zur kraftstoffeinspritzung
EP1062421B1 (de) Brennstoffeinspritzventil
EP1966479B1 (de) Elektromagnetisch betätigbares ventil
EP0479958B1 (de) Elektromagnetisch betätigbares brennstoffeinspritzventil
EP0460125A1 (de) Elektromagnetisch betätigbares ventil.
EP0525377A1 (de) Ventil
DE3904448A1 (de) Magnetanker
WO2012034756A1 (de) Brennstoffeinspritzventil
EP1200729B1 (de) Verfahren zur einstellung des ventilhubs eines einspritzventils
WO1999066195A1 (de) Brennstoffeinspritzventil
EP2616662A1 (de) Brennstoffeinspritzventil
EP0925441B1 (de) Elektromagnetisch betätigbares ventil
DE102007049945A1 (de) Brennstoffeinspritzventil
DE102006042600A1 (de) Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung eines elektromagnetisch betätigbaren Ventils
EP0853725A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1998925444

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09254110

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 505195

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019997001575

Country of ref document: KR

ENP Entry into the national phase

Ref country code: US

Ref document number: 1999 254110

Date of ref document: 19990317

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998925444

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001575

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998925444

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997001575

Country of ref document: KR